Control System Research Laboratory
 control.ee.eng.chula.ac.th
 Feedback Stabilization of One-Link Flexible Robot Arms :
 An Infinite Dimensional System Approach.

JitKoMut SongSiRi

Department of Electrical Engineering
Chulalongkorn University
email: nungu@control.ee.eng.chula.ac.th

Outline

* Introduction.
- Euler-Bernoulli beam equation.
- Infinite-Dimensional System Theory.
\rightarrow Notation
- Sobolev Imbedding Theorem.
* The Closed-Loop System.

Introduction

Recent Research

- Model : 1. Tip mass 2. Motor angle
- Control Law : velocity or its spatial higher derivative feedback.
- Stability Analysis: Spectral growth-determined condition, Energy Multiplier Method, Frequency domain condition.

Work Procedure

Q Study the theory of infinite dimensional control systems.

* Find a mathematical model of the flexible robot arm system.
* Propose a feedback control law.
* Analyze the closed-loop stability.

Q Conclude the results.

The Benefit of this work

$\$$ To understand the properties of the flexible robot arm system.
※ To propose a control law that guarantees the closed-loop stability of the system.

Mathematic model of Flexible beam

$$
\begin{gather*}
\ddot{w}(x, t)+E I w^{\prime \prime \prime \prime}(x, t)+x \ddot{\theta}(t)=0 \tag{1}\\
\tau+E I w^{\prime \prime}(0, t)-I_{\mathrm{H}} \ddot{\theta}=0 \tag{2}\\
m[\ddot{w}(l, t)+l \ddot{\theta}(t)]=E I w^{\prime \prime \prime}(l, t) \tag{3}\\
w(0)=w^{\prime}(0)=w^{\prime \prime}(l)=0 \tag{4}
\end{gather*}
$$

Semigroup Theory

Consider an abstract Cauchy problem,

$$
\begin{gather*}
\dot{z}(t)=A z(t)+B u(t), \quad t \geq 0 \tag{5}\\
z(0)=z_{0} \in D(A) \tag{6}
\end{gather*}
$$

where A is a closed operator with $D(A)$ dense in Z. The solution of $(5)-(6)$ is,

$$
\begin{equation*}
z(t)=T(t) z_{0}+\int_{0}^{t} T(t-s) u(s) d s \tag{7}
\end{equation*}
$$

Definition

Definition 4.1 Let Z be a Hilbert space. A C_{0} semigroup of operators is a family of bounded operators $\{T(t), t \geq 0\}$ on Z that satisfies

1. $T(t+s)=T(t) T(s)$
2. $T(0)=I$
3. $\left\|T(t) z_{0}-z_{0}\right\| \rightarrow 0$ as $t \rightarrow 0^{+} \quad \forall z_{0} \in Z$

Theorem 4.2 A C_{0} semigroup $T(t)$ on Z has the following properties:

1. If $w_{0}=\inf \left(\frac{1}{t} \log \|T(t)\|\right)$, then $w_{0}=\lim _{t \rightarrow \infty}\left(\frac{1}{t} \log \|T(t)\|\right) \|$
2. $\forall w>w_{0}$ there exists a constant $M>1, w>0$ such that $\|T(t)\| \leq M e^{w t} \quad \forall t \geq 0$

Infinitesimal generator \& Resolvent Operator

Definition 4.3 The infinitesimal generator A of a C_{0}-semigroup on a Hilbert space Z is defined by

$$
A z=\lim _{t \rightarrow 0^{+}} \frac{1}{t}(T(t)-I) z
$$

$D(A)$ is the set of elements in Z for which the limit exists.

Theorem 4.4 Let $T(t)$ be a C_{0} semigroup with infinitesimal generator A and growth bound w_{0}. If $\operatorname{Re}(\lambda)>\omega>\omega_{0}$ then $\lambda \in \rho(A)$, and for all $z \in Z$

$$
R(\lambda, A) z=(\lambda I-A)^{-1} z=\int_{0}^{\infty} e^{-\lambda t} T(t) d t
$$

Characterization of infinitesimal generator

Definition 4.5 $T(t)$ is a contraction semigroup if $\|T(t)\|<1, \forall t \geq 0$
Theorem 4.6 Sufficient conditions for a closed, densely defined operator on a Hilbert space to be the infinitesimal generator of a C_{0} semigroup satisfying $\|T(t)\| \leq e^{\omega t}$ are:

$$
\begin{align*}
\operatorname{Re}\langle A z, z\rangle & \leq \omega\|z\|^{2} \quad \forall z \in D(A) \tag{8}\\
\operatorname{Re}\left\langle A^{*} z, z\right\rangle & \leq \omega\|z\|^{2} \quad \forall z \in D\left(A^{*}\right) \tag{9}
\end{align*}
$$

Stability

1. $T(t)$ is asymptotically stable if

$$
\|T(t) z\| \rightarrow 0 \quad \text { if } t \rightarrow \infty \quad, \quad \forall z \in Z
$$

2. $T(t)$ is exponentially stable if there exist $M \geq 1$ and $\omega>0$ such that

$$
\|T(t)\| \leq M e^{-\omega t}
$$

3. $T(t)$ is weakly stable if $\forall x \forall y \in Z$

$$
\langle T(t) x, y\rangle \rightarrow 0 \quad, \quad t \rightarrow \infty
$$

To prove the asymptotically stability

Theorem 4.7 Let $T(t)$ be a uniformly bounded semigroup on a Banach space X with the infinitesimal generator A and

1. $\sigma(A) \cap i \mathbb{R}$ is countable
2. $\sigma_{P}\left(A^{*}\right)=\emptyset$
then $T(t)$ is asymptotically stable.

Notation

- $H^{m}(0, l)$: Sobolev space order m with norm given by

$$
\|u\|_{H^{m}}^{2}=\sum_{0 \leq|\alpha| \leq m}\left\|D^{\alpha} u\right\|^{2}
$$

- $H_{0}^{2}(0, l):\left\{u \in H^{2}(0, l) \mid u(0)=u^{\prime}(0)=0\right\}$ with norm given by

$$
\|u\|_{H_{0}^{2}}^{2}=\left\|u^{\prime \prime}\right\|^{2}
$$

- $C_{B}^{j}(0, l):\left\{u \in C^{j}(0, l) \mid D^{\alpha} u\right.$ is bounded $\}$
- $C^{m, \lambda}(0, l):\left\{u \in C^{m}(0, l)| | D^{\alpha} u(x)-D^{\alpha} u(y)|\leq K| x-\left.y\right|^{\lambda}\right\}$

Result : $\|\cdot\|_{H_{0}^{2}} \sim\|\cdot\|_{H^{2}}$

Sobolev Imbedding Theorem

Definition 6.1 Let X and Y be Banach spaces. We say that X is imbedded in Y and write $X \rightarrow Y$ if

1. X is a subspace of Y, and
2. The identity operator $I: X \rightarrow Y$ is continuous. i.e., there exists $M>0$ such that

$$
\|I x\|_{Y} \leq M\|x\|_{X}, \quad \forall x \in X
$$

From the Sobolev Imbedding theorem and the Hilbert-Schmidt imbedding theorem, we can list the imbeddings that are used here:

1. $H^{4}(0, l) \rightarrow C_{B}^{3}(0, l)$ and $H^{2}(0, l) \rightarrow C_{B}^{1}(0, l)$
2. $H^{2}(0, l) \rightarrow C^{0, \lambda}[0, l]$

$$
\begin{equation*}
|u(l)| \leq M_{1}\left\|u^{\prime \prime}\right\| \quad \forall u \in H_{0}^{2}(0, l) \tag{10}
\end{equation*}
$$

3. $I: H^{2}(0, l) \rightarrow L_{2}(0, l)$ is compact.I
$\Longrightarrow I: H_{0}^{2}(0, l) \rightarrow L_{2}(0, l)$ is also compact.

The Closed-Loop System

We apply the control law

$$
\begin{equation*}
\tau(t)=-E I w^{\prime \prime}(0, t)+K I_{\mathrm{H}}\left[\rho\langle\dot{w}, x\rangle_{H}+m l \dot{w}(l, t)\right] \tag{11}
\end{equation*}
$$

Substitute (11) in (2), the closed-loop equations are:

$$
\begin{gather*}
\ddot{w}(x, t)+\frac{E I}{\rho} w^{\prime \prime \prime \prime}(x, t)=-x K[\rho\langle\dot{w}, x\rangle+m l \dot{w}(l, t)] \tag{12}\\
w(0, t)=w^{\prime}(0, t)=w^{\prime \prime}(l, t)=0 \tag{13}\\
m \ddot{w}(x, t)+m l K[\rho\langle\dot{w}, x\rangle+m l \dot{w}(l, t)]=E I w^{\prime \prime \prime}(l, t) \tag{14}
\end{gather*}
$$

Problem formulation

Let $H=L_{2}(0, l)$ and consider the Hilbert space $\mathcal{H}=H_{0}^{2}(0, l) \oplus L_{2}(0, l) \oplus \mathbb{C}$ with an inner product

$$
\begin{equation*}
\langle u, v\rangle=E I\left\langle u_{1}^{\prime \prime}, v_{1}^{\prime \prime}\right\rangle_{H}+\rho\left\langle u_{2}, v_{2}\right\rangle_{H}+m\left\langle u_{3}, v_{3}\right\rangle_{\mathbb{C}} \tag{15}
\end{equation*}
$$

we can write (12)-(14) in the form $\dot{z}=\mathcal{A} z$, where

$$
\mathcal{A}=\left[\begin{array}{ccc}
0 & I & 0 \tag{16}\\
-\frac{E I}{\rho} \frac{\partial^{4}}{\partial x^{4}} & -K x \rho\langle\cdot, x\rangle & -K x m l \\
\left.\frac{E I}{m} \frac{\partial^{3}}{\partial x^{3}}\right|_{x=l} & -K l \rho\langle\cdot, x\rangle & -K l m l
\end{array}\right]
$$

$$
\begin{gathered}
D(\mathcal{A})=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in H^{4}(0, l) \oplus H_{0}^{2}(0, l) \oplus \mathbb{C} \mid\right. \\
\left.z_{1}(0)=z_{1}^{\prime}(0)=z_{1}^{\prime \prime}(l)=0, z_{2}(l)=z_{3}\right\} \\
z(t)=[w(\cdot, t) \dot{w}(\cdot, t) \dot{w}(l, t)]^{T} \in \mathcal{H}
\end{gathered}
$$

\mathcal{A} generates a C_{0} semigroup

Define the operator $Q: \mathcal{H} \rightarrow \mathcal{H}$
$Q v=\left[\begin{array}{c}\frac{K q_{2}(x)}{E I}\left[\rho\left\langle v_{1}, x\right\rangle+m l v_{1}(l)\right]-\frac{\rho}{E I} \int_{0}^{x} \int_{0}^{x_{4}} \int_{x_{3}}^{l} \int_{x_{2}}^{l} v_{2}\left(x_{1}\right) d x_{1} d x_{2} d x_{3} d x_{4}+\frac{m q_{1}(x)}{E I} v_{3} \\ v_{1}(x) \\ v_{1}(l)\end{array}\right]$
where

$$
\begin{aligned}
& q_{1}(x)=\frac{x^{3}}{6}-\frac{l x^{2}}{2} \\
& q_{2}(x)=\rho\left(\frac{l^{2} x^{3}}{12}-\frac{l^{3} x^{2}}{6}-\frac{x^{5}}{120}\right)+m l q_{1}(x)
\end{aligned}
$$

Lemma 8.1

1. Q is the inverse of \mathcal{A}
2. \mathcal{A}^{-1} is a bounded operator.

Theorem 9.1 (Closed graph Theorem) Let X, Y be Banach spaces.
A linear operator $T: X \rightarrow Y$ is bounded if and only if T is closed.
Therefore, \mathcal{A}^{-1} is closed. $\Longrightarrow \mathcal{A}$ is closed.
Definition 9.2 The resolvent set of a closed linear operator A is

$$
\rho(A)=\{\lambda \in \mathbb{C} \mid \lambda I-A \text { is bijective }\}
$$

Result : $\Longrightarrow 0 \in \rho(\mathcal{A})$

The Adjoint operator \mathcal{A}^{*}
From the definition of the adjoint operator, we have

$$
\mathcal{A}^{*}=\left[\begin{array}{ccc}
0 & -I & 0 \\
\frac{E I}{\rho} \frac{\partial^{4}}{\partial x^{4}} & -K x \rho\langle\cdot, x\rangle & -K x m l \\
\left.-\frac{E I}{m} \frac{\partial^{3}}{\partial x^{3}} \right\rvert\, x=l & -K \rho l\langle\cdot, x\rangle & -K l m l
\end{array}\right]
$$

$$
\begin{aligned}
D\left(\mathcal{A}^{*}\right)=\left\{\left(v_{1}, v_{2}, v_{3}\right) \in H^{4}(0, l) \oplus H_{0}^{2}(0, l) \oplus \mathbb{C}\right. \\
\left.v_{2}(0)=v_{2}^{\prime}(0)=v_{1}^{\prime \prime}(l)=0, v_{3}=v_{2}(l)\right\}
\end{aligned}
$$

Theorem $9.3 \mathcal{A}$ generates a contraction semigroup. proof. From the calculation,

$$
\begin{align*}
\operatorname{Re}\langle\mathcal{A} u, u\rangle_{\mathcal{H}} & =-K\left|\rho\left\langle u_{2}, x\right\rangle+m l u_{3}\right|^{2} \leq 0 \tag{19}\\
\operatorname{Re}\left\langle\mathcal{A}^{*} u, u\right\rangle_{\mathcal{H}} & =-K\left|\rho\left\langle u_{2}, x\right\rangle+m l u_{3}\right|^{2} \leq 0 \tag{20}
\end{align*}
$$

The equations (8)-(9) are satisfied with $\omega=0$

Stability Analysis

(4.) The spectrum of the infinitesimal generatorl
(4. Eigenvalue analysis
(6.) Closed-loop stability

The spectrum of the infinitesimal generator

To prove that the spectrum set consists of only the eigenvalues
Theorem 10.1 Let A be a closed linear operator with $0 \in \rho(A)$ and A^{-1} compact. The spectrum of A consists of only isolated eigenvalues with finite multiplicity.

Lemma $10.2 \mathcal{A}^{-1}$ is compact.
Proof. $\mathcal{A}^{-1}: \mathcal{H} \rightarrow \mathcal{H}$ can be written in the following form,

$$
\mathcal{A}^{-1}=\left[\begin{array}{ccc}
T_{1} & T_{2} & T_{3} \\
I & 0 & 0 \\
T_{4} & 0 & 0
\end{array}\right]
$$

We will prove the compactness property of each T_{i} as follows:

1. Consider $T_{1}: H_{0}^{2}(0, l) \rightarrow H_{0}^{2}(0, l)$ defined by

$$
T_{1} v=\frac{K}{E I} q_{2}(x)(\rho\langle v, x\rangle+m l v(l))
$$

Let S_{N} be a bounded set of $v \in H_{0}^{2}(0, l)$ with $\|v\|_{H_{0}^{2}} \leq N$. Then,

$$
\begin{align*}
\left\|T_{1} v\right\|_{H_{0}^{2}} & =\frac{K}{E I}\left\|q_{2}(x)\right\|_{H_{0}^{2}}|\rho\langle v, x\rangle+m l v(l)| \\
& \leq \frac{K}{E I}\left\|q_{2}(x)\right\|_{H_{0}^{2}}(\rho|\langle v, x\rangle|+m l|v(l)|) \\
& \leq \frac{K}{E I} m l^{2}\left\{\frac{\rho l}{\sqrt{2}}\|v\|_{L_{2}}+m l M_{1}\|v\|_{H_{0}^{2}}\right\} \tag{21}\\
& \leq \frac{K m l^{2}}{E I}\left\{\frac{\rho l}{\sqrt{2}} N^{\prime}+m l M_{1} N\right\} \tag{22}\\
& \leq M_{2}
\end{align*}
$$

(using (10), the Cauchy-schwarzt ineq., and $\|\cdot\|_{H^{2}} \sim\|\cdot\|_{H_{0}^{2}}$)
This shows that the image of T_{1} is uniformly bounded.

Since $q_{2}(x)$ is continuous, i.e.,

$$
\forall x_{0} \in(0, l), \forall \epsilon_{1}>0, \quad \exists \delta_{1}>0 \text { s.t. }
$$

$$
\left\|q_{2}(x)-q_{2}\left(x_{0}\right)\right\|<\epsilon_{1}, \text { whenever }\left|x-x_{0}\right|<\delta_{1}
$$

$$
\begin{aligned}
\left\|T_{1} v(x)-T_{1} v\left(x_{0}\right)\right\| & =\frac{K}{E I}|\rho\langle v, x\rangle+m l v(l)|\left\|q_{2}(x)-q_{2}\left(x_{0}\right)\right\| \\
& \leq \frac{K}{E I}\left\{\frac{\rho l}{\sqrt{2}} N^{\prime}+m l M_{1} N\right\}\left\|q_{2}(x)-q_{2}\left(x_{0}\right)\right\|
\end{aligned}
$$

Let $\epsilon=E I \epsilon_{1} / K\left(\frac{\rho l}{\sqrt{2}} N^{\prime}+m l M_{1} N\right)$, so

$$
\left\|T_{1} v(x)-T_{1} v\left(x_{0}\right)\right\|<\epsilon \text { whenever }\left|x-x_{0}\right|<\delta_{1}
$$

Note: δ_{1} does not depend on the choice of $v \in S_{N} \Longrightarrow$ the image of T_{1} is equicontinuous.

Theorem 10.3 (Arzela's theorem) Let Ω be a bounded domain in \mathbb{R}. A subset K of $C(\bar{\Omega})$ is precompact in $C(\bar{\Omega})$ provided that

1. K is uniformly bounded. i.e., there exists a constant M such that

$$
\forall \phi \in K, x \in \Omega, \quad|\phi(x)| \leq M
$$

2. K is equicontinuous. i.e., $\forall \epsilon>0, \exists \delta>0$ such that if $\phi \in K, x, y \in$ Ω, and $|x-y|<\delta$ then $|\phi(x)-\phi(y)|<\epsilon$.

The image of T_{1} is a precompact set $\Longleftrightarrow T_{1}$ is compact.
2. Consider $T_{2}: L_{2}(0, l) \rightarrow H_{0}^{2}(0, l)$ defined by

$$
T_{2} v=-\frac{\rho}{E I} \int_{0}^{x} \int_{0}^{x_{4}} \int_{x_{3}}^{l} \int_{x_{2}}^{l} v\left(x_{1}\right) d x_{1} d x_{2} d x_{3} d x_{4}
$$

Let $f \in L_{2}(0, l)$ and let χ_{S} be the characteristic function of a set S. Then

$$
\chi_{(0, x)} \in L_{2}[0, l] \times L_{2}[0, l]
$$

because $\int_{[0, l]} \int_{[0, l]} \chi_{(0, x)} d x d y=x l<\infty, 0 \leq x \leq l$.
Thus the operator A defined by

$$
A f=\int_{0}^{x} f(\tau) d \tau=\int_{0}^{l} \chi_{(0, x)} f(\tau) d \tau
$$

is a compact operator from $L_{2}(0, l) \rightarrow L_{2}(0, l) \Longrightarrow T_{2}$ is compact.
3. Consider $T_{3}: \mathbb{C} \rightarrow H_{0}^{2}(0, l)$ defined by

$$
T_{3} v=\frac{m}{E I} q_{1}(x) v
$$

As in the case of T_{1}, we can see that T_{3} is compact.I
4. The imbedding mapping from $H_{0}^{2}(0, l) \rightarrow L_{2}(0, l)$ is compact. This follows from the Hilbert-Schmidt imbedding theorem
5. $T_{5}: H_{0}^{2}(0, l) \rightarrow \mathbb{C}, T_{5} v=v(l)$

From (10), T_{5} is a bounded linear functional. Its image has a finite dimensional range. $\# T_{5}$ is compact.

From 1-5, we can conclude that \mathcal{A}^{-1} is compact.

Now we have,
$\mathbb{\bigotimes} 0 \in \rho(\mathcal{A})$
$\circledast \mathcal{A}^{-1}$ is compact.
\circledast From theorem 10.1 , the spectrum of \mathcal{A} consists of only isolated eigenvalues with finite multiplicity.

The eigenvalues

Let λ and $\phi(x)=\left[\begin{array}{lll}\phi_{1}(x) & \phi_{2}(x) & \phi_{3}\end{array}\right]^{T}$ be an eigenvalue and the corresponding eigenvector of \mathcal{A}.

$$
\begin{equation*}
\mathcal{A} \phi(x)=\lambda \phi(x) \tag{23}
\end{equation*}
$$

The eigenvalues are the solutions of,

$$
\begin{equation*}
\frac{\rho K(\mathrm{sh} \cdot \mathrm{c}-\mathrm{ch} \cdot \mathrm{~s})-2 K m l \beta \cdot \mathrm{sh} \cdot \mathrm{~s}}{\beta^{2}\left(\lambda+\frac{\rho K l^{3}}{3}+K m l^{2}\right)}+\beta\left\{1+\mathrm{ch} \cdot \mathrm{c}+\frac{m \beta}{\rho}(\mathrm{sh} \cdot \mathrm{c}-\mathrm{ch} \cdot \mathrm{~s})\right\}=0 \tag{24}
\end{equation*}
$$

where

$$
\begin{gathered}
c \equiv \cos (\beta l) \quad \text { sh } \equiv \sinh \\
\lambda=-i \beta^{2} \sqrt{\frac{E I}{\rho}}
\end{gathered}
$$

$$
\mathrm{s} \equiv \sin (\beta l) \quad \mathrm{c} \equiv \cos (\beta l) \quad \mathrm{sh} \equiv \sinh (\beta l) \quad \mathrm{ch} \equiv \cosh (\beta l)
$$

Next, we will show that all eigenvalues lie in the open LHP.

Eigenvalue Analysis

Lemma 10.4 Consider the following equations,

$$
\begin{gather*}
h_{1}(\beta)=\sinh (\beta l)+\sin (\beta l)=0 \tag{25}\\
h_{2}(\beta)=\cosh (\beta l)+\cos (\beta l)+k \beta(\sinh (\beta l)-\sin (\beta l))=0 \tag{26}
\end{gather*}
$$

where $k>0$ is a constant. If $\beta=a+i b$ is a solution of either (25) or (26) then $|a|=|b|$. Moreover, (25) and (26) have distinct solutions.

If the solution β satisfies $|a|=|b|$, equation (25)-(26) can be rewritten as

$$
\begin{gather*}
h_{1}(\beta)=0 \Longleftrightarrow h_{1 a}(a)=\cos (a l) \sinh (a l)+\sin (a l) \cosh (a l)=0 \tag{27}\\
h_{2}(\beta)=0 \Longleftrightarrow h_{2 a}(a)=\cos (a l) \cosh (a l)+k a(\cos (a l) \sinh (a l)-\sin (a l) \cosh (a l))=0 \tag{28}
\end{gather*}
$$

Let a_{0} be a solution of (27), then

$$
\sin \left(a_{0} l\right) \cosh \left(a_{0} l\right)=-\cos \left(a_{0} l\right) \sinh \left(a_{0} l\right)
$$

Substitute in (28) we get

$$
h_{2 a}\left(a_{0}\right)=\cos \left(a_{0} l\right)\left[\cosh \left(a_{0} l\right)+2 k a_{0} \sinh \left(a_{0} l\right)\right]
$$

Since $\cos \left(a_{0} l\right) \neq 0$ and

$$
\begin{aligned}
& a_{0}>0 \Rightarrow \sinh \left(a_{0} l\right)>0 \Rightarrow a_{0} \sinh \left(a_{0} l\right)>0 \\
& a_{0}<0 \Rightarrow \sinh \left(a_{0} l\right)<0 \Rightarrow a_{0} \sinh \left(a_{0} l\right)>0
\end{aligned}
$$

therefore,

$$
\cosh \left(a_{0} l\right)+2 k a_{0} \sinh \left(a_{0} l\right)>0 \quad \forall a_{0} \in \mathbb{R}
$$

\Longrightarrow If a_{0} is a solution of $h_{1}(a)=0$, then $h_{2}\left(a_{0}\right) \neq 0$, i.e., they have no common solutions.

Lemma 10.5 Let λ and $\phi(x)=\left[\phi_{1}(x) \lambda \phi_{1}(x) \lambda^{2} \phi_{1}(l)\right]^{T}$ be an eigenvalue and the corresponding eigenvector of \mathcal{A} respectively. Then,

32/37

$$
\rho\left\langle\phi_{1}, x\right\rangle+m l \phi_{1}(l) \neq 0
$$

Proof. Assume $F\left(\phi_{1}\right) \equiv \rho\left\langle\phi_{1}, x\right\rangle+m l \phi_{1}(l)=0$. From $\mathcal{A} \phi(x)=$ $\lambda \phi(x)$, we can find $\phi_{1}(x)$

$$
\phi_{1}(x)=c_{1}(\cosh (\beta x)-\cos (\beta x))+c_{3}(\sinh (\beta x)-\sin (\beta x))
$$

where c_{1}, c_{3} satisfy

$$
\begin{gather*}
c_{1}(\mathrm{ch}+\mathrm{c})+c_{3}(\mathrm{sh}+\mathrm{s})=0 \tag{29}\\
c_{1}\left\{(\mathrm{sh}-\mathrm{s})+\frac{m \beta}{\rho}(\mathrm{ch}-\mathrm{c})\right\}+c_{3}\left\{(\mathrm{ch}+\mathrm{c})+\frac{m \beta}{\rho}(\mathrm{sh}-\mathrm{s})\right\}=0 \tag{30}
\end{gather*}
$$

$c_{1}\left\{\rho l \beta(\mathrm{sh}-\mathrm{s})-\rho(\mathrm{ch}+\mathrm{c})+2 \rho+m l \beta^{2}(\mathrm{ch}-\mathrm{c})\right\}+c_{3}\left\{\rho l \beta(\mathrm{ch}+\mathrm{c})-\rho(\mathrm{sh}+\mathrm{s})+m l \beta^{2}(\mathrm{sh}-\mathrm{s})\right\}=0$
or,

$$
\left[\begin{array}{cc}
(\mathrm{ch}+\mathrm{c}) & (\mathrm{sh}+\mathrm{s}) \\
(\mathrm{sh}-\mathrm{s})+\frac{m \beta}{\rho}(\mathrm{ch}-\mathrm{c}) & (\mathrm{ch}+\mathrm{c})+\frac{m \beta}{\rho}(\mathrm{sh}-\mathrm{s}) \\
\rho l \beta(\mathrm{sh}-\mathrm{s})-\rho(\mathrm{ch}+\mathrm{c})+2 \rho+m l \beta^{2}(\mathrm{ch}-\mathrm{c}) & \rho l \beta(\mathrm{ch}+\mathrm{c})-\rho(\mathrm{sh}+\mathrm{s})+m l \beta^{2}(\mathrm{sh}-\mathrm{s})
\end{array}\right]
$$

$$
\left[\begin{array}{l}
c_{1} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

using row operation,

$$
\left[\begin{array}{cc}
(\mathrm{ch}+\mathrm{c}) & (\mathrm{sh}+\mathrm{s}) \\
(\mathrm{sh}-\mathrm{s})+\frac{m \beta}{\rho}(\mathrm{ch}-\mathrm{c}) & (\mathrm{ch}+\mathrm{c})+\frac{m \beta}{\rho}(\mathrm{sh}-\mathrm{s}) \\
2 \rho & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$\rightarrow c_{1}=0$
\rightarrow From lemma $10.4 \Longrightarrow c_{3}=0$
$\rightarrow \phi_{1}(x)=0 \Longrightarrow \phi(x)$ is not the eigenvector of \mathcal{A}, which is a contradiction

From the eigenvalue problem,

$$
\begin{gather*}
\phi_{1}^{\prime \prime \prime \prime}(x)+\frac{\rho \lambda^{2}}{E I} \phi_{1}(x)=-\frac{\rho K}{E I} \lambda\left[\rho\left\langle\phi_{1}, x\right\rangle+m l \phi_{1}(l)\right] \cdot x \tag{32}\\
\phi_{1}(0)=\phi_{1}^{\prime}(0)=\phi_{1}^{\prime \prime}(l)=0 \tag{33}\\
\phi_{1}^{\prime \prime \prime}(l)=\frac{K m l}{E I} \lambda\left[\rho\left\langle\phi_{1}, x\right\rangle+m l \phi_{1}(l)\right]+\frac{m}{E I} \lambda^{2} \phi_{1}(l) \tag{34}
\end{gather*}
$$

Take the inner product with ϕ_{1} on both sides in (32)

$$
\begin{equation*}
\left\langle\phi_{1}^{\prime \prime \prime}, \phi_{1}\right\rangle+\frac{\rho \lambda^{2}}{E I}\left\langle\phi_{1}, \phi_{1}\right\rangle+\frac{\rho K \lambda}{E I}\left(\rho\left\langle\phi_{1}, x\right\rangle+m l \phi_{1}(l)\right)\left\langle x, \phi_{1}\right\rangle=0 \tag{35}
\end{equation*}
$$

since

$$
\begin{equation*}
\left\langle\phi_{1}^{\prime \prime \prime}, \phi_{1}\right\rangle=\lambda \frac{\rho K m l}{E I}\left\langle\phi_{1}, x\right\rangle \overline{\phi_{1}(l)}+\lambda \frac{K m^{2} l^{2}}{E I}\left|\phi_{1}(l)\right|^{2}+\lambda^{2} \frac{m}{E I}\left|\phi_{1}(l)\right|^{2}+\left\|\phi^{\prime \prime}\right\|^{2} \tag{36}
\end{equation*}
$$

substitute in (35), we get

$$
\begin{equation*}
\lambda^{2}\left\{m\left|\phi_{1}(l)\right|^{2}+\rho\left\|\phi_{1}\right\|^{2}\right\}+\lambda K\left|\rho\left\langle\phi_{1}, x\right\rangle+m l \phi_{1}(l)\right|^{2}+E I\left\|\phi^{\prime \prime}\right\|^{2}=0 \tag{37}
\end{equation*}
$$

Let $\lambda=a+i b$, (37) can be split into two equations.

$$
\begin{gather*}
\left(a^{2}-b^{2}\right)\left(m\left|\phi_{1}(l)\right|^{2}+\rho\left\|\phi_{1}\right\|^{2}\right)+a \cdot K\left|\rho\left\langle\phi_{1}, x\right\rangle+m l \phi_{1}(l)\right|^{2}+E I\left\|\phi^{\prime \prime}\right\|^{2}=0 \tag{38}\\
2 a b\left(m\left|\phi_{1}(l)\right|^{2}+\rho\left\|\phi_{1}\right\|^{2}\right)+b \cdot K\left|\rho\left\langle\phi_{1}, x\right\rangle+m l \phi_{1}(l)\right|^{2}=0 \tag{39}
\end{gather*}
$$

If $b=0$, from (38)
$a^{2}\left(m\left|\phi_{1}(l)\right|^{2}+\rho\left\|\phi_{1}\right\|^{2}\right)+a \cdot K\left|\rho\left\langle\phi_{1}, x\right\rangle+m l \phi_{1}(l)\right|^{2}+E I\left\|\phi^{\prime \prime}\right\|^{2}=0$
From lemma 10.5, the coefficients of the polynamial in the variable a are all positive. Thus $a<0$.
If $b \neq 0$ from (39)

$$
a=-\frac{K\left|\rho\left\langle\phi_{1}, x\right\rangle+m l \phi_{1}(l)\right|^{2}}{2\left(m\left|\phi_{1}(l)\right|^{2}+\rho\left\|\phi_{1}\right\|^{2}\right)}<0
$$

Thus $\operatorname{Re}(\lambda)<0$.

Closed-Loop Stability

$\boldsymbol{\nu} \sigma(\mathcal{A})=\sigma_{P}(\mathcal{A})$
\checkmark The real part of all eigenvalues are negative.
$\checkmark \sigma(\mathcal{A}) \cup i \mathbb{R}=\Longrightarrow$ is countable.

- $\sigma_{P}\left(\mathcal{A}^{*}\right)=\sigma_{r}(\mathcal{A})=\emptyset$
\checkmark A contraction semigroup is uniformly bounded.
\checkmark From theorem 4.7, the semigroup is asymptotically stable.

Conclusions

* Feedback control signal through motor acceleration.
\circledast The Proposed control law is the sum of the tip deflection and its linear functional.
§ The infinitesimal generator of the closed-loop system generates a contractions semigroup.
§ The spectrum consists of only the eigenvalues.
\& All eigenvalues have negative real parts.
\circledast The closed-loop system is asymptotically stable.

