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Abstract—We consider a problem of finding the Euclidean
projection of a vector in R

n onto an ℓ1-norm ball. This can be
casted as a simple convex optimization problem. We present an
efficient method for the projection, obtained via the dual problem
which reduces to an optimization with a scalar variable. The
method involves sorting elements of the vector and performing
a linear interpolation. We demonstrate the effectiveness of the
method and compare the results with solving the primal problem
by an interior-point method. Our approach is useful for sparse
system identification problems that can be represented as a
minimization of a loss function subject to ℓ1-norm constraints.
Sparse autoregressive model estimation is included as an example
of this problem type, where zeros in autoregressive coefficients
indicates a causality structure of variables. Numerical examples
with synthetic data sets are included. With the proposed method
we are able to solve problems of dimensions in the order of
several thousand efficiently.

Index Terms—ℓ1-norm, sparse estimation, autoregressive mod-
els, convex optimization

I. I NTRODUCTION

The problem of computing the Euclidean projection of a
vectora ∈ R

n onto the unitℓp-norm ball can be casted as

minimize ‖y − a‖22
subject to ‖y‖p ≤ 1

(1)

wherep = 1, 2 or ∞. Examples of the three unit norm balls
in R

2 can be shown in Figure 1.
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Fig. 1. The unit norm balls

The problem (1) is a convex optimization which can be
efficiently solved in polynomial time. However, a projection
onto the ℓ2-norm ball has a closed-form expression and
therefore turns to be an easy task to perform. From figure 1,
intuition suggests (and it can be shown) that the projectionis
simply given by the normalization ofa.

y∗ =

{

a, if ‖a‖2 ≤ 1

a/‖a‖2, otherwise.

Likewise, finding a projection onto the unitℓ∞-norm ball is
an inexpensive task and the solution is given by

y∗k =

{

ak, if |ak| ≤ 1

1, otherwise

for k = 1, 2, . . . , n. This is a thresholding operator applied to
the entries ofa that the modulus exceed1. The solution can
be written more compactly in a vector format as

y∗ = min(1,max(−1, a)).

The ℓ∞-norm constraint in (1) is sometimes referred to as a
box constraint.

Finding a projection onto anℓ1-norm ball is more involved.
The main goal of this paper is to present an efficient procedure
to perform this task as fast as computing the projection onto
the unitℓ2- or ℓ∞- norm ball. Section II will first present recent
applications of the projection onto anℓ1-norm ball which
include a sparse system identification problem. Section III,
describes the main result of this paper. We derive the dual
problem of (1) and show that it reduces to an optimization
problem with a scalar variable. As a result, we develop an
efficient procedure to compute the projection from the dual
problem. Section IV applies the result from section III to
consider a problem of finding a projection onto the sum of
ℓ2-norm ball. An example of this problem is the estimation of
sparse autoregressive models, which will be demonstrated in
section V.

II. A PPLICATIONS

There has been a substantial interest of parameter estimation
problems with sparsity-promoting regularization. This type of
problem can be expressed by

minimize f(x) subject to ‖x‖1 ≤ ρ (2)

wheref is a loss function (possibly convex) andρ is a given
positive parameter. The optimization variable isx ∈ R

n. It is
a well-known property that theℓ1-norm constraint encourages
sparsity inx for a sufficiently smallρ. This is an appealing
property for model selection problems. For example,f could
represent a likelihood function and entries inx are model
parameters to be estimated. Having many zeros inx allows
us to pick a model with less number of parameters. However,



at the same time, the number of parameters should be large
enough so that the model can adequately explain the data. This
concept is known asprinciple of parsimony which is a trade
off between model complexity and goodness of fit [1].

The application of this paper is when solving the convex op-
timization problem (2) using the projected gradient method[2]
or its variants. This method minimizes a convex functionf(x)
subject to the constraintx ∈ C for C convex (hereC is an ℓ1
ball.) The method is based on the update

x(k+1) = PC(x
(k) − t(k)∇f(x(k)))

wheret(k) is a step size,∇f is the gradient off , andPC is
a Euclidean projection ontoC and is defined by

PC(y) = argminx‖x− y‖ subject tox ∈ C.

The projected gradient method is obviously suitable when a
projection step can be done cheaply. The main focus of this
paper is therefore to show that the projection on theℓ1-norm
ball can be efficiently computed.

The rest of this section will show some specific examples
of the problem (2).

Example I: LASSO

The first example is the problem of finding sparse approx-
imate solutions to the least-square problem:

minimize ‖Ax− b‖22
subject to ‖x‖1 ≤ ρ

whereA ∈ R
m×n, b ∈ R

m, x ∈ R
n. By making ρ small

enough, some coefficients ofx become zero because of the
nature ofℓ1 norm, so this framework is used as a heuristic for
regression selection to find a sparse solution (in opposed toa
least-squares solution which is typically dense). This problem
is frequently referred to as theleast absolute shrinkage and
selection operator (LASSO) [3] and very closely related to the
ℓ1-regularized least-squares formulation:

minimize ‖Ax− b‖22 + γ‖x‖1.

This problem is now widely used in many applications; in-
cluding signal processing [4], wavelet-based image reconstruc-
tion [5], and compressed sensing [6], [7], [8]. This formulation
can be also interpreted as a maximum a posterior probability
(MAP) estimation where the‖ ·‖1 term corresponds to the log
prior of the Laplace distribution for eachxi.

Example II: Group Sparsity

Consider a problem with a constraint on the sum ofℓ2-norm:

minimize f(x) subject to ‖x‖1,2 =

m
∑

k=1

‖xk‖2 ≤ ρ,

with variablesxk ∈ R
n, for k = 1, 2, . . . ,m. In this problem,

the sum of‖ · ‖2 play as a role of theℓ1 norm applied to the
ℓ2-norm ofm-subset variables. For a sufficiently smallρ, the
constraint on the group norm‖x‖1,2 leads to sparsity in terms
of groups. It is a popular technique for achieving sparsity of

groups of variables and is known asgroup lasso [9], [10] in
machine learning community.

In section IV, we show that, the projection onto the sum of
‖ · ‖2 can be performed efficiently using a similar idea from
the projection onto theℓ1-norm ball.

Example III: Sparse Autoregressive (AR) Models

This example is a direct application of the group sparsity
problem in the previous example. Consider a multivariate
autoregressive process of orderp given by

y(t) =

p
∑

k=1

Aky(t− k) + ν(t)

where y(t) ∈ R
n, Ak ∈ R

n×n, k = 1, 2, . . . , p and
ν(t) is noise. The least-squares method is a common ap-
proach used for fitting an AR model to the measurements
y(1), y(2), . . . , y(N). The model parametersAk ’s are chosen
such that

N
∑

t=p+1

‖y(t)−

p
∑

k=1

Aky(t− k)‖2 (3)

is minimized. In many applications, it is of interest to obtain
Ak ’s that satisfy

for some (i, j) (Ak)ij = 0, for all k (4)

(where (Ak)ij denotes the(i, j) entry of Ak.) This is the
characterization ofGranger causality [11] of autoregressive
models. The condition (4) explains thatyi is not Granger-
caused by yj , or knowing yj does not help to improve
the prediction ofyi. This idea was originally established in
economics by Granger but recently has been adopted in many
applications in neuroscience and system biology; see examples
in [12], [13], [14], [15], [16], [17], [18], just to name a few.
In these references, a sparse AR model is fitted to time series
data where a zero pattern in AR coefficients reveals causal
relationships among the variables. The formulation of this
problem can be explained as follows.

If we defineA =
[

A1 A2 · · · Ap

]

and

Y =
[

y(p+ 1) y(p+ 2) · · · y(N)
]

H =











y(p) y(p+ 1) · · · y(N − 1)
y(p− 1) y(p) · · · y(N − 2)

...
...

...
y(1) y(2) · · · y(N − p)











then the quadratic loss in (3) can be rewritten more compactly
as ‖Y − AH‖2F where‖ · ‖F denotes the Frobenious norm.
To promote a sparse solutionAk, we introduce an additional
constraint in the least-squares problem as

minimize ‖Y −AH‖2F
subject to

∑

i6=j

‖
[

(A1)ij (A2)ij · · · (Ap)ij
]

‖2 ≤ ρ

(5)
with variablesAk ∈ R

n×n for k = 1, 2, . . . , p. The summa-
tion over(i, j) with i 6= j plays a role ofℓ1-type norm, which
causes some(i, j) entries ofAk to zero for a sufficiently small
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Fig. 2. Common zero patterns of a solutionAk, k = 1, 2, . . . , p, of the
problem (5) withn = 20, p = 3. As ρ decreases,Ak ’s contains more zeros.

value ofρ. Furthermore, using theℓ2 norm (or any norm) of
p-tuple of (Ak)ij will force all p matricesAk ’s to have the
same sparsity pattern. Figure 2 shows an example of the zero
patterns in solutionsAk to (5) asρ varies.

The problem (5) is a convex optimization problem, which
can be solved efficiently by a second-order algorithm such as
an interior-point method [19,§11]. However, many applica-
tions involve a large number of variables (n can be in order
of thousand) and hence solving by a second-order algorithm
will suffer from an expensive computational cost. For this
reason, there has been much attention to applying a gradient-
based method to a high-dimensional problem. The result in
this work will serve for this purpose. One can solve (5) using
the projected gradient method. In each iteration, it is required
to compute a projection onto the constraint set, which can be
shown to be an inexpensive task in the following sections.

III. PROJECTION ONTO THEℓ1-BALL

The problem of finding the Euclidean projection of a vector
a ∈ R

n onto the unitℓ1-norm ball can be described by the
following optimization problem:

minimize ‖y − a‖22
subject to ‖y‖1 ≤ 1

(6)

with variabley ∈ R
n. When‖a‖1 ≤ 1, obviously the optimal

solution is y∗ = a. Therefore, in what follows, we only
consider the nontrivial case. We will show that an efficient
algorithm to compute a projection can be developed from the
dual problem of (6).

The derivation of the dual problem starts with the La-
grangian defined as the cost function plus a weighted sum
of the constraints. We defineλ as a weight of theℓ1-norm
inequality constraint. The Lagrangian is therefore

L(y, λ) = ‖y − a‖22 + 2λ(‖y‖1 − 1)

=

n
∑

k=1

(

(yk − ak)
2 + 2λ|yk|

)

− 2λ. (7)

To find the Lagrange dual function [19,§5] of problem (6),
define

gk(λ) = inf
yk

(yk − ak)
2 + 2λ|yk|.

The solutiony∗k that minimizesgk is given by

y∗k =











ak + λ, ak ≤ −λ

0, |ak| < λ

ak − λ, ak ≥ λ,

(8)

andgk can be expressed as

gk(λ) =

{

−(λ− |ak|)
2 + a2k, λ < |ak|

a2k, λ ≥ |ak|.

The dual function is the minimum value of the Lagrangian
over y. Hence, by the above notation, the dual function is

g(λ) = inf
y

L(y, λ) =
∑

k

gk(λ) − 2λ.

The Lagrange dual problem is to maximizeg(λ) overλ ≥ 0.
Hence, the dual problem of (6) is then

maximize g(λ) :=
∑

k gk(λ)− 2λ
subject to λ ≥ 0,

(9)

with variableλ ∈ R. In the primal problem (6), if‖a‖1 > 1,
then there exists a strictly feasible pointy such that‖y‖1 < 1.
Hence, Slater’s condition holds, which implies strong dual-
ity [19, §5.2.3]. In other words, the optimal values of (6)
and (9) are equal. Therefore, it is more efficient to solve
the dual problem where the optimization variable is simply
a scalar.

The dual objective in (9) is a piecewise quadratic function
and by definition, a concave function. To find an optimal
solution λ∗, we set the gradient ofg(λ) to zero (find the
stationary point), and if the stationary point is positive,then it
is the optimal solution. Otherwise, the optimal solution is0.
In other words,

λ∗ = max {0, ν}

whereν is the root ofg′(ν) = 0.
To find the stationary point ofg(λ), note that

g′k(λ) =

{

2(|ak| − λ), λ < |ak|

0, λ ≥ |ak|.

From (9), if ‖a‖1 > 1, then the dual optimal pointλ∗ is given
by the root of

g′(λ) =

n
∑

k=1

max(|ak| − λ, 0)− 1. (10)

In what follows, we will describe how to find the root of (10)
numerically. Without loss of generality, we can sortak in
ascending order,i.e.,

|a1| ≤ |a2| ≤ . . . ≤ |an|.

Therefore,g′(λ) is a piecewise linear function inλ where
the slope changes at points|a1|, |a2|, . . . , |an|. Initially at λ =
0, the slope ofg′(λ) is −2n and increases by2 when λ =
|a1|. The slope keeps increasing asλ reaches the points|ak|
and eventually the slope is−2 whenλ ≥ |an|, as shown in
Figure 3. This means we can simply make a plot ofg′(λ)
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Fig. 3. The gradient of the dual objective,g′(λ)

and checks for which intervalg′(λ) changes its sign from a
negative to a positive value. Once we can locate the interval,
i.e., says between|ai| and |ai+1|, we can do an interpolation
to find λ such thatg′(λ) = 0, because for any intervalg′(λ)
is a linear function inλ.

When λ = 0, g′(0) = 2‖a‖1 − 2. Therefore, if‖a‖ < 1,
the plot ofg′(λ) is initially negative and never touches zero.
This simply meansλ∗ must be zero since the original vector
is already inside the unitℓ1-ball.

Using this scheme, we can develop a procedure to findλ∗

efficiently as follows.

Algorithm I:

1) If ‖a‖1 ≤ 1, thenλ∗ = 0.
2) Otherwise, definea0 = 0 and sort |ak| in ascending

order. Compute the values ofg′(λ) at points λ =
|a0|, |a1|, |a2|, . . . , |an| as shown in the following table.

λ g′(λ)/2
|a0| = 0 ‖a‖1 − 1
|a1| (1− n)|a1|+

∑n

k=2 |ak| − 1
|a2| (2− n)|a2|+

∑n

k=3 |ak| − 1
...

...
|an−1| −|an−1|+ |an| − 1
|an| −1

3) Locate the interval whereg′(λ) changes its sign,i.e.,
Find k such thatg′(|ak|) ≥ 0 andg′(|ak+1|) ≤ 0, where
k can take values from0 to n− 1.

4) In this interval, the graph ofg′(λ)/2 is a linear function
described by

g′(λ)/2 = −(n−k)λ+

n
∑

j=k+1

|aj |−1, |ak| ≤ λ ≤ |ak+1|.

Hence, the point whereg′(λ) = 0 is

λ∗ =

(

∑n

j=k+1 |aj |
)

− 1

(n− k)
.

5) Usingλ∗ to compute the projectiony∗ from (8).

This scheme involves sortingn elements of a vector and thus
requiresO(n log(n)) time. We note that this approach was
also developed independently by [20] and [21]. By replacing
the procedure of sorting elements with finding the median to
compute the partial sum more efficiently, the authors provided
algorithms for computing the projection in linear time.

IV. PROJECTION ONTO THE SUM OFℓ2-NORM BALL

First we investigate a solution of the problem:

minimize f(x) := ‖x− a‖2 + 2λ‖x‖

with variablex ∈ R
n and a positive scalarλ. Throughout

this section,‖ · ‖ denotes theℓ2 norm. The functionf(x)
is a convex function but not differentiable at zero. The zero
gradient condition is

x− a+ λs = 0 (11)

wheres is a subgradient of‖x‖ and given by

s =

{

x
‖x‖ , x 6= 0

any vectors such that‖s‖ < 1, x = 0.

The solution isx = 0 when‖a‖ < λ. Whenx 6= 0, s = x/‖x‖
and (11) givesx = a‖x‖/(‖x‖+λ), which further implies that
‖x‖ = ‖a‖ − λ. As a result, we can write the solutionx∗ as

x∗ =
a

‖a‖
t (12)

where t = ‖x∗‖ = max(‖a‖ − λ, 0) := (‖a‖ − λ)+. The
operator+ denotes a projection onto the nonnegative orthant
R+. The minimized cost objective becomes

f∗ = ‖x∗‖2 − 2〈x∗, a〉+ ‖a‖2 + 2λ‖x∗‖

= t2 − 2t(‖a‖ − λ) + ‖a‖2

= (‖a‖ − λ)+2 − 2(‖a‖ − λ)+(‖a‖ − λ) + ‖a‖2

= −(‖a‖ − λ)+2 + ‖a‖2 (13)

In what follows, we use the results (12) and 13) in the projec-
tion problem. Givenm vectors inRn, ak’s, for k = 1, . . . ,m,
the problem is to find the projectionxk of eachak under a
constraint on the sum of norms ofxk ’s. This problem can be
casted as

minimize
∑m

k=1 ‖xk − ak‖
2

subject to
∑m

k=1 ‖xk‖ ≤ 1.
(14)

Similar to the section III, we will find the optimal solution via
the dual problem. The Lagrangian of (14) is

L(x1, x2, . . . , xm, λ) =

m
∑

k=1

(

‖xk − ak‖
2 + 2λ‖xk‖

)

− 2λ

where λ is the Lagrange multiplier associated with the in-
equality constraint in (14). Using (12) and (13), each term in
the summation inL can be independently minimized overxk,
whenxk = aktk/‖ak‖ with tk = (‖ak‖−λ)+. Therefore, the



dual function of (14) which is the infimum ofL over xk ’s is
given by

g(λ) := inf
xk

L = −
m
∑

k=1

(

(‖ak‖ − λ)+2 + ‖ak‖
2
)

− 2λ.

The dual problem of (14) is then

maximize −
∑m

k=1

(

(‖ak‖ − λ)+2 + ‖ak‖
2
)

− 2λ
subject to λ ≥ 0,

(15)

with variableλ ∈ R. The solution is given by the root of

g′(λ)/2 =

m
∑

k=1

(‖ak‖ − λ)+ − 1 = 0. (16)

This equation resembles (10) and shows thatλ is obtained by
projecting them-dimensional vector(‖a1‖, ‖a2‖, . . . , ‖am‖)
onto the unitℓ1-norm ball inRm.

Therefore, a procedure to solve (14) is as follows.

Algorithm II:
1) If

∑m

k=1 ‖ak‖ ≤ 1, thenλ∗ = 0 andx∗
k = ak for all k.

2) Otherwise, definea =
[

‖a1‖ ‖a2‖ . . . ‖am‖
]T

and
projecta onto the unitℓ1-norm ball using the procedure
in section III. In another word, solving (16) to obtain
λ∗.

3) Useλ∗ to calculate the projection via

tk = (‖ak‖ − λ∗)+, x∗
k =

ak
‖ak‖

tk.

V. NUMERICAL EXAMPLES

In this section, we demonstrate the effectiveness of the
proposed projection algorithms. We randomly generate10
samples ofn-dimensional vectorsa wheren ranges from800
to 80000. We solve the dual problem (9) using Algorithm I and
compare the result with solving the primal problem (6) using
an interior-point method implemented in a softwareCVX[22].
The CPU time used to solve the problems are averaged over
the 10 samples.

Figure 4 compares the average CPU times used to perform a
projection task. The solver option inCVXis SDPT3 as we find
that it is more reliable when the problem size increases. Theal-
gorithm implemented in SDPT3 is a primal-dual interior-point
algorithm [19,§11.7]. The plot illustrates that our algorithm
requires much less time than using SDPT3 (almost104 times
less). The results indicate that in high-dimensional problems,
the convergence of the interior-point method is limited dueto
dependency of the problem size.

In the second experiment, we generate10 samples of
matricesA1, A2, . . . , Ap where Ak ∈ R

n where n ranges
from 40 to 200 andp = 3. This results inn2p variables in total
which ranges from4800 to 120000. We compute a projection
of Ak onto the set

∑

i6=j

‖
[

(A1)ij (A2)ij · · · (Ap)ij
]

‖2 ≤ ρ

with ρ = 5 by solving (15) and used Algorithm II in
section IV. Figure 5 compares the average CPU times used
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Fig. 4. The CPU time used to solve a projection onto anℓ1 ball in high
dimensional setting
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Fig. 5. The CPU time used to solve the projection onto a sum ofℓ2-norm
ball in high dimension setting

to perform such projection. The plot demonstrates that the
proposed projection algorithm is generally much faster than
the interior-point method implemented in SDPT3.

Our last experiment is to estimate a sparse AR model from
a synthetic data set. We generate500 time points from a sparse
(and stable) AR process of sizen = 50 and orderp = 3. The
total number of variables is7500. The process is corrupted
by noise with variance1. The true AR coefficients have a
common sparsity pattern shown in Figure 6 (left). We solve the
problem (5) using the projected gradient method [2] and the
projection step is computed using the procedure in section IV.
An initial start in the algorithm is given by the least-squares
estimate. Figure 7 shows the speed of convergence of the
projected gradient method in combination with the proposed
algorithm to compute a projection step.

Usingρ = 300 we obtain a sparse model with a zero pattern
shown in Figure 6 (right), while the middle plot shows the zero
pattern obtained from the least-squares estimate. The figure
illustrates that with a limited number of data and the presence
of noise, it is almost unlikely to reconstruct the underlying
zero pattern of the AR coefficients using a simple approach
as the least-squares method.
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Fig. 6. Comparison of estimated sparsity patterns with the true sparsity.
Middle. Thresholding the small entries of the least-squares estimate of AR
model using a tolerance value of10−2. Right. Sparse AR model obtained by
solving (5) usingρ = 20.
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Fig. 7. The relative error of the cost objective versus the number of iterations.
We solve the problem (5) usingn = 50, p = 3 (7500 variables) andρ = 300.
The total computational time is approximately 25 minutes.

VI. CONCLUSION

An efficient method for computing the projection onto
an ℓ1-norm ball was presented. The problem can be casted
as a convex optimization problem inn-dimensional space.
We applied the duality theory and showed that the optimal
values of the dual and primal (original) problems are the
same. Therefore, we resort to solve the dual problem instead
as it has only a scalar variable. The proposed procedure
involves sorting elements of a vector that needs to be projected
and thus requiresO(n logn) time in opposed to solving the
primal problem by an interior-point method which requires
O(n3) time. The method finds many applications in statistical
learning problems where discovering sparsity structures in
model parameters is a main goal. As an application on sparse
system identification, we considered a problem of estimating
autoregressive models where many zeros in autoregressive
coefficients are favored. This has a statistical interpretation
as Granger causality between two variables in AR processes.
Therefore, the problem formulation that includesℓ1-norm
constraints has an advantage over a typical formulation such
as the least-squares method. Numerical results showed that
given that the true model is sparse, we can obtained a sparse
estimate of AR model using such formulation while the
least-squares cannot. Furthermore, the efficientℓ1 projection
algorithm allows us to be able to solve the estimation problem
in large scale.
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