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Abstract of the Dissertation

Graphical Models of Time Series:

Parameter Estimation

and Topology Selection

by

Jitkomut Songsiri

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2010

Professor Lieven Vandenberghe, Chair

This thesis is concerned with estimation problems in graphical models of time

series. The graph topology of a graphical model characterizes conditional inde-

pendence relations between the variables, so estimation generally involves two

problems: topology selection and parameter estimation for a given topology. We

first consider the problem of fitting a Gaussian autoregressive model to a time

series, subject to conditional independence constraints. This is an extension of

the classical covariance selection problem to time series. The conditional inde-

pendence constraints impose a sparsity pattern on the inverse of the spectral

density matrix, and result in nonconvex quadratic equality constraints in the

maximum likelihood formulation of the model estimation problem. We present a

semidefinite relaxation, and prove via duality that the relaxation is exact when

the sample covariance matrix is block-Toeplitz. We also give experimental results

suggesting that the relaxation is often exact when the sample covariance matrix

is not block-Toeplitz. The estimation method can be used for small topology

xvi



selection problems by enumerating all topologies, solving the estimation prob-

lem for each topology and ranking them via model selection criteria such as the

Akaike or Bayes information criteria.

As a second contribution, we propose an efficient method for learning the

topology of graphical models of autoregressive Gaussian time series. The method

is based on an ℓ1-type nonsmooth regularization of the conditional maximum

likelihood estimation problem used to promote sparsity in the inverse of the

estimated spectral density matrix. We describe a heuristic approach for choosing

the regularization parameter which controls the sparsity of the esimated inverse

spectrum. The estimation accuracy of the topology and AR model is illustrated

by numerical examples and experiments with real data sets.

Finally, we describe a large-scale algorithm that solves a reformulation of the

duals of the above two problems via the gradient projection method. Numerical

results show that the method is capable of solving problems of dimensions of

several hundred within a reasonable amount of time.
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CHAPTER 1

Introduction

1.1 Graphical models of random variables

This thesis is concerned with estimation problems in graphical models of time

series. Graphical models combine probabilistic concepts with graph theory by

representing dependencies among variables as a graph. In this thesis we focus on

undirected graphical models where the edges specify the conditional dependence

structure of random variables. Graphical models are useful for many reasons. By

exploiting the graph representation, some statistical quantities such as marginal

or conditional probabilities of a subset of nodes in the graph can be calculated

more efficiently [WJ08]. Graphical models also provide insight in the structure of

the distribution. The conditional independence structure defined on a graph lets

us associate a probabilistic model with the graph and further allows us to build a

complex model out of simpler parts. This paves the way to parameter estimation

methods that provide a parsimonious model for a complex system. For these rea-

sons, graphical models have become a useful tool for many statistical applications

such as modeling of complex biological systems, information extraction, speech

processing, pattern recognition, communication networks, etc [Bis06, BB01].

A simple example of a graphical model is a Gaussian graphical model, asso-

ciated with a multivariate Gaussian random variable. Other common examples

include contingency tables, which describe conditional independence relations in
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multinomial distributions, Bayesian networks, which use directed acyclic graphs

to represent causal or temporal relations, and chain graphs, which are mixed

graphs containing undirected and directed edges. For general introductions to

graphical models, we refer the readers to [Whi90, Edw00]. A comprehensive

treatment of the theory of graphical models can be found in [Lau96]. Related

topics in learning and estimation problems in graphical models are presented

in [Jor99, WJ08].

This work focuses on parameter and structure learning in graphical models.

General estimation problems in graphical models can be divided in two groups

depending on whether the topology of the graph is given or not. The topology

of graphical models is defined through the notion of conditional independence

and this was initially established for static multivariate random variables. For

a Gaussian variable x ∼ N (0, Σ), the components xi and xj are conditionally

independent, conditional on the other components, if and only if (Σ−1)ij = 0

(see details in section 2.1.1). The topology of a Gaussian graphical model is

therefore equivalent to the zero pattern of the inverse covariance matrix. This

nice characterization allows us to consider a class of estimation problems when a

graph structure is given. An example of problems in this class is the maximum-

likelihood (ML) estimation of a Gaussian graphical model, parametrized by a

covariance matrix Σ, for a given graph topology. The ML problem can be ex-

pressed as

maximize − log det Σ − tr(CΣ−1)

subject to (Σ−1)ij = 0, (i, j) ∈ V,

where C is the sample covariance matrix, and V are the pairs of nodes (i, j)

that are not connected by an edge, i.e., for which xi and xj are conditionally

2



independent. A change of variables X = Σ−1 results in a convex problem

maximize log det X − tr(CX)

subject to Xij = 0, (i, j) ∈ V.
(1.1)

This is known as the covariance selection problem introduced by [Dem72] as a

technique to reduce the number of parameters in the estimation of Σ. If the

problem is feasible, it provides a covariance estimate that yields a decreased

variance since some coefficients are restricted to zero [Dem72].

The covariance selection problem has received a lot of attention in the ma-

chine learning community, and leads to the other class of estimation problems of

graphical models, where the topology of the graph is unknown. To estimate the

topology of Gaussian graphical models, a direct approach is to formulate a hy-

pothesis test to decide about the presence or absence of edges between two nodes

[Lau96, §5.3.3]. Another possibility is to enumerate different topologies, and use

information-theoretic criteria (such as the Akaike or Bayes information criteria)

to rank the models. Recently, new heuristic methods for topology selection in

large Gaussian graphical models have been developed. These methods are based

on augmenting the ML objective with an ℓ1-norm regularization, i.e., on solving

minimize − log det X + tr(CX) + γ
∑

ij |Xij | (1.2)

(see [MB06, DRV05, BEd08, RWR08a, FHT08, HLP06, YL07, Lu09, SR09]).

The ℓ1 regularization term has been used extensively in many statistical learning

problems where sparseness of the solution is favored. Well-known applications

include the Lasso method for subset selection in regression [Tib96] and ℓ1-norm

methods for compressed sensing [Tro06, CRT06a]. The ℓ1 term in (1.2) helps to

encourage some components of X to zero, thus yielding a sparse inverse covariance

matrix. With this method, one can learn the conditional independence structure

from the data automatically.
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1.2 Graphical models of time series

As mentioned above, graphical models and related estimation problems have

been primarily developed for static multivariate random variables. Recently there

has been considerable interest in explaining relationships between components in

multivariate time series as well. For example, one wishes to learn dependencies

of temperatures recorded from many geographical regions [BJ04], dependencies

of stock prices from major markets [BY03], or dependencies of biological signals

that measure activities in the human brain [SSS05, EDS03, DES97], just to name

a few. This has motivated us to explore an extension of graphical models of

random variables to time series.

First of all, the notion of conditional independence for random variables can

be extended to time series. This concept was first discussed in [Bri81] where it was

shown that the conditional independence between components of a multivariate

stationary Gaussian process can be characterized in terms of the inverse of the

spectral density matrix S(ω). Two components xi(t) and xj(t) are independent,

conditional on the other components of x(t) if and only if

(S(ω)−1)ij = 0 (1.3)

for all ω [Bri81, §8.3],[Dah00]. To discover a topology of graphical models, a

common approach is to formulate a hypothesis test examining whether an edge

is present in the graph. Dahlhaus [Dah00] derives a statistical test based on the

maximum magnitude of a nonparametric estimate of the normalized inverse spec-

trum. The method was illustrated by the air pollution data to study interactions

among polluted particles. The same approach was also applied to identification

of functional neural connectivity in [DES97, EDS03]. This nonparametric ap-

proach based on a test in frequency domain has become a useful tool for many
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applications. For example, [TLH00] investigated the connection between the cor-

tical activity and tremor in patients suffering from Parkinson’s disease. [SSS05]

explored the correlated activities in human brain networks based on functional

magnetic resonance imaging (fMRI) data. [GIF02] applied the technique to the

haemodynamic system consisting of vital signs such as heart rate, or blood pres-

sure, etc., which are crucial for detection of critical situation of patients in an

intensive care unit. It can be also applied to the analysis of factors in therapy pro-

cess from psychosomatic studies [FD03]. Eichler [Eic08] presents a more general

approach by introducing a hypothesis test based on the norm of some suitable

function of the spectral density matrix. A related problem was studied by Bach

and Jordan [BJ04]. They use an efficient search procedure to learn the graph

structure from sample estimates of the joint spectral density matrix.

As opposed to the approach mentioned above, a parametric approach can be

used to select a graphical model from a family of possible models by enumerat-

ing all topologies and ranking them via model selection criteria. Therefore, the

identification of conditional independence structures reduces to a model selection

problem in which the best model minimizes a model selection criterion.

In this thesis we consider a parametric approach: the maximum likelihood

estimation for graphical models of autoregressive processes

x(t) = −
p
∑

k=1

Akx(t − k) + w(t), w(t) ∼ N (0, Σ)

where x(t) ∈ Rn, and w(t) ∈ Rn is Gaussian white noise. This estimation prob-

lem is an extension of the covariance selection problem (1.1) to time series. The

most relevant study of this type is the work of [Eic06a] which uses Whittle’s ap-

proximation of the exact likelihood function, and imposes sparsity constraints on

the inverse covariance functions. The model parameters were then obtained from

the Yule-Walker equations. It was also mentioned in [DE03, §4.3] that numerical
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solutions to the problem of fitting AR models with conditional independence con-

straints have been under exploration. This is due to the characterization in (1.3)

in terms of AR parameter that results in complicated nonlinear constraints in Ak

and Σ.

Our first contribution is to propose a convex framework for maximum-likelihood

estimation of AR models with conditional independence constraints. We can show

that the zeros in the inverse spectrum are equivalent to quadratic equality con-

straints on AR parameters, which are generally nonconvex. We propose a convex

relaxation and prove that under some assumptions, it provides exact solutions for

the ML problem, yielding polynomial-time algorithms. The results of this work

can serve two purposes. Given a conditional independence graph of a time series,

one can estimate the spectrum according to the graph structure. Furthermore,

if the conditional independence is not specified a priori, the structure can be

identified from the model selection problem using information-theoretic criteria

such as AIC and BIC.

Similarly to the topology selection in Gaussian graphical models, the com-

binatorial approach for the model selection problem is clearly limited to small

graphs. Our second contribution is to propose a convex formulation for topology

selection in AR models, based on augmenting the ML estimation with a convex

regularization term, similar to the ℓ1-norm regularization in (1.2). The regu-

larization term is chosen so that the sparsity in the estimated inverse spectrum

is promoted, revealing the underlying conditional independence structure in the

time series. This convex heuristic also preserves the exactness property under

mild assumptions, i.e., it provides the exact solutions Ak, Σ to the ML problem.

The topology selection problems in graphical models of Gaussian variables and

graphical models of AR processes can be solved by interior-point methods [BV04,
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§11], for example, the path-following methods developed for convex determinant

maximization problems [Toh99, VBW98]. However, these methods can suffer

from expensive computational cost in high dimensional problems. Therefore we

are interested in less expensive first-order algorithms that can solve large problems

with an acceptable accuracy within a reasonable amount of time.

The nondifferentibility of these problems due to the ℓ1-type regularization

also makes them challenging to solve in large scale. Several efficient methods

have been proposed to topology selection problems in Gaussian graphical mod-

els (1.2); see [BEd08, FHT08, RWR08b, HLP06, YL07, SR09, RBL08, Lu09,

Lu10, DGK08]. These algorithms are based on various techniques such as the co-

ordinate descent method, interior-point methods, the gradient projection method,

or the recent Nesterov’s optimal gradient method [Nes04]. Most of these algo-

rithms are applied to the dual of (1.2) which is a smooth problem.

These methods cannot be easily applied to topology selection in AR models

because of several complications, for example the presence of extra linear equality

and matrix inequality constraints that do not appear in the covariance selection

problem. We use the optimality conditions to reformulate the dual of topology

selection problems. We will see that the dual problem can be cast as a minimiza-

tion problem with simple constraints which is suitable for the gradient projection

method. Although the gradient method is known to converge slowly, we consider

a variation using a special stepsize rule known as Barzilai-Borwein or spectral

steplength [BB88] which has been shown to greatly improve the performance in

practice [BMR03, FNW07, WNF09]. With this method we are able to solve

problems of dimensions in the order of several hundred efficiently.
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1.3 Outline of thesis

Chapter 2 provides the definition of conditional independence properties for ran-

dom variables and time series. We review the properties of AR processes and

derive a characterization of conditional independence which can be expressed as

quadratic equalities of AR parameters. The last part of this chapter describes the

least-squares method, the maximum-likelihood (ML), and the maximum-entropy

(ME) estimation methods for AR processes. These are common estimation tech-

niques used in spectral analysis. We show the connection of these three methods

via the sample covariance matrix.

Chapter 3 extends the ML and ME estimation methods for AR processes to

include conditional independence constraints. These become nonconvex problems

due to the quadratic equalities in AR parameters from conditional independence

relations. We introduce a convex relaxation to these problems, which in general

is not equivalent to the original problem. Our main result is to use duality to

show that the relaxation provides the exact solution to the ML and ME problems

under a block-Toeplitz assumption on the sample covariance matrix. We end the

chapter with some numerical results to illustrate that the relaxation is exact

under a weaker condition in practice.

Chapter 4 considers the more general problem of estimating the AR model

parameters and the topology of the graphical model. We start with a direct ap-

proach where we enumerate all topologies and rank these models according to

information-theoretic criteria such as AIC or BIC. This combinatorial approach

is feasible for small graphs only. This chapter presents another main result: an

efficient method for topology selection in AR models. The method is based on

an ℓ1-type nonsmooth regularization of the ML estimation. The ℓ1 regulariza-

tion term is added to encourage the sparsity in the estimated inverse spectrum.

8



Results of experiments with random and real data sets are included.

In chapter 5 we investigate first-order algorithms for large-scale ML estima-

tion with conditional independence constraints and ML estimation with the ℓ1

regularization. The algorithm is based on the gradient projection method applied

to the reformulated dual of these two problems. We compare the performance

with other variants of the gradient projection method on randomly generated

data.

1.4 Notation

Sn is the set of real symmetric matrices of order n. Sn
+ and Sn

++ are the sets of

symmetric positive semidefinite, respectively, positive definite, matrices of order

n. Rm×n is the set of m × n-matrices. Mn,p is the set of matrices

X =
[

X0 X1 · · · Xp

]

with X0 ∈ Sn and X1, . . . , Xp ∈ Rn×n. We denote by (Xk)ij the (i, j) component

of Xk. XH = X̄T is the complex conjugate transpose. The standard trace inner

product tr(XT Y ) is used in each of the three vector spaces Sn, Rm×n, Mn,p. For

a symmetric matrix X, the inequalities X � 0 and X ≻ 0 mean X is positive

semidefinite, resp., positive definite. Row and column indices of submatrices in

a block matrix start at 0. If X is a matrix with (block) entries Xij , then Xi:j,k:l

will denote the submatrix formed by rows i through j and columns k through l:

Xi:j,k:l =

















Xik Xi,k+1 · · · Xil

Xi+1,k Xi+1,k+1 · · · Xi+1,l

...
...

...

Xjk Xj,k+1 · · · Xj,l

















.
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The linear mapping T : Mn,p → Sn(p+1) constructs a symmetric block Toeplitz

matrix from its first block row: if X ∈ Mn,p, then

T(X) =

















X0 X1 · · · Xp

XT
1 X0 · · · Xp−1

...
...

. . .
...

XT
p XT

p−1 · · · X0

















. (1.4)

The adjoint of T is a mapping D : Sn(p+1) → Mn,p defined as follows. If S ∈
Sn(p+1) is partitioned as

S =

















S00 S01 · · · S0p

ST
01 S11 · · · S1p

...
...

...

ST
0p ST

1p · · · Spp

















,

then D(S) =
[

D0(S) D1(S) · · · Dp(S)
]

where

D0(S) =

p
∑

i=0

Sii, Dk(S) = 2

p−k
∑

i=0

Si,i+k, k = 1, . . . , p. (1.5)

A symmetric sparsity pattern of a sparse matrix X of order n will be associated

with the positions V ⊆ {1, . . . , n} × {1, . . . , n} of its zero entries. We assume

(i, i) 6∈ V for i = 1, . . . , n, i.e., the diagonal entries are not included among the

zeros and that it is symmetric (if (i, j) ∈ V, then (j, i) ∈ V). We denote by

PV(X) the projection of a matrix X ∈ Sn or X ∈ Rn×n on the complement of

the sparsity pattern V:

PV(X)ij =







Xij (i, j) ∈ V
0 otherwise.

(1.6)

The same notation is used for PV as a mapping from Rn×n → Rn×n and as a

mapping from Sn → Sn. In both cases, PV is self-adjoint. If X is an r × s
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block matrix with i, j block Xij, and each block is square of order n, then PV(X)

denotes the r× s block matrix with i, j block PV(X)ij = PV(Xij). The subscript

of PV is omitted if the sparsity pattern V is clear from the context.
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CHAPTER 2

Background on graphical models and AR

processes

In this chapter we describe the conditional independence property for Gaussian

random variables and extend it to Gaussian time series. This property can be used

to describe relations between the components of a multivariate random variable

or time series. It is useful to represent these relations as a graph. This gives a

characterization of a graphical model containing a set of nodes that represent the

variables and a collection of edges. The absence of an edge between two nodes

indicates that the corresponding two components are conditionally independent,

given the other variables. We will see that this characterization can be expressed

via the covariance matrix for Gaussian random variables and via the spectral

density matrix for Gaussian time series.

Next we focus on graphical models of autoregressive processes by deriving

the characterization of conditional independence in Gaussian autoregressive pro-

cesses. To prepare for our study of estimation problems of the graphical models

in chapter 3, we first review some existing techniques for estimating the param-

eters of AR models. These techniques include the least-squares method, the

maximum-likelihood, and the maximum-entropy estimation methods. This topic

is standard in estimation or spectral analysis and can be found in many text-

books [SS89, BJ76, Mar87, Kay88, SM97].
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2.1 Conditional independence

2.1.1 Random variables

Let x ∼ N(0, Σ) be an n-dimensional Gaussian random variable. The conditional

independence relations between xi and xj can be derived from the conditional

distribution of the two variables, given the remaining variables. Suppose the

random vector x is partitioned into component y and z with the corresponding

mean and variance:

x =





y

z



 , µ =





µy

µz



 , Σ =





Σyy Σyz

Σzy Σzz



 ,

where y = (xi, xj) consists of the components i and j of interest. It can be shown

that the conditional distribution of y given z is also Gaussian with mean

µy|z = µy − ΣyzΣ
−1
zz (z − µz), (2.1)

and covariance

Σy|z = Σyy − ΣyzΣ
−1
zz Σzy,

i.e., the Schur complement of Σzz. The Schur complement also appears in Σ−1:

Σ−1 =





(Σyy − ΣyzΣ
−1
zz ΣH

yz)
−1

>

> >



 .

The conditional covariance matrix of size 2 × 2 is therefore the inverse of Schur

complement of Σzz in Σ and it can be written as

Σy|z =





(Σ−1)ii (Σ−1)ij

(Σ−1)ji (Σ−1)jj





−1

.

Hence xi and xj are conditionally independent if and only if

(Σ−1)ij = 0. (2.2)
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Specifying the graph topology of a Gaussian graphical model is therefore equiv-

alent to specifying the sparsity pattern of the inverse covariance matrix.

2.1.2 Time series

Gaussian stationary processes We consider an n-dimensional real-valued

process x(t). We assume that x(t) is a zero-mean Gaussian process, which means

its marginal distributions are jointly Gaussian. For Gaussian processes, it is

known that the process is strictly stationary if it is wide-sense stationary, i.e.,

Ex(t1)x(t2)
T depends only on the difference of t1−t2. Given a stationary process,

we define the autocovariance function Rk : Z → Rn×n as

Rk = Ex(t + k)x(t)T .

Since x(t) is real, we must have R−k = RT
k . In addition, the autocovariance

function is always non-negative; that is for any ai, aj ∈ Rn, with i, j = 1, . . .N ,

we have
N
∑

i

N
∑

j

aT
i Ri−jaj ≥ 0,

which follows from

N
∑

i

N
∑

j

aT
i Ri−jaj =

N
∑

i

N
∑

j

E[aT
i x(i)x(j)T aj ] = E





(

N
∑

i

aT
i x(i)

)2


 ≥ 0.

This condition is equivalent to the non-negativity of the covariance matrix of any

successive variables x(t), x(t + 1), . . . , x(t + N):

C =

















R0 R1 · · · RN

RT
1 R0 · · · RN−1

...
...

. . .
...

RT
N RT

N−1 · · · R0

















� 0. (2.3)
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Suppose
∑∞

k=−∞ ‖Rk‖ < ∞ where ‖ · ‖ denotes an operator norm of a matrix.

Then the sequence Rk is absolutely summable element-wise and therefore the

spectral density matrix is well-defined, as the Fourier transform of the autoco-

variance sequence,

S(ω) =

∞
∑

k=−∞

Rke
−jkω

(where j =
√
−1). For each ω, S(·) is a Hermittian matrix of size n × n. From

the property R−k = RT
k , we have S(−ω) = S(ω)T . Moreover, S(ω) is a peri-

odic function of period 2π. Therefore in spectral analysis, we often consider the

spectrum only in the interval ω ∈ [0, π].

Since the autocovariance function is nonnegative, we can show that S(ω) � 0

for all ω. Consider an (n(N + 1))-vector x = (y, ye−jω, ye−j2ω, . . . , ye−jNω) with

any y ∈ Cn. From the block-Toeplitz C in (2.3), we have

0 ≤ 1

N + 1
xHCx =

N
∑

k=−N

(

1 − |k|
N + 1

)

yHRky e−jkω,

where the first inequality follows from the nonnegativity of the autocovariance

function. Then we can take the limit as N → ∞ to conclude that S(ω) is

nonnegative for all ω.

Conditional independence We assume that S(ω) is invertible for all ω. Com-

ponents xi(t) and xj(t) are said to be independent, conditional on the other

components of x(t), if

(S(ω)−1)ij = 0 (2.4)

This definition can be interpreted and justified from Brillinger [Bri81, §8.3]. The

idea is motivated from the interpretation of the conditional mean (2.1) as the

optimal linear least-mean-square estimate of y given z, for Gaussian random

variables [KSH00]. The problem is to find a linear function h(z) that minimizes
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E ‖y−h(z)‖2
2. Moreover, the conditional covariance matrix Σy|z is essentially the

minimized error covariance matrix E[(y − h(z))(y − h(z))T ]. This interpretation

can be extended to time series as follows.

Let y(t) = (xi(t), xj(t)) and let z(t) be the (n − 2)-vector containing the

remaining components of x(t). Define e(t) as the error

e(t) = y(t) −
∞
∑

k=−∞

Hkz(t − k)

between y(t) and the linear filter of z(t) that minimizes E ‖e(t)‖2
2. Then it can be

shown in [Bri81, §8.3] that the cross spectrum of the residual error e(t) is given

by

See(ω) = Syy(ω) − Syz(ω)S−1
zz (ω)Szy(ω),

where Syy, Syz, Szz are the submatrices of cross spectra between the correspond-

ing variables in S(ω). This is again the Schur complement of Szz(ω) in S(ω).

Therefore the spectrum of the error process can be also written as





(S(ω)−1)ii (S(ω)−1)ij

(S(ω)−1)ji (S(ω)−1)jj





−1

. (2.5)

The off-diagonal entry in the error spectrum (2.5) is called the partial cross-

spectrum of xi and xj , after removing the effects of z. The partial cross-spectrum

is zero if and only if the error covariances E e(t + k)e(t)T are diagonal, i.e., the

two components of the error process e(t) are independent.

It is interesting to see that the conditional independence characterization of

stationary Gaussian time series can be extended from Gaussian random variables

by replacing the covariance matrix with the spectral density matrix. The topology

of a graphical model of time series can then be read out from the sparsity pattern

in the inverse of spectral density matrix.
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2.2 Autoregressive processes

A multivariate autoregressive model of order p is defined as

x(t) = −
p
∑

k=1

Akx(t − k) + w(t), (2.6)

where x(t) ∈ Rn and w(t) ∼ N (0, Σ) is Gaussian white noise. With this assump-

tion, x(t) is also a Gaussian process with zero mean.

The random process (2.6) can be viewed as a response of a linear system to a

random input. In this case the process is asymptotically stationary if the linear

system of (2.6) is stable; see [Bal95, §3] or [KSH00, §5.3]. The transfer function

from w to x is A(z)−1 where

A(z) = I + z−1A1 + · · · + z−pAp. (2.7)

Therefore the AR process (2.6) is stationary if the poles of A are inside the unit

circle. From the expression of A(z)−1, the autoregressive model is sometimes

called an all-pole system.

It is easily shown that the AR model parameters Ak, Σ, and the first p + 1

covariance matrices Rk are related by the linear equations
















R0 R1 · · · Rp

RT
1 R0 · · · Rp−1

...
...

. . .
...

RT
p RT

p−1 · · · R0

































I

AT
1

...

AT
p

















=

















Σ

0
...

0

















. (2.8)

These equations are called the Yule-Walker equations or normal equations. If Σ

and Ak, k = 1, . . . , p are given, this equation is used to compute the autocovari-

ance sequences Rk for k ≥ p recursively.

The spectral density matrix of a stationary AR process can be expressed as

S(ω) = A(ejω)−1ΣA(ejω)−H ,

17



in which the canonical factorization directly implies the nonnegativity of S(ω).

The stability of AR model rules out the possibility that A(ejω) can have a zero

on the unit circle. In addition we have S(ω) ≻ 0 for all ω.

2.2.1 Conditional independence

We can readily apply the conditional dependence relation (2.4) to a Gaussian AR

process (2.6). The notation will simplify if we first normalize the input covariance

and use an equivalent model:

B0x(t) = −
p
∑

k=1

Bkx(t − k) + v(t), (2.9)

with v(t) ∼ N (0, I). The coefficients in the two models are related by B0 = Σ−1/2,

Bk = Σ−1/2Ak for k = 1, . . . , p.

From (2.7), the inverse spectrum of an AR process is a trigonometric matrix

polynomial

S(ω)−1 = A(ejω)HΣ−1A(ejω) = Y0 +
1

2

p
∑

k=1

(e−jkωYk + ejkωY T
k ) (2.10)

where

Yk =















p
∑

l=0

AT
l Σ−1Al =

p
∑

l=0

BT
l Bl, k = 0

2
p−k
∑

l=0

AT
l Σ−1Al+k = 2

p−k
∑

l=0

BT
l Bl+k, k = 1, . . . , p

(2.11)

with A0 = I. These expressions show that (S(ω)−1)ij = 0 if and only if

(Yk)ij = 0, and (Yk)ji = 0, (2.12)

for k = 0, . . . , p.

This connection allows us to parametrize conditional independence relations

in terms of AR coefficients and include the zero constraint of the inverse spectrum
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in AR estimation methods. From (2.11), a zero in the inverse spectrum becomes

quadratic equality constraints on the AR parameters. These are nonconvex con-

straints and generally difficult to overcome, even though the cost objectives in

many estimation problems are already convex, as we will see in the next chapter.

2.2.2 Estimation methods

In this section we describe three time-domain estimation techniques for autore-

gressive models. The first technique, the linear least-squares method, is probably

the most standard approach to many approximation problems. When applied

to AR estimation, we show that the method has two variants, depending on the

choice of sample covariance matrix. The other two techniques are the maximum-

likelihood and the maximum entropy estimation methods. As an optimization

problem, these two methods share the same expression of the cost objective.

We provide a connection between these three methods in terms of the choice of

sample covariance matrix used in each estimation problem.

2.2.2.1 Least-squares linear prediction

Suppose x(t) is a stationary process (not necessarily autoregressive). Consider

the problem of finding an optimal linear prediction

x̂(t) = −
p
∑

k=1

Akx(t − k),

of x(t), based on past values x(t − 1), . . . , x(t − p). This problem can also be

interpreted as approximating the process x(t) by the AR model with coefficients

Ak. The prediction error between x(t) and x̂(t) is

e(t) = x(t) − x̂(t) = x(t) +

p
∑

k=1

Akx(t − k).
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To find the coefficients A1, . . . , Ap, we can minimize the mean squared predic-

tion error E ‖e(t)‖2
2. The mean squared error can be expressed in terms of the

coefficients Ak and the covariance function of x as E ‖e(t)‖2
2 = tr(A T(R)AT )

where

A =
[

I A1 · · · Ap

]

, R =
[

R0 R1 · · · Rp

]

,

Rk = Ex(t + k)x(t)T , and T(R) is the block-Toeplitz matrix with R as its first

block row (see the Notation section at the end of chapter 1). Minimizing the

prediction error is therefore equivalent to the quadratic optimization problem

minimize tr(A T(R)AT ) (2.13)

with variables A1, . . . , Ap.

In practice, the covariance matrix T(R) in (2.13) is replaced by an estimate

C computed from samples of x(t). Two common choices are as follows. Suppose

samples x(1), x(2), . . . , x(N) are available.

• The autocorrelation method uses the windowed estimate

C =
1

N
HHT , (2.14)

where

H =

















x(1) x(2) · · · x(p + 1) · · · x(N) 0 · · · 0

0 x(1) · · · x(p) · · · x(N − 1) x(N) · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · x(1) · · · x(N − p) x(N − p + 1) · · · x(N)

















.

(2.15)

Note that the matrix C is block-Toeplitz.

• The covariance method uses the non-windowed estimate

C =
1

N − p
HHT , (2.16)
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where

H =

















x(p + 1) x(p + 2) · · · x(N)

x(p) x(p + 1) · · · x(N − 1)
...

...
...

x(1) x(2) · · · x(N − p)

















. (2.17)

In this case the matrix C is not block-Toeplitz.

To summarize, least-squares estimation of AR models reduces to an uncon-

strained quadratic optimization problem

minimize tr(ACAT ). (2.18)

Here, C is the exact covariance matrix, if available, or one of the two sample

estimates (2.14) and (2.16). The first of these estimates is a block-Toeplitz ma-

trix, while the second one is in general not block-Toeplitz. The solutions from

both methods share the same asymptotic properties; they are consistent esti-

mates when the AR process is stable with a white Gaussian noise [Lut05]. The

covariance method is known to be slightly more accurate in practice if N is small

[SM97, page 94]. The correlation method on the other hand has some important

theoretical and practical properties, that are easily explained from the optimality

conditions of (2.18). If we define Σ̂ = ACAT (i.e., the estimate of the predic-

tion error E ‖e(t)‖2
2 obtained by substituting C for T(R)), then the optimality

conditions can be expressed as
















C00 C01 · · · Cpp

C10 C11 · · · C1p

...
...

...

Cp0 Cp1 · · · Cpp

































I

AT
1

...

AT
p

















=

















Σ̂

0
...

0

















. (2.19)

If C is block-Toeplitz, these equations have the same form as the Yule-Walker

equations (2.8), and can be solved more efficiently than when C is not block-
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Toeplitz. Another advantage is that the solution of (2.19) always provides a

stable model if C is block Toeplitz and positive definite. This can be proved as

follows (see [SN87]). Suppose z is a zero of A(z), i.e., there exists a nonzero w

such that wHA(z) = 0. Define u1 = w and uk = AT
k−1w + z̄uk−1 for k = 2, . . . , p.

Then we have

u = AT w + z̄ũ

where u = (u1, u2, . . . , up, 0), ũ = (0, u1, u2, . . . , up). From this and (2.19),

uHCu = wHΣ̂w + |z|2ũHCũ.

The first term on the right hand side is positive because Σ̂ ≻ 0. Also, uHCu =

ũHCũ since C is block-Toeplitz. Therefore |z| < 1.

In the following two sections we consider two stochastic estimation methods.

These are alternative interpretations of the covariance and correlation variants

of the least-squares estimation method, in terms of maximum likelihood and

maximum entropy estimation, respectively.

2.2.2.2 Maximum-likelihood estimation

The exact likelihood function of an AR model (2.6), based on observations x(1),

. . . , x(N), is complicated to derive and difficult to maximize [BJ76, Rei07]. A

standard simplification is to treat x(1), x(2), . . . , x(p) as fixed, and to define the

likelihood function in terms of the conditional distribution of a sequence x(t),

x(t + 1), . . . , x(t + N − p − 1), given x(t − 1), . . . , x(t − p). This is called the

conditional maximum likelihood estimation method [Rei07, §5.1].
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The conditional likelihood function of the AR process (2.6) or (2.9) is

1

((2π)n det Σ)(N−p)/2
exp

(

−1

2

N
∑

t=p+1

x(t)T AT Σ−1Ax(t)

)

=

(

det B0

(2π)n/2

)N−p

exp

(

−1

2

N
∑

t=p+1

x(t)T BT Bx(t)

)

(2.20)

where x(t) is the ((p + 1)n)-vector x(t) = (x(t), x(t − 1), . . . , x(t − p)) and

A =
[

I A1 · · · Ap

]

, B =
[

B0 B1 · · · Bp

]

,

with B0 = Σ−1/2, Bk = Σ−1/2Ak, k = 1, . . . , p. Taking the logarithm of (2.20) we

obtain the conditional log-likelihood function (up to constant terms and factors)

L(B) = (N − p) log det B0 −
1

2
tr(BHHTBT )

where H is the matrix (2.17). If we define C = (1/(N − p))HHT , we can then

write the conditional ML estimation problem as

minimize −2 log det B0 + tr(CBT B) (2.21)

with variable B ∈ Mn,p. This problem is easily solved by setting the gradient

equal to zero: the optimal B satisfies CBT = (B−1
0 , 0, . . . , 0). Written in terms

of the model parameters Ak = B−1
0 Bk, Σ = B−2

0 , this yields

C

















I

AT
1

...

AT
p

















=

















Σ

0
...

0

















,

i.e., the Yule-Walker equations with the block Toeplitz coefficient matrix re-

placed by C. The conditional ML estimate is therefore equal to the least-squares

estimate from the covariance method.
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2.2.2.3 Maximum-entropy estimation

Consider the maximum entropy (ME) problem introduced by Burg [Bur75]:

maximize 1
2π

∫ π

−π
log det S(ω)dω

subject to 1
2π

∫ π

−π
S(ω)ejkωdω = R̄k, 0 ≤ k ≤ p,

(2.22)

with the given matrices R̄k. The variable is the spectral density S(ω) of a real

stationary Gaussian process x(t), i.e., the Fourier transform of the covariance

function Rk = Ex(t + k)x(t)T :

S(ω) = R0 +

∞
∑

k=1

(

Rke
−jkω + RT

k ejkω
)

, Rk =
1

2π

∫ π

−π

S(ω)ejkωdω.

The constraints in (2.22) therefore fix the first p + 1 covariance matrices to be

equal to R̄k. The problem is to extend these covariances so that the entropy rate

of the process is maximized. It is known that the solution of (2.22) is a Gaussian

AR process of order p, and that the model parameters Ak, Σ follow from the

Yule-Walker equations (2.8) with R̄k substituted for Rk.

To relate the ME problem to the estimation methods of the preceding sections,

we derive a dual problem. We introduce a Lagrange multiplier Y0 ∈ Sn for the

first equality constraint (k = 0), and multipliers Yk ∈ Rn×n, k = 1, . . . , p, for

the other p equality constraints. If we change the sign of the objective, the

Lagrangian is

− 1

2π

∫ π

−π

log det S(ω)dω +

p
∑

k=0

tr(Y T
k (Rk − R̄k)).

Differentiating with respect to Rk gives

1

2π

∫ π

−π

S−1(ω)ejωkdω =











Yk, k = 0

Yk/2, k = 1, . . . , p

(2.23)
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and hence

S−1(ω) = Y0 +
1

2

p
∑

k=1

(

Yke
−jkω + Y T

k ejkω
)

, Y (ω).

Substituting this in the Lagrangian gives the dual problem

minimize − 1

2π

∫ π

−π

log det Y (ω) +

p
∑

k=0

tr(Y T
k R̄k) − n, (2.24)

with variables Yk. The first term in the objective can be rewritten by using

Kolmogorov’s formula [Han70]:

1

2π

∫ π

−π

log det Y (ω)dω = log det(BT
0 B0),

where Y (ω) = B(ejω)HB(ejω) and B(z) =
∑p

k=0 z−kBk is the minimum-phase

spectral factor of Y . The second term in the objective of the dual problem (2.24)

can also be expressed in terms of the coefficients Bk, using the relations

Yk =











∑p
i=0 BT

i Bi, k = 0

2
∑p−k

i=0 BT
i Bi+k, k = 1, . . . , p.

This gives
p
∑

k=0

tr(Y T
k R̄k) = tr(T(R̄)BT B),

where R̄ =
[

R̄0 R̄1 · · · R̄p

]

and B =
[

B0 B1 · · · Bp

]

. The dual prob-

lem (2.24) thus reduces to

minimize −2 log det B0 + tr(CBT B) (2.25)

where C = T(R̄). Without loss of generality, we can choose B0 to be symmetric

positive definite. The problem is then formally the same as the ML estimation

problem (2.21), except for the definition of C. In (2.25) C is a block-Toeplitz

matrix. If we choose for R̄k the sample estimates

R̄k =
1

N

N−k
∑

t=1

x(t + k)x(t)T ,
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then C is identical to the block-Toeplitz matrix (2.14) used in the autocorrelation

variant of the least-squares method.

2.3 Summary

We have described conditional independence relations for Gaussian random vari-

ables and time series. The condition can be expressed as a zero pattern in the

inverse covariance matrix for Gaussian random variables, and as a zero pattern

in the inverse spectral density for Gaussian time series. We have also derived

the conditional independence for Gaussian AR processes. The condition can be

expressed as quadratic equalities in AR parameters, motivating us to consider a

system identification problem that takes this constraint into account.

We have reviewed the least-squares, maximum likelihood, and maximum en-

tropy estimation methods for AR models. These three techniques share some

interesting connections via a covariance matrix C. The least-squares method

uses a quadratic loss function while the ML and ME estimation use the log-

determinant cost objective. Despite this difference, they all lead to optimality

conditions that are formally the same as the normal equations, with the covari-

ance matrix replaced by a sample estimate C. The conditional ML estimate is

equivalent to the least-squares estimate using the non-block Toeplitz C while the

ME estimate is equal to the least-squares estimate using the block-Toeplitz C.

In the next chapter we will combine the maximum-likelihood and maximum-

entropy estimation with the conditional independence constraints (2.12). The

problem is nonconvex due to the nonconvex constraint from the quadratic equal-

ities (2.11). We will show that under some mild condition, the estimation problem

can be formulated in a convex framework.
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CHAPTER 3

Estimation of graphical models of AR processes

In this chapter we extend the ML and ME estimation methods for AR processes,

described in sections 2.2.2.2 and 2.2.2.3, to include conditional independence

constraints. As we have seen, the ML and ME estimation share the same form

of a convex optimization problem (2.21) and (2.25), with different choices of the

matrix C. The distinction will turn out to be important later, but for now we

make no assumptions on C, except that it is positive definite.

As we mentioned in chapter 2, the conditional independence relation imposes

a nonconvex constraint to the problem. In section 3.1 we introduce a convex

relaxation to the ML and ME estimation with conditional independence con-

straint. The relaxation, in general, does not provide an exact solution to the

original problem. Using the optimality conditions derived in section 3.2, we show

the first main result of this thesis in section 3.3. We prove that the relaxation

is equivalent to the original problem under a block-Toeplitz assumption on C.

This condition is not necessary to guarantee the exactness of the relaxation. As

we illustrate by examples in section 3.4, the relaxation is exact under a weaker

condition, in practice.
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3.1 Convex formulation

Using the notation defined in (1.5) and the conditional independence constraint (2.11)-

(2.12), we can write this as

(Dk(A
T Σ−1A))ij = 0,

where A = [ I A1 · · · Ap ], or as

(

Dk(B
T B)

)

ij
= 0, k = 0, . . . , p, (3.1)

where B = [ B0 B1 · · · Bp ]. To simplify the formulation later, we write the

constraint (3.1) by using the projection operator defined in (1.6). We assume

that the conditional independence constraints are specified via an index set V,

with (i, j) ∈ V if the processes xi(t) and xj(t) are conditionally independent (see

the assumptions on V in the notation section). The constraints (3.1) for (i, j) ∈ V
can be written as

PV

(

D(BT B)
)

= 0 (3.2)

where PV is defined in (1.6).

The ML and ME estimation with conditional independence constraints (3.2)

can be expressed as

minimize −2 log det B0 + tr(CBT B)

subject to P(D(BT B)) = 0
(3.3)

with variable B = [ B0 B1 · · · Bp ] ∈ Mn,p. (Henceforth we drop the sub-

script of PV .) The problem (3.3) includes quadratic equality constraints and is

therefore nonconvex. The quadratic terms in B suggest the convex relaxation

minimize − log det X00 + tr(CX)

subject to P(D(X)) = 0

X � 0

(3.4)
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with variable X ∈ Sn(p+1) (X00 denotes the leading n × n subblock of X). The

convex optimization problem (3.4) is a relaxation of (3.3) and only equivalent

to (3.3) if the optimal solution X has rank n, so that it can be factored as

X = BT B. In section 3.3 we provide the main result; we show that X has

rank n if C is block-Toeplitz. The proof of exactness of the relaxation under

assumption of block-Toeplitz structure will be justified from the dual of (3.4)

and the optimality conditions derived in section 3.2. To verify the theoretical

result, we show some numerical results on the exactness of the relaxation in

section 3.4.

3.2 Duality and optimality conditions

Suppose that C ≻ 0. The goal of this section is to prove that the relaxation (3.4)

is equivalent to the original estimation problem (3.3) under a condition on block-

Toeplitz structure of C. This can be shown from the dual problem as follows.

The derivation of the dual problem starts with the Lagrangian defined as

the cost function plus a weighted sum of the constraints. As the weights of

the constraints, we introduce a Lagrange multiplier Z = [ Z0 Z1 · · · Zp ] ∈
Mn,p for the equality constraints and a multiplier U ∈ Sn(p+1) for the inequality

constraint. The Lagrangian is

L(X, Z, U) = − log det X00 + tr(CX) + tr(ZT P(D(X))) − tr(UX)

= − log det X00 + tr ((C + T(P(Z)) − U)X) .

Here we made use of the fact that the mappings T and D are adjoints, and that P

is self-adjoint (see the definitions from section 1.4). The Lagrange dual function
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g(Z, U) is defined as

g(Z, U) = inf
X00≻0

L(X, Z, U) = inf
X00≻0

(− log det X00 + tr ((C + T(P(Z)) − U)X)) .

Setting the gradient of L(X, Z, U) with respect to X equal to zero gives

C + T(P(Z)) − U =

















X−1
00 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0

















,

where we use the fact that the gradient of log det X is X−1. This shows that L

is bounded below if C + T(P(Z)) − U is zero, except for the 0, 0 block, which

must be positive definite. If U and Z satisfy these conditions, we call Z and

U are dual feasible and the Lagrangian is minimized by any X with X00 =

(C00 + P(Z0) − U00)
−1 (where C00 and U00 denote the leading n × n blocks of C

and U).

The dual function is therefore given by

g(Z, U) =



























log det(C00 + P(Z0) − U00) + n, Ci,i+k + P(Zk) − Ui,i+k = 0,

k = 1, . . . , p, i = 0, . . . , p − k

−∞, otherwise

(Ci,j and Ui,j denote the (i, j) blocks of size n×n of C and U). The Lagrange dual

problem is to maximize g(Z, U) over U � 0 (where U is the Lagrange multiplier

corresponding to the inequality constraint). Hence we arrive at the dual problem

maximize log det(C00 + P(Z0) − U00) + n

subject to Ci,i+k + P(Zk) − Ui,i+k = 0, k = 1, . . . , p, i = 0, . . . , p − k

U � 0.
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If we define W = C00 + P(Z0) − U00 we can eliminate the slack variable U , and

write the dual problem of (3.4) more simply as

maximize log det W + n

subject to





W 0

0 0



 � C + T(P(Z)).
(3.5)

Note that for p = 0 problem (3.4) reduces to the covariance selection prob-

lem (1.1), and the dual problem reduces to the maximum determinant completion

problem

maximize log det(C + P(Z)) + n.

This completion problem is to determine whether a completion of C, specified by

the nonzero entries in P(Z), is positive definite or not (if a completion exists).

Among all the positive definite completions, there is the unique solution that

maximizes the determinant [GHJ99].

The optimal duality gap defined as the difference between the optimal values

of the primal and the dual problems, (3.4), (3.5), is given by

η = log det X∗
00 + tr(CX∗) − log det W ∗ − n = tr(CX∗) − n

where X∗ is the optimal solution of (3.4) and W ∗, Z∗ are the optimal solutions

of (3.5). The optimality gap is always nonnegative and when it is zero, we say

strong duality holds. For convex optimization problems, strong duality holds if

Slater’s condition is satisfied [BV04, §5.2.3], i.e., either there exists a strictly

primal feasible X in (3.4) or strictly dual feasible Z, U in (3.5).

We note the following properties of the primal problem (3.4) and the dual

problem (3.5).

• The primal problem is strictly feasible (X = I is strictly feasible), so Slater’s
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condition holds. This implies strong duality, and also that the dual opti-

mum is attained if the optimal value is finite.

• We have assumed that C ≻ 0, and this implies that the primal objective

function is bounded below, and that the primal optimum is attained. This

also follows from the fact that the dual is strictly feasible (Z = 0 is strictly

feasible if we take W small enough), so Slater’s condition holds for the dual.

By the definitions of L and g

− log det X∗
00 + tr(CX∗) ≥ L(X∗, Z∗, U∗) ≥ g(Z∗, U∗).

The first inequality holds since tr(Z∗T P(D(X∗))) = 0 and tr(U∗X∗) ≥ 0. The

second inequality follows from the definition of the dual function g. The zero

duality gap implies that the two inequalities hold with equality. Therefore, in

order to have the first inequality tight, we must have tr(U∗X∗) = 0 or equivalently

U∗X∗ = 0 since U∗ � 0, X∗ � 0. This condition is known as complementary

slackness.

In conclusion, if C ≻ 0, we have strong duality and the primal and dual

optimal values are attained. The necessary and sufficient conditions for optimality

of X, Z, W are:

1. Primal feasibility.

X � 0, X00 ≻ 0, P(D(X)) = 0, (3.6)

2. Dual feasibility.

W ≻ 0, C + T(P(Z)) �





W 0

0 0



 . (3.7)
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3. Complementary slackness.

X−1
00 = W, tr



X



C + T(P(Z)) −





W 0

0 0











 = 0. (3.8)

The last condition can also be written as

X



C + T(P(Z)) −





W 0

0 0







 = 0. (3.9)

(if A, B are positive semidefinite matrices then tr(AB) = 0 if and only if AB = 0.)

These conditions are called the Karush-Kuhn-Tucker (KKT) conditions which will

be the basis of our main result in the following section.

3.3 Properties of block-Toeplitz sample covariances

In this section we study in more detail the solution of the primal and dual prob-

lems (3.4) and (3.5) if C is block-Toeplitz. The results can be derived from

connections between spectral factorization, semidefinite programming, and or-

thogonal matrix polynomials discussed in [Hac03, §6.1.1]. In this section, we

provide alternative and self-contained proofs.

Assume C has a block Toeplitz structure, i.e., C = T(R) for some R ∈ Mn,p

and that C is positive definite.

Exactness of the relaxation We first show that the relaxation (3.4) is exact

when C is block-Toeplitz, i.e., the optimal X∗ has rank n and the optimal B

can be computed by factoring X∗ as X∗ = BT B. We prove this result from the

optimality conditions (3.6)–(3.9).

Assume X∗, W ∗, Z∗ are optimal. Clearly rank X∗ ≥ n, since its 0, 0 block of

size n × n is nonsingular. We will show that C + T(P(Z∗)) ≻ 0. Therefore the
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rank of

C + T(P(Z∗)) −





W ∗ 0

0 0





is at least np, and the complementary slackness condition (3.9) implies that X∗

has rank at most n, so we can conclude that

rankX∗ = n

(recall that C, X ∈ Sn(p+1)). The positive definiteness of C + T(P(Z∗)) follows

from the dual feasibility condition (3.7) and the following basic property of block-

Toeplitz matrices: If T(S) is a symmetric block-Toeplitz matrix, with S ∈ Mn,p,

and

T(S) �





Q 0

0 0



 (3.10)

for some Q ∈ Sn
++, then T(S) ≻ 0. We can verify this by induction on p. The

property is obviously true for p = 0, since the inequality (3.10) then reduces to

S = S0 � Q. Suppose the property holds for p − 1. Then (3.10) implies that

the leading np × np submatrix of T(S), which is a block Toeplitz matrix with

first row
[

S0 · · · Sp−1

]

, is positive definite. Let us denote this matrix by V .

Using the Toeplitz structure, we can partition T (S) as

T(S) =





S0 UT

U V



 ,

where V ≻ 0. The inequality (3.10) implies that the Schur complement of V in

the matrix T(S) satisfies

S0 − UT V −1U � Q ≻ 0

Combined with V ≻ 0 this shows that T(S) ≻ 0.
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Stability of estimated models It follows from (3.6)–(3.9) and the factoriza-

tion X∗ = BT B, that

(C + T(P(Z)))

















I

AT
1

...

AT
p

















=

















Σ

0
...

0

















, (3.11)

if we define Σ = B−2
0 , Ak = B−1

0 Bk. These equations are Yule-Walker equations

with a positive definite block-Toeplitz coefficient matrix. As mentioned at the end

of section 2.2.2.1, this implies that the zeros of A(z) = I + z−1A1 + · · · + z−pAp

are inside the unit circle. Therefore the solution to the convex problem (3.4)

provides a stable AR model.

3.4 Examples with randomly generated data

In this section we evaluate the ML and ME estimation methods on several data

sets. The convex optimization package CVX [GB08a, GB08b] was used to solve

the ML and ME estimation problems with small dimensions. We will further

investigate large-scale algorithms in chapter 5.

The first set of experiments uses data randomly generated from AR models

with sparse inverse spectra. The purpose is to examine the quality of the semidef-

inite relaxation (3.4) of the ML estimation problem for finite N . We generated 50

sets of time series from four AR models of different dimensions. We solved (3.4)

for different N . Figure 3.1 shows the percentage of the 50 data sets for which the

relaxation was exact (the optimal X in (3.4) had rank n.) The results illustrate

that the relaxation is often exact for moderate values of N , even when the matrix

C is not block-Toeplitz.

35



30 40 50 60 70 80 90 100 110
0

20

40

60

80

100

120

 

 

n=4, p=7
n=6, p=6
n=8, p=5
n=10, p=5

Number of samples N

P
er

ce
n
ta

ge
of

ex
ac

t
re

la
x
at

io
n
s

Figure 3.1: Number of cases where the convex relaxation of the ML problem is

exact, versus the number of samples.

The next figure shows the convergence rate of the ML and ME estimates, with

and without imposed conditional independence constraints, to the true model,

as a function of the number of samples. The data were generated from an AR

model of dimension n = p = 6 with nine zeros in the inverse spectrum. We

use the Kullback-Leibler (KL) divergence between two zero-mean Gaussian pro-

cesses [BJ04]

J(S(ω)‖G(ω)) =
1

2π

∫ 2π

0

I(S(ω)‖G(ω))dω

where I(S‖G) = −(1/2) log det(SG−1) − (1/2) tr(I − SG−1), as a measure of

estimation accuracy. Figure 3.2 shows the KL divergence between the estimated

and the true spectra as a function of N , for four estimation methods: the ML and

ME estimation methods without conditional independence constraints, and the

ML and ME estimation methods with the correct conditional independence con-

straints. We notice that the KL divergences decrease at the same rate for the four
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Figure 3.2: KL divergence between estimated AR models and the true model

(n = 6, p = 6) versus the number of samples.

estimates. However, the ML and ME estimates without the sparsity constraints

give models with substantially larger values of KL divergence when N is small.

For sample size under 3000, the ME estimates (with and without the sparsity

constraints) are also found to be less accurate than their ML counterparts. This

effect is well known in spectral analysis (see, for example, [SM97, page 94]). As

N increases, the difference between the ME and ML methods disappears.

3.5 Summary

We have proposed convex relaxations for the problems of conditional ML and

ME estimation of AR models with conditional independent constraints. The two

problems have the same form with different choices for the sample covariance

matrix C. For the ME problem, C is given by (2.14), while for the conditional

37



ML problem, it is given by (2.16). In both cases, C is positive definite if the

information matrix H has full rank. This is sufficient to guarantee that the

relaxed problem (3.4) is bounded below.

The relaxation is exact if the matrix C is block-Toeplitz, i.e., for the ME

problem. The Toeplitz structure also ensures stability of the estimated AR model.

In the conditional ML problem, C is in general not block-Toeplitz, but approaches

a block-Toeplitz matrix as N goes to infinity. The experimental results illustrated

that the relaxation of the ML problem is exact with high probability even for

moderate values of N .
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CHAPTER 4

Topology selection

In chapter 3 we have introduced a convex formulation of the problem of estimating

AR models when a conditional independence structure is given. This section

considers the other class of estimation problem in graphical modeling, where the

topology of the graph is unknown. We focus on topology selection in graphical

models of AR processes.

Discovering a sparsity pattern of a graph is closely related to model selection

problems. Each graph topology corresponds to a model with a different number

of parameters. When using these models to explain given data, a model with

more parameters certainly improves the fitting error; however, it also results in

increased variance. Therefore, one should pick a model with the smallest possible

number of parameters that can adequately explain the data. This concept is

known as the principle of parsimony [BA02], and the general tradeoff between a

bias versus variance in statistics.

Section 4.1 presents a direct approach to the topology selection problem. The

method is to enumerate all topologies, and rank the models using information-

theoretic criteria, each of which introduces a penalty term for model complexity.

As we will see from examples in section 4.2, this approach is limited to small

graphs only since the number of all possible topologies grows exponentially as a

function of n.
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Therefore, section 4.3 considers a more efficient framework to discover the

topology of large graphical models. A common approach to find sparse models is

typically based on ℓ1-norm regularization. Examples are the ℓ1-regularized least-

squares problem (or the Lasso) considered in [Tro06, CRT06a, CRT06b, FNW07]

and the covariance selection problem (1.2). In section 4.3.2 we propose a convex

formulation based on ℓ1-type regularization to encourage sparsity in the inverse

spectrum for topology selection in AR models. Examples with random and real

data sets are illustrated in section 4.4 and 4.5.

4.1 Model selection via information criteria

In model selection, we make a statistical inference from the data to select a good

approximate model from a set of candidates. A theoretical basis for model se-

lection includes model selection criteria as a measure of goodness of fit of an

estimated model. Three popular model selection criteria are the Akaike Infor-

mation Criterion (AIC), the second-order variant of AIC (AICc), and the Bayes

information criterion (BIC) [BA02]. These criteria are used to make a fair com-

parison between models of different complexity. They assign to an estimated

model a score equal to −2L, where L is the likelihood of the model, augmented

with a term that depends on the effective number of parameters k in the model:

AIC = −2L + 2k, (4.1)

AICc = −2L +
2kN

N − k − 1
, (4.2)

BIC = −2L + k log N, (4.3)

where N is the sample size. The second term places a penalty on models with high

complexity. When comparing different models, we rank them according to one

of the criteria and select the model with the lowest score. Of these three criteria,
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the AIC is known to perform poorly if N is small compared to the number of

parameters k. The AICc was developed as a correction to the AIC for small N .

For large N the BIC favors simpler models than the AIC or AICc.

To select a suitable graphical AR model for observed samples of an n-dimensional

time series, we can enumerate models of different lengths p and with different

graphs. For each model, we solve the ML estimation problem with conditional

independence constraints (3.4), calculate the AIC, AICc, or BIC score, and select

the model with the best (lowest) score. Obviously, an exhaustive search of all

sparsity patterns is only feasible for small n (say, n ≤ 6), since there are

n(n−1)/2
∑

m=0





n(n − 1)/2

m



 = 2n(n−1)/2 (4.4)

different graphs with n nodes.

This approach can be more clearly illustrated by the following example. We

generate N = 1000 samples from an AR model of dimension n = 5, p = 4, and

zeros in positions (1, 2), (1, 3), (1, 4), (2, 4), (2, 5), (4, 5) of the inverse spectrum.

We show only results for the BIC. In the BIC we substitute the conditional

likelihood discussed in section 2.2.2.2 for the exact likelihood L. (For sufficiently

large N the difference is negligible.) As effective number of parameters we take

the total number of optimization variables

k =
n(n + 1)

2
− |V| + p(n2 − 2|V|)

where |V| is the number of conditional independence constraints, i.e., the number

of zeros in the lower triangular part of the inverse spectrum.

Figure 4.1 shows the scores of the estimated models as a function of p. For

each p the score shown is the best score among all graph topologies. The BIC

selects the correct model order p = 4. Figure 4.2 shows the seven best models
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Figure 4.1: BIC score scaled by 1/N of AR models of order p.
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Figure 4.2: Seven best ranked topologies according to the BIC.
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Figure 4.3: Poles of the true model (plus signs) and the estimated model (circles).

according to the BIC. The subgraphs labeled #1 to #7 show the estimated model

order p, and the selected sparsity pattern. The corresponding scores are shown in

the first subgraph, and the true sparsity pattern is shown in the second subgraph.

The BIC identified the correct sparsity pattern. Figure 4.3 shows the location of

the poles of the true AR model and the model selected by the BIC.

In figures 4.4 and 4.5 we compare the spectrum of the model selected by the

BIC with the spectrum of the true model and with a nonparametric estimate of

the spectrum. The lower half of the figures shows the coherence spectrum, i.e.,

the spectrum normalized to have diagonal one:

diag(S(ω))−1/2S(ω)diag(S(ω))−1/2,

where diag(S) is the diagonal part of S. The upper half shows the partial co-

herence spectrum R(ω) [Bri81, Dah00], i.e., the inverse spectrum normalized to

have diagonal one:

R(ω) = diag(S(ω)−1)−1/2S(ω)−1 diag(S(ω)−1)−1/2. (4.5)

The i, j entry of the coherence spectrum is a measure of how dependent com-

ponents i and j of the time series are. The i, j entry of the partial coherence
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Figure 4.4: Partial coherence and coherence spectra of the AR model: true spec-

trum (dashed lines) and ML estimates (solid lines).
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Figure 4.5: Partial coherence and coherence spectra of the AR model: true spec-

trum (dashed lines) and nonparametric estimates (solid lines).
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spectrum on the other hand measures the conditional dependence between the

components i and j, after removing the linear effects from the other variables.

The dashed lines show the spectra of the true model. The solid lines in figure 4.4

are the spectra of the ML estimates. The solid lines in figure 4.5 are nonpara-

metric estimates of the spectrum, obtained with Welch’s method (see [Pro01,

§12.2.2]) using a Hamming window of length 40 (see [Pro01, page 642]). The

nonparametric estimate in figure 4.5 of the partial coherence spectrum clearly

gives a poor indication of the correct sparsity pattern.

4.2 Examples with small real data sets

Air pollution data

This data set consists of a time series of dimension n = 5. The components

are four air pollutants, CO, NO, NO2, O3, and the solar radiation intensity R,

recorded hourly during 2006 at Azusa, California. The entire data set consists of

N = 8370 observations, and was obtained from Air Quality and Meteorological

Information System (AQMIS) (www.arb.ca.gov/aqd/aqdcd/aqdcd.htm). The

daily averages over one year are shown in figure 4.6. A similar data set was

studied previously in [Dah00], using a nonparametric approach.

We use the BIC to compare models with orders ranging from p = 1 to p = 8.

Table 4.1 lists the models with the best ten BIC scores (which differ by only

0.84%). Figure 4.7 shows the coherence and partial coherence spectra obtained

from a nonparametric estimation (solid red lines), and the ML model with the

best BIC score (dashed blue lines).

From table 4.1, the lowest BIC scores of each model of order p = 4, 5, 6

correspond to the missing edge between NO and the solar radiation. This agrees
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Figure 4.6: Average of daily concentration of CO, NO, NO2, and O3, and the

solar radiation (R).

Rank p BIC score V

1 4 15414 (NO, R)

2 5 15455 (NO, R)

3 4 15461

4 4 15494 (CO, O3), (CO, R)

5 4 15502 (CO, R)

6 5 15509 (CO, O3), (CO, R)

7 5 15512

8 4 15527 (CO, O3)

9 6 15532 (NO, R)

10 5 15544 (CO, R)

Table 4.1: Models with the lowest BIC scores for the air pollution data, deter-

mined by an exhaustive search of all models of orders p = 1, . . . , 8. V is the set

of conditionally independent pairs in the model.
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Figure 4.7: Coherence (lower half) and partial coherence spectra (upper half) for

the first model in table 4.1. Nonparametric estimates are in solid red lines, and

ML estimates in dashed blue lines.

with the empirical partial coherence in figure 4.7 where the pair NO-R is weakest.

Table 4.1 also suggests that other weak links are (CO, O3) and (CO, R). The

partial coherence spectra of these pairs are not identically zero, but are relatively

small compared to the other pairs.

The presence of the stronger components in the partial coherence spectra are

consistent with the discussion in [Dah00]. For example, the solar radiation plays

a role in the photolysis of NO2 and the generation of O3. The concentration of

CO and NO are highly correlated because both are generated by traffic.
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International stock markets

We consider a multivariate time series of five stock market indices: the S&P 500

composite index (U.S.), Nikkei 225 share index (Japan), the Hang Seng stock

composite index (Hong Kong), the FTSE 100 share index (United Kingdom), and

the Frankfurt DAX 30 composite index (Germany). The data were downloaded

from www.globalfinancialdata.com with the record from June 4, 1997 to June

15, 1999. (The data were converted to US dollars to take the volatility of exchange

rates into account. We also replaced missing data due to national holidays by

the most recent values.) For each market we use as variable the return between

trading day k − 1 and k, defined as

rk = 100 log(pk/pk−1), (4.6)

where pk is the closing price on day k. The resulting five-dimensional time series

of length 528 is shown in figure 4.8. This data set is a subset of the data set used

in [BY03].

We enumerate all graphical models of orders ranging from p = 1 to p = 9.

Because of the relatively small number of samples, the AICc criterion will be used

to compare the models. Figure 4.9 shows the optimal AICc (optimized over all

models of a given lag p) versus p. Table 4.2 shows the model order and topology

of the five models with the best AICc scores. The column labeled V shows the

list of conditionally independent pairs of variables.

Figure 4.10 shows the coherence (bottom half) and partial coherence (up-

per half) spectra for the model selected by the AICc, and for a nonparametric

estimate.

It is interesting to compare the results with the conclusions in [BY03]. For

example, the authors of [BY03] mention a strong connection between the German
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Figure 4.8: Detrended daily returns for five stock market indices between June

4, 1997 and June 15, 1999.

Table 4.2: Five best AR models, ranked according to AICc scores, for the inter-

national stock market data.

Rank p AICc score V

1 2 4645.5 (US,JP), (JP,GE)

2 2 4648.0 (US,JP)

3 1 4651.1 (US,JP), (JP,GE)

4 1 4651.6 (US,JP)

5 2 4653.1 (JP,GE)
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Figure 4.9: Minimized AICc scores (scaled by 1/N) of pth-order models for the

stock market return data.

and the other European stock markets, in particular, the UK. This agrees with

the high value of the UK-GE component of the partial coherence spectrum in

figure 4.10. The lower strength of the connections between the Japanese and

the other stock markets is also consistent with the findings in [BY03]. Another

conclusion from [BY03] is that the volatility in the US stock markets transmits

to the world through the German and Hong Kong markets. As far as the German

market is concerned, this seems to be confirmed by the strength of the US-GE

component in the partial coherence spectrum.

European stock markets

This data set is similar to the previous one. We consider a five-dimensional

time series consisting of the following stock market indices: the FTSE 100 share

index (United Kingdom), CAC 40 (France), the Frankfurt DAX 30 composite
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Figure 4.11: Coherence and partial coherence spectrum of the model for the

European stock return data. Nonparametric estimates (solid red lines) and ML

estimates (dashed blue lines) for the best model selected by the BIC.

index (Germany), MIBTEL (Italy), Austrian Traded Index ATX (Austria). The

data were stock index closing prices recorded from January 1, 1999 to July 31,

2008, and obtained from www.globalfinancialdata.com. The stock market

daily returns were computed from (4.6), resulting in a five-dimensional time series

of length N = 2458.

The BIC selects a model with lag p = 1, and with (UK,IT), (FR,AU), and

(GE, AU) as the conditionally independent pairs. The coherence and partial

coherence spectra for this model are shown in figure 4.11. The partial coherence

spectrum suggests that the French stock market is the market on the Continent

most strongly connected to the UK market. The French, German, and Italian
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stock markets are highly inter-dependent, while the Austrian market is more

weakly connected to the other markets. These results agree with conclusions

from the analysis in [YML03].

4.3 Model selection via ℓ1-regularized ML estimation

As we have seen in section 4.1, the topology selection method based on information-

theoretic criteria is feasible if the number of possible topologies is not too large,

but quickly becomes intractable even for small values of n. In this section we

describe a more scalable approach based on a convex optimization problem that

extends the ℓ1-norm regularization (1.2) for sparse covariance selection.

4.3.1 Regularization methods

In statistical learning, a regularization is a technique used to add prior knowledge

about the behavior of the solution. A typical example of regularization is Ridge

regression or Tikhonov regularization [HTF09, §3.4] of a least-squares problem:

minimize ‖Ax − b‖2
2 + γ‖x‖2

2

with γ > 0. This regularization penalizes the norm of x and control its amount

by the weighting parameter γ. In estimation, it can alleviate the problem of

having high variance in x due to variations in A. The Tikhonov estimate has the

analytical solution

x = (AT A + γI)−1AT b.

The regularization can also be used when A is ill-conditioned. As we see, it

requires no assumption on the rank of A since AT A + γI is always invertible for

any γ > 0.
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Another regularization that is very relevant to our study is ℓ1-norm regular-

ization used in the Lasso (in signal processing also known as basis pursuit):

minimize ‖Ax − b‖2
2 + γ‖x‖1.

By making γ large enough, some coefficients of x become zero because of the

nature of ℓ1 norm, so the Lasso is used as a heuristic for regression selection to

find a sparse solution.

Regularization methods can be also interpreted as a maximum a posterior

probability (MAP) estimation. From the above two examples, the ℓ2 penalty

corresponds to log-prior of the Gaussian distribution, and the ℓ1 penalty log-

prior of the Laplace distribution for each xi.

In the next section we consider a regularization of the ML estimation that is

similar to the ℓ1 regularization in the least-squares problem.

4.3.2 ℓ1-regularized ML estimation

From the conditional independence constraints in (3.4), our goal is to promote

a sparsity in D(X). In analogy with the convex heuristic for covariance selec-

tion (1.2), we can formulate a regularized ML problem by adding a nonsmooth

ℓ1-type penalty:

minimize − log det X00 + tr(CX) + γh(D(X))

subject to X � 0,
(4.7)

where γ > 0 is a weighting parameter. The penalty h : Mn,p → R is a convex

function, chosen to encourage a sparse solution X with a common, symmetric

sparsity pattern for the p + 1 blocks of D(X). We will use the penalty function

h(Y ) = h∞(Y ) =
∑

j>i

max

{

|(Y0)ij| , max
k=1,...,p

|(Yk)ij| , max
k=1,...,p

|(Yk)ji|
}

(4.8)
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i.e., a sum of the ℓ∞-norms of vectors of i, j and j, i-entries of the coefficients Yk.

In the examples (section 4.4.3) we will also discuss penalty functions defined as

sums of ℓα-norms, with α = 1, 2.

Regularization with a convex sum-of-norms penalty is a popular technique

for achieving sparsity of groups of variables. Examples from statistics are the

composite absolute penalties (CAP) [ZRY09] and the group lasso [YL06, KKK06].

When p = 0 and X ∈ Sn in (4.7) the penalty term reduces to
∑

i>j |Xij|
and we obtain the formulation (1.2), studied in [BEd08, Lu09, FHT08], with the

minor difference that we do not penalize the diagonal entries of X.

In the following we will use the result from duality to conclude the low rank

property of the optimal X, similar to the result shown in section 3.2. The dual

problem will also become important later in section 5, in terms of numerical

implementation. To simplify the derivation we introduce a variable Y = D(X)

and write the problem as

minimize − log det X00 + tr(CX) + γh∞(Y )

subject to Y = D(X)

X � 0.

If we use a multiplier Z ∈ Mn,p for the equality constraint Y = D(X) and a

multiplier U ∈ Sn(p+1) for the inequality X � 0, the Lagrangian of the problem

is

L(X, Y, Z, U)

= − log det X00 + tr(CX) + γh∞(Y ) − tr(UX) + tr(ZT (D(X) − Y )) (4.9)

= − log det X00 + tr((C + T(Z) − U)X) + γh∞(Y ) − tr(ZT Y ).

(Recall that the mappings T and D defined in (1.4) and (1.5) are adjoints, i.e.,

tr(ZT D(X)) = tr(T(Z)X).) The dual function is the infimum of the Lagrangian
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over X and Y . We first minimize over Y . The nonlinear penalty term does not

depend on the diagonal entries of the blocks Yk. The minimization over the

diagonal entries of Yk is therefore unbounded below unless

diag(Zk) = 0, k = 0, 1, . . . , p. (4.10)

The minimization over the off-diagonal part of the blocks Yk decomposes into

independent minimizations of the functions

−
p
∑

k=0

((Zk)ij(Yk)ij + (Zk)ji(Yk)ji)+γ max

{

|(Y0)ij|, max
k=1,...,p

|(Yk)ij |, max
k=1,...,p

|(Yk)ji|
}

for each element i, j with i > j. This expression is unbounded below unless

2|Z0,ij| +
p
∑

k=1

(|(Zk)ij | + |(Zk)ji|) ≤ γ, i 6= j, (4.11)

and, if this condition holds, the infimum over Y is zero.

The result of the partial minimization of the Lagrangian over Y can be sum-

marized as

inf
Y

L(X, Y, Z, U) =







− log det X00 + tr((C + T(Z) − U)X) (4.10), (4.11)

−∞ otherwise.

Next, we carry out the minimization over X. The terms in X00 are bounded

below if only if (C + T(Z) − U)00 ≻ 0, and if this holds, they are minimized by

X00 = (C + T(Z) − U)−1
00 . The Lagrangian is linear in the other blocks Xij , and

therefore bounded below (and identically zero) only if (C + T(Z) − U)ij = 0 for

blocks (i, j) 6= (0, 0). This gives a third set of dual feasibility conditions:

(C + T(Z) − U)00 ≻ 0, (C + T(Z) − U)ij = 0, (i, j) 6= 0, (4.12)

and an expression for the dual function

g(Z, U) = inf
X,Y

L(X, Y, Z, U) =







log det(C + T(Z) − U)00 + n (4.10), (4.11), (4.12)

−∞ otherwise.
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The dual problem is to maximize g(Z, U) subject to U � 0. If we add a

variable W = C00 + Z0 − U00 and eliminate the slack variable U , we can express

the dual problem as

maximize log det W + n

subject to





W 0

0 0



 � C + T(Z)

p
∑

k=0

(|(Zk)ij | + |(Zk)ji|) ≤ γ, i 6= j

diag(Zk) = 0, k = 0, . . . , p.

(4.13)

The variables are W ∈ Sn and Z ∈ Mn,p. When p = 0, the problem reduces to

maximize log det(C + Z) + n

subject to |Zij| ≤ γ/2, i 6= j

diag(Z) = 0,

Except for the equality constraint, this is the problem considered in [Lu09,

DGK08].

If a sum of ℓα-norms

hα(Y ) =
∑

j>i

(

p
∑

k=0

(|(Yk)ij |α + |(Yk)ji|α)

)1/α

(4.14)

is used as penalty function in (4.7), the second constraint in the corresponding

dual problem (4.13) is replaced by

(

p
∑

k=0

(

|(Zk)ij|β + |(Zk)ji|β
)

)1/β

≤ γ, i 6= j

with β = (α − 1)/α.
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4.3.3 Optimality conditions

The optimal duality gap between the optimal values of the primal problem (4.7)

and the dual problem (4.13) is

η = − log det X∗
00 + tr(CX∗) + γh(D(X∗)) − log det W ∗ − n,

where X∗ is the optimal solution of (4.7) and W ∗ is the optimal solution of (4.13).

For convex optimization problems, the duality gap is zero if either the primal

problem or the dual problem is strictly feasible.

The primal problem (4.7) is always strictly feasible (X = I is strictly feasible).

The dual problem (4.7) is strictly feasible if C ≻ 0 (we can take Z = 0 and

W positive definite and sufficiently small). It follows that the primal and dual

problems are solvable, have equal optimal values, and that their solutions are

characterized by the following set of necessary and sufficient optimality (or KKT)

conditions.

Primal feasibility. X and Y satisfy

X � 0, X00 ≻ 0, Y = D(X).

Dual feasibility. W and Z satisfy

W ≻ 0, C + T(Z) �





W 0

0 0



 ,

p
∑

k=0

(|(Zk)ij| + |(Zk)ji|) ≤ γ, i 6= j, diag(Zk) = 0, k = 0, 1, . . . p.

Zero duality gap. The Lagrangian evaluated at the primal and dual optimal

solutions is equal to the primal objective at the optimal X, Y , and equal

to the dual objective evaluated at the optimal W , Z. From (4.9), we have
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equality between the Lagrangian and the primal objective if tr(UX) = 0.

This is the complementary slackness condition that holds at optimum and

can be equivalently expressed as

tr



X



C + T(Z) −





W 0

0 0











 = 0. (4.15)

Equality between the Lagrangian and the dual objective requires that the

primal optimal X, Y minimize the Lagrangian evaluated at the dual optimal

W , Z. Reviewing the derivation of the dual problem, we see that X00

minimizes the Lagrangian if

X−1
00 = W. (4.16)

To express the conditions from the minimization over Y , we define

tij = max

{

|(Y0)ij|, max
k=1,...,p

|(Yk)ij |, max
k=1,...,p

|(Yk)ji|
}

.

Then we see that Y minimizes the Lagrangian if for all i 6= j, we either

have
p
∑

k=0

(|(Zk)ij | + |(Zk)ji|) < γ,

or we have
∑p

k=0(|(Zk)ij| + |(Zk)ji|) = γ and

(Zk)ij = 0, |(Yk)ij| ≤ tij

or (Zk)ij < 0, (Yk)ij = −tij or (Zk)ij > 0, (Yk)ij = tij

for k = 0, . . . , p.

The conditions (4.15)–(4.16) show that the optimal X has rank n under the same

conditions as for the problem with given sparsity pattern (3.4). If

(C + T(Z))1:p,1:p ≻ 0
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then the optimal X has rank n, and this is always the case if C is block-Toeplitz

(by reviewing the property of block-Toeplitz matrix in section 3.3.) Under these

conditions, the optimization problem (4.7) is equivalent to a regularized (condi-

tional) ML estimation problem for the model parameters B:

minimize −2 log det B0 + tr(CBT B) + γh∞(D(BT B)).

4.4 Examples with randomly generated data

This section illustrates the effectiveness of our method by means of a few numer-

ical experiments on randomly generated sparse AR models. We first show how

we use the topology selection problem (4.7) in practice. We discuss how to select

the weighting parameter γ, how to determine the topology from the computed

solution, and examine the accuracy of the selected model. The experiments also

include a comparison between our method and other types of regularization and

a comparison of different penalty functions hα for the regularization problem.

4.4.1 Method

We first explain in greater detail how we will use the results of the regularized

ML problem for model selection.

Choice of regularization parameter γ The sparsity in the inverse spectrum

of the solution of the regularized ML problem is controlled by the weighting

coefficient γ. As γ varies, the sparsity pattern varies from dense (γ small) to

diagonal (γ large). Several authors have discussed the choice of γ in the context

of covariance selection (i.e., heuristics based on solving problem (1.2) or closely

related problems). A common approach is to select γ via cross-validation; see,
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for example, [FHT08, HLP06, BEd08]. Meinshausen and Bühlmann [MB06] give

explicit formulas for γ based on a statistical analysis of the probability of errors

in the topology (see also [YL07, BEd08]). Asadi et al. [ARS09] consider γ as a

random variable and use a maximum a posterior probability (MAP) estimation

to choose γ and the covariance matrix.

In the examples of this section we will use the following method for selecting γ.

We first compute the entire trade-off curve between the two terms in the objective

of (4.7), i.e., between the log-likelihood and the penalty function h∞(D(X)). The

trade-off curve can be computed by solving (4.7) for a number of different values

of γ (see below). We collect the topologies of the solutions along the trade-off

curve, and solve the ML problem (3.4) for each of these topologies. We then

rank the models using the Bayes information criterion (BIC), as discussed at

the beginning of section 4.1, and select the model with the lowest score. In

this approach, the convex heuristic is used as a preprocessing step to reduce the

number of topologies that are examined using the BIC, and to filter out topologies

that are unlikely to be competitive.

Tracing trade-off curves The trade-off curves are computed by solving (4.7)

for a sequence of values of γ. To obtain an accurate estimate of the curve with

only a small number of values γ we use a method which is illustrated in figure 4.12

for a generic trade-off between two convex cost functions f1 and f2. We first solve

the scalarized problem

minimize f1(x) + γf2(x) (4.17)

for two positive values γ1, γ2 near the opposite ends of the trade-off curve. This

gives the points labeled 1 and 2 on the trade-off curve. The values of γ1 and γ2

also give the slopes of straight lines that support the trade-off curve at points 1
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Figure 4.12: Method for approximating the trade-off curve between two convex

objectives.

and 2. Since the trade-off curve is convex, we can conclude that the curve between

1 and 2 lies somewhere in the shaded triangular region. As γ3, we choose the

value that corresponds to the slope of the straight line between 1 and 2. Solving

problem (4.17) with γ = γ3 gives point 3 on the trade-off curve and a straight line

that supports the curve at point 3. The trade-off curve between points 1 and 2

is now known to lie in the union of the two shaded triangles. Next, we solve

the problem (4.17) for a value γ4 corresponding to the slope of the straight line

between points 1 and 3, and a value γ5 corresponding to the slope of the straight

line between 3 and 2. In this example, we obtain fairly accurate upper and lower

bounds of the actual trade-off curve after solving five scalarized problems (4.17).

Thresholding With a proper value of γ, the regularized ML problem (4.7) has

a sparse solution Y , resulting in a sparse inverse spectrum S−1(ω). When solved

with a limited accuracy, the entries of Y are not exactly zero. We will use the

following method to determine the topology from the computed solution.

We calculate the partial coherence R(ω) as described in (4.5). It is essentially

the inverse spectrum S(ω)−1 normalized to have diagonal one:

R(ω) = diag(S(ω)−1)−1/2S−1(ω)diag(S(ω)−1)−1/2.
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In the static case (p = 0), R(ω) reduces to the normalized concentration matrix.

To estimate the graph topology we compare the L∞-norms of the entries of R(ω),

ρij = sup
ω

|R(ω)ij| (4.18)

with a given threshold. In the experiments we use a value of 10−1 for the thresh-

old, i.e., we remove edge (i, j) from the graph if ρij ≤ 10−1. Of course, other

choices of norm (L2 or L1) can be used. They give similar results for the estimated

topology.

4.4.2 Experiment 1: performance of the ℓ1 regularization

In the first series of experiments we generate AR models with sparse inverse

spectra by setting B0 = I and randomly choosing sparse lower triangular matrices

Bk with entries ±0.5. The random trials are continued until a stable AR model

is found. The AR process is then used to generate N samples of the time series.

The model dimensions are n = 20 and p = 2.

Topology selection We first illustrate the basic topology selection method

outlined above using the correct model order (p = 2). The sample size is N = 512.

Figure 4.13 shows the trade-off curve between the penalty h∞(D(X)) and the

log-likelihood L(X). We calculate the inverse spectra (2.10) for the computed

points on the trade-off curve, and apply a threshold to them (as explained above,

by setting entries with ρij ≤ 10−1 to zero). The resulting topologies are shown in

figure 4.14. The patterns range from quite dense (small γ) to very sparse (large

γ). The sparsity of the densest solution (γ = 10−5) is identical to the sparsity

of the least-squares estimate (i.e., the solution of the equations (2.19) with C

given in (2.16) or, equivalently, the ML solution of (3.3) without the sparsity

constraints). For each of the nine sparsity patterns, we solve the ML problem
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Figure 4.13: Trade-off curve between the log-likelihood L(X) and h∞(D(X)).
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Figure 4.14: Topologies of solutions along the trade-off curve in figure 4.13 (or-

dered from right to left on the trade-off curve).
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Figure 4.15: AICc and BIC scores, and maximized log-likelihood for solutions on

the trade-off curve in figure 4.13.

subject to sparsity constraints (3.4). We rank the nine solutions using the AICc

and BIC scores defined in (4.2)-(4.3). Figure 4.15 shows the two scores and the

negative log-likelihood as functions of γ. The models that minimize the AICc/BIC

scores turn out to be the same in this example (the models for γ = 0.15) and

the corresponding topology is shown in figure 4.16 (top left). Only seven entries

are misclassified (six entries are misclassified as zeros; one as nonzero). The

sparsity pattern in the top right is the topology estimated by thresholding the

partial coherence spectrum of the least-squares solution with the correct model

order (p = 2). This pattern is computed by solving the ML problem (3.3) without

constraints, and then thresholding the partial coherence (using the same threshold

value 0.1 as in the other experiments). The difference between the two patterns

clearly shows the benefits of the nonsmooth regularization for estimating a sparse

topology. The sparsity pattern on the bottom of figure (4.16) is obtained from the

covariance selection method with ℓ1-norm regularization (i.e., by setting p = 0
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Figure 4.16: Top Left. The sparsity pattern from the regularized ML problem

with γ = 0.15. Top Right. The sparsity pattern estimated from the least-squares

solution. Bottom. The sparsity pattern from the regularized ML problem for

a static model (p = 0). The blue squares are the correctly identified nonzero

entries (true positives). The red circles are the entries that are misclassified as

nonzero (false positives). The black crosses are entries that are misclassified as

zeros (false negatives).
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in the regularized ML problem (4.7)) and thresholding the partial coherence.

Ignoring the model dynamics substantially increases the error in the topology

selection.

Comparison with other types of regularization To compare the quality

of the sparse models with the models obtained from other estimation methods

we evaluate the Kullback-Leibler (KL) divergence [BJ04] between the true and

the estimated spectra as a function of the sample size N for the following six

methods.

1. ML estimation without conditional independence constraints (or least-squares

estimate). This is the solution of (3.3) without the constraints, and it can

be computed by solving the normal equations (2.19).

2. ML estimation with conditional independence constraints determined by

thresholding the partial coherence matrix of the least-squares estimate (so-

lution 1).

3. ML estimation with Tikhonov regularization and without conditional in-

dependence constraints. Similar to ℓ2-regularized least-squares problem in

section 4.3.1, Tikhonov regularization (or ℓ2 regularization) for the ML

estimation can be obtained by adding the Frobenious norm of B to the

unconstrained ML problem (2.21):

minimize −2 log det B0 + tr(CBT B) + γ‖B‖2
F .

The solution can be computed from the normal equations (2.19) with C

replaced by C + γI. The solution of this problem can therefore also be

viewed as a ML estimate using a perturbed sample covariance matrix C+γI.
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In the experiment, the value of γ is determined by performing a five-fold

cross-validation [HTF09, §7.10].

4. ML estimation with conditional independence constraints determined by

thresholding the inverse spectral density for the Tikhonov estimate (solu-

tion 3).

5. Regularized ML estimation with h∞ penalty. This is the solution of prob-

lem (4.7) with penalty (4.8).

6. ML estimation with conditional independence constraints determined by

thresholding the inverse spectral density for the h∞-regularized ML estimate

(solution 5).

The total number of variables in this example is n(n+1)/2+pn2 = 1010 variables.

We show the results in figure 4.17 in two different settings: with small sample

sizes (N < 1010) and with moderate to large sample sizes (N ≥ 1010). We

can note that for small sample sizes N the constrained ML estimates (models

2,4,6) are not better than the unconstrained estimates (models 1,3,5), and much

worse in the case of the Tikhonov-regularized estimates. This can be explained

by large errors in the estimated topology. For larger N the constrained estimates

are consistently better than the unconstrained models, and for very large N the

three constrained ML estimates gave the same accuracy. For small and moderate

N we also see that model 6 (ML estimate for the topology selected via nonsmooth

regularization) is much more accurate than the other methods.

Errors in topology as a function of sample size In the last figure (Fig-

ure 4.18) we examine how fast the error in the topology selection decreases with

increasing sample length N for three topology selection methods: LS estimation
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Figure 4.17: KL divergence between estimated AR models and the true model

(n = 20, p = 2) versus the number of samples N . We compare six methods: (1)

least-squares estimate, (2) constrained ML estimate with topology estimated by

thresholding solution 1, (3) ML estimate with Tikhonov regularization, (4) con-

strained ML estimate with toplogy estimated by thresholding solution 3, (5) regu-

larized ML estimate with h∞-penalty, (6) constrained ML estimate with topology

estimated by thresholding solution 5.
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followed by thresholding, ML estimation with Tikhonov regularization followed

by thresholding, and ML estimation with nonsmooth regularization followed by

thresholding. For each sample size N we show the errors averaged over 50 sam-

ple sequences (i.e., 50 different sample covariance matrices C). “False positives”

refers to entries that are incorrectly classified as nonzeros (i.e., incorrectly added

edges in the graphical model). “False negatives” are entries that are incorrectly

classified as zeros (i.e., incorrectly deleted edges). The top graphs in figure 4.18

show the fraction of false positives and false negatives versus the sample size. The

bottom graphs show the total fraction of misclassified entries. We compare the

three methods listed above. The total error in the estimated topology is reduced

by regularizing, and the errors decrease more rapidly when we regularize with

the sum-of-norms penalty h∞.

4.4.3 Experiment 2: sum-of-ℓα-norms penalties

In the second experiment we compare different penalty functions h for the reg-

ularized ML problem (4.7): the ‘sum-of-ℓ∞-norms’ penalty h∞ defined in (4.8),

the ‘sum-of-ℓ2-norms’ penalty h2 defined in (4.14) with α = 2, and the ‘sum-of-

ℓ1-norms’ penalty h1 defined in (4.14) with α = 1. These penalty functions all

yield models with a sparse inverse spectrum

S(ω)−1 = Y0 +
1

2

p
∑

k=1

(e−jkωYk + ejkωY T
k ),

but have different degrees of sparsity for the entries (Yk)ij within each group i, j.

The data are generated by randomly choosing sparse coefficients Yk of an

inverse spectrum (2.10). For each (i, j) of nonzero locations in S(ω)−1, we select

random values (Yk)ij with about the same magnitude for all k. If necessary, a

multiple of the identity matrix is added to Y0 to guarantee the positiveness of
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Figure 4.18: Top left. Fraction of incorrectly added edges in the estimated graph

(number of upper triangular nonzeros in the estimated pattern that are incorrect,

divided by the number of upper triangular zeros in the correct pattern). Top

right. Fraction of incorrectly removed edges in the estimated graph (number of

upper triangular zeros in the estimated pattern that are incorrect, divided by

the number of upper triangular nonzeros in the correct pattern). Bottom. The

combined classification error computed as the sum of the false positives and false

negatives divided by the number of upper triangular entries in the pattern.
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Figure 4.19: Nonzero coefficients |(Yk)ij| for regularized ML estimates with

penalty hα, for α = 1, 2,∞.

the spectrum. An AR realization of the spectrum is then computed by spectral

factorization and used to generate sample time series. The model dimensions are

n = 5, p = 7.

Figure 4.19 shows typical values for the estimated coefficients (Yk)ij . The

three penalty functions all give the same topology, but a different sparsity with

the same group i, j of coefficients. The sparsity within each group is largest for

the h1-penalty and smallest for the h∞ penalty.

Table 4.3 shows the results of topology selection with the three penalties, for

sample size N = 512 and averaged over 50 sample sequences. The h∞ penalty

gives the models with the smallest KL divergence and smallest error in topology.

This is to be expected, given the distribution of the nonzero coefficients (Yk)ij

in the AR models that were used to generate the data. The results also agree
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Dimensions
KL divergence Error in topology (%)

h1 h2 h∞ h1 h2 h∞

n = 20, p = 2 0.24 0.22 0.21 11.8 11.9 11.6

n = 20, p = 4 0.33 0.24 0.19 1.65 1.19 0.51

n = 30, p = 2 0.40 0.35 0.30 9.95 8.83 7.96

n = 30, p = 4 0.59 0.46 0.40 5.18 3.97 3.53

Table 4.3: Accuracy of topology selection methods with penalty hα for

α = 1, 2,∞. The table shows the average KL divergence with respect to the

true model and the average percentage error in the estimated topology (defined

as the sum of the false positives and false negatives divided by the number of

upper triangular entries in the pattern), averaged over 50 instances.

with a comparison of different norms in a composite penalty function [ZRY09]. In

general the best choice of norm will depend on how the coefficients are distributed

within each group.

4.5 Examples with moderate and large real data sets

In this section we present two examples of real data sets to demonstrate how

topology selection can facilitate studies of relationships in multivariate time series.

We discuss fMRI data from neuroscience and stock return data from economics.

4.5.1 Functional magnetic resonance imaging (fMRI) data

There is great interest in using fMRI measurement to analyze interactions be-

tween active brain regions that are either stimulated by certain tasks or in rest-

ing states. Analyzing associations between interested regions could bring some
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Input n = 7 n = 50 n = 100 n = 190

Picture p = 1 p = 1 p = 0 p = 0

Sentence p = 1 p = 1 p = 0 p = 0

Table 4.4: AR model orders for the fMRI data set.

insight understanding on the brain function to neuroscientists. It is widely ac-

cepted that the functional activity of each subregion can be demonstrated by

human functional magnetic resonance imaging (fMRI) time series in which most

cases, depicts blood oxygenation level. It is based on the assumption that the

more activities the brain has, the higher level of oxygen will be used. Inference

about the functional connectivity can be explained from the underlying depen-

dence structure of the system. A graph-theoretical approach has been suggested

to accommodate such analysis (see [SSS05, Eic05, RFG05, HPF03], and [Eic06b,

§14]) by applying the concept of Granger-causality graphs [Eic07] instead of con-

ditional independence graphs considered in this thesis.

In this section we apply the topology selection method to a functional mag-

netic resonance imaging (fMRI) time series. The data set is from [MHN04] and

was analyzed in [SR09] using covariance selection. The data consists of 80 time

series (runs) of brain image scans. In half of the 80 runs the input stimulus shown

to the subject is a picture; in the other half it is a sentence. Each run contains 16

images, resulting in 640 images for each input. The authors of [MHN04] suggest

a region of interest (ROI) of 1718 voxels. To reduce the dimension we took av-

erages over groups of voxels in the ROI and considered four reduced graphs with

n = 7, 50, 100, and 190 nodes, respectively.

We fit two different AR models, one for each input. The AR model orders

selected by the BIC are shown in Table 4.4. As the problem size (n) becomes

larger, the BIC tends to pick a static model (p = 0). Table 4.5 shows the BIC
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Input
Static models (p = 0) Time series models (p = 1)

ℓ1 Tikhonov LS ℓ1 Tikhonov LS

Picture 991 4116 4203 0 13467 13465

Sentence 922 4021 4131 0 13240 13238

Table 4.5: Relative BIC scores of six models fitted to two fMRI time series of size

n = 50. The ‘static’ models are Gaussian graphical models (i.e., AR models of

order p = 0), the time series models are AR models of order p = 1. The models

are constrained ML estimates with topologies estimated using three different

methods: Regularized ML estimate with hα penalty, Tikhonov-regularized ML

estimate, and the least-squares estimate. The BIC scores are relative to the

score of the best model (time series models of Regularized ML estimate with hα

penalty).

scores of different models for the experiment with size n = 50.

The topologies selected by the BIC are the regularized ML estimates with h∞

penalty. Figure 4.20 shows the sparsity of the estimated graphs from the least-

squares, Tikhonov-regularized ML, and h∞-regularized ML methods. The plots

show that the h∞-regularization produces much sparser graphs than the other

two methods.

To get an idea of the accuracy of the estimated network structure, we validated

the result with a simple classification experiment. For each input we keep one

fMRI run as a test problem and use the 39 remaining runs to estimate a sparse

AR model. The two models are then used to guess the inputs shown to the

subject during the test run. The classification algorithm computes the likelihood

of each input, based on the two models, and selects the input with the highest

likelihood. We repeat this for each of the 40 choices of test run. Table 4.6 shows
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Figure 4.20: Density of the graphical models of fMRI data for ‘picture’ stimulus

(Left) and for ‘sentence’ stimulus (Right). The density is computed as the number

of nonzero entries in the estimated inverse spectrum divided by n2.

model order n = 7 n = 50 n = 100 n = 190

p = 0 0.21 0.16 0.11 0.06

p = 1 0.20 0.16 0.16 0.11

Table 4.6: Classification error of fMRI data versus model size. The error is the

number of runs for which the stimulus input is correctly identified divided by the

total number of runs (40).

the classification error versus the number of nodes in the graph. We see that the

classification is quite successful and achieves an error in the range 6–20%. The

error tends to be smaller if we use less averaging (larger n). We also note that

for each n, the AR model of order p chosen in Table 4.4 also performs slightly

better in the classification experiment.
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4.5.2 International stock markets

We consider a multivariate time series of 17 stock market indices: the S&P 5000

composite index (U.S.), Toronto stock exchange 300 index (Canada), the All or-

dinary composite stock index (Australia), the Nikkei 225 stock index (Japan),

the Hang Seng stock composite index (Hong Kong), the FTSE 100 share in-

dex (United Kingdom), the Frankfurt DAX 30 composite index (German), the

CAC 40 stock composite index (France), MIBTEL index (Italy), the Zurich Swiss

Market composite index (Switzerland), the Amsterdam exchange index (Nether-

lands), the Austrian traded index (Austria), IBEX 35 (Spain), BEL 20 (Bel-

gium), the OMX Helsinki 25 index (Finland), the Portugese stock index (Por-

tugal), the Irish stock exchange index (Ireland). The data were stock index

closing prices recorded from June 3, 1997 to June 30, 1999 and obtained from

www.globalfinancialdata.com. The data were converted to US dollars. Miss-

ing data due to national holidays were replaced by the most recent values. For

each market we use as variable the return between trading day k − 1 and k,

defined as

rk = 100 log(πk/πk−1),

where πk is the closing price on day k. This results in 17-dimensional time series

of length 540. Similar time series for a smaller number of markets were analyzed

in [BY03, AAA08].

We solve the h∞-regularized ML problem with model orders ranging from

p = 0 to p = 3, and for each value collect the topologies along the trade-off curve,

as in the previous examples. The AICc and BIC criteria were then used to select

a model. Both criteria selected a model of order p = 1 and the same sparsity

pattern (corresponding to a value γ = 0.34). Figure 4.21 (right) shows ρij , the

maximum magnitude of the partial coherence of the model, and compares it with
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Figure 4.21: The maximum magnitude of the partial coherence ρij for three mod-

els of the stock exchange data after applying a threshold. (Left.) A nonparamet-

ric sample estimate using Welch’s method. (Middle.) Thresholded least-squares

estimate. (Right.) Result of the h∞-regularized ML problem.

a nonparametric estimate obtained with Welch’s method [Pro01] and the thresh-

olded least-squares estimate. We note that the graph topologies suggested by the

nonparametric and least-squares estimates are much denser than the regularized

ML estimate.

Figure 4.22 shows the graphical model estimated by the h∞-regularized ML

problem. The thickness of the edges is proportional to ρij . We recognize many

connections that can be explained from geographic proximity or economic ties

between the countries. For example, we see strong connections between the U.S.

and Canada, between Australia, Japan, and Hong Kong, between Hong Kong and

U.K., between the southern European countries, et cetera. Overall the graphical

model seems plausible, and the experiment suggests that the topology selection

method is quite effective.
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Figure 4.22: A graphical model of stock market data. The strength of con-

nections is represented by the width of the blue links, which is proportional to

ρij = supω |R(ω)ij| if it is greater than 0.15.
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CHAPTER 5

Algorithms

In this thesis we have encountered several matrix optimization problems. In

chapter 2 we have shown that the ML estimation with conditional independence

constraints can be solved via a convex problem

minimize − log det X00 + tr(CX)

subject to P(D(X)) = 0

X � 0

(5.1)

(with variable X ∈ Sn(p+1)) or its dual

maximize log det W + n

subject to





W 0

0 0



 � C + T(P(Z))
(5.2)

(with variables W ∈ Sn and Z ∈ Mn,p). These two problems have differentiable

objectives and linear equality and matrix inequality constraints. In chapter 3 the

topology selection problem in graphical models was solved via an ℓ1-regularized

convex problem

minimize − log det X00 + tr(CX) + γh(Y )

subject to Y = D(X), X � 0
(5.3)

(with variable X ∈ Sn(p+1) and Y ∈ Mn,p). The objective function of this problem

contains a nondifferentiable term (h(Y ) given by (4.8)) while its dual
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maximize log det W + n

subject to





W 0

0 0



 � C + T(Z)

p
∑

k=0

(|(Zk)ij | + |(Zk)ji|) ≤ γ, i 6= j

diag(Zk) = 0, k = 0, . . . , p

(5.4)

(with variables W ∈ Sn and Z ∈ Mn,p) has a differentiable objective, but the

constraints involve a nondifferentiable function. As we see, the additional com-

plications that do not appear in the covariance selection problems (1.1) and (1.2)

are the complicated equality constraints and the fact that the smooth term

log det X00 + tr(CX) in the primal (5.1) and (5.3) is not strictly convex. More-

over, there are extra matrix inequalities in the dual (5.2) and (5.4).

Nevertheless, these four convex problems can be solved by interior-point meth-

ods [BV04, §11]. For example, the path-following method was applied to related

problems of determinant maximization in [Toh99, VBW98]. The number of iter-

ations of an interior-point method to achieve a desired accuracy is known to grow

slowly compared to the problem size. However, the most significant part is the

Newton’s step which is equivalent to solving sets of linear equations that involve

the Hessian matrix of the objective. This step becomes prohibitive when the op-

timization variables have high dimension. In this thesis we therefore investigate

less expensive first-order algorithms (methods that require only a knowledge of

the gradient) for the two estimation problems.

In section 5.1 we review first-order methods recently used in related sparse

optimization problems. Section 5.2 describes the gradient projection method,

later shown to be suitable for a reformulation of the dual problems (5.2) and (5.4)

in section 5.3. The analysis of the convergence and some numerical results are
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included in section 5.4 and 5.5 respectively.

5.1 First-order methods for sparse optimization

There is currently great interest in efficient methods for solving large-scale op-

timization problems involving ℓ1-norm. The simplest example is the ℓ1-norm

regularized least-squares problem

minimize
1

2
‖y − Ax‖2

2 + γ‖x‖1, (5.5)

with variable x ∈ Rn, for given y ∈ Rm, A ∈ Rm×n and γ > 0. This is

motivated by the fact that the ℓ1-norm term promotes a sparsity to the solu-

tion. This problem, early introduced in [CDS01] as basis pursuit and in [Tib96]

as Lasso, is now widely used in many applications; including signal process-

ing [Tro06], wavelet-based image reconstruction [FN03], and compressed sens-

ing [Don06, CRT06a, CRT06b, FNW07]. The problem (5.5) can be immediately

solved by general solvers based on interior-point methods [BV04, §11] such as

SDPT3 [TTT99]. However, these methods can suffer from expensive computa-

tional cost in the high dimensions setting of real-world applications. This has

recently led to research seeking inexpensive first-order algorithms, for example

gradient projection [FNW07], proximal gradient [WNF09, BT09], optimal first-

order methods (or Nesterov’s method) [Nes07, BBC09], and other competitive

algorithms reviewed in [YGS10]. Despite the nonsmoothness of (5.5), two impor-

tant properties that make the problem suitable for efficient methods are that the

domain of (5.5) is the whole space and that the ℓ1 term is separable.

Solving the covariance selection problem in large scale is more involved. As
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we have seen, the primal problem:

minimize − log det X + tr(CX) + γ
∑

j>i

|Xij|

subject to X � 0

(5.6)

has a nonsmooth penalty term similar to the ℓ1 term in (5.5), but it is nonsepa-

rable because of the cone constraint. The dual problem:

maximize log det(C + Z) + n

subject to |Zij| ≤ γ/2, i 6= j
(5.7)

has a differentiable cost objective and simple box constraints, but its domain

is not all the feasible set. Several large-scale methods have been proposed in

the literature. Banerjee et al. [BEd08] apply a block coordinate descent method

to the dual problem. Each step of this method reduces to solving a quadratic

program with box constraints. They also apply Nesterov’s optimal gradient

method [Nes05] to a smooth approximation of (5.6). The authors of [FHT08] ob-

serve that the dual of the subproblems in the coordinate descent algorithm can be

regarded as a lasso-type problem and solved with a method called graphical lasso.

In [SR09] Scheinberg and Rish consider a coordinate ascent method applied to the

primal problem. A method based on column-wise updates is given in [RBL08].

A related problem is explored in [YL07] where the authors make a connection

between (5.6) and more general determinant maximization problems [VBW98],

and solve the problem using interior-point methods. Lu [Lu09] observes that the

dual (5.7) is a smooth problem, and applies Nesterov’s method [Nes05] directly

to the dual. The algorithm is further extended in [Lu10] and compared with a

projected spectral gradient method. Another closely related paper is [DGK08] in

which the gradient projection method is applied to the dual problem.

These methods are efficient in practice and can solve problems of dimensions in

the order of thousand. However, it is not obvious how to extend these methods
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to solve the problems (5.1)-(5.4). A reformulation of the dual problems (5.2)

and (5.4) as minimization problems over a simple set makes it applicable to the

gradient projection method described in the next section.

5.2 First-order algorithms

This section presents some details on first-order algorithms. To simplify the

notation we use a generic problem format

minimize f(x)

subject to x ∈ C
(5.8)

where f : Rn → R is convex and continuously differentiable with an open domain,

and C is a closed convex set. It is interesting to consider the classical gradient

projection method [Pol87, Ber99] when C has a relatively simple structure that

makes a projection on C inexpensive. Examples are the probability simplex, the

nonnegative orthant, box constraints, or the positive semidefinite cone. We will

show in section 5.3 that C in our problem is related to a ℓ1-norm ball, for which

it is also simple to compute a projection.

To give more detail on the gradient projection algorithm, we assume that a

feasible point x(0) is known and that the sublevel set

S = {x ∈ dom f ∩ C | f(x) ≤ f(x(0))} (5.9)

is closed and bounded. The closedness assumption is satisfied if f is a closed

function. (We will show in section 5.4.1 that this is the case for problems (5.2)

and (5.4).) We denote the projection operator by P:

P(y) = argmin
x∈C

‖x − y‖2.
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The gradient map associated with f and C is defined as

Gt(x) =
1

t
(x −P(x − t∇f(x)))

for t > 0. For an unconstrained problem, the gradient map is Gt(x) = ∇f(x),

independent of t. Moreover, it can be shown that a point x ∈ C ∩ dom f is

optimal if and only if Gt(x) = 0 for any t > 0.

5.2.1 Basic gradient projection

The basic gradient projection method starts at x(0) and continues the iteration

x(k) = P
(

x(k−1) − tk∇f(x(k−1))
)

= x(k−1) − tkGtk(x
(k−1)) (5.10)

until a stopping criterion is satisfied. A classical convergence result states that

x(k) converges to an optimal solution if tk is fixed and equal to 1/L, where L is a

constant that satisfies

‖∇f(u) −∇f(v)‖2 ≤ L‖u − v‖2 ∀u, v ∈ S, (5.11)

[Pol87, §7.2.1]. Although our assumptions (S is closed and bounded, and dom f

is open) imply that the Lipschitz condition (5.11) holds for some constant L > 0,

its value is not known in practice, so the fixed step size rule tk = 1/L cannot be

used. We therefore determine tk using a backtracking search [BT09]. The step

size search algorithm in iteration k starts at a value tk := t̄k where

t̄k = min

{

sT s

sT y
, tmax

}

, (5.12)

where

s = x(k−1) − x(k−2), y = ∇f(x(k−1)) −∇f(x(k−2)),
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and tmax is a positive constant. (In the first iteration we initialize the step size

as t1 = tmax.) The search then repeats the update tk := βtk (where β ∈ (0, 1) is

an algorithm parameter) until x(k−1) − tkGtk(x
(k−1)) ∈ dom f and

f(x(k−1)−tkGtk(x
(k−1))) ≤ f(x(k−1))−tk∇f(x(k−1))T Gtk(x

(k−1))+
tk
2
‖Gtk(x

(k−1))‖2
2.

(5.13)

The resulting step size tk is used in the update to x(k) in (5.10). Note that the

trial points

x(k−1) − tkGtk(x
(k−1)) = P

(

x(k−1) − tk∇f(x(k−1))
)

generated during the step size search are not necessarily on a straight line. The

trajectory is sometimes referred to as the projection arc [Ber99, §8.3].

The step length ‖s‖2
2/s

T y is known as the Barzilai-Borwein step size and forms

the basis of spectral gradient methods [BB88, BMR03, SZZ05, FNW07, WNF09]

that have been observed to greatly improve the convergence in practice. It can be

motivated by the easily established fact that ‖s‖2
2/s

T y ≥ 1/L if f satisfies (5.11),

so it is a readily computed upper bound for 1/L.

This fact is related to the motivation suggested by [BB88] that a = ‖s‖2
2/s

T y

is chosen such that aI is a good approximation of the inverse Hessian over the

last step. It requires that s ≈ ay in the least-squares sense, i.e.,

a = argmin
a

‖s − ay‖2
2 =

sT s

sT y
.

5.2.2 Step size rules

The basic gradient projection method can be varied in several ways, some of

which will be compared in the numerical experiments below. To avoid computing

a projection for each trial step size tk in the step size search, we can replace the
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gradient update with

x(k) = x(k−1) − tkGt̄k(x
(k−1)) (5.14)

where t̄k is held fixed at the value (5.12) and tk is determined by a backtrack-

ing search: we take tk := t̄k and then backtrack (tk := βtk) until x(k−1) −
tkGt̄k(x

(k−1)) ∈ dom f and

f(x(k−1)−tkGt̄k(x
(k−1))) ≤ f(x(k−1))−tk∇f(x(k−1))T Gt̄k(x

(k−1))+
tk
2
‖Gt̄k(x

(k−1))‖2
2.

(5.15)

In this method the trial points during the step size selection follow a straight line,

and each step only requires a function evaluation.

Many alternatives to the step size rules (5.10) and (5.14) are available in the

literature, for example, the Armijo rule [Ber99, §2.3], and conditions that allow

non-monotone convergence [BMR00, LZ09]. In our experiments these variations

gave similar results as the step size rules outlined above.

5.2.3 Optimal first-order methods

Another attractive class of gradient projection algorithms is the optimal first-

order methods originated by Nesterov [Nes04, Tse08, BT09]. For functions whose

gradient is Lipschitz continuous on C, these algorithms have a better complexity

than the classical gradient projection method (at most O(
√

1/ǫ) iterations are

needed to reach an accuracy ǫ, as opposed to O(1/ǫ) for the gradient projection

method). These theoretical complexity results are valid if a constant step size tk =

1/L is used where L is the Lipschitz constant for the gradient, or if the step sizes

form an nonincreasing sequence (tk+1 ≤ tk) determined by a backtracking line

search [BT09, Tse08]. The assumption that the gradient is Lipschitz continuous

on C does not hold for the problem considered here, and it is not clear if the

convergence analysis can be extended to the case when the gradient is Lipschitz
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continuous only on the initial sublevel set. Nevertheless, an implementation with

a backtracking line search worked well in our experiments (see section 5.5).

For nondifferentiable functions, if the objective can be written as f(x) =

g(x) + h(x) where g(x) has Lipschitz continuous gradient, and h(x) is the nons-

mooth term, such as ℓ1-regularized problems (5.5), the optimal methods [Nes04,

Tse08, BT09] also yield a better complexity of O(1/ǫ), as opposed to O(1/ǫ2)

for the subgradient method. A nonsmooth problem that has a special saddle

format can also be solved by a recently famous smoothing technique [Nes05]

with complexity O(1/ǫ). The idea is to compute a smooth approximation of

the objective and then apply the optimal first-order method to the approxi-

mated problem. This approach has been used in sparse approximation prob-

lems [GJL07, BEd08, BBC09, KY09, DHJ10] by formulating the ℓ1 term into a

saddle format.

5.3 Reformulated dual problems

In this section we reformulate the dual problems (5.2) and (5.4) to make them

suitable for gradient projection algorithms, i.e., as in (5.8). As we have seen the

primal problems (5.1) and (5.3) poses several difficulties for the gradient methods.

In addition to the nonsmoothness in (5.3), the primal problems contain compli-

cated equality constraints and matrix inequalities. The term − log det X00 +

tr(CX) is not strictly convex and does not increase to infinity near the boundary

of its domain. Moreover, the solution always lies on the boundary of the domain

(the optimal X has low rank), so an algorithm must take into account the cone

constraint. We will see shortly that these difficulties can be avoided in the dual

approach.
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To reformulate the dual problems we eliminate the variable W in (5.2) and (5.4).

Let V = C + T(P(Z)), respectively, V = C + T(Z). The inequality

V −





W 0

0 0



 =





V00 − W V T
1:p,0

V1:p,0 V1:p,1:p



 � 0,

is equivalent to

V1:p,1:p � 0, range(V1:p,0) ⊆ range(V1:p,1:p), V00 − V T
1:p,0V

†
1:p,1:pV1:p,0 � W,

(5.16)

where V †
1:p,1:p is the pseudo-inverse of V1:p,1:p. If V � 0, then the matrix W with

maximum determinant that satisfies (5.16) is equal to V00 −V T
1:p,0V

†
1:p,1:pV1:p,0, the

Schur complement of V1:p,1:p in V . This observation allows us to eliminate W

from (5.2) and (5.4). Problem (5.2) can be written as an unconstrained problem

maximize −φ(C + T(P(Z))), (5.17)

and problem (5.4) as a problem with simple constraints

maximize −φ(C + T(Z))

subject to
p
∑

k=0

(|(Zk)ij | + |(Zk)ji|) ≤ γ, i 6= j

diag(Zk) = 0, k = 0, . . . , p.

(5.18)

Here φ : Sn(p+1) → R is defined as

φ(V ) = − log det
(

V00 − V T
1:p,0V

†
1:p,1:pV1:p,0

)

− n, (5.19)

with domain domφ = {V ∈ S
n(p+1)
+ | V00 − V T

1:p,0V
†
1:p,1:pV1:p,0 ≻ 0}. This function

is convex, since it can be expressed as

φ(V ) = inf







− log det W

∣

∣

∣

∣

∣

∣





W 0

0 0



 � V







− n,
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and convexity of this expression follows from results in convex analysis [BV04,

§3.2.5]. It is also a smooth function on the interior of its domain and its gradient

at a positive definite V can be expressed as

∇φ(V ) = −V −1 +





0 0

0 V −1
1:p,1:p



 . (5.20)

This can be seen, for example, from the identity

det V = det V1:p,1:p det(V00 − V T
1:p,0V

−1
1:p,1:pV1:p,0),

which gives φ(V ) = − log det V +log det V1:p,1:p−n, and the fact that the gradient

of log det X is X−1.

If V = C + T(P(Z)) ≻ 0 at the optimum of (5.17) then the primal optimal

solution can be computed from Z via the expressions

X = V −1 −





0 0

0 V −1
1:p,1:p



 =





−I

V −1
1:p,1:pV1:p,0



W−1





−I

V −1
1:p,1:pV1:p,0





T

(5.21)

where V = C + T(P(Z)) and W = V00 − V T
1:p,0V

−1
1:p,1:pV1:p,0. The expression for X

follows from the optimality condition (3.9) and the identities

V =





V00 − V T
1:p,0V

−1
1:p,1:pV1:p,0 0

0 0



+





V T
1:p,0V

−1
1:p,1:p

I



V1:p,1:p





V T
1:p,0V

−1
1:p,1:p

I





T

,

(5.22)

V −1 =





0 0

0 V −1
1:p,1:p



+





−I

V −1
1:p,1:pV1:p,0



 (V00−V T
1:p,0V

−1
1:p,1:pV1:p,0)

−1





−I

V −1
1:p,1:pV1:p,0





T

.

(5.23)

The formula for V −1 also provides an alternative form of the gradient (5.20).

Similarly, if C + T(Z) ≻ 0 at the optimum of (5.18) then the primal optimal

X can be computed from (5.21) with V = C + T(Z).
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The reformulated dual problems are interesting because they can often be

solved by gradient algorithms for unconstrained optimization or gradient projec-

tion algorithms for problems with simple constraints. The method requires an

important assumption on the closedness of the sublevet set (5.9). This property

will be discussed in the next section.

5.4 Analysis of gradient projection

A common assumption in the literature on the gradient projection algorithm for

the problem (5.8) is that C ⊆ dom f and that the gradient ∇f is Lipschitz

continuous on C. Under this assumption it is known that the error f(x(k)) −
f ⋆ decreases as 1/k [BT09, Nes04]. These assumptions are not valid for the

applications in this thesis: here from (5.17)-(5.18), C 6⊆ dom f and the gradient

of f is not Lipschitz continuous on C ∩ dom f . For completeness we therefore

include a convergence analysis in section 5.4.2. The proof is adapted from Beck

and Teboulle [BT09] and requires the closedness property of the reformulated

dual objective φ.

5.4.1 Closedness property

The closedness property of φ can be concluded by the structure of C. If C is

block-Toeplitz, then it can be shown that the functions φ(C + T(P(Z))) and

φ(C + T(Z)) are closed convex functions (i.e., with closed sublevel sets) and

that their domains are open. Consider the function φ restricted to the set of

block-Toeplitz matrices, i.e., φ(T(R)), where R ∈ Mn,p. By definition, R is in
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the domain of φ(T(R)) if T(R) � 0 and there exists a positive definite W with

T(R) �





W 0

0 0



 .

From the property of block-Toeplitz matrices mentioned in section 3.3, this

implies T(R) ≻ 0. In other words, the domain of φ(T(R)) is the open set

{R | T(R) ≻ 0}. By a similar argument, if a sequence of matrices R in the domain

of φ(T(R)) converges to a point R̄ in the boundary of the domain, then the Schur

complement of T(R̄)1:p,1:p in T(R̄) must be singular, and hence φ(T(R)) → ∞.

For a continuous function with an open domain this is equivalent to closedness

[BV04, p.639].

If C is not block-Toeplitz, then the functions φ(C + T(P(Z))) and φ(C +

T(Z)) are not necessarily closed, and their domains not necessarily open. One

implication is that it is possible that the optimal solution of (5.17) or (5.18)

is at a point in the boundary of the domain of the cost function, i.e., a point

where C + T(P(Z)) or C + T(Z) are singular. However in practice, C is usually

approximately block-Toeplitz and one can expect that the functions are often

closed. Moreover, in order to apply unconstrained minimization algorithms it

is sufficient that the algorithm is started at a point Z(0) for which the sublevel

set {Z | φ(C + T(P(Z))) ≤ φ(C + T(P(Z(0))))} is closed. This condition is

considerably weaker than the requirement that all sublevel sets are closed.

5.4.2 Convergence analysis

In this section we provide a convergence proof of the gradient projection method

for the problem (5.8). The proof requires an important property of the projection.

The projection satisfies

(y − P(y))T (z − P(y)) ≤ 0 ∀z ∈ C. (5.24)
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A useful property of the gradient map follows by applying (5.24) to y = x−t∇f(x)

and P(y) = x − tGt(x): we have

(Gt(x) −∇f(x))T (z − x + tGt(x)) ≤ 0 ∀z ∈ C (5.25)

for all x ∈ dom f and z ∈ C. For z = x, this further reduces to the inequality

∇f(x)T Gt(x) ≥ ‖Gt(x)‖2
2 (5.26)

for all x ∈ C ∩ dom f .

Before we give the convergence proof, we first show that the backtracking line

search (5.13) is well-defined; it terminates after a finite number of steps. The

assumption that the sublevel set (5.9) associated with the initial point is closed

and bounded implies that there exists an optimal x⋆, and that the gradient ∇f

satisfies a Lipschitz condition on S: there exists an L > 0 such that

‖∇f(u) −∇f(v)‖2 ≤ L‖u − v‖2 ∀u, v ∈ S. (5.27)

Define x = x(i−1) and assume that x ∈ S. From the Lipschitz property (5.27),

f(y) ≤ f(x) + ∇f(x)T (y − x) +
L

2
‖y − x‖2

2

for all y ∈ S. Applying this to y = P(x− t∇f(x)) = x− tGt(x) and using (5.26)

gives

f(P(x − t∇f(x))) ≤ f(x) − t∇f(x)T Gt(x) +
Lt2

2
‖Gt(x)‖2

2

≤ f(x) − t(1 − Lt

2
)‖Gt(x)‖2

2 (5.28)

if P(x − t∇f(x)) ∈ S. Define

τ = sup{τ ≥ 0 | P(x − t∇f(x)) ∈ S for t ∈ [0, τ ]}.
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We have τ > 0 because for small positive t,

f(P(x − t∇f(x))) ≈ f(x) − t∇f(x)T Gt(x) ≤ f(x) − t‖Gt(x)‖2
2 < f(x),

from (5.26) and the fact that Gt(x) 6= 0. Therefore P(x− t∇f(x)) ∈ S for small

positive t. Since P(x − t∇f(x)) is continuous in t, and S is a closed set, we

either have τ = ∞, or τ is finite and P(x − τ∇f(x)) is in the boundary of S,

i.e., f(P(x − τ∇f(x))) = f(x(0)). From the bound (5.28) we can then note that

τ ≥ 2/L, because otherwise the inequality evaluated at t = τ would imply that

f(P(x− τ∇f(x))) < f(x), a contradiction. Evaluating (5.28) at t = 1/L, we see

that t = 1/L satisfies (5.13). We conclude that if x ∈ S, then the line search

terminates with a value t ≥ tmin = min{t̂, β/L}.

Next, we give a convergence proof of the gradient projection. We note that

if (5.13) holds, then for all y ∈ C ∩ dom f ,

f(x − tGt(x)) ≤ f(x) − t∇f(x)T Gt(x) +
t

2
‖Gt(x)‖2

2

≤ f(y) + ∇f(x)T (x − y) + t(Gt(x) −∇f(x))T Gt(x) − t

2
‖G(x)‖2

2

≤ f(y) + Gt(x)T (x − y) − t

2
‖Gt(x)‖2

2.

The last step follows from (5.25) with z = y. Taking y = x shows that f(x −
tGt(x)) < f(x), so the algorithm is a descent method, and if x(i−1) ∈ S then

x(i) ∈ S. Taking y = x⋆ gives

f(x − tGt(x)) ≤ f(x⋆) + Gt(x)T (x − x⋆) − t

2
‖Gt(x)‖2

2

= f(x⋆) +
1

2t

(

‖x − x⋆‖2
2 − ‖x − tGt(x) − x⋆‖2

2

)

≤ f(x⋆) +
1

2tmin

(

‖x − x⋆‖2
2 − ‖x − tGt(x) − x⋆‖2

2

)

,

i.e.,

f(x(i)) − f(x⋆) ≤ 1

2tmin

(

‖x(i−1) − x⋆‖2
2 − ‖x(i) − x⋆‖2

2

)

.
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Combining these bounds for i = 1, . . . , k gives

f(x(k)) − f(x⋆) ≤ 1

k

k
∑

i=1

(f(x(i)) − f(x⋆)) ≤ 1

2ktmin

‖x(0) − x⋆‖2
2.

This shows that the number of iterations to reach accuracy f(x) − f ∗ ≤ ǫ is

bounded by O(1/ǫ).

5.5 Numerical examples

We generate AR models as in the experiment described in section 4.4.2. In the

first experiment, the model dimensions are n = 300, p = 2, N = 2n(p + 1).

The true inverse spectrum has 10428 non-zero entries in the upper triangular

part (a density of about 12%). The penalty parameter γ is set at γ = 0.1. The

variable Z in the reformulated dual problem (5.18) is a matrix in M300,2, so the

problem has n(n + 1)/2 + pn2 = 225150 optimization variables. We start the

gradient projection algorithm at a strictly feasible Z(0) = 0, and terminate when

the duality gap is below 10−2 (the optimal value is on the order of hundreds).

Figure 5.1 shows the relative error (f(Z(k)) − f ⋆)/|f ⋆| where f(Z) = φ(C +

T(Z)) and f ⋆ is the optimal value. It also shows the duality gap η(k) versus the

iteration number for a typical instance. ‘GP with arc search’ refers to the gradient

projection method (5.10) with step size rule (5.13). ‘GP with line search’ refers

to the gradient projection method (5.14) with step size rule (5.15). The step size

searches required at most 15 backtracking steps to find an acceptable step size.

As can be seen, a solution with a moderate accuracy (relative error in the range

10−4–10−3) is obtained after a number of iterations that is only a fraction of the

problem size. The convergence of the ‘arc search’ method is slightly faster, but it

should be kept in mind that this method is more expensive than the ‘line search’.

The ‘Exact FISTA’ method is the gradient projection algorithm with back-
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Figure 5.1: Convergence of gradient projection algorithms. Left: Relative error

(f(Z(k)) − f ⋆)/|f ⋆| versus the number of iterations. Right: Duality gap versus

the number of iterations.
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tracking line search from [BT09] using monotonically decreasing step sizes (tk ≤
tk−1, as required by the theory in [BT09]). As can be seen the convergence was

not faster than the classical gradient projection method. A heuristic modification

in which the step sizes are not forced to be nonincreasing, but at each iteration

the line searches is initialized at the Barzilai and Borwein steplength (5.12), was

often about five times faster. This algorithm is referred to as ‘Modified FISTA’

in the figure.

Figure 5.2 shows the CPU time versus problem size on a 3GHz Intel Pen-

tium(R) 4 processor with 2.94 GB of RAM, for the ‘GP with arc search’ and ‘GP

with line search’ algorithms. The test problems are generated as in the previous

experiment, with p = 2 and varying n. The algorithms stop when it achieves a

duality gap less than ǫ = 0.1. This yields a solution with a moderate accuracy

(relative gap in the range 10−4–10−3). The plot shows that the times needed to

solving the regularized ML estimation using both algorithms are fairly compara-

ble with a slight advantage for ‘GP with arc search’ when n is large. Although

the backtracking steps in the arc search method are more expensive, the gradient

projection method with this step size selection required fewer iterations in most

cases.
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CHAPTER 6

Conclusions

6.1 Contributions

In the first part of the thesis, we have considered a parametric approach for

maximum likelihood estimation of autoregressive models with conditional inde-

pendence constraints. These constraints impose a sparsity pattern on the inverse

of the spectral density matrix, and result in nonconvex equalities in the estima-

tion problem. We have formulated a convex relaxation of the ML estimation

problem and shown that the relaxation is exact when the sample covariance ma-

trix in the objective of the estimation problem is block-Toeplitz. We have also

noted from experiments that the relaxation is often exact for covariance matrices

that are not block-Toeplitz.

The convex formulation allows us to select graphical models by fitting au-

toregressive models to different topologies, and ranking the topologies using in-

formation theoretic model selection criteria. The approach was illustrated with

randomly generated and real data, and works well when the number of models in

the comparison is small, or the number of nodes is small enough for an exhaustive

search.

For larger model selection problems, we have presented a convex optimization

method for topology selection in graphical models of autoregressive Gaussian

processes. The method is based on augmenting the maximum likelihood esti-
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mation problem with an ℓ1-type penalty function, chosen to promote sparsity in

the inverse spectrum. By tracing the trade-off curve between the log-likelihood

and the penalty function, we obtain a small set of sparse graph topologies, that

can then be ranked according to information-theoretic criteria such as the AIC

or BIC. This procedure avoids the combinatorial complexity of enumerating all

possible topologies, and produces more accurate results for smaller sample sizes

than methods based on empirical or least-squares estimates. To solve the large,

nonsmooth convex optimization problems that result from this formulation, we

have investigated a gradient projection method applied to a reformulated dual

problem. Experiments with randomly generated examples, and an analysis of

an fMRI time series and a time series of international stock market indices were

included to confirm the effectiveness of this approach.

6.2 Suggestions for future research

In chapter 5, the gradient projection method with a special stepsize rule is pro-

posed as a method to solve the convex optimization problems considered in this

thesis. One may consider other types of algorithms for these problems. Recently

the Nesterov’s optimal method [Nes04, Tse08, BT09] has been applied to many

large-scale convex optimization problems because of its low computational cost

and a better convergence rate than the classical gradient method. This method

seems to be promising for the reformulated duals (5.17) and (5.18) with a more

careful analysis on the convergence. One may also investigate a possibility to ap-

ply the block coordinate descent method [Ber99, §2.7] to the dual problems (5.2)

and (5.4).

Chapter 2 has described the integration between graph theory and the concept

of conditional independence for identifying the interactions among variables. One
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can investigate other definitions for interaction. For example one can discuss

graphical models in which the direction of connections demonstrates causality.

We can apply the concept of Granger causality which has been extensively used

for economic time series and follow a graphical framework from [Eic07, Eic06b].

A Granger causality graphical model of AR processes (2.6) is a mixed graph

with directed and undirected edges. The absence of a directed edge from node j

to i indicates that xi is not Granger-caused by xj (knowing xj does not help to

improve the prediction of xi), and this can be characterized by [Lut05]

(Ak)ij = 0, k = 1, 2, . . . , p.

The absence of an undirected edge between nodes i and j implies that there is

no instantaneous causality between xi and xj (in period t, knowing xi(t+1) does

not help to improve the forecast of xj(t + 1) and vice versa). This condition can

be characterized via the noise covariance matrix [Lut05] as

Σij = 0.

Suppose the sets of the pairs of nodes (i, j) that are not connected by directed

edges and undirected edges are characterized by V1 and V2 respectively. We

can formulate the maximum-likelihood estimation of Granger causality graphical

models of AR processes as

minimize log det Σ + tr(Σ−1Σ̄) + tr(Σ−1(A − Ā)C(A − Ā)T )

subject to 0 � Σ � 2Σ̄

(Ak)ij = 0 , k = 1, . . . p, (i, j) ∈ V1

Σij = 0, (i, j) ∈ V2

(6.1)

with variables A = [A1 A2 . . . Ap] with Ak ∈ Rn×n and Σ ∈ Sn. The matrices

Σ̄, Ā are given by the least-squares estimates and C is the sample covariance
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matrix. It can be shown that the problem (6.1) is convex under the first inequal-

ity constraint. We can also consider ℓ1 regularization for topology selection in

Granger graphical models by adding ℓ1-type penalties to A and Σ, similar to the

problem of conditional independence graphs in (4.7).

A convex framework of estimation problems for graphical models is motivated

by recent applications in neuroscience and in particular, by applications of fMRI

time series [GRK03, SSS05, VSL05, Eic06b, DCB06, VBV06, DRD08, DHS08,

DLJ08]. There are several aspects of this application that require further study.

Firstly, the most suitable definition of brain connectivity and the best models

for making causal inferences are still being debated [Fri09, RFG09]. Secondly,

in most experiments fMRI time series are recorded while a subject is responding

to a sequence of stimuli, so it is important to use a model that includes input

dynamics. Examples of such models are dynamic causal modeling introduced

by Friston et al. [FHP03], autoregressive exogenous (ARX) models, or hidden

Markov AR models [CWM08]. Lastly, it is of interest to develop methods for

making group inferences, i.e., determining graphical models for different subjects

that have the same topology.
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package for semidefinite programming.” Optimization Methods and
Software, 11(12):545–581, 1999.

[VBV06] P.A. Valdés-Sosa, J.M. Bornot-Sánchez, M. Vega-Hernández,
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