## Maximum-Likelihood Estimation of Autoregressive Models with Conditional Independence Constraints

investigate

a parametric

spectrum

incorporates

sparsity

constraints

estimation

method

that

Jitkomut Songsiri University of California, Los Angeles Joachim Dahl Aalborg University

Goal

Lieven Vandenberghe University of California, Los Angeles

## Introduction Graphical Models

- Represent relations between random variables
- Applications in
  - economics (exchange rates, stock prices, etc.)
  - brain networks (functional connectivity between brain regions)

## Multivariate AR Process

$$B_0x(t)=-\sum_{k=1}^pB_kx(t-k)+v(t)$$

where  $x(t) \in \mathbf{R}^n$  and  $v(t) \sim N(0, I)$  is Gaussian white noise.

Conditional Independence in AR processes  $S(\omega)^{-1} = Y_0 + \sum_{k=1}^{p} (e^{-jk\omega}Y_k + e^{jk\omega}Y_k^T)$ 

- In conditional independence graph, nodes correspond to random variables  $X_i$
- Link (i, j) is absent if  $X_i$  and  $X_j$  are conditionally independent
- Characterization for Gaussian time series  $X(t) = (X_1(t), X_2(t), \dots, X_n(t)), t \in \mathbb{Z}$

• ...

 $X_i$  and  $X_j$  are conditionally independent if  $(S(\omega)^{-1})_{ij} = 0$ ,  $\forall \omega$ 

 $S(\omega)$  is the spectral density of X(t)

(Brillinger (1996))

(P1)

K=1  $Y_{k} = \sum_{i=0}^{p-k} B_{i}^{T} B_{i+k} , \ k = 0, 1, \dots, p$   $(S(\omega)^{-1})_{ij} = 0 \quad \longleftrightarrow \quad [Y_{k}]_{ij} = [Y_{k}]_{ji} = 0 , \ k = 0, \dots, p$   $\bigoplus \quad P(D(B^{T} B)) = 0$ 

in  $S(\omega)^{-1}$  where  $B = \begin{bmatrix} B_0 & B_1 & \dots & B_p \end{bmatrix}$ , P : projection on the sparsity pattern D returns sums along the block diagonals  $D_k(X) = \sum_{i=0}^{p-1} X_{i,i+k}, \quad k = 0, 1, \dots, p$ 

# Problem Formulation

minimize  $-2\log \det B_0 + \operatorname{tr}(CB^TB)$ subject to  $P(D(B^TB)) = 0.$ 

variable:  $B = \begin{bmatrix} B_0 & B_1 & \cdots & B_p \end{bmatrix}$ 

### P1 Maximum-Likelihood Estimation

- Includes conditional independent constraints
- C is a sample covariance matrix computed by using the non-windowed estimate
- Nonconvex because of quadratic equality constraints

### P2 Convex Relaxation



#### **Exactness of the Relaxation**

If C is block-Toeplitz, the low-rank property of  $X^*$  follows from

$$C + \mathrm{T}(\mathrm{P}(Z^*)) \succeq \begin{bmatrix} W^* & 0 \\ 0 & 0 \end{bmatrix} \implies C + \mathrm{T}(\mathrm{P}(Z^*)) \succ 0$$

and the complementary slackness condition

- If  $X^*$  has rank n, then by factorizing  $X^* = B^T B$ , B must be optimal in (P1)
- The relaxation is exact if  $X^*$  has rank n
- The low-rank property of  $X^*$  can be proved for block-Toeplitz and positive definite C
- For ML problem, C is close to a block-Toeplitz matrix when the sample size  $N \to \infty$

## Example



$$X^*\left(C+\mathrm{T}(\mathrm{P}(Z^*))-\left[\begin{array}{cc}W^*&0\\0&0\end{array}\right]\right)=0$$

- Solve (P2) with different sample covariance matrices *C* (not block-Toeplitz)
- The relaxation is often exact for moderate values of N, even when C is not block-Toeplitz

ML estimate without sparsity constraints gives a model with substantially larger values of KL when N is small

# Application Model Selection



#### Relations among air pollutants, CO, NO, NO<sub>2</sub>, O<sub>3</sub>, and solar intensity (R)

- Enumerate different models ( p and topology)
- Calculate BIC scores (Bayes information criterion)

 $\mathsf{BIC} = -2L + k \log N$ 

- k : number of effective parameters
  L : maximized log-likelihood
  N : sample size
- Select the model with the lowest BIC score

# Conclusions

### **Graphical Models of Gaussian AR processes**

- Maximum-likelihood estimation leads to a nonconvex problem
- The convex relaxation solves the ML problem if C is block-Toeplitz
- In practice, the relaxation is often exact even if C is not block-Toeplitz
- The method is useful for model selection problems in combination with AIC, BIC scores