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Granger causality (Granger 1969)

let x(t) = (x1(t), . . . , xn(t)) be multivariate time series

• xi is not Granger-caused by xj

• knowing xj does not help to improve the prediction of xi

leads to a problem of learning inter-dependence relationships among variables
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Characterization of GC for vector autoregressive (VAR) processes

x(t) = A1x(t− 1) +A2x(t− 2) + · · ·+Apx(t− p) + ν(t)

can be explained from a sparsity pattern of coefficients Ak

if (i, j) entries of Ak’s are all zero

(Ak)ij = 0, for k = 1, 2, . . . , p

then xj is NOT a Granger cause for xi

problems of estimating VAR models with sparse Ak’s have been proposed
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Granger causality of state-space models (Barnett and Seth 2015)

state-space equations:

z(t+ 1) = Az(t) + w(t) (1a)

x(t) = Cz(t) + η(t) (1b)

goal: find a Granger causality characterization in terms of model parameters

• an extension of GC characterization from the typically used VAR process

• xj is not a Granger cause for xi if

Fij ≡ Fxj→xi|all other x = log

(
ΣR

ii

Σii

)
= 0

where Σ and ΣR are the prediction (in x) error covariances of the full and
reduced models respectively
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Full and reduced models

when testing if xj has a Granger cause to xi where x is output of state equation

z(t+ 1) = Az(t) + w(t)

a reduced model has all variables except xj

full model x(t) = Cz(t) + η(t)

reduced model xR(t) = CRz(t) + ηR(t)

where xR has all entries of x except xj

xR(t) =


x1(t)

...

xj(t)

...
xn(t)

→ removed CR =


CT

1
...

CT
j

...
CT

n (t)

→ removed
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Prediction error covariance via Kalman filter

if state-space parameters are known, the best estimator of z (in MMSE sense) is

ẑ(t|t− 1) = E[z(t)|x(t− 1), . . . , x(0)]

whose steady-state covariance, defined as

P (t|t− 1) = cov(z(t)− ẑ(t|t− 1))

can be characterized by Kalman filter and asymptotically solved from DARE

P = APAT − (APCT + S)(CPCT +N)−1(CPAT + ST ) +W

asymptotically, covariance of output estimation error is

Σ = cov(x(t)− x̂(t|t− 1) = CPCT +N
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GC matrix estimation

in order to estimate GC pattern, we need to estimate

• system matrices (A,B,C,D)

• noise covariances

which can be done by several methods (here, using subspace identification)
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• GC pattern of n variables is represented by the
matrix F of size n× n

• a significance test of entries estimated Fij is
needed

• statistical distribution of Fij is still unknown

• if we have many samples of estimated Fij then its
sample mean can be approximated by Gaussian
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Application in learning brain connectivity

learning a brain network from EEG time series
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Gaussian mixture model (GMM)

model setting:

• let Yk ∼ N (µk, σ
2
k) for k = 1, 2, . . . ,K

• let (Z1, Z2, . . . , ZK) be latent variable with multinomial distribution

a GMM model takes the form of a linear sum of K Gaussian components:

Y = Z1Y1 + Z2Y2 + · · ·+ ZKYK

• given that Z = ek (standard unit vector), Y is distributed as the kth Gaussian

• the pdf of Y is given by

f(y) = π1f1(y;µ1, σ
2
1) + · · ·+ πKfK(y;µK, σ

2
K)

where (π1, . . . , πK) is pmf of Z and fk’s are Guassian density
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Clustering using GMM

when samples of Y appear to be clustered as multimodal Gaussians
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• trainning: estimate parameters of GMM (πk, µk, σ
2
k) by EM algorithm

• clustering: if unseen sample of Y is given, we compute posterior pdfs

fk(y | Z = ek;µk, σ
2
k)P (Z = ek;µk, σ

2
k), k = 1, 2, . . . ,K

the kth cluster with highest posterior pdf is assigned to be the label of Y
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Learning GC pattern

Training 
K - mixture 

Gaussian model

Learned GC pattern

...
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GMM models

averaging averaging averaging averaging

samples of estimated GC matrices

• assume we have many trials of estimated F

• take an average of those trials to have many samples of F̄ ; each of which can
be approximated by a Gaussian

• pool all Fij’s and use GMM to cluster entries to each of Gaussian modes

10



Number of GMM components

the number of components is chosen from

• Bayesian informatic criterion score (BIC)

BIC = −2L+ d logN

• relative change in BIC: rBIC(k) = BIC(k)− BIC(k − 1)

• sillouhette score: a measure to determine how well the data are clustered

– s is close to 1 if data are well clustered
– s is close to 0 if data are on the the border of clusters
– s is close to -1 if the data could have been clustered to its neighbour

instead
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silhouette score: consider two average distances

• from a point xi to all points in the same cluster

a(xi) =
1

size of cluster

∑
j 6=i

dist(xi, xj)

• from a point xi to all points points x
(k)
j in other kth clusters

b(xi) = minimize
k

1

size of kth cluster

∑
j

dist(xi, x
(k)
j )

• sillouhette score of a point xi is defined as

s(xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
, −1 ≤ s(xi) ≤ 1

and the sillouhette score is the average over all points xi in a cluster
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Experiment settings

our scheme of learning GC pattern is tested on simulated data sets

1. ground-truth state-space models with known GC patterns are generated

2. the ground-truth models consist of two types: strong and weak causality

3. 20,000 trials of time series are generated and state-space models are
estimated using subspace identification

4. 1000 samples of F̄ are split into training and test sets using 10-fold cross
validation

5. number of GMM components are in the range of 1 to 10 and chosen by BIC,
relative change of BIC (rBIC) or Silhouette score

6. classification metrics (FP,FN, and accuracy) are evaluated on test sets
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Results of clustering entries in F

Strong causality in ground-truth model

0 0.01 0.02 0.03 0.04 0.05 0.06

Sample means of Granger causality

0

100

200

300

400

500

p
d
f

Histogram
Fitted GMM

Weak causality in ground-truth model
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• rBIC gives a moderate number of Gaussian components

• when the ground-truth model has a strong causality, Gaussian components
are well separated

• for weak causality, the fitted density functions of the first two components
could be overlapped; leads to misclassifying between null and causal entries
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Selected number of Gaussian components

N0 = 2000 N0 = 10000
Ground-truth model BIC rBIC Silh BIC rBIC Silh

Weak causality 6-9 4-7 2 7-10 4-7 2
Strong causality 6-8 3-5 2-6 6-10 3-6 2-7

• BIC tends to choose highest number of GMM components, while Silhouette
score chooses lowest number

• rBIC selects a moderate number of GMM components

• GMM with too many modes tends to overly capture small entries of F̄ (lead
to high FP)

• GMM with a few modes lacks of flexibility to explain detailed characteristics
of multi-modal shape of F̄ (lead to high FN)
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Errors in Granger causality learning

Classification error in learning Granger causality
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• the performance is best when number of GMM mode is chosen by rBIC

• t-test reject H0 : Fij = 0 most of the times
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Conclusion

• we proposed a scheme of inferring Granger causality from estimated
parameters of state-space models

• this finds applications to learning brain connectivity from EEG time series

• Granger causality measure (referred to as GC matrix) can be characterized via
the concept of Kalman filter and computed from solving Riccati equation

• significant entries GC matrix can be clustered using Gaussian mixture models
by an assumption that the sample mean of estimated GC matrices approaches
a Gaussian distribution

• GMM performance is best when using relative change in BIC to choose the
number of components

• the method requires multi-trial data for Gaussian assumption; this can be
feasible for EEG application as the recordings are typically collected in a long
period
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