Control System Research Laboratory

control.ee.eng.chula.ac.th

Feedback Stabilization of One-Link Flexible Robot Arms : An Infinite Dimensional System Approach.

JitKoMut SongSiRi

Department of Electrical Engineering Chulalongkorn University email: nungu@control.ee.eng.chula.ac.th

Using pdfslide package and P^4

Outline

- ▷→ Introduction.
- ▷ Euler-Bernoulli beam equation.
- ▷ Infinite-Dimensional System Theory.
- ▷→ Notation
- ▷ Sobolev Imbedding Theorem.
- ▷ The Closed-Loop System.

Introduction

Recent Research

- Model : 1. Tip mass 2. Motor angle
- Control Law : velocity or its spatial higher derivative feedback.
- Stability Analysis : Spectral growth-determined condition, Energy Multiplier Method, Frequency domain condition.

Work Procedure

- Study the theory of infinite dimensional control systems.
- Find a mathematical model of the flexible robot arm system.
- Propose a feedback control law.
- Analyze the closed-loop stability.
- ▲ Conclude the results.

The Benefit of this work

- To understand the properties of the flexible robot arm system.
- To propose a control law that guarantees the closed-loop stability of the system.

Semigroup Theory

Consider an abstract Cauchy problem,

$$z(t) = Az(t) + Bu(t), \quad t \ge 0$$
 (5)
 $z(0) = z_0 \in D(A)$ (6)

where A is a closed operator with D(A) dense in Z. The solution of (5)-(6) is,

$$z(t) = T(t)z_0 + \int_0^t T(t-s)u(s)ds$$
(7)

Definition

Definition 4.1 Let Z be a Hilbert space. A C_0 semigroup of operators is a family of bounded operators $\{T(t), t \ge 0\}$ on Z that satisfies

- **1**. T(t+s) = T(t)T(s)
- 2. T(0) = I
- 3. $||T(t)z_0 z_0|| \to 0$ as $t \to 0^+ \quad \forall z_0 \in Z$

Theorem 4.2 A C_0 semigroup T(t) on Z has the following properties:

- 1. If $w_0 = \inf(\frac{1}{t}\log ||T(t)||)$, then $w_0 = \lim_{t\to\infty} (\frac{1}{t}\log ||T(t)||)$
- 2. $\forall w > w_0$ there exists a constant M > 1, w > 0such that $||T(t)|| \le Me^{wt} \quad \forall t \ge 0$

Infinitesimal generator & Resolvent Operator

Definition 4.3 The *infinitesimal generator* A of a C_0 -semigroup on a Hilbert space Z is defined by

 $Az = \lim_{t \to 0^+} \frac{1}{t} (T(t) - I)z$

D(A) is the set of elements in Z for which the limit exists.

Theorem 4.4 Let T(t) be a C_0 semigroup with infinitesimal generator A and growth bound w_0 . If $\operatorname{Re}(\lambda) > \omega > \omega_0$ then $\lambda \in \rho(A)$, and for all $z \in Z$

$$R(\lambda, A)z = (\lambda I - A)^{-1}z = \int_0^\infty e^{-\lambda t} T(t)dt$$

Characterization of infinitesimal generator

Definition 4.5 T(t) is a contraction semigroup if ||T(t)|| < 1, $\forall t \ge 0$

Theorem 4.6 Sufficient conditions for a closed, densely defined operator on a Hilbert space to be the infinitesimal generator of a C_0 semigroup satisfying $||T(t)|| \le e^{\omega t}$ are:

 $\operatorname{Re} \langle Az, z \rangle \leq \omega \|z\|^2 \quad \forall z \in D(A)$ $\operatorname{Re} \langle A^*z, z \rangle \leq \omega \|z\|^2 \quad \forall z \in D(A^*)$ (9)

Stability

10/37

M

To prove the asymptotically stability

Theorem 4.7 Let T(t) be a uniformly bounded semigroup on a Banach space X with the infinitesimal generator A and

- 1. $\sigma(A) \cap i\mathbb{R}$ is countable
- 2. $\sigma_P(A^*) = \emptyset$
- then T(t) is asymptotically stable.

11/37

M

Notation

• $H^m(0, l)$: Sobolev space order m with norm given by

$$||u||_{H^m}^2 = \sum_{0 \le |\alpha| \le m} ||D^{\alpha}u||^2$$

• $H_0^2(0,l)$: $\left\{ u \in H^2(0,l) \mid u(0) = u'(0) = 0 \right\}$ with norm given by $\|u\|_{H_0^2}^2 = \|u''\|^2$

• $C^j_B(0,l)$: $\left\{ u \in C^j(0,l) \mid D^{\alpha}u \text{ is bounded } \right\}$

 $\bullet \ C^{m,\lambda}(0,l): \ \left\{ u \in C^m(0,l) \ | \ |D^{\alpha}u(x) - D^{\alpha}u(y)| \le K|x-y|^{\lambda} \right\}$

Result : $\|\cdot\|_{H^2_0} \sim \|\cdot\|_{H^2}$

12/37

N

Sobolev Imbedding Theorem

Definition 6.1 Let X and Y be Banach spaces. We say that X is *imbedded* in Y and write $X \to Y$ if

- 1. X is a subspace of Y, and
- 2. The identity operator $I: X \to Y$ is continuous. i.e., there exists M > 0 such that

 $||Ix||_Y \le M ||x||_X, \quad \forall x \in X$

a to allow the to allow

(10)

From the Sobolev Imbedding theorem and the Hilbert-Schmidt imbedding theorem, we can list the imbeddings that are used here:

1. $H^4(0, l) \to C^3_B(0, l)$ and $H^2(0, l) \to C^1_B(0, l)$ 2. $H^2(0, l) \to C^{0,\lambda}[0, l]$

 $|u(l)| \le M_1 ||u''|| \quad \forall u \in H_0^2(0, l)$

3. $I: H^2(0, l) \to L_2(0, l)$ is compact. $\implies I: H_0^2(0, l) \to L_2(0, l)$ is also compact.

(11)

The Closed-Loop System

We apply the control law

 $\tau(t) = -EIw''(0,t) + KI_{\rm H} \left[\rho \left\langle \dot{w}, x \right\rangle_{H} + ml\dot{w}(l,t)\right]$

Substitute (11) in (2), the closed-loop equations are:

 $\ddot{w}(x,t) + \frac{EI}{\rho} w''''(x,t) = -xK \left[\rho \left\langle \dot{w}, x \right\rangle + ml\dot{w}(l,t) \right]$ (12) w(0,t) = w'(0,t) = w''(l,t) = 0(13) $m\ddot{w}(x,t) + mlK \left[\rho \left\langle \dot{w}, x \right\rangle + ml\dot{w}(l,t) \right] = EIw'''(l,t)$ (14)

Problem formulation

Let $H = L_2(0, l)$ and consider the Hilbert space $\mathcal{H} = H_0^2(0, l) \oplus L_2(0, l) \oplus \mathbb{C}$ with an inner product

$\langle u, v \rangle = EI \langle u_1'', v_1'' \rangle_H + \rho \langle u_2, v_2 \rangle_H + m \langle u_3, v_3 \rangle_{\mathbb{C}}$

we can write (12)-(14) in the form $\dot{z} = Az$, where

 $D(\mathcal{A}) = \{ (z_1, z_2, z_3) \in H^4(0, l) \oplus H_0^2(0, l) \oplus \mathbb{C} \mid z_1(0) = z_1'(0) = z_1''(l) = 0, z_2(l) = z_3 \}$ $z(t) = \begin{bmatrix} w(\cdot, t) \ \dot{w}(\cdot, t) \ \dot{w}(l, t) \end{bmatrix}^T \in \mathcal{H}$

16/37

(15)

(16)

Note : $D(Q) = \mathcal{H} = \mathcal{R}(\mathcal{A})$. $\Longrightarrow \mathcal{A}$ is onto.

Theorem 9.1 (Closed graph Theorem) Let X, Y be Banach spaces. A linear operator $T: X \to Y$ is bounded if and only if T is closed.

Therefore, \mathcal{A}^{-1} is closed. $\Longrightarrow \mathcal{A}$ is closed.

Definition 9.2 The resolvent set of a closed linear operator A is

 $\rho(A) = \{\lambda \in \mathbb{C} \mid \lambda I - A \quad \text{is bijective} \quad \}$

The Adjoint operator \mathcal{A}^*

 $\mathcal{A}^* =$

From the definition of the adjoint operator, we have

 $D(\mathcal{A}^*) = \{ (v_1, v_2, v_3) \in H^4(0, l) \oplus H^2_0(0, l) \oplus \mathbb{C} \mid$

$$\begin{bmatrix} 0 & -I & 0\\ \frac{EI}{\rho} \frac{\partial^4}{\partial x^4} & -Kx\rho \langle \cdot, x \rangle & -Kxml\\ -\frac{EI}{m} \frac{\partial^3}{\partial x^3} |_{x} = l & -K\rho l \langle \cdot, x \rangle & -Klml \end{bmatrix}$$

 $v_2(0) = v'_2(0) = v''_1(l) = 0, v_3 = v_2(l)$

19/37

(18)

Theorem 9.3 \mathcal{A} generates a contraction semigroup. **proof.** From the calculation,

 $\operatorname{Re} \langle \mathcal{A}u, u \rangle_{\mathcal{H}} = -K \left| \rho \left\langle u_2, x \right\rangle + m l u_3 \right|^2 \le 0$ $\operatorname{Re} \langle \mathcal{A}^* u, u \rangle_{\mathcal{H}} = -K \left| \rho \left\langle u_2, x \right\rangle + m l u_3 \right|^2 \le 0$ (19)
(20)

The equations (8)-(9) are satisfied with $\omega = 0$

The spectrum of the infinitesimal generator

To prove that the spectrum set consists of only the eigenvalues

Theorem 10.1 Let A be a closed linear operator with $0 \in \rho(A)$ and A^{-1} compact. The spectrum of A consists of only isolated eigenvalues with finite multiplicity.

Lemma 10.2 \mathcal{A}^{-1} is compact. **Proof.** $\mathcal{A}^{-1}: \mathcal{H} \to \mathcal{H}$ can be written in the following form,

 $\mathcal{A}^{-1} = \begin{bmatrix} T_1 & T_2 & T_3 \\ I & 0 & 0 \\ T_4 & 0 & 0 \end{bmatrix}$

Theorem 10.3 (Arzela's theorem) Let Ω be a bounded domain in \mathbb{R} . A subset K of $C(\overline{\Omega})$ is precompact in $C(\overline{\Omega})$ provided that

1. K is uniformly bounded. i.e., there exists a constant M such that

 $\forall \phi \in K, x \in \Omega, \ |\phi(x)| \le M$

2. *K* is equicontinuous. i.e., $\forall \epsilon > 0, \exists \delta > 0$ such that if $\phi \in K, x, y \in \Omega$, and $|x - y| < \delta$ then $|\phi(x) - \phi(y)| < \epsilon$.

The image of T_1 is a precompact set $\implies T_1$ is compact.

The eigenvalues

Let λ and $\phi(x) = \begin{bmatrix} \phi_1(x) & \phi_2(x) & \phi_3 \end{bmatrix}^T$ be an eigenvalue and the corresponding eigenvector of \mathcal{A} .

$$\mathcal{A}\phi(x) = \lambda\phi(x) \tag{23}$$

The eigenvalues are the solutions of,

$$\frac{\rho K(\operatorname{sh} \cdot \operatorname{c} - \operatorname{ch} \cdot \operatorname{s}) - 2Kml\beta \cdot \operatorname{sh} \cdot \operatorname{s}}{\beta^2 (\lambda + \frac{\rho Kl^3}{3} + Kml^2)} + \beta \left\{ 1 + \operatorname{ch} \cdot \operatorname{c} + \frac{m\beta}{\rho} (\operatorname{sh} \cdot \operatorname{c} - \operatorname{ch} \cdot \operatorname{s}) \right\} = 0$$
(24)

where

 $s \equiv sin(\beta l)$ $c \equiv cos(\beta l)$ $sh \equiv sinh(\beta l)$ $ch \equiv cosh(\beta l)$

$$\lambda = -i\beta^2 \sqrt{\frac{EI}{\rho}}$$

Next, we will show that all eigenvalues lie in the open LHP.

29/37

Eigenvalue Analysis

Lemma 10.4 Consider the following equations,

 $h_1(\beta) = \sinh(\beta l) + \sin(\beta l) = 0$ (25) $h_2(\beta) = \cosh(\beta l) + \cos(\beta l) + k\beta(\sinh(\beta l) - \sin(\beta l)) = 0$ (26)

where k > 0 is a constant. If $\beta = a + ib$ is a solution of either (25) or (26) then |a| = |b|. Moreover, (25) and (26) have distinct solutions.

If the solution β satisfies |a| = |b|, equation (25)-(26) can be rewritten as

 $h_1(\beta) = 0 \iff h_{1a}(a) = \cos(al)\sinh(al) + \sin(al)\cosh(al) = 0$ (27) $h_2(\beta) = 0 \iff h_{2a}(a) = \cos(al)\cosh(al) + ka(\cos(al)\sinh(al) - \sin(al)\cosh(al)) = 0$ (28)

 $\sin(a_0 l) \cosh(a_0 l) = -\cos(a_0 l) \sinh(a_0 l)$

Substitute in (28) we get

 $h_{2a}(a_0) = \cos(a_0 l) [\cosh(a_0 l) + 2ka_0 \sinh(a_0 l)]$

Since $\cos(a_0 l) \neq 0$ and

 $a_0 > 0 \Rightarrow \sinh(a_0 l) > 0 \Rightarrow a_0 \sinh(a_0 l) > 0$ $a_0 < 0 \Rightarrow \sinh(a_0 l) < 0 \Rightarrow a_0 \sinh(a_0 l) > 0$

therefore,

 $\cosh(a_0 l) + 2ka_0 \sinh(a_0 l) > 0 \quad \forall a_0 \in \mathbb{R}$

 \implies If a_0 is a solution of $h_1(a) = 0$, then $h_2(a_0) \neq 0$, i.e., they have no common solutions.

Lemma 10.5 Let λ and $\phi(x) = \left[\phi_1(x) \ \lambda \phi_1(x) \ \lambda^2 \phi_1(l)\right]^T$ be an eigenvalue and the corresponding eigenvector of \mathcal{A} respectively. Then,

 $\rho \left< \phi_1, x \right> + m l \phi_1(l) \neq 0$

Proof. Assume $F(\phi_1) \equiv \rho \langle \phi_1, x \rangle + ml\phi_1(l) = 0$. From $\mathcal{A}\phi(x) = \lambda \phi(x)$, we can find $\phi_1(x)$

 $\phi_1(x)=c_1(\cosh(\beta x)-\cos(\beta x))+c_3(\sinh(\beta x)-\sin(\beta x))$ where c_1,c_3 satisfy

 $c_{1}(ch + c) + c_{3}(sh + s) = 0$ $c_{1}\left\{(sh - s) + \frac{m\beta}{\rho}(ch - c)\right\} + c_{3}\left\{(ch + c) + \frac{m\beta}{\rho}(sh - s)\right\} = 0$ $c_{1}\left\{\rho l\beta(sh - s) - \rho(ch + c) + 2\rho + ml\beta^{2}(ch - c)\right\} + c_{3}\left\{\rho l\beta(ch + c) - \rho(sh + s) + ml\beta^{2}(sh - s)\right\} = 0$ (31)

M

using row operation,

$$\begin{array}{c} (\mathrm{ch} + \mathrm{c}) & (\mathrm{sh} + \mathrm{s}) \\ (\mathrm{sh} - \mathrm{s}) + \frac{m\beta}{\rho} (\mathrm{ch} - \mathrm{c}) & (\mathrm{ch} + \mathrm{c}) + \frac{m\beta}{\rho} (\mathrm{sh} - \mathrm{s}) \\ 2\rho & 0 \end{array} \right] \begin{bmatrix} c_1 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 $\rightarrow c_1 = 0$

- → From lemma 10.4 \implies $c_3 = 0$
- $\Rightarrow \phi_1(x) = 0 \Longrightarrow \phi(x)$ is not the eigenvector of \mathcal{A} ,

which is a contradiction

From the eigenvalue problem,

$$\phi_{1}^{\prime\prime\prime\prime\prime}(x) + \frac{\rho\lambda^{2}}{EI}\phi_{1}(x) = -\frac{\rho K}{EI}\lambda\left[\rho\left\langle\phi_{1},x\right\rangle + ml\phi_{1}(l)\right]\cdot x \qquad (32)$$
$$\phi_{1}(0) = \phi_{1}^{\prime}(0) = \phi_{1}^{\prime\prime}(l) = 0 \qquad (33)$$

$$\phi_1^{\prime\prime\prime}(l) = \frac{Kml}{EI} \lambda \left[\rho \left\langle \phi_1, x \right\rangle + ml\phi_1(l) \right] + \frac{m}{EI} \lambda^2 \phi_1(l) \tag{34}$$

Take the inner product with ϕ_1 on both sides in (32)

$$\left\langle \phi_{1}^{\prime\prime\prime\prime\prime},\phi_{1}\right\rangle +\frac{\rho\lambda^{2}}{EI}\left\langle \phi_{1},\phi_{1}\right\rangle +\frac{\rho K\lambda}{EI}\left(\rho\left\langle \phi_{1},x\right\rangle +ml\phi_{1}(l)\right)\left\langle x,\phi_{1}\right\rangle =0\tag{35}$$

since

$$\left\langle \phi_{1}^{\prime\prime\prime\prime},\phi_{1}\right\rangle = \lambda \frac{\rho K m l}{EI} \left\langle \phi_{1},x\right\rangle \overline{\phi_{1}(l)} + \lambda \frac{K m^{2} l^{2}}{EI} |\phi_{1}(l)|^{2} + \lambda^{2} \frac{m}{EI} |\phi_{1}(l)|^{2} + \|\phi^{\prime\prime}\|^{2}$$
(36) substitute in (35), we get

34/37

K

 $\lambda^2 \{ m |\phi_1(l)|^2 + \rho \|\phi_1\|^2 \} + \lambda K |\rho \langle \phi_1, x \rangle + m l \phi_1(l)|^2 + EI \|\phi''\|^2 = 0$ Let $\lambda = a + ib$, (37) can be split into two equations.

> $(a^{2} - b^{2})(m|\phi_{1}(l)|^{2} + \rho \|\phi_{1}\|^{2}) + a \cdot K |\rho \langle \phi_{1}, x \rangle + ml\phi_{1}(l)|^{2} + EI \|\phi''\|^{2} = 0$ (38) $2ab(m|\phi_{1}(l)|^{2} + \rho \|\phi_{1}\|^{2}) + b \cdot K |\rho \langle \phi_{1}, x \rangle + ml\phi_{1}(l)|^{2} = 0$ (39)

If b = 0, from (38)

 $a^{2}(m|\phi_{1}(l)|^{2} + \rho ||\phi_{1}||^{2}) + a \cdot K |\rho \langle \phi_{1}, x \rangle + m l \phi_{1}(l)|^{2} + EI ||\phi''||^{2} = 0$

From lemma 10.5, the coefficients of the polynamial in the variable a are all positive. Thus a < 0. If $b \neq 0$ from (39)

$$a = -\frac{K \left| \rho \left\langle \phi_1, x \right\rangle + m l \phi_1(l) \right|^2}{2(m |\phi_1(l)|^2 + \rho \|\phi_1\|^2)} < 0$$

Thus $\operatorname{Re}(\lambda) < 0$.

35/37

(37)

Closed-Loop Stability

- $\checkmark \sigma(\mathcal{A}) = \sigma_P(\mathcal{A})$
- The real part of all eigenvalues are negative.
- $\checkmark \sigma(\mathcal{A}) \cup i\mathbb{R} \Longrightarrow \text{ is countable.}$
- $\checkmark \sigma_P(\mathcal{A}^*) = \sigma_r(\mathcal{A}) = \emptyset$
- ✔ A contraction semigroup is uniformly bounded.
- \checkmark From theorem 4.7, the semigroup is asymptotically stable.

Conclusions

- Feedback control signal through motor acceleration.
- The Proposed control law is the sum of the tip deflection and its linear functional.
- The infinitesimal generator of the closed-loop system generates a contractions semigroup.
- The spectrum consists of only the eigenvalues.
- All eigenvalues have negative real parts.
- The closed-loop system is asymptotically stable.