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Granger causality (Granger 1969)

let x(t) = (z1(t),...,x,(t)) be multivariate time series

e z; is not Granger-caused by x;

e knowing z; does not help to improve the prediction of z;
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leads to a problem of learning inter-dependence relationships among variables
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Characterization of GC for vector autoregressive (VAR) processes
z(t) =A1z(t — 1)+ Agx(t —2) +-- -+ Apx(t — p) + v(t)

can be explained from a sparsity pattern of coefficients A;

if (¢,7) entries of Ay's are all zero
(Ak)ij:O, fork:1,2,...,p

then z; is NOT a Granger cause for z;

problems of estimating VAR models with sparse A.'s have been proposed



Granger causality of state-space models (Barnett and Seth 2015)

state-space equations:

zZ(t+1) = Az(t) + w(t) (1a)
x(t) = Cz(t) + n(t) (1b)

goal: find a Granger causality characterization in terms of model parameters

e an extension of GC characterization from the typically used VAR process

e z; is not a Granger cause for z; if

DS
Fz’j = FZIJj—>33¢|a|I other z = 10g (EZ> =0

where ¥ and X% are the prediction (in ) error covariances of the full and
reduced models respectively



Full and reduced models

when testing if z; has a Granger cause to x; where x is output of state equation
2(t+1) = Az(t) + w(t)
a reduced model has all variables except x;

full model z(t) = Cz(t)+ n(t)
reduced model zf¥(t) = C®z(t) + n'i(t)

where zf* has all entries of x except x;

2(t) = || ;(t) || — removed C*¥ = || CF || — removed




Prediction error covariance via Kalman filter

if state-space parameters are known, the best estimator of z (in MMSE sense) is
Z(tlt — 1) = Elz(t)|z(t — 1),...,2(0)]
whose steady-state covariance, defined as
P(tlt — 1) = cov(z(t) — 2(t|t — 1))
can be characterized by Kalman filter and asymptotically solved from DARE
P =APAT — (APCT + S)(CPCT + N)"1(CPAT + STy + W
asymptotically, covariance of output estimation error is

Y =cov(z(t) — &(tt — 1) = CPCT + N



GC matrix estimation

in order to estimate GC pattern, we need to estimate

e system matrices (A4, B,C, D)

® Nnoise covariances

which can be done by several methods (here, using subspace identification)

u . e GC pattern of n variables is represented by the
matrix F' of size n X n
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e a significance test of entries estimated I, iIs
needed
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e statistical distribution of Fj; is still unknown

L e if we have many samples of estimated F;; then its
OLL TLL FLL OLR TLR FLR sample mean can be approximated by Gaussian




Application in learning brain connectivity

learning a brain network from EEG time series

OL-L
TL-L

FL-L

[
4
(@]

TL-R
FL-R

TL-L FL-L OL-R  TL-R FL-R

OL-L

photo credit: Gwen Shockey, https://pixels.com



Gaussian mixture model (GMM)

model setting:

o let Yy ~ N(ug,02) fork=1,2,.... K

o let (Z1,75,...,Z) be latent variable with multinomial distribution
a GMM model takes the form of a linear sum of K Gaussian components:
Y =11 +4Yo+ -+ LYk

e given that Z = e, (standard unit vector), Y is distributed as the kth Gaussian

e the pdf of Y is given by

fly) =mifily;pa,01) + -+ T fre(y; pirc, o)

where (m1,...,7x) is pmf of Z and fi's are Guassian density



Clustering using GMM

when samples of Y appear to be clustered as multimodal Gaussians
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e trainning: estimate parameters of GMM (g, ug, o2) by EM algorithm
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e clustering: if unseen sample of Y is given, we compute posterior pdfs
fk(y|Z:ek?:ukao-l%)P(Z:ekvﬂkao-l%)? k:1727'°'7K

the kth cluster with highest posterior pdf is assigned to be the label of Y



Learning GC pattern
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e assume we have many trials of estimated F’

e take an average of those trials to have many samples of F'; each of which can
be approximated by a Gaussian

e pool all Fj;'s and use GMM to cluster entries to each of Gaussian modes
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Number of GMM components

the number of components is chosen from

e Bayesian informatic criterion score (BIC)

BIC = —2L + dlog N

e relative change in BIC: rBIC(k) = BIC(k) — BIC(k — 1)

e sillouhette score: a measure to determine how well the data are clustered

— s is close to 1 if data are well clustered
— s is close to O if data are on the the border of clusters
— s is close to -1 if the data could have been clustered to its neighbour

Instead
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silhouette score: consider two average distances

e from a point z; to all points in the same cluster

1
size of cluster

a(x;) Z dist(z;, z;)

JFu

e from a point z; to all points points x§k) in other kth clusters

. 1 : (k)
) = E dist(z;, z;
(i) T Size of Kth cluster - ist(z Y )

e sillouhette score of a point x; is defined as

b(x;) — a(x;)
max{a(z;), b(x;)}’

and the sillouhette score is the average over all points x; in a cluster

s(x;) = —1 <s(x;) <1
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Experiment settings

our scheme of learning GC pattern is tested on simulated data sets

1. ground-truth state-space models with known GC patterns are generated
2. the ground-truth models consist of two types: strong and causality

3. 20,000 trials of time series are generated and state-space models are
estimated using subspace identification

4. 1000 samples of F are split into training and test sets using 10-fold cross
validation

5. number of GMM components are in the range of 1 to 10 and chosen by BIC,
relative change of BIC (rBIC) or Silhouette score

6. classification metrics (FP,FN, and accuracy) are evaluated on test sets
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Results of clustering entries in F

Weak causality in ground-truth model

Strong causality in ground-truth model
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Sample means of Granger causality

Sample means of Granger causality

e rBIC gives a moderate number of Gaussian components

e when the ground-truth model has a strong causality, Gaussian components

are well separated

e for , the fitted density functions of the first two components
could be overlapped; leads to misclassifying between null and causal entries
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Selected number of Gaussian components

Ny = 2000 Ny = 10000
Ground-truth model BIC rBIC Silh  BIC rBIC Silh
Weak causality 6-9 4-7 2 7-10 4-7 2
Strong causality 6-8 35 26 6-10 36 27

e BIC tends to choose highest number of GMM components, while Silhouette
score chooses lowest number

e rBIC selects a moderate number of GMM components

e GMM with too many modes tends to overly capture small entries of I (lead
to high FP)

e GMM with a few modes lacks of flexibility to explain detailed characteristics
of multi-modal shape of F' (lead to high FN)



Errors in Granger causality learning

1 Classification error in learning Granger causality
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e the performance is best when number of GMM mode is chosen by rBIC

o l-test reject Hy : F;; = 0 most of the times



Conclusion

e we proposed a scheme of inferring Granger causality from estimated
parameters of state-space models

e this finds applications to learning brain connectivity from EEG time series

e Granger causality measure (referred to as GC matrix) can be characterized via
the concept of Kalman filter and computed from solving Riccati equation

e significant entries GC matrix can be clustered using Gaussian mixture models
by an assumption that the sample mean of estimated GC matrices approaches
a Gaussian distribution

e GMM performance is best when using relative change in BIC to choose the
number of components

e the method requires multi-trial data for Gaussian assumption; this can be
feasible for EEG application as the recordings are typically collected in a long
period

17



Acknowledgment

Chula Engineering research grant

CHULA 2NGINEERING

Foundation toward Innovation

Bangkok, Thailand

18



