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Abstract—We consider a problem of finding the Euclidean Likewise, finding a projection onto the unit,-norm ball is

projection of a vector in R™ onto an ¢;-norm ball. This can be gn inexpensive task and the solution is given by
casted as a simple convex optimization problem. We presenna

efficient method for the projection, obtained via the dual problem . {ak7 if Jag| <1
which reduces to an optimization with a scalar variable. The Y =

method involves sorting elements of the vector and perfornmg 1

a linear interpolation. We demonstrate the effectiveness fothe for k — 1.2 This is a thresholdi t lied t
method and compare the results with solving the primal probem 107 # = 1,2, ..., n. TIS IS a thresholding operator applied to

by an interior-point method. Our approach is useful for sparse the entries ofa that the modulus exceerd The solution can
system identification problems that can be represented as a be written more compactly in a vector format as
minimization of a loss function subject to ¢;-norm constraints.
Sparse autoregressive model estimation is included as anample y* = min(1, max(—1, a)).
of this problem type, where zeros in autoregressive coeffients o ] )
indicates a causality structure of variables. Numerical eamples The /..-norm constraint in (1) is sometimes referred to as a
with synthetic data sets are included. With the proposed métod  box constraint.
we are able to solvie. problems of dimensions in the order of Finding a projection onto afy-norm ball is more involved.
several thousand efficiently. The main goal of this paper is to present an efficient proadur
Index Terms—/;-norm, sparse estimation, autoregressive mod- 9 . pap P . . p_
els, convex optimization to perform this task as fast as computing the projection onto
the unités- or £.- norm ball. Section Il will first present recent
|. INTRODUCTION applications of the projection onto afi-norm ball which
The problem of computing the Euclidean projection of #clude a sparse system identification problem. Section IlI
vectora € R™ onto the unit¢,-norm ball can be casted as describes the main result of this paper. We derive the dual
problem of (1) and show that it reduces to an optimization
(1) problem with a scalar variable. As a result, we develop an
. efficient procedure to compute the projection from the dual
wherep = 1,2 or co. Examples of the three unit norm ballsproblem. Section IV applies the result from section Il to

otherwise

)

minimize |y — a3
subject to [jy||, <1

in R? can be shown in Figure 1. consider a problem of finding a projection onto the sum of
Lo Lo Lo £s-norm ball. An example of this problem is the estimation of
sparse autoregressive models, which will be demonstrated i
1 1 1 section V.
\\M [l. APPLICATIONS
There has been a substantial interest of parameter esirmati
(@) ¢1-ball (b) £2-ball (C) £oo-ball problems with sparsity-promoting regularization. Thipayof

_ _ problem can be expressed by
Fig. 1. The unit norm balls

minimize f(x) subjectto||z|1 < p 2
The problem (1) is a convex optimization which can be
efficiently solved in polynomial time. However, a projectio Where f is a loss function (possibly convex) apds a given
onto the 82_norm ball has a closed-form expression anEOSitive parameter. The Optimization variablerig R"™. It is
therefore turns to be an easy task to perform. From figure@ Well-known property that thé -norm constraint encourages
intuition suggests (and it can be shown) that the projedonsparsity inz for a sufficiently smallp. This is an appealing
simply given by the normalization aof. property for model selection problems. For examglesould
_ represent a likelihood function and entries inare model
Y = {a, if flaf2 <1 parameters to be estimated. Having many zeros alows
a/llall2, otherwise us to pick a model with less number of parameters. However,



at the same time, the number of parameters should be laggyeups of variables and is known geoup lasso [9], [10] in

enough so that the model can adequately explain the data. Thachine learning community.

concept is known agrinciple of parsimony which is a trade  In section IV, we show that, the projection onto the sum of

off between model complexity and goodness of fit [1]. || - |l2 can be performed efficiently using a similar idea from
The application of this paper is when solving the convex ophe projection onto thé;-norm ball.

timization problem (2) using the projected gradient metfjd

or its variants. This method minimizes a convex functjgn)

subject to the constraint € C for C convex (here is an/, This example is a direct application of the group sparsity

ball.) The method is based on the update problem in the previous example. Consider a multivariate

autoregressive process of orgegiven by

Example I11: Sparse Autoregressive (AR) Models

2D — po(a®) iy £(2R)Y)

P
wheret®) is a step sizeVf is the gradient off, and P is y(t) = Apy(t — k) + v(t)
a Euclidean projection ontd and is defined by k=1

where y(t) € R" A, € R™"™, k = 1,2,...,p and

v(t) is noise. The least-squares method is a common ap-
The projected gradient method is obviously suitable whenpgoach used for fitting an AR model to the measurements

Pe(y) = argmin, ||z — y|| subjecttox € C.

projection step can be done cheaply. The main focus of thisl),y(2),...,y(IV). The model parametetd;’s are chosen
paper is therefore to show that the projection on ¢h@orm such that N v
ball can be efficiently computed. 2
t) — Apy(t — k 3
The rest of this section will show some specific examples t:;rl ly(¢) ; ky( )l 3

of the problem (2).
P @ is minimized. In many applications, it is of interest to dhta

Example I: LASSO Ay’s that satisfy

_ The first _example is the problem of finding sparse approx- for some ,7) (Ax)i; =0, forall k (4)
imate solutions to the least-square problem:

(where (Ay);; denotes the(s, j) entry of Aj.) This is the
characterization ofcranger causality [11] of autoregressive
models. The condition (4) explains that is not Granger-
where A € R™*" b € R™,z € R". By making p small caused by y;, or knowing y; does not help to improve
enough, some coefficients af become zero because of thdhe prediction ofy;. This idea was originally established in
nature of¢; norm, so this framework is used as a heuristic fgtconomics by Granger but recently has been adopted in many
regression selection to find a sparse solution (in opposed t@pPplications in neuroscience and system biology; see eleamp
least-squares solution which is typically dense). Thisoppm in [12], [13], [14], [15], [16], [17], [18], just to name a few

is frequently referred to as thieast absolute shrinkage and [N these references, a sparse AR model is fitted to time series
selection operator (LASSO) [3] and very closely related to thedata where a zero pattern in AR coefficients reveals causal

minimize ||Az — b3
subjectto ||z|; < p

¢1-regularized least-squares formulation: relationships among the variables. The formulation of this
problem can be explained as follows.
minimize || Az — bl|3 + (1. If we defined = [A4; A, --- A,] and
This problem is now widely used in many applications; in- Y = [y(p+ D yp+2) - y(N)}
cluding signal processing [4], wavelet-based image reicoas y(p) yp+1) - y(N=1)
tion [5], and compressed sensing [6], [7], [8]. This forntida (‘ 1 () . y(N=2)
can be also interpreted as a maximum a posterior probability H = v v 4
(MAP) estimation where thé-||; term corresponds to the log : : :
prior of the Laplace distribution for eacty. y(1) y(2) o y(N—=p)
Example I1: Group Sparsity then the quadratic loss in (3) can be rewritten more compactl

as||Y — AH|j% where|| - | denotes the Frobenious norm.
To promote a sparse solutiofy,, we introduce an additional
constraint in the least-squares problem as

Consider a problem with a constraint on the sumsefiorm:

m
minimize f(z) subject to [z]12 =Y [zxl2 < p,

— minimize ||Y — AH|%
with variablesz), € R", for k = 1,2,...,m. In this problem, subject to #ZJ I Ai; (A2):; (Ap)is] ll2 < p
the sum of|| - |2 play as a role of thé; norm applied to the (5)
£>-norm of m-subset variables. For a sufficiently smallthe with variablesA, € R™"*" for k = 1,2,...,p. The summa-

constraint on the group noriffx||1 » leads to sparsity in termstion over (i, j) with i # j plays a role of’;-type norm, which
of groups. It is a popular technique for achieving sparsfty @auses somg, j) entries ofA;, to zero for a sufficiently small



The solutiony;; that minimizesy;, is given by

'H..-u-:
o - ap + A, ap < —A
ey oy .
o U yi = {0, Jax| < A ®
ap — )\a ap > )\a
p=2 p=05 p=005 and g, can be expressed as
.:-_I "L . - ()\) _(/\_ |ak|)2 —l—a% A< |ak|
. ‘. . S 9k =
- Lo WY a% A> |ak|-

The dual function is the minimum value of the Lagrangian

Fig. 2. Common zero patterns of a solutiehy, k = 1,2,...,p, of the  gyaery Hence, by the above notation, the dual function is
problem (5) withn = 20, p = 3. As p decreasesd;’s contains more zeros.
g =inf Ly, A) =D gk(N) — 2\
k

vatluel Of’;‘ Zurtherr_r:lofre, usmﬁ; thé, :u_)rm jgor, a{wy r:lorm?[hof The Lagrange dual problem is to maximigze\) over A > 0.
p-tuple of (Ay); will force all p matricesA,’s to have the Hence, the dual problem of (6) is then

same sparsity pattern. Figure 2 shows an example of the zer
patterns in solutionsl;, to (5) asp varies. maximize g(\) := >, gr(A) — 2A ©)
The problem (5) is a convex optimization problem, which subjectto A > 0,

can be §olveq efficiently by a second-order algorithm sgch fth variable A € R. In the primal problem (6), if|a; > 1,

an interior-point method [19511]. However, many applica- yhen there exists a strictly feasible pojnsuch that]y||; < 1.
tions involve a large number of variables ¢an be in order ence sjater's condition holds, which implies strong dual
of thousand) and hence solving by a second-order algontrw [19, §5.2.3]. In other words, the optimal values of (6)
will suffer from an expensive computational cost. For thiﬁnd (9) are equal. Therefore, it is more efficient to solve

reason, there has been much attention to applying a gradigqt qual problem where the optimization variable is simply
based method to a high-dimensional problem. The result

this work will serve for this purpose. One can solve (5) using The qual objective in (9) is a piecewise quadratic function
the projected gradient method. In each iteration, it is QU 5ng py definition, a concave function. To find an optimal
to compute a prqjection Qnto the gonstraint sgt, Which_ can Bgiution A*, we set the gradient of()\) to zero (find the
shown to be an inexpensive task in the following sections. stationary point), and if the stationary point is posititreen it
is the optimal solution. Otherwise, the optimal solutiorDis

IIl. PROJECTION ONTO THE/;1-BALL
In other words,

The problem of finding the Euclidean projection of a vector M\ = max {0,v}
a € R™ onto the unit/;-norm ball can be described by the ) ,
following optimization problem: wherev is the root ofg’(v) = 0.

o , To find the stationary point of()), note that
minimize ly —all3 ©6) 2ax|— 2, A< lal
subjectto |jy|ls <1 g\ = k ’ k

. . . . O, )\ Z |ak|.
with variabley € R™. When||a||; < 1, obviously the optimal

solution is y* = a. Therefore, in what follows, we only From (9), if||al/s > 1, then the dual optimal point* is given

consider the nontrivial case. We will show that an efficierdty the root of

algorithm to compute a projection can be developed from the n

dual problem of (6). g(N) = max(lag| — A,0) - 1. (10)
The derivation of the dual problem starts with the La- k=1

grangian defined as the cost function plus a weighted symwhat follows, we will describe how to find the root of (10)

of the constraints. We defink as a weight of the/;-norm  nymerically. Without loss of generality, we can sast in
inequality constraint. The Lagrangian is therefore ascending order,e,

Ly, A) = ly—al3+2x(Jyl — 1) lar] < lag] < ... < |an).

Z ((ye — ar)® + 2X[y]) =21 (7) Therefore,g’()\) is a piecewise linear function in where
Pt the slope changes at points |, |az|, . . ., |a,|. Initially at A =
0, the slope ofg’()\) is —2n and increases bg when \ =
la1|. The slope keeps increasing ageaches the pointsy,|
) ) and eventually the slope is2 when\ > |a,|, as shown in
gr(A) = llf}f (e = ar)” + 2A[ywl. Figure 3. This means we can simply make a plotgtf\)

To find the Lagrange dual function [195] of problem (6),
define



2l|alls — 2 This scheme involves sorting elements of a vector and thus
requiresO(nlog(n)) time. We note that this approach was
also developed independently by [20] and [21]. By replacing
the procedure of sorting elements with finding the median to

compute the partial sum more efficiently, the authors predid

= algorithms for computing the projection in linear time.
|
0 IV. PROJECTION ONTO THE SUM OF5-NORM BALL
First we investigate a solution of the problem:
—2 minimize f(z) = ||z — al|® + 2)||z||

x| laz] ... jan] A with variablez € R™ and a positive scalak. Throughout
this section,|| - | denotes the/s norm. The functionf(z)
is a convex function but not differentiable at zero. The zero

gradient condition is

and checks for which interval’(\) changes its sign from a

negative to a positive value. Once we can locate the interval

i.e, says betweeifu;| and|a;.[, we can do an interpolation wheress is a subgradient ofz| and given by

to find A such thaty’(\) = 0, because for any intervaf (\)

is a linear function in\. _ I x#0
When A = 0, ¢/(0) = 2||al|; — 2. Therefore, if|a| < 1, *~ ) any vectors such that|s|| <1, = 0.

the plot of ¢’(\) is initially negative and never touches zero.

This simply means\* must be zero since the original vectoiThe solution isc = 0 when||a|| < X. Whenz # 0, s = z/||z||

Fig. 3. The gradient of the dual objective,(\)

r—a+As=0 (11)

is already inside the unit;-ball. and (11) gives: = alz||/(||z||+A), which further implies that
Using this scheme, we can develop a procedure to find ||z|| = ||a]| — A\. As a result, we can write the solutiarf as

efficiently as follows. a

Algori : Tt = (12)
gorithm I llal

1) If |lally <1, then)\* = 0.
2) Otherwise, definei, = 0 and sort|ax| in ascending
order. Compute the values af (\) at points A =

wheret = [|z*]| = max(||a]| — X,0) := (||la]] = A\)T. The
operator+ denotes a projection onto the nonnegative orthant
R, . The minimized cost objective becomes

laol, |a1], |az]|, . .., |a,| @s shown in the following table.
A (N2 7= ll2*]2 — 202", @) + af]® + 2\l
lag| =0 [lafly -1 . = t* = 2t(||a] - X) + ||a]®
P . — (lal = )" 2(Jall = ) (lal - %) + lal?
a —n)a _o |Qk| —
- . o = —(lall = A)** + Jla] (13)
ian_1| .—Ian—1| +lan| -1 In what follows, we use the results (12) and 13) in the projec-
|| 1 tion problem. Givenn vectors inR", a;’s, fork =1,...,m,

the problem is to find the projection, of eacha; under a
3) Locate the interval wherg’(\) changes its signi.e., constraint on the sum of norms of’s. This problem can be
Find k& such thaty’(|ax|) > 0 andg’(|ax+1]) < 0, where casted as
k can take values froml to n — 1. minimize Y7 ||lzk — ax|?
4) In this interval, the graph of (\)/2 is a linear function subject to Y, [|lzkll < 1.
described by

(14)

Similar to the section 111, we will find the optimal solutiornias

2 the dual problem. The Lagrangian of (14) is
dN/2 =~k 3 Jajl=1, Ja] <A< Jaxsl. P grangian of (14)

I N =3 (o~ aul? + 2l ]) 21
T1, T2, ., Ty A) = T —a + 2\||x -2
Hence, the point wherg/(\) =0 is b P R g
(Z?:Hl |aj|) -1 where X is the Lagrange multiplier associated with the in-
A* = ( ) . equality constraint in (14). Using (12) and (13), each tenm i
n—

the summation i, can be independently minimized over,
5) Using \* to compute the projectiop* from (8). whenz, = agty/| ax| with tx = (||ax|| — A)*. Therefore, the



dual function of (14) which is the infimum of over x;’s is 10
given by

10" £ enn 0T
m _o-"

g(\) ==inf L= =" (([laxll = )T + [|ax]?) — 2.
Tk k=1

The dual problem of (14) is then
maximize — S5 ((lax]l — \)*2 + [lax/|?) — 2\

. . .
10 ’00 E

CPU time (seconds)
T
o
i

subject to A > 0, (15) 107 !
—&— Dual problem
with variable\ € R. The solution is given by the root of 103} -©-CVX (SDPT3)|......]
m . f
gMN/2 =3 (llax] = N* —1=0. (16) L I I R e
k=1 n x 10°
ThI_S equatlon resgmble; (10) and shows tha obtained by Fig. 4. The CPU time used to solve a projection ontofarball in high
projecting them-dimensional vectof||a1]|, ||az|,-- -, ||lam|])  dimensional setting
onto the unit/;-norm ball inR™.
Therefore, a procedure to solve (14) is as follows. 10°
AIgorithm Il Wl —&— Dual problem o=
1) 1f 357 lax]| <1, then\* = 0 andz} = ay, foriqll k. '°'°VX(SZP_T?____———‘°'
2) Otherwise, defina = [[lat| [laz|| ... [lanl]]" and B0l Sl ]
projecta onto the unit/;-norm ball using the procedure § ,,‘—"’
in section lIll. In another word, solving (16) to obtain S0k .
A*. E
=]
3) Use)\* to calculate the projection via &0 E
* * Qg f
ty = (llagll = A )+7 Ty = 7tk 107k
lla|
V. NUMERICAL EXAMPLES 1073 ‘ ‘ ‘ ‘ ‘ ‘ ‘
. . . 40 60 80 100 120 140 160 180 200
In this section, we demonstrate the effectiveness of the n

proposed prol_eCt'On algor'thms' We randomly generkie Fig. 5. The CPU time used to solve the projection onto a surfraform
samples ofi-dimensional vectora wheren ranges fron800  ball in high dimension setting

to 80000. We solve the dual problem (9) using Algorithm | and

compare the result with solving the primal problem (6) using

an interior-point method implemented in a softw@¢X[22]. to perform such projection. The plot demonstrates that the
The CPU time used to solve the problems are averaged op&pposed projection algorithm is generally much fastentha
the 10 samples. the interior-point method implemented in SDPTS3.

Figure 4 compares the average CPU times used to perform &ur last experiment is to estimate a sparse AR model from
projection task. The solver option @VXis SDPT3 as we find a synthetic data set. We genera@e time points from a sparse
that it is more reliable when the problem size increases alhe (and stable) AR process of size= 50 and orderp = 3. The
gorithm implemented in SDPT3 is a primal-dual interior{goi total number of variables i500. The process is corrupted
algorithm [19,§11.7]. The plot illustrates that our algorithmby noise with variancel. The true AR coefficients have a
requires much less time than using SDPT3 (alm®$ttimes common sparsity pattern shown in Figure 6 (left). We solee th
less). The results indicate that in high-dimensional prots, problem (5) using the projected gradient method [2] and the
the convergence of the interior-point method is limited ttue projection step is computed using the procedure in section |

dependency of the problem size. An initial start in the algorithm is given by the least-soesr
In the second experiment, we generdt@ samples of estimate. Figure 7 shows the speed of convergence of the
matrices A, Aa, ..., A, where A, € R"™ wheren ranges projected gradient method in combination with the proposed

from 40 to 200 andp = 3. This results im?p variables in total algorithm to compute a projection step.
which ranges fromi800 to 120000. We compute a projection  Usingp = 300 we obtain a sparse model with a zero pattern

of A onto the set shown in Figure 6 (right), while the middle plot shows theazer
pattern obtained from the least-squares estimate. Theefigur

Z I [(Al)ij (A2)ij - (Ap)ij} l2 <o illustrates that with a limited number of data and the presen

73 of noise, it is almost unlikely to reconstruct the undertyin
with p = 5 by solving (15) and used Algorithm Il in zero pattern of the AR coefficients using a simple approach

section IV. Figure 5 compares the average CPU times usasithe least-squares method.
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