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Abstract

An estimation of brain dynamical models not only can provide a characteristic of brain dynamics
but also lead to a problem of inferring brain networks that explains relationships among brain
regions. This research project provides a scheme of discovering a brain connectivity through EEG
signals using a Granger concept that is characterized on state-space models. We propose a state-
space model for explaining coupled dynamics of the source and EEG signals where EEG is a linear
combination of sources according to the characteristics of volume conduction. Our model has a
structure that the sparsity pattern of the model output matrix can indicate the position of active
and inactive sources. With this assumption, the proposed scheme consists of two main steps:
model estimation and model inference to discover brain connectivities. The model estimation
consists of performing a subspace identification to obtain a state-space parameter and an active
source selection to reduce model complexity. The model inference on brain connectivity relies
on the concept of Granger causality (GC) but it requires an additional learning scheme to regard
insignificant causalities, which is then proposed to use Gaussian mixture models to cluster between
strong and weak causalities. We aim to verify the performance of our method on simulated data
sets that represent realistic human brain activities in a fair setting. The ultimate goal of this study
is to explore brain networks from real data sets containing EEG signal in a certain condition and
discuss the results with previous studies.
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1 Introduction
Brain activities can be observed through many modalities, but mostly popular brain data are EEG data
and fMRI data. EEG observes brain activities by placing electrodes with a conductive gel on the human
scalp. Synchronous activities of neuron groups, called sources, cause action potentials that electrodes
can detect the currents. The spreading of electrical currents from sources to EEG sensors is complex
because different electrical conduction properties of brain environments. As a result, characteristics of
EEG data are varied by age, gender and external effects of each person [SC13, MML+04]. EEG has a
high temporal resolution where the sampling frequency is in order of several thousand hertz. However
spatial resolution in EEG is limited as of now the number of channels is up to order of hundreds.
Moreover, the accessibility of EEG is more economical than that of fMRI because EEG hardware costs
are significantly lower than those of fMRI hardware. For these reasons, this work preliminarily focuses
only EEG signals for exploring human brain function.

In contrast to learning a brain functionality from scalp signals, dynamics of source signals provide
more intrinsic interactions among activities inside the brain. Therefore, an approach to estimate source
signals from EEG signals is developed by assuming that the source signals are mapped to EEG electrodes
through a linear mapping matrix, called a lead-field matrix, with additive noise. This problem is known
as a forward problem, and conversely, a problem of reconstructing source signals from EEG data is
called an inverse problem. The main goal of this work is to explore a communication in brain networks,
called brain connectivity which is a relationship between brain region of interests (ROIs) or neuron
groups. This relationship can be distinguished into three types by their statistical definitions and
interpretations [PS16, Hau12]. The first type is called structural connectivity that can be referred to
patterns of anatomical links or a physical wiring connection between neurons observed by diffusion
tomography imaging (DT). The second type is called functional connectivity which explains statistical
dependencies between remote brain regions explained by correlations, covariances, spectral coherence
or phase-locking. The last type is called effective connectivity describing causal interactions of brain
regions through a dynamical model [Sak11, PS16]. Examples of effective connectivity can be explained
by dynamical causal modeling (DCM), Granger causality, Directed transfer function (DTF), coherence,
and partial directed coherence (PDC) [Hau12] whose all require the specification of a model. Granger
causality is one of the data-driven widely-used techniques [SBB15] because of its characterization that
can be examined on a linear model and will be our main dependence measure used in this research.

In conclusion, we aim to learn a brain connectivity explaining Granger causality pattern among
brain regions via EEG signals measured from a certain condition (resting state, task-driven, etc.) A
typical approach to achieve this goal consists of two main steps. The first is to propose a dynamical
model that explains relationships between source signals and EEG signals where only the latter can
be measured from experiment. The model class should be chosen such that i) parameters can be
tractably estimated in a practical setting and ii) Granger causality can be inferred consequently once
the model is estimated. The second step is to provide a learning scheme of model inference for brain
connectivities after the model is trained.

As a practical merit of this study, learning brain connectivity does not only provides us intrinsically
insightful information about the brain region interactions but also finds many applications on differen-
tiating conditions of human brain. For example, brain connectivity based-on spectral coherence is used
as a biometric classifier for distinguishing a human brain condition [RCV+14]. Various clinical appli-
cations on detecting neurological disorders such as epilepsy, Alzheimer or Schizophrenia are described
in a survey [Sak11]. These abnormalities are tested based on the use of various connectivity measures
including coherence function and Granger causality.

2 Background
2.1 State-space models
Most literature of exploring Granger causality of multivariate time series has relied on the use of
vector autoregressive (VAR) models because of its simple Granger causality characterization in model
parameters. In this study, we consider a wider class of linear stochastic process in the form of state-
space models to explain EEG time series dynamics. We assume that source signals (x ∈ Rm) is an
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output of state-space model whose state variable is z ∈ Rn (or what we call a latent), and the EEG
signal (y ∈ Rr) is a linear combination of the source signals, as described in the following equations.

z(t+ 1) = Az(t) + w(t), (1a)
x(t) = Cz(t) + η(t), (1b)
y(t) = Lx(t) + v(t). (1c)

We call A ∈ Rn×n the dynamic matrix, C ∈ Rm×n an output matrix mapping the latent to source
signal, and L ∈ Rr×m is the lead-field matrix determined from a head model. The state noise, w, the
output noises η, v are zero-mean and assumed to be mutually uncorrelated.

Figure 1: Multivariate EEG signals are modeled as linear combinations of source signals and known as
a volume conduction effect.

In EEG applications, the volume conduction explains how the source signal propagates through
brain tissues to the EEG signals (here from x to y) and it becomes known that Granger causality
learned from y may not be the same pattern as one inferred from x, i.e., spurious effect of Granger
causality [dSFK+16]. If model parameters (A,C,L) and noise covariances can be estimated from
measurements y then we can consider (1a)-(1b) and conclude a Granger causality in the source signal
(x). Such estimation problem can be solved in many ways but we can refer to [PiS18] as a solution.
In what follows, we focus on state equations of the source signal only (1a)-(1b) and discuss about how
to learn GC of x once all model parameters are estimated.

Moreover, vector autoregressive moving average model (VARMA) is a time series of the form

x(t) =

p∑
k=1

Akx(t− k) + e(t) +

q∑
k=1

Cke(t− k) (2)

where Ak’s are autoregressive (AR) coefficients and Ck’s are moving average (MA) coefficients.
VARMA model can be equivalently represented by a state-space equation (1a)-(1b) [CGHJ12]. One of
the state-space forms by [Ham94] is given by defining the state variable that contain the lagged values
of x(t):

z(t) = (x(t), x(t− 1), . . . , x(t− r + 1))

where r = max(p, q + 1) (the maximum lag order between the AR and MA terms.) Hence, the
corresponding state equation is

z(t) =


A1 A2 · · · Ar

I 0 · · · 0
... . . . ...

...
0 · · · I 0

 z(t− 1) +


I
0
...
0

 e(t),

y(t) =
[
I C1 · · · Cr−1

]
z(t).

(3)

Therefore, VAR process which is a special class of VARMA has a state-space form (3) with r = p but
the output equation reduces to

y(t) =
[
I 0 · · · 0

]
z(t).
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2.2 Granger causality (GC)
One topic of interest in time series analysis is to explore relationships among variables. There are
many ways to describe statistical relationships between variables in multivariate time series such as
correlation function of a random process or coherence function in frequency domain. In this work, we
are interested in a concept of exploring causal relationships between two variables, x and y, i.e., we
determine whether x causes y or y causes x using some statistical definition to explain this causality.

Granger causality is one type of causal relationships. The causality concept is explored by Granger
from [Gra69] which analyzes causal relationships between variables in multivariate time series through
prediction errors. To this end, assume that a multivariate stationary random processes x(t) consists of
x(t) = (x1(t), . . . , xn(t)).

Definition 1 We say xj is a Granger-cause for xi, if the variance of the prediction error of xi condi-
tioning on all components of x is less than variance of the prediction error of xi conditioning on all
components of x except xj . In other words, xj helps predict xi if including xj in the information set
for prediction of xi yields a decrease in the prediction error [Gra69].

In order to determine the prediction error of xi, one can use the best estimator of x(t) in mean
squared error (MSE) sense, which is known to be the conditional mean: x̂(t) = E[x(t)|y(t −
1), . . . , y(0)] where {y(τ)}t−1

τ=0 is available information up to time t − 1. Consequently, the pre-
diction error is obtained from ε(t) = x(t)− x̂(t) and its covariance is obtained by Σ = E[ε(t)ε(t)T ].
If we apply Granger causality to learn relationships among variables in a multivariate time series
x(t) = (x1(t), . . . , xn(t)), then we can consider the prediction of xi using the past information of
other components of x(t), i.e., xj(t) for j = 1, . . . , n. In order to learn if xj(t) causes xi(t) in Granger
sense, we distinguish the optimal predictions of xi(t) into two cases.

• The past information of all components of x is included in the prediction. The best prediction
of xi(t) is given (and denoted) by

x̂i(t|t− 1) = E[xi(t) | xj(t− 1), . . . , xj(0)], j = 1, . . . , n.

We use the notation x̂i(t|t− 1) to recognize that the available data for estimating xi at time t
are from the past up to time t− 1. The prediction of xi using all the variables is referred to as
the full model.

• The past information of all components of x except xj is included in the prediction. In this case,
the prediction of xi(t) is denoted by

x̂R
i (t|t− 1) = E[xi(t) | xk(t− 1), . . . , xk(0)], ∀k ̸= j.

The superscript R denotes that the prediction is obtained from the reduced model1 where we
have used less information (by excluding xj from the information set) in order to predict xi.

From those two optimal predictions, we can assign the corresponding prediction errors and their covari-
ance matrices. The full model has prediction error as εi(t) = xi(t)− x̂i(t|t− 1) with covariance Σii,
and the reduced model has the prediction error denoted by εRi (t) = xi(t)− x̂R

i (t|t−1) with covariance
ΣR

ii . We have seen that the available data for prediction in the reduced model is less than those of
the full model. For this reason, ΣR

ii is always greater than Σii or equivalently ΣR
ii

Σii
> 1 because using

more variables in the model provide a better prediction (explained as less prediction error). However,
if xj is indeed has no effect nor can help in the prediction of xi then including or excluding xj in the
information set has no change in ΣR

ii ; that is ΣR
ii = Σii. As a result, a measure of Granger causality

can be defined as
Fij = log

ΣR
ii

Σii

to explain if xj is a Granger cause to xi. We can say that in general,

ΣR
ii

Σii
≥ 1, Fij ≥ 0.

1This notation follows the explanation in [BS15]
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If Fij = 0 then ΣR
ii = Σii, and we conclude that xj(t) is not a Granger cause to xi(t). In conclusion,

we can provide another equivalent definition of Granger causality.
Definition 2 Let x(t) = (x1(t), . . . , xn(t)) be an n-dimensional random process. We say xj does not
Granger cause xi if and only if

Fij = log
ΣR

ii

Σii
= 0. (4)

We can examine Granger causality for all possible pairs of xi and xj for i, j = 1, . . . , n in a multivariate
time series. This constructs F = [Fij ] as a matrix of size n × n, where its (i, j) entry indicates the
Granger cause of xi to xi and the diagonals of F are not of our interest because xi must have an
influence to itself.

In order to examine Fij , one must determine the covariance of prediction errors from the full and
reduced models. It is known that a conditional mean is, in general, a nonlinear function of data in
the condition and can be analytically characterized only in some cases of known distribution, or simple
models. The following sections then describe how to compute the covariance of prediction errors on
two specific models and show that they can be described analytically in autoregressive models and can
be computed systematically in state-space models. In other words, Granger causality definition can be
equivalently characterized in terms of model parameters for those two models used in the prediction.

2.3 Characterization of GC on vector autoregressive models
According to (2), a VAR process is a special case of VARMA when Ck’s are all zero. It has been used
to explain dynamics in time series because of several reasons; one of which is its simplicity of linear
model. One can estimate AR coefficient matrices using ordinary linear least-squares (OLS) which is
the best estimator in MSE sense (when assuming data is truly generated from AR model corrupted by
Gaussian noise.)

From the Granger causality definition (4), [Lüt05, §2.3] describes the Granger characterization for
an n-dimensional AR process x(t) of order p with Ak as AR coefficients, for k = 1, . . . , p. It was
shown that xj(t) does not Granger-cause to xi(t) if and only if

Fij = 0 ⇐⇒ (Ak)ij = 0, k = 1, . . . , p (5)

As a result, Granger causality between time series in VAR processes can be characterized on coefficients
in AR matrices and the conditions are simply linear constraints on AR coefficients. After estimating
AR model from data, one can read the common zero locations of estimated AR coefficients of all time
lags. The zero pattern then explains the Granger causality among the variables.

2.4 Characterization of GC on state-space models
The generalization of a characterization of GC from VAR model to a state-space model was provided
by [BS15] and is summarized here. As our goal here is to learn a GC of the source time series, only
state-space equations (1a)-(1b) are considered. The noise covariance matrices in this system are[

W S
ST N

]
= E

[
w(t)
η(t)

]T [
w(t)
η(t)

]
,

where W is the state noise covariance, N is the measurement noise covariance, and S is the correlation
matrix of state and measurement noises. Granger causality concept is to determine relationships
between time series from the variance of prediction errors. Since, x̂(t|t−1) is chosen to be the optimal
estimator of x(t) in MSE sense, it is a classical result that such optimal predictor of x(t) generated
from a state-space model, based on information up to time t − 1 can be obtained from the Kalman
filter.

The Kalman filter finds the conditional mean of state variable z(t) based on all available information
ẑ(t|t − 1) = E[z(t)|x(t − 1), . . . , x(0)] and the corresponding covariance of state estimation error is
P (t|t − 1) = cov(z(t) − ẑ(t|t − 1)). When the filter is applied in asymptotic sense, P converges to
steady state and satisfies discrete-time algebraic Riccati equation (DARE):

P = APAT − (APCT + S)(CPCT +N)−1(CPAT + ST ) +W. (6)

10



Asymptotically, the covariance of output estimation error is

Σ = cov(x(t)− x̂(t|t− 1)) = CPCT +N.

From linear system theory, we note that a positive solution to DARE does not always exist. [Sim06]
shows that the DARE solution exists under a condition that (A,C) is detectable (all the unobservable
states are stable) which is a weaker condition than observability. Moreover, DARE has a unique
solution if (A,W ) is also controllable and implies all eigenvalue of (A−KC) lie inside the unit circle.
However, the covariance matrix P , which obtained from DARE, is not an optimal solution of Kalman
filter because the steady state Kalman gain is not an optimal Kalman gain in each iteration but it still
converges to an optimal when t → ∞.

We note that if x ∈ Rm then Σ ∈ Rm×m and it is the output estimation error covariance when
predicting x using all lagged components in x (full model). To determine an effect of xj(t) to xi(t)
in Granger sense, we then consider the reduced model introduced by eliminating xj(t) from the full
model, and the reduced model is defined as

z(t+ 1) = Az(t) + w(t), xR(t) = CRz(t) + η(t),

where the superscript R denotes the variable x(t) with jth component eliminated and CR is obtained
by removing the jth row of C. The optimal prediction of x(t) using all information of x except
xj is then also obtained by applying the Kalman filter to the reduced model. We can solve DARE
using (A,CR,W,N) and obtain PR, denoted as the state estimation error covariance and the output
estimation error covariance of the reduced model is given by

ΣR = CRPR(CR)T +NR

where NR is obtained from N by removing the jth row and column of N . We also note that ΣR has
size (m − 1) × (m − 1). Doing this way, we can test if xj is a Granger cause to xi for all i ̸= j by
using the Granger measure:

Fij ≡ Fxj→xi|all other x = log

(
ΣR

ii

Σii

)
, (7)

where Σii and ΣR
ii are the variance of prediction error of xi(t) obtained from using the full model and

the reduced model, respectively. We can repeat the above step for j = 1, 2, . . . ,m, learn Granger
causality from data by computing Fij for all (i, j) and construct it as a matrix whose diagonals are
not in consideration. Subsequently, a significance testing is performed on the off-diagonal entries of
this matrix to discard insignificant entries as zeros. The resulting matrix will be called the Granger
causality matrix in this report. Figure 2 illustrates a pattern of GC causality from 10-dimensional
VARMA process. The F matrix is represented in black and white color, where black in the (i, j) entry
explains that xj is a Granger cause to xi, while the white in the (i, j) entry indicates there is no
Granger causality from xj to xi. For example, if we look at the first row, we see that xi is caused by
x2 and x3 only.

It was shown in [BS15] that the F measure in (7) can be characterized in the state-space system
matrices as well.

Fij = 0 ⇔ CT
i (A−KC)kKj = 0 (8)

for k = 0, 1, . . . , n where CT
i is the ith row of C, Kj is the jth column of the Kalman gain, solved from

DARE. We have seen that the Granger causality condition for VAR model is linear in AR coefficient
matrices. Unlike VAR models, GC condition for state-space models is highly nonlinear in system
matrices.

3 Related work
Generally brain connectivity studies apply two main approaches: parametric and non-parametric. A
non-parametric approach analyzes EEG signal and compute connectivity measures directly without
estimating model parameters. For example, one can compute partial coherence measure from esti-
mated spectrum of brain signals. On the other hand, a parametric approach focuses on estimation
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Figure 2: An example of Granger causality pattern encoded in F generated from a sparse VARMA
process.

of dynamical models and uses estimated model parameters to infer such connectivity measures. This
chapter describes literature on brain connectivity studies that apply the parametric approach. Much
of literature has applied typical time series models such as VAR and state-space models. Previous
studies can be categorized into two themes: one that infers brain connectivity of scalp signals and the
other that concludes a connectivity of the source signal. A conclusion from this survey provides us a
guideline to build up our proposed model.

3.1 Connectivity on EEG Signals
This analysis is performed on the scalp EEG signal using a measure of dependence of interest. One
typical approach is to fit VAR model to EEG time series and use a measure such as direct transfer
function (DTF) as a dependence measure in [GPO12, §4]. The sensor signals are fitted to a VAR model
by least-squares estimation and then Granger causality can be obtained by performing significant tests
on VAR coefficients. For example, [ACM+07] learned brain connectivity from VAR coefficients using
DTF (directed transfer function), PDC (partial directed coherence) and direct DTF (dDTF) from high-
resolution EEG data set. Moreover, a state-space framework can be applied to learn connectivity on
sensor space, which is introduced in [STOS17]. The state-space model based on switching vector AR
(SVAR) model was introduced for non-stationary time series, a characteristic that has been typical for
biological signals. The SVAR model was represented in a state-space representation in (3) and the
switching parameters were selected by a hidden Markov chain. As a result, the connectivity was learned
from PDC that computed from the estimated VAR coefficients.

However, It can be shown that this approach could result in spurious causality as mentioned in
[HNMN13] where no interactions in the source level may lead to substantial interactions in the scalp
level.

3.2 Connectivity on reconstructed sources
The EEG signals cannot explain the true dynamic of neurons inside the brain because of volume
conduction effects as shown in Figure 1. An approach of estimating source time series from EEG
signals has been developed and is referred to as source reconstruction or source imaging. The main
idea is to estimate x(t) from the lead-field equation:

y(t) = Lx(t) + v(t), (9)

where y(t) ∈ Rr is the EEG data, x(t) ∈ Rm is the source signal, L ∈ Rr×m is the lead field
matrix (given) and v(t) ∈ Rr is a measurement noise. The lead-field equation (9) can be used to
generate artificial EEG signals when x(t) is simulated (known as forward problem). On the other
hand, constructing the transmitted signal from the measurements in the above linear equation is
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often called as an inverse problem. In order to solve the inverse problem in practice, we note that
the lead field matrix varies upon several factors such as locations of EEG sensors, size or geometry
of the head, regions of interest (ROIs) and the electrical conductivity of brain tissues, skull, scalp,
etc. [SC13]. Examples of existing methods in source reconstruction are Low resolution tomography
(LORETA), the weighted minimum-norm estimate (WMN), the minimum-current estimate, linearly
constrained minimum-variance (LCMV) beamforming, sparse basis field expansions (S-FLEX) and the
focal underdetermined system solution (FOCUSS) [Hau12, §2], [SC13, HNMN13, LWVS15].

In general, the number of EEG channels is lower than number of sources. Hence, L is generally a fat
matrix. As a result, the source imaging problem becomes an underdetermined problem. [MMARPH14]
proposed that the source time series matrix is factorized into coding matrix C and a latent source time
series z(t), then x(t) = Cz(t) where C is assumed to be sparse. The relationship between sources and
sensors is then explained by

y(t) = LCz(t) + v(t). (10)
The problem of reconstructing x is now to estimate z and C instead. [MMARPH14] applied an ℓ21
regularization method by penalizing the rows of the matrix with the 2-norm to induce sparsity pattern
in source time series. Then the regularized EEG inverse problem with ℓ21-norm penalty term was
proposed as

minimize
C,Z

(1/2)∥LCZ − Y ∥2F + λ∥CT
i ∥2,1 + (1/2)∥Z∥2F .

The problem is non-convex in C and Z (the matrix of latent time series.) An alternating minimization
algorithm can be used for solving a bilinear problem by using initial latents z(0) and approximating
rank of C from SVD. Another related approach is [WTO16] that applied sLORETA method to estimate
source signals x. PCA was used to reduce dimension of the source signals then the principal source
signals x̃ were explained x̃(t) = Cz(t), resulting in a factor model (10) and the dynamics of z(t) was
explained by the VAR model. The dynamics of x can then be explained by the VAR model and VAR
coefficients are functions of C.

We note that brain connectivities learned from a source reconstruction approach mainly depends
on the performance of the source imaging technique. If the source reconstruction does not perform
well, learning brain networks from reconstructed sources could lead to a misinterpretation.

3.3 Connectivity inferred from source and EEG coupled dynamics
This approach considers the dynamics of both source and sensor signals concurrently where the estima-
tion of model parameters can infer brain connectivities directly. The work including [Hau12, HTN+10,
GHAEC08, CWM12] considered the same dynamical model that the source signals (x) are explained
by a VAR process and EEG signal (y) is a linear combination of the sources as

x(t) =

p∑
k=1

Akx(t− k) + w(t), y(t) = Lx(t).

The technique to estimate unknown sources and lead field matrix (L) from only available mixture
EEG data is called blind source separation. Independent component analysis (ICA) is one of blind
source separation technique that was used in [Hau12, HTN+10, GHAEC08]. In the detail, the ICA
technique relies on an assumption that the innovation term of process w(t) must be generalized as
a non-Gaussian distribution. [GHAEC08] assumed that the innovation term has both sub and super-
Gaussian distribution. Initially, PCA was used to reduce the dimension of EEG data with assumption
that number of EEG channels was greater than number of sources. Consequently, the principal EEG
signals were fitted on VAR model directly and ICA was performed on the VAR innovation term for
demixing source VAR coefficients. As a result, DTF was computed from the transfer function of the
source in VAR model. However, [GHAEC08] estimated VAR parameters from the sensor signals directly,
so the brain connectivity was not sparse due to the volume conduction effect. [Hau12] performed
convolutive ICA (CICA) on the innovation term which was assumed to be super-Gaussian hyperbolic
secant distributed for ensuring a stable solution. To obtain the sparse source connectivity, model
parameters, which are L and Ak’s, are estimated using the sum of ℓ2-regularized maximum-likelihood
method. In addition, [Hau12, HTN+10, GHAEC08] assumed that the noise distribution was non-
Gaussian, so the decomposition of source signals from ICA had a unique solution. [CWM12] proposed

13



an idea to perform connectivity analysis via state-space models. The state equation was described
by generalized AR model where the innovation process has a generalized Gaussian distribution. All
state-space model parameters were obtained using from maximum likelihood estimation. As a result,
the relationship between sources was explained by PDC computed from estimated VAR coefficients.
[CRTVV10] proposed a state-space framework for finding a brain connectivity; however, the sources
were assumed to be described by a VAR model. Moreover, [CRTVV10] put some prior information on
the lead-field matrix where the cortical regions of interest were known. The dynamical equations are
given by

x(t) =

p∑
k=1

Akx(t− k), y(t) = CΛx(t) + v(t)

where C is a known matrix from a prior information on the lead field matrix and Λ is the dipole
moment. When formulating the above equation into a state-space form, model parameters including
A1, . . . , Ap,Λ and noise covariance were estimated by expected-maximization (EM) algorithm and then
Granger causality can be concluded from the estimated noise covariance. Moreover, a state-space form
used in [CRTVV10, CWM12] contains source dynamics described by VAR model and the observation
equation represents a relationship between sources and sensors. The state-space parameters were
estimated from maximum likelihood estimation using EM. [YYR16] proposed a one-step state-space
model estimation framework which aims to find the connectivity in ROI level. The state-space model
used in [YYR16] was described by

z(t+ 1) = A(t)z(t) + w(t), x(t) = Gz(t) + η(t), y(t) = Lx(t) + v(t),

where z(t) is a time series for each ROI, A(t) is a VAR coefficient at time t, x(t) is a source time series,
G is a binary matrix that determines sources corresponding to its ROIs and y(t) is MEG signal. Hence,
the state-space model in [YYR16] is essentially a first-order VAR model. The model parameters and
source signals were estimated using EM algorithm and the ROIs connectivity pattern was explained
from the zero pattern in VAR coefficients. [CRTVV10] claimed that the state-space framework was
less sensitive to noise than two-stage approaches. Another possibility was to employ state-space model
to explain brain source connectivity from fMRI data. [PZBC17] proposed a method to estimate a brain
connectivity on a linearized dynamic causal model (DCM), described by

ẋ(t) =

(
A+

m∑
j=1

uj(t)Bj

)
x(t) + Cu(t). (11)

However, [PZBC17] considered resting-state data which means there was no stimulus signals (u(t) = 0).
The DCM was discretized with the sampling period of 2 seconds (h = 2) and sampled data system is
described by

x(k + 1) = eAhx(k) + w(k). (12)
The nonlinear dynamical model for fMRI data used in [PZBC17] is a Balloon-Windkessel model which
is a forth-order state equation that can be linearized by using a Finite impulse response (FIR) as

y(k) =

k−1∑
τ=0

h(τ)x(k − τ). (13)

Therefore, the state-space model was described by (12) and (13). Estimation of neural activities
was performed using the Kalman filter and Rauch-Tung-Striebel (RTS) smoother. Then, connectivity
matrix A was estimated using EM algorithm.

To conclude this section, learning brain connectivities from EEG data can be divided into two main
approaches. The first approach explore a causality from EEG data directly (sensor space). However, a
connectivity between EEG sensors is not an intrinsic connectivity explaining relationships of neuronal
activities in the human brain. The second approach, consisting of two-stage approach and coupled
models, is to learn a brain connectivity from source signals (source space). The two-stage approach
reconstructs source signals first and often explains source dynamics via VAR models. However, the
performance of the two-stage approach is highly dependent of performance of source reconstruction.
Coupled models are then proposed for explaining dynamics of sources and EEG signals concurrently
where brain connectivities are discovered from the estimated model parameters.
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3.4 Validation of brain connectivity learned from EEG data
An evaluation of brain connectivity learning method is typically done on a simulated data set while the
connectivity results on real data set cannot be validated since the true connectivity on source space is
unknown. A recent discussion of brain connectivity validation on EEG data sets can be found in [M+19]
where performance evaluation methods can be proposed in many different ways. The first scheme is
to validate a method performance on simulated data with a known ground-truth model e.g. [Hau12,
§5] and [HE16]. Assume that brain source signals obey a VAR process, then the connectivity matrix is
expected to be similar to zero pattern of VAR coefficients as shown in (5). Moreover, [HE16] provides
a toolbox for simulated pseudo-EEG data with realistic head model based on a bivariate AR model.
The second scheme is to validate a method performance on real EEG data. A possible approach is
done by comparing connectivity results with previous studies on other modalities such as fMRI. For
example, the brain connectivity from resting-state EEG data in [WTO16] was compared with the brain
connectivity based on resting-state fMRI.

However, most EEG studies considered task-EEG data such as brain computer interface (BCI) or
visual task, so connectivity results are expected to follow the task-based connectivity pattern. [HD+14]
validated brain connectivity results from different two-stage approaches on picture and naming recog-
nition EEG task data. The density of connection between occipital, temporal and frontal regions is
expected to be found from the task data. Finally, the estimated connectivity was compared with the
estimated connectivity matrix from other methods. [YYR16] compared connectivity results with an-
other two-stage approach, which is minimum-norm estimate (MNE) method, from the same data set
of Magnetoencephalography (MEG). However, this scheme is mostly applied to simulation data, which
can be found in [HTN+10, CWM12].

4 Proposed method
This section describes the methodology of learning Granger causality patterns from EEG time series
data. The method consists of five main processes. From the proposed state-space model in (1), the

Estimation GC pattern 
for state-space model

State-space estimation 
of EEG time series

Estimation of 
mapping from 
latents to sourceshead model, 

gender, age Estimation of 
Lead field matrix
from SPM toolbox

Estimation of 
noise covariance 
in the source dynamic

Figure 3: The proposed scheme for learning Granger causality from EEG data.

only available measurement is EEG signal (y). If we substitute the dynamics of source (x) in the EEG
forward equation, we have

z(t+ 1) = Az(t) + w(t), y(t) = Hz(t) + e(t) (14)

where
H = LC, e = Lη + v. (15)

The matrices Σw and Σe are noise covariances of w and e, respectively. We can view e as a combination
of noises corrupted in the latents and source signals, as perceived at the output equation.

Our method assumes that EEG time series y and the lead-field matrix L are available. Note that L
can be estimated using a head model, general information about a subject and sensor locations. The
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first procedure is to estimate a state-space model to obtain system dynamic matrix and output matrix
(A and H). Since we need to learn a connectivity in x, the output matrix in the source equation C
needs to be estimated. Moreover, in order to learn a GC pattern, noise covariances are also needed.
A process of noise covariance estimation is then proposed. After, a GC matrix F is estimated, it also
requires a process of learning significant entries of F as generally entries of F are nonzero.

4.1 Data generation
Generating dynamical models is one of important parts to perform experiments on Granger causality
estimation so that we can evaluate the accuracy of estimated GC pattern with the ground-truth model.
This step is simple in generating VAR processes as a Granger causality is linearly encoded in VAR
parameters. In this section, we explain an approach of generating state-space models where we can
control the true GC pattern.

4.1.1 VARMA models with sparse VAR part

In [BS15, BS11], the authors have shown an important result that GC causality of a filtered VAR
process is unchanged if the filter is diagonal, stable and minimum-phase. Let x̃(t) be a p-lagged VAR
process where the z transform relation is given by x̃ = A(z)−1w with VAR polynomial:

A(z) = I − (A1z
−1 +A2z

−2 + · · ·+Apz
−p)

We consider G(z) an MIMO (multi-input multi-output) transfer function of the form:

G(z) =


p1(z)
q1(z)

p2(z)
q2(z)

. . .
pn(z)
qn(z)

 (16)

where each of diagonal entries of G is a rational proper transfer function of relative degree q. The
minimum-phase property of G suggests that zeros of G must be inside the unit circle, or that the
roots of pi(z) has magnitude less than one. Moreover, stability of G implies that the roots of qi(z)
lie inside the unit circle. As a result, we define x = Gx̃ = G(z)A(z)−1w. The result from [BS11]
shows that x also has the same GC pattern as x̃, which is easily explained from a zero pattern in VAR
coefficients. The system transfer function from w to x can be equivalently represented in a state-space
form. Therefore, we proposed a procedure to generate state-space equation with sparse GC pattern as
follows.

1. Generate sparse A1, A2, . . . , Ap matrices randomly with a common zero pattern. Moreover,
the polynomial A(z) must be stable. This is to guarantee that the generated VAR process is
stationary. We can do this by randomize stable roots inside the unit circle and compose the
polynomial in the diagonal of A(z). Consequently, off-diagonal entries of Ak’s are generated
randomly in a common (i, j) location. If A(z) is not stable, we randomize off-diagonal entries
again.

2. Generate a random diagonal transfer function G(z) with required properties. We can generate
stable zeros and poles of G(z) when the order q is given.

3. The transfer function from w to x, the desired source signal, is then given by H(z) = G(z)A(z)−1.
Convert H into a discrete-time state-space form using tf2ss command in MATLAB. We obtain
(A,B,C,D) of the state-equation:

z(t+ 1) = Az(t) +Bw(t), x(t) = Cz(t) +Dw(t). (17)

Since H is a proper transfer function, we have D = 0.

State-space equation and VARMA models can be interchangably transformed [CGHJ12], so we can
refer the generated model (17) as state-space or VARMA model with sparse GC pattern.
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Figure 4: GC pattern the ground-truth models. (Left.) VARMA processes with sparse VAR part.
(Right.) State-space model with sparse rows in C.

Special case of G(z). As suggested in [BS15] is when G(z) in (16) has the form of

G(z) = (1 + cz−1)qI = (1 + C1z
−1 + · · ·+ Cqz

−q)I ≜ C(z)I, |c| < 1

One can see that G(z) is an MA polynomial of order q. When |c| < 1, C(z) is minimum-phase and
Cj ’s are given by

Cj =

(
q
c

)
cj , j = 1, 2, . . . , q.

In this case, x = G(z)A(z)−1w = C(z)A(z)−1w = A(z)−1C(z)w since C(z) is just a scalar. We can
then readily consider x as a VARMA(p, q) process. The AR and MA coefficients in A(z) and C(z) can
be used to convert into a state-space form, for example, the Hamilton form (3).

4.1.2 State-space models with sparse rows in C

We could start with randomly generating a stable state-space model and hope this ground-truth model
has a non-trivial GC pattern (not dense). However, even though system matrices (A,C) are sparse, it
is not necessary that F solved from DARE is also sparse as F is nonlinear in (A,C,K); see (8).

However, if we consider (8), under the following assumptions:

CT
i = 0, S = 0, N is diagonal

then one can prove that the ith row and jth column of F are zero. As a result, we can randomly
generate C with sparse rows and stable A in (1a). Note that when A is not assumed to have a
specific structure such as diagonal, the stability constraint (eigenvalues of A lie inside the unit circle)
is nonlinear in the entries of A. These random generations are repeated until the stability condition is
met. With this generation, we obtain a stable A more easily than generating stable sparse VAR model.

Figure 4 (left) shows an example of GC pattern generated from a VARMA process. The GC pattern
was concluded from the structure of F matrix in (7) and must agree with the sparsity pattern of Ak’s
we have generated. The right figure is a GC matrix generated from state-space models with sparse
rows in C. The GC pattern from this approach is more restricted than generating VARMA process
with sparse AR part as zeros appear in many blocks of F . Therefore, at this stage of our work, we
use sparse VARMA processes which are shown to be equivalent to state-space models, and their GC
patterns can be controlled arbitrarily at the AR coefficient generating process.

4.2 State-space estimation of EEG time series
Given the measurement data of {y(t)}Nt=0, we can estimate state-space parameters A and H in (14)
using the subspace identification method [OM12] which is available in the system identification toolbox
n4sid on MATLAB. An estimated state-space model in this toolbox is of the form:

z(t+ 1) = Az(t) +Bu(t) +Ke(t),

y(t) =Hz(t) +Du(t) + e(t),
(18)

where u is a deterministic input with the input matrix B, and K is the Kalman gain matrix. Compar-
ing (14) with the model format in (18), we force B and D to be zero using the prediction error method
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(PEM) since our model does not have a deterministic input u, which can be done using the command
pem in MATLAB. In addition, we enforce the stability condition of the estimated model in n4sid which
guarantees that all eigenvalues of Â are inside the unit circle. This process gives estimates of A,H,Σw

and Σe.

4.3 Estimation of mapping from latents to sources

Figure 5: A brain map that explains the activation status of source signals. Red circles represent active
sources and white circles represent inactive sources. In other words, EEG signals come from only active
sources

This section explain how to estimate C from the information of H estimated from section 4.2 with a
prior knowledge of a structure in C. The contents of this section are taken from our publication [PiS18].
Recall from (1b) that the ith source can be interpreted as inactive (x(t) = 0) if the ith row of C is
entirely zero (in noiseless condition).

In general, the number of EEG channels are less than the number of sources, r < m, then L ∈ Rr×m

is fat matrix. Assume that a lead field matrix L can be estimated from prior knowledge head model.
Demixing C from H, with a known fat matrix L, i.e., solving C from H = LC, is an underdetermined
problem and it leads to non-unique solutions of C.

To overcome this problem, we put some prior in C by assuming that not all sources are active
because all neuron sources are not activated synchronously. There are only some sources activate
corresponding to EEG sensors in a brief time. Consequently, C is assumed to have some zero rows
corresponding to inactive sources as shown in Figure 5. We therefore propose a problem of estimating
C that makes H ≈ LC and C contains many zero rows. One way to formulate the problem is to make
use of sparse optimization with ℓ1-norm penalty as mentioned in [HTW15]. The proposed problem is

minimize
C

(1/2)∥H − LC∥2F + λ

m∑
i=1

∥CT
i ∥2 (19)

with variable C ∈ Rm×n. The matrix H ∈ Rr×n is the estimated output matrix from state-space
estimation, and L ∈ Rr×m is the lead-field matrix computed from a head model, and λ > 0 is a
penalty parameter controlling sparsity of rows in C, i.e., when λ is large, C tends to have more sparse
rows. When the formulation (19) is rearranged into a vector form of

minimize
β

(1/2)∥y −Xβ∥22 + λ

m∑
i=1

∥βi∥2 (20)

where β = (β1, β2, . . . , βm), βk ∈ Rn, it is commonly known as a group lasso problem [HTW15, §3.8]
where the sum of ℓ2-norm regularization promotes a group sparsity in the estimated variable. If λ is
high enough, the solution to (19) is entirely zero. The problem is convex problem because objective
function is an affine of norm functions which are convex. There are many numerical methods for solving
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this problem where currently we have implemented the Alternating Direction Method of Multipliers
(ADMM) described in [PB14, Son13].

The penalty parameter affects the sparsity of C and therefore, a model selection criterion such as
BIC can be applied to trade-off between the model fitting and complexity. The BIC score [HTW15]
is given by −2L(β) + k logN where L is the loglikelihood function, k is the number of effective
parameters and N is the number of data samples in the estimation. The BIC score of the problem (19)
reduces to

BIC(λ) = −nm− n log det Σ̂(λ) + k(λ) log(n) (21)
where Σ̂(λ) = (1/n)(H − LĈ(λ))(H − LĈ(λ))T . We note that BIC is a function of λ because for
each λ, it corresponds to a sparsity of rows in C. Hence, k(λ) decreases as λ decreases. We choose
the estimated C that yields the lowest BIC score.

To vary λ in a range and choose one that minimizes BIC, we consider an analytical form of a critical
value that results in the zero solution. In other words, there exists λmax such that if λ > λmax then
the solution C to (19) is entirely zero [Son13, §4.3]. The expression of λmax depends on the problem
data, which are H and L only, hence it can be computed beforehand. Therefore, we can varying the
value of λ in (19) by starting from 10−4λmax to λmax. As a result, the solutions C from (19) vary from
densest to sparsest solutions.

Uniqueness of the solution. The estimation formulation (19) apparently relies on a parameter H
that is solved from a subspace identification. However, it is known that state-space system parameters
are not unique due to a similarity transformation. If the estimated H is associated with another
coordinate, denoted by H̃, we would question if solving (19) using H̃ could lead to a different solution
of C or not. Moreover, even C is not unique, we should examine whether the sparsity of rows in C is
unique or not. If it were not, we would interpret results on selecting active sources differently.

We provide an analysis of uniqueness in the sparsity of C under some mild assumption. If H is
projected to another coordinate, that is H̃ = HU where U is a nonsingular orthogonal matrix and
denoted as a transformation matrix, then the solution from (19) could change but its rows has the
same zero pattern.

Proposition 3 If U is orthogonal, then the rows of C̃, solved from

minimizeC̃ (1/2)∥HU − LC̃∥2F + λ

n∑
i=1

∥C̃T
i ∥2 (22)

has the same zero pattern as the solution C of (19). Moreover, C̃ = CU .

Proof. Since T is orthogonal, we have UTU = UUT = I, and that ∥UX∥2F = ∥U∥2F for any matrix
X. Then we can write the cost objective of (22) as

(1/2)∥HU − LC̃∥2F + λ

m∑
i=1

∥C̃T
i ∥2 = (1/2)∥(H − LC̃UT )U∥2F + λ

m∑
i=1

∥C̃T
i U

T ∥2

= (1/2)∥(H − LC̃UT )∥2F + λ

m∑
i=1

∥C̃T
i U

T ∥2

If we let

C =

C
T
1
...

CT
m

 = C̃UT

then the cost objective of (22) is the same as (19). The matrix C that minimizes (19) corresponds to
C̃ = CU that minimizes (22). Moreover, we see that C̃T

i = CT
i U . Hence, the ith row of C̃ is zero if

and only if the ith row of C is.
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4.4 Estimation of noise covariance in the source dynamic
The GC estimation from state-space model parameters explained in Section 2.4 requires information of
noise covariances (both state and measurement noises). Consider our methodology in the diagram 3 and
the model equations (1a) and (1b). Currently, we have estimated A,Σw from subspace identification,
and we have factored C. Then it is left to estimate Ση (the measurement noise covariance at the
source equation) in order to solve a GC matrix via the Riccati equation.

We then propose that, the relation of noises at EEG and source equations given by (15) leads to a
relation of noise covariance as‘

Σe = LΣηL
T +Σv. (23)

The covariance of e is obtained in Section 4.2 from the subspace identification. The lead field matrix
can be obtained from a head model (as part of our assumptions). Therefore, it is left to estimate the
unknown Ση and Σv. Consider the dimensions of all these matrices, where they are symmetric and
positive definite, i.e., Σe ∈ Sr and Ση ∈ Sm and Σv ∈ Sr, and that r < m (the number of EEG
channels is typically less than the number of sources.) A straightforward formulation is to solve

minimize ∥Σe − LΣηL
T − Σv∥F

subject to Ση ⪰ 0,Σv ⪰ 0,

with variables Ση ∈ Sm and Σv ∈ Sr and ∥ · ∥F denotes the Frobenius norm. If the optimal value
the above problem is zero, it means we can solve (23) exactly. However, since r < m, it is possible
that even we can have the zero optimal value, but the solution Ση is not unique since we have more
degree of freedoms in the variables. We then further restrict some constraints on the variables, by
assuming that these noise covariances are diagonal, meaning that each of noise vectors η and v is
mutually uncorrelated. Following this assumption, we propose the estimation problem:

minimize ∥Σe − LΣηL
T − Σv∥F

subject to Ση ⪰ 0,Σv ⪰ 0,
Ση = αI, Σv is diagonal

(24)

with variables α and Σv. Imposing the diagonal structure in the variables certainly results in a chance
of nonzero optimal value (we have not solved (23) exactly). However, if the true noise covariances
have these diagonal structures, the problem (24) can alleviate the chance of non-unique solutions (but
we have not guaranteed either.) The cost objective of (24) is a composite of a norm function with
linear transformation in the variables. Moreover, the constraints are linear in the variables and the
positive definite cone constraints and hence, the constraint set is a convex set. For these two reasons,
the problem (24) is convex and can be solved efficiently.

4.5 Learning significant Granger causality pattern
From the methods explained in Section 4.2 through Section (4.4), we are ready to estimate a GC
pattern from EEG data. To summarize here, the GC characterization on state-space models is used for
finding GC of x(t) that described from (1a)-(1b):

z(t+ 1) = Az(t) + w(t),

x(t) = Cz(t) + η(t).

Available information needed for GC estimation are

• the state transition matrix A,

• the state noise covariance matrix Σw from subspace identification obtained from Section 4.2,

• the latent-to-source mapping matrix C solved from the method in Section 4.3,

• the noise covariance in the source dynamic, Ση, obtained from the method in Section 4.4.

The computation of GC that characterized on state-space model follows the details in Section 2.4. It
consists of solving DARE (6) for the full model and reduced model. The DARE solutions, denoted by
P can be obtained by using dare command in MATLAB.
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Full model. We solve DARE for full model by using (A,C,Σw,Ση) as input parameters to obtain
P (as the covariance error of ẑ) and then the covariance of source estimation error is obtained from
Σ = CPCT with dimension m×m.

Reduced model. There are m components in x. Suppose we would like to test if xj (for a given
j ∈ {1, . . . ,m}, is a cause the other m− 1 variables, we solve DARE for a reduced model when xj is
removed. Thus, we perform the following steps:

• Remove xj from (1b). This equivalent to deleting the jth row of C and obtain CR as the output
matrix in the reduced model.

• The noise covariance of η in the reduced model is ΣR
η which is obtained by deleting the jth row

and column of Ση.

• Solve DARE using (A,CR,Σw,Σ
R
η ) as input parameters to obtain PR (the covariance error of

ẑ in the reduced model.) Compute the covariance error of x̂ as ΣR = CRPR(CR)T , that has
size (m− 1)× (m− 1).

• Compute Fij from (7) for i = 1, . . . ,m, except i = j (since Fjj ̸= 0 and we are not interested
in learning causality from xj to itself.)

The above steps are then repeated for j = 1, . . . ,m and we obtain the GC matrix, F where its zero
entries indicate the pair of variables that contain no causality.

We can learn a Granger causality pattern of a time series by a statistical test on the Granger causality
measure described in (7). If one uses VAR models, the test becomes the log-likelihood ratio test for
a nested VAR model. Moreover, GC inference of VAR models can be represented in many equivalent
forms other than VAR parameters such as autocovariance sequence and cross-power spectral density
where a MATLAB toolbox for this test is available [BS14]. However, it was stated in [BS15] that
as the GC inference measure in (7) does not have a theoretical asymptotic distribution, a significance
testing can be alternatively done through permutation or bootstrapping methods. In their experimental
results, however, it was suggested that the test statistics is well-approximated by a Γ distribution.

This section describes a scheme of learning significant GC pattern proposed in our work [PiS19]
(the following contents are taken out from this publication.) Firstly, we construct a set of the sample
means of F estimated. Let N0 be the number trials of EEG time series. Subspace identification is
performed to each of these trials to estimate A and C and the noise covariances in (1a)-(1b). We
estimated GC matrices (F ) by solving Riccati equation explained in Section 2.4. We then take the
average over N1 samples out of these N0 samples of F and obtain F̄ in the amount of N2 = N0/N1

samples. As the distribution of all entries in F is unknown, we can apply the central limit theorem
to claim that if N1 is large enough, the entries in F̄ approach a Gaussian distribution. When all
(i, j) entries of F̄ are pooled together (F̄ is vectorized), their histogram is shown in Figure 6 and we
recognize that it consists of several components of Gaussian distributions having different means and
variances. The Gaussian with the lowest mean corresponds to small (i, j) entries in F̄ implying that
these entries should be regarded as no Granger causality. Other Gaussian components refer to entries
in F̄ having significant magnitudes, so Granger causality exists in these (i, j) entries.

Following this observation, we propose to fit a Gaussian Mixture Model (GMM) [HTF09] to samples
of vectorized F̄ . Denote Y the random variable of vectorized F̄ . The GMM model takes the form of

Y = Z1Y1 + Z2Y2 + · · ·+ ZKYK

where K is the number of Gaussian components, Yk is the Gaussian variable with parameter (µk, σ
2
k)

for k = 1, . . . ,K and (Z1, . . . , ZK) is the latent variable having a multinomial distribution, i.e., possible
values of Z are

Z = (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)

and each of the value above is associated with a multinomial pmf π = (π1, π2, . . . , πK). Whenever it
is given that Z = ek (a standard unit vector), Y is distributed by the kth Gaussian model. The pdf of
Y is given by

f(y) = π1f1(y;µ1, σ
2
1) + · · ·+ πKfK(y;µK , σ2

K)
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Figure 6: Examples of fitting GMM to vectorized F̄ in the training set.

where fk is the Gaussian density for k = 1, . . . ,K. We assume that the Gaussian components are
sorted according to the lowest to highest µk. After fitting GMM with EM (Expected-Maximization
algorithm), we can classify each of (i, j) entries of F̄ into two groups: zero Granger causality (null)
and significant Granger causality (causal) by the following methods:

• The entries clustered by the posterior probabilities into the first Gaussian component with pa-
rameter (µ1, σ

2
1) are regarded as null. The entries clustered into the other K − 1 components

are classified as causal. Here, the posterior probabilities are computed as

fk(y|Z = k;µk, σ
2
k)P (Z = ek;µk, σ

2
k)

for k = 1, . . . ,K.

• We consider the first two distributions: f1 and f2 where they should be regarded as the pdfs of
null and causal entries, respectively. We determine a threshold yc such that

log f1(yc;µ1, σ
2
1) = log f2(yc;µ2, σ

2
2).

If a sample of entry in F̄ is greater than yc, we classify it as causal entry and null otherwise.

The scheme we have explained can be summarized in Figure 7. The implementation of our approach
also involves choosing the number of components in GMM. We have considered three indices: BIC,
relative change of BIC [MP04, §6.9] and Silhouette score. The first lowest number of components
having the relative change of BIC less than a threshold is selected. The Silhouette score ranges from
−1 to 1 indicating the degree to which the data are well-clustered [KR09, §2.2]. AIC score is not in
consideration here because it tends to choose a complex model. We will examine the performances of
our approach based on these three options.

22



Training 
K - mixture 

Gaussian model

Learned GC pattern

...

...

...

...
Clustering by 

posterior 
probability

 

GMM models

averaging averaging averaging averaging

samples of estimated GC matrices

Figure 7: The proposed scheme of learning causality pattern from estimated GC matrices (F ).

4.6 Performance evaluation
We aim to evaluate the performance of our method on simulated EEG data set first. In data generating
process, we can set up model dimensions (n,m, r) and a ground-truth sparsity pattern on GC matrix
associated with such models. In an estimation process, one needs to assume the model dimension;
here let (m̃, ñ) be the number of sources and latents in the estimation which could be larger or smaller
than (m,n), while r (the number of EEG channels) is certainly known. Then it leads to a condition
in an evaluation procedure since the estimated matrix F of size m̃× m̃ has a different dimension from
the ground-truth matrix F . Secondly, when considering the performance of detecting causality in each
of (i, j) entries in F , this is a kind of binary classification problem. A sparsity pattern of estimated F
could come from two possibilities: one from regarding inactive sources reflected on sparse rows of C,
and the other is from the attempt to learn zeros in the ground-truth matrix F .

To classify the estimated Fij as zero or nonzero, we define nonzero as positive and zero as negative.
Hence, performance indices for Granger causality significance test are

• True positive (TP): correctly identified nonzeros in F

• True nagative (TN): correctly identified zeros in F

• False positive (FP): incorrectly identified nonzeros in F

• False negative (FN): incorrectly identified zeros in F

From these measures, we also apply the following traditional classification measures:

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN , (25)

True positive rate (TPR) =
TP

TP + FN , (26)

True negative rate (TNR) =
TN

TN + FP , (27)

False positive rate (FPR) =
FP

TN + FP = 1− TNR, (28)

False negative rate (FNR) =
FN

TP + FN = 1− TPR. (29)
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Figure 8: Example of Granger causality evaluation including active source regions, true source region
and estimated source region. Black ◦ are TP; Red ◦ are FP; Red × are FN and black × are TN.

Figure 9: Granger causality classification performance indices.

Recall that a ground-truth model used to generate data (1a)-(1c) is given by

z(t+ 1) = Az(t) + wt), x(t) = Cz(t) + η(t), y(t) = Lx(t) + v(t),

where z ∈ Rn, x ∈ Rm, y ∈ Rr. From the issue that the number of estimated sources (m̃) may
not be equal to the number of sources in ground-truth model (m), we describe how to calculate the
classification measures in a fair setting. In this study, we assume that m̃ > m since we can overestimate
the number of sources and we expect the source selection procedure to remove inactive sources at the
end. By this assumption, F̂ ∈ Rm̃×m̃, which is a matrix with a bigger size than the true Granger
causality matrix F ∈ Rm×m.

Figure 8 shows all three square regions involved in the evaluation process. We start with the true
source region (T) that contains all the sources in a ground-truth model, and since not all sources are
active, a subset called active source region (A) consists of all the true active sources where we can
reorder the source coordinates so that active sources contain in this region. We define the estimated
source region (E) as the set of all sources considered in an estimated model. By the assumption that
m̃ > m, then the true source region must lie inside the estimated source region. By these notations,
the set T − A contains all inactive sources in the ground-truth model (highlighted in the blue color),
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and E − T (green area) represents possible Granger causality that occurred in estimated sources that
do not exist in the ground-truth model. The circles ◦ denotes the predicted nonzero GC (nonzeros in
F̂ ), and the black circles are TP and while the red circles are FP. The cross signs denote the predicted
zero GC (zeros in F̂ ), and the red crosses are FN while the black crosses are TN.

Hence, when we evaluate an estimated GC matrix F̂ ∈ Rm̃×m̃, the following properties hold on the
regions shown in Figure 8.

• TP and FN only exist inside the active regions because nonzeros in F in a ground-truth model
can only exist in this region.

• TPR is equal in all regions because the numbers of TP are equal in all regions.

• If all active sources are correctly classified then there is no FP in the true source region and the
estimated source region.

• Predicted nonzeros in the green region are regarded as FP since there are no true sources there.

• A fair comparison should be tested on the true source region.

• ACC and TNR between regions cannot be compared because the numbers of negatives are
different in those regions.

• FP and FN on the estimated source region can only evaluated when a method is tested on a
simulated data sets as the ground-truth models and hence the true source region are known.

From above reasons, the performance on the active true source region reflects how high the method
can achieve in TPR. An overall performance of a method can be worse when evaluated on the true
source region since if the method predicts any nonzero in the inactive source region, it must be FP.
A good method should yield a high TNR on the blue area. Lastly, the performance evaluated on the
estimated source region can only drop if the method introduces unnecessary predicted nonzeros in the
green area. This arises from two possibilities: error from the source selection algorithm or error from
learning significant GC entries.

5 Simulation Results
This section illustrates experimental results of each process in our scheme shown in Figure 3. In what
follows, we refer Fij = 0 as null and Fij > 0 as causal entries.

5.1 Generating EEG data
The parameters of ground-truth models of source signals according to (1a) and (1b) are generated from
sparse VARMA models of order (3, 2) described in Section 4.1. The lead field matrix, L, is computed
based on the three-shell spherical head model with ICBM152 anatomical template using brainstorm
toolbox [T+11]. We select 28 number of brain sources from regions of interest (ROIs) based on
Automated Anatomical Labeling (AAL) template relied on T1 MRI image from MNI152 template.
Some of ROIs associates with emotional memory pathways including Amygdala, Frontal area, Motor
cortex and Occipital cortex. Moreover, additional ROIs including Angular, Insula, Lingual, Putamen
and Thalamus are added. The EEG channels are in 10-10 and 10-20 placement system, respectively.
Center of mass for each ROI is chosen to be the position of sources. The unit of lead field matrix
L is microvolts per nanoamp-meter, µV/(nA−m); the unit of EEG data is microvolts, µV , and the
unit of source signals is nanoamps-meter, nA −m. The noise variance of w, η and v are 10−4, 10−4

and 10−2 respectively. The number of state variables (or latents z), sources, and EEG channels in the
ground-truth models are denoted by n,m, r, respectively. In the model estimation process, m and n
must be set and we use notations of ñ, m̃. Therefore, L̃ also denotes the lead-field matrix used in the
estimation process which has size of r × m̃.
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5.2 Granger causality estimation of state-space models
Experiment setting. We generate time series data from a VARMA model with n = 20,m = 15 and
1000 data points. The generated ground-truth models can be categorized into two groups: weak and
strong causal models. The weak causal model represents the causality that have small values in F and
the strong causal model corresponds to a relatively high values in F . Hence, we expect that strong
causality should be more easily captured than the weak causality. In this experiment, the number of
trials (N0) is 20, 000 and the number of samples to calculate F̄ (N1) is 20. Therefore, the number
of F̄ matrices (N2) is 1, 000 and we use 10-fold cross validation to split the data set into training
and test sets. We perform model estimation The model parameters are estimated using training data
set and by the subspace identification method explained in Section 4.2. The computation of F and
learning its significant entries follows the details in Section 4.5. The number of GMM components is
varied from 1 to 10 and is chosen based on three scores: BIC, relative BIC and silhouette score. After
we obtain a GMM model used for clustering entries in F , we evaluate the accuracy on the test set.

Result. The histogram of vectorized F in Figure 6 appears to have multi-modal shape where the
number of modes (around 10) suggests us to vary GMM components from 1 to 10. Three criterion
choose different numbers of GMM components as shown in Table 1. Silhouette score tends to choose
less components, while BIC is prone to choose more components and the relative BIC performs in
between. Table 2 shows that GMM model performs a clustering in a good accuracy when the number of
components is suitably chosen and this is obtained by using the relative change of BIC as a criterion. We
achieve more accuracy when the ground-truth models have strong causality since the GMM components
of high mean can be well separated from the first component. When comparing the accuracies between
two methods of classifying null from causal entries, we find that the clustering method based on
comparing posterior probabilities given all estimated Gaussian components performs better than using
a threshold obtained from the log-likelihood ratio test between the first two Gaussian distributions
fitted by GMM.

Table 1: The number of mixture components selected by BIC, rBIC (relative change in BIC), and Silh
(Silhouette score).

N0 = 2000 N0 = 10000
Ground-truth model BIC rBIC Silh BIC rBIC Silh

Weak causality 6-9 4-7 2 7-10 4-7 2
Strong causality 6-8 3-5 2-6 6-10 3-6 2-7

Classification error in learning Granger causality
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Figure 10: A comparison of Granger causality detection errors between the GMM and t-test.

Figure 10 shows the classification errors in details and a comparison with t-test. As in average sense,
Table 1 suggests that BIC tends to choose a highest number of GMM components, it could create
an unnecessarily more Gaussian modes capturing small entries of F̄ . Therefore, it happens that we
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Table 2: The accuracy of classifying Granger causality as null or causal tested on data generated from
two types of ground-truth models. The approach is based on clustering method using GMM where the
number of mixture components is selected by BIC, rBIC (relative change in BIC), and Silh (Silhouette
score).

N0 = 2000
Weak causality Strong causality

BIC Thresholding 82.20 96.74
Clustering 91.40 98.78

rBIC Thresholding 92.22 97.41
Clustering 92.85 99.15

Silh Thresholding 64.02 83.68
Clustering 71.90 85.83

N0 = 10000
Weak causality Strong causality

BIC Thresholding 82.20 96.74
Clustering 85.25 99.20

rBIC Thresholding 92.22 97.41
Clustering 92.90 99.15

Silh Thresholding 64.02 83.68
Clustering 73.75 85.83

misclassify some entries as causal while it is supposed to be null, leading to the highest false positive in
this case. On the other hand, the silhouette score chooses the lowest number of GMM components, so
the model lacks of flexibility to explain detailed characteristics in multi-modal shapes of the histogram.
Then it is likely to misclassify causal entries as null, resulting in a high false negative. The performance
of GMM using relative change of BIC is therefore in between the two previous methods.

If we consider a conventional significance test as t-test, we found that the t-test in element-wise
manner is not suitable for testing H0 : Fij = 0 and H1 : Fij > 0 via computing the t-score as
t = F̄ij/SD(Fij)/

√
N1 where N1 is the number of samples used to compute F̄ij . Theoretically, GC

matrix is always nonnegative, F ≥ 0 but due to estimation error, the estimated Fij is always perturbed
from zero even the (i, j) is truly a null entry. From the t-score calculation, we find that SD(Fij) is
small and even smaller when N1 is large, so the score can be very high. Consequently, the test result
from t-test reject H0 most of the times, which reported in a high FPR, until the significant level α
is very low as shown in Figure 10. In conclusion, t-test should not be practically applied as the true
distribution of Fij is not normal.

5.3 Selecting active sources
In this experiment we show the performance of classifying active sources in two cases: i) m = 28, m̃ =
28, r = 65, and ii) m = 28, m̃ = 28, r = 19. These two cases show how the method performs when
the number of EEG sensors, r, increases (more measurement data are obtained) while assuming that
the number of sources, m is known. The objective of this experiment is to estimate model parameters
in (1b) that promote sparsity pattern in rows of C. The estimation procedure consists of two steps: a
state-space estimation of EEG time series as explained in Section 4.2 and the estimation of C given in
Section 4.3.

Simulated EEG data. The parameters of ground-truth source models are generated from the sparse
VARMA(3,2) models with dimension n = 30,m = 28 and only 10 sources are active. We consider
two EEG placement systems: i) 10-10 EEG placement when r = 65 and ii) 10-20 EEG placement
when r = 19. The noise variance of w, η and v are 10−4, 10−4 and 10−2 respectively. Ten different
ground-truth models were used to generate time series trials in this experiment.

Experiment setting: In the estimation process, we need to set the model configuration in two cases:
Case I. m̃ = 28 and r = 65: the number of estimated sources is less than the number of EEG sensors
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and Case II. m̃ = 28 and r = 19: the number of estimated sources is greater than the number of EEG
sensors. Varying λ in the formulation (19) gives us various sparsity patterns of rows in Ĉ. In all 10
trials, the range of λ chosen by BIC lies approximately in [10−6λmax, 10

−4λmax].

Results Figure 11 shows an example of estimated C. The left bar shows the zero pattern of rows in
the ground-truth C, while the middle figure shows the zero pattern of Ĉ using 65 EEG sensors (r = 65)
and the right figure shows Ĉ when using 19 EEG sensors (r = 19). The true active sources correspond
to nonzero row vectors CT

i where i = 1,3,5,6,12,14,18,20,25 and 28. If r is large (using more EEG
channels), rows having strong magnitudes of ĈT

i ’s are similar to the pattern of the true active sources
shown in the left bar of Figure 11. However, Ĉ still contains falsely nonzero rows (and have very small
coefficients) that do not exist in the ground-truth C; regarded as spurious active sources.
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24
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26
27
28

65 EEG channels 19 EEG channels

Figure 11: Example of zero patterns of estimated C. The color scale is proportional to magnitudes
of Cij ’s (white color refers to magnitude of zero). The black rows in the left vertical bar indicate the
nonzero rows of the true C.

Classification performance of the method which depends on λ is shown in Figure 12. Each point on
ROC curves refers to a classification result from a value of λ, where TP (TN) correspond to correctly
identified nonzero (zero) rows in Ĉ. The bottom left and top right corners of ROC correspond to
λ = λmax (sparsest Ĉ) and λ = 0 (densest Ĉ) respectively. Using more EEG channels yields a better
classification performance (we can almost reach 100% accuracy by some value of λ) and this can be
explained from the formulation (19) since r refers to the number of rows in H, equivalent to the
number of samples in a regression problem. However, λ suggested from BIC does not yield the best
performance on ROC curve , but it tends to choose the λ that provide a relatively denser solution in
Ĉ. Even though the pattern of estimated Ĉ in Figure 11 is similar to the true active sources, but it
still contains very small coefficients. This result may occur from the estimation process in subspace
identification, which contain estimation errors in H. In conclusion, our method can be used to select
the active sources using estimated model parameters from subspace identification. The more number
of EEG channels can help to improve the performance of our method.

5.4 Learned Granger causality
This experiment aims to show overall performance of our method that combines all the steps including
state-space estimation, source selection, noise covariance estimation, learning significant GC patterns
shown in Figure 3. We consider a realistic scenario where the number of estimated source could be
larger than the number of true source m̃ > m and see if the method can disregard the sources that
do not exist in the ground-truth model.
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Figure 12: Receiver operation characteristic (ROC) of active and inactive source classification under
various settings in number of EEG channels (r).

Experiment setting: Firstly, ground-truth sparse VARMA(3,2) models are generated with dimensions
of n = 15,m = 10, r = 25. The density of nonzeros in the ground-truth GC matrices are varied to
25%, 50% and 70% (by controlling sparsity of AR coefficients in VARMA models.) These three density
values refers to ground-truth model 1,2, and 3, respectively. The number of active and inactive sources
are both set to be 5. The EEG sensor is based on the extended 10-20 system. Variance of noises w, η(t)
and v are set to be 10−2, 10−2 and 10−4 respectively. Assume that all active sources in ground-truth
models are contained in estimated sources. The lead-field matrix L is calculated from the realistic
head model using brainstorm toolbox. Active sources are randomly selected from major ROIs including
Amygdala, Angular, Frontal lobes, Hippocampus, Lingual, Occipital, Motor area, Thalamus, Frontal,
Parietal and Temporal. The position of EEG sensors follows the EEG 10-20 system. We generate
10, 000 trials of EEG time series having time points of 1000, from the three ground-truth models.
Following our estimation methodology, we obtain 10, 000 estimated Granger causality matrices to be
evaluated. When learning significant GC by GMM, the number of GMM components is choosen from
the relative change of BIC.

Result: In estimation process, it requires assuming ñ and m̃ (dimensions of z, latents, and x, sources).
For ñ, it is chosen from the value that achieves a high average fitting over EEG 25 channels and from
many trials of time series. Figure 13 shows that the number of estimated latents that provides the
best fitting are in range from 4 to 7. As a result, we set n̂ = 5.

The performance of GC estimation follows the description in Section 4.6 where the true GC matrix
is extended to have same size as the estimated GC matrix (m̃× m̃) shown in Figure 14 so that we can
make a comparison with the estimated GC. It shows that strong causality in the ground-truth model
are observed in estimated model, i.e., darker dots in the estimated F appears in the same location as
those in the true F . The white area of the true F in the middle column contain no nonzeros entries
of F because there are no true sources there. We see from the right column that our method of
source selection performs well as it never detects nonzero in that region. However, we observe both
misclassified zeros and nonzeros in active source regions, then we show numerical overall performances
of learning GC from three ground-truth models in Table 3 where we can discuss performance results
in three aspects: i) choice of performance measures, ii) the density of ground-truth models and iii)
the evaluation region. When evaluated on the true source and estimated source regions, our method
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Figure 13: Example of fitting percentage of estimated model from Subspace identification averaged
over 25 EEG channels.
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Figure 14: Example of GC learned from simulated EEG data over 10,000 trials. (Left column.) The
histograms of vectorized GC matrices. (Middle column.) The GC pattern of the ground-truth model.
(Right column.) The average of estimated GC patterns.

achieves TNR higher than TPR for model 2 and 3 (sparser models) which means the method tends to
predict non-causality better. The density of ground-truth GC affects the results in the way that the
method is prone to perform better when the ground-truth models are sparse. The nominal performance
should be evaluated on the true source region and we achieve ACC = 88.19%, TPR = 80.05% and
TNR = 89.02%. Considering how the performance is changed on the estimated source region, we first
note that TPRs must be the same. The nominal value of TNR is improved when evaluated on the
estimated source region; showing that our method of source selection does not create much of spurious
causality in the region that does not contain the true sources. If we focus on the active source region,
the drop of TNR from its nominal can suggest us that the method of learning significant GC still
requires some room for improvement as it appears that portions of FP are created from the method in
the active source area. The averaged performances over all models is also illustrated in Figure 15.
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Table 3: The averages (%) of accuracy (ACC), true positive rate (TPR), and true negative rate (TNR)
of estimated Granger causality patterns over 120− 180 trials.

Models Estimated source region True source region Active source region
ACC TPR TNR ACC TPR TNR ACC TPR TNR

Model 1 75.95 82.97 75.69 75.89 82.97 75.28 73.53 82.97 69.15
Model 2 98.42 87.50 98.82 96.48 87.50 97.23 85.80 87.50 85.00
Model 3 96.53 70.77 98.11 92.18 70.77 95.38 68.73 70.77 66.53
Averaged 90.11 80.05 90.55 88.19 80.05 89.02 77.10 80.05 75.35
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Figure 15: The average performance measures over from the three ground-truth models.

6 Application to real EEG data
In this section, we perform an experiment on real EEG data sets and compare the findings with the
previous studies that also explore brain connectivities on this data set with other modalities, since the
true connectivity is unknown.

Data description. We consider on task-EEG data containing a steady state visual evoked potential
(SSVEP) EEG data. The data are recorded from a healthy volunteer with flickering visual stimulation
at 4 Hz using extended 10-20 system with 30 EEG channels. EEG data were recorded total 298 seconds
and contain three blocks of stimulation and each of stimulation blocks contains 44.7 seconds. Each of
EEG data trial is sampled using 1, 000 data points from stimulation period (three blocks with 11, 126
data points for each block), so we obtained 30 EEG data trials. More information about this data set
can be found in [DEK+11, PLGMBB+18].

Experiment setting. In estimation process, the state variable dimension (n) is selected from the
suggested model order selection in subspace identification toolbox (n4sid). The lead field matrix
is assumed to be computed from realistic SPM human head model. The selection of brain sources
follows the details in [PLGMBB+18] which includes the most actively ranked generators of Occipital
lobe, Temporal lobe and Frontal lobe. We sample three sources from each of six ROIs including

• left Occipital lobe (OL-L), right Occipital lobe (OL-R),

• left Temporal lobe (TL-L), right Temporal lobe (TL-R),
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Figure 16: A color scale of Ĉ from source selection process using λ chosen from BIC. The estimated
Ĉ’s are averaged over 30 trials.

• left Frontal lobe (FL-L), right Frontal lobe (FL-R),

then total number of considered sources (m̃) is 3× 6 = 18.

Result. We expect to observe the relationship between OL and OR from using SSVEP data. Figure
16 shows the performance of source selection where each row correspond to each source in the ROI. Our
method learned that the most active sources are from occipital lobes (OL-L and OL-R). The finding
that activities from occipital lobes are outstanding from other sources is no surprising as SSVEP EEG
data were obtained in a paradigm that visual cortices were stimulated where it is known that OL is an
area responsible for visual processing center. This agrees with [DEK+11] that showed that the activated
regions occured in the visual cortex area. We validate our connectivity result with [PLGMBB+18] which
also revealed that the strong causality between OL are observed in SSVEP data. However, causalities
in the areas of FL and TL are rarely observed in Figure 16. Moreover, we observe that some of FL
is a Granger cause to OL as shown in rows of OL-L and OL-R corresponding to columns of FL-L and
FL-R. However, a causality from TL is not detected in our result.

Finally, the average Granger causality based on ROIs is shown in Figure 18. The ROI-based
connectivity matrix reveals the strongest causality is found between occipital lobes as expected from
visual stimulation. Moreover, a causality between FL and OL is detected. To interpret this result, we
found that the connectivity between OL and FL also existed when using other modalities such as the
human SSVEP fMRI in [S+07] and rat SSVEP EEG in [L+15].
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Figure 17: Average of estimated GC from SSVEP EEG data.
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Figure 18: Average of estimated GC ROI-based from SSVEP EEG data. (Left.) Before clustering
process by GMM. (Right.) After after clustering process by GMM.

7 Conclusion
This project studies about an estimation of linear dynamical models for EEG time series and aims to
use the model parameters to infer causalities among source signals, or brain activities, in a human
brain. The model equations explain coupled dynamics of source signals and scalp EEG signals where
only EEG can be measured. The definition of relationships among variables follows the idea of Granger
causality (GC) that has been well-established and applied on vector autoregressive (VAR) models. This
work extends the VAR models to a more general class, a state-space equation which can be equivalently
transformed to a vector autoregressive moving average (VARMA) model. The GC characterization on
state-space equation is highly nonlinear in system parameters and can be numerically computed via
solving the discrete Riccati algebratic equation. The result is called a GC matrix of size m×m where
m is number of sources, the variables we aim to find a connectivity among them.

In order to estimate such GC matrices, we have proposed a statistical learning scheme consisting of i)
state-space estimation using subspace identification, ii) source selection to classify inactive from active
sources, iii) estimation of noise covariances, and iv) learning significant entries in the GC matrices.
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In estimation process, one needs to assume model dimensions which may not correctly agree with
that of the ground-truth model, we also propose descriptions of evaluation method in different cases.
The main contributions of this work are an estimation formulation of classifying active sources based
on ℓ21-regularized regression, a formulation of estimating noise covariances based on a semidefinite
programming, a scheme of learning significant entries of GC matrix based on Gaussian mixture model
(GMM), and lastly, a combined scheme of all four procedures.

The estimation of mapping from latents to source, or our source selection process performs ac-
ceptably well according to the obtained ROC curve. The highest performance can be achieved if the
penalty parameter λ is chosen appropriately, while currently, applying a model selection criterion, BIC,
to choose λ may not yield the optimal performance yet. The performance is shown to be improved
if one uses a higher number of EEG channels as it corresponds to having more data samples in the
estimation. The scheme of learning GC significance using GMM requires many EEG trials to obtain
multi-trial of estimated GC matrices, so that its sample mean can be approximated by a Gaussian dis-
tribution. As a result, GMM can be used to cluster different modes in the vectorized GC matrix. The
results showed that clustering insignificant entries using posterior probabilities achieves the accuracy
of 92 − 99% for a moderate sample size setting and it is obtained when the number of GMM modes
is chosen by the relative change of BIC. The overall performance when combining all the procedures
achieve the accuracy of 75 − 96% when evaluated on the true source region. The accuracies can be
vary upon the density of sparsity level in the ground-truth model. Moreover, we conclude that our
source selection method is likely to detect inactive source correctly as TNR is not deteriorated from
the true source region to the estimated source region (where there is no source there.) However, our
scheme of learning GC significance using GMM could be further improved since the overall performance
decreases (due to a drop in TNR) when evaluating on the active source region. The performance of
our method on real data set is evaluated on SSVEP EEG data whose setting is to stimulate human
brain in visual cortex area. One of our results is consistent to this setting and previous studies in the
sense that a strong causality is found between occipital lobes which are known to be related to a task
of visual processing.

Many practical concerns and limitations of the method can be concluded. Firstly, it requires
an approximate of the lead-field matrix (L) which needs information about sensor position, source
position, and a head model. In our opinion, the latter appears to be most uncertain parameter as
different subjects would correspond to different head models but this information is unlikely to be
exactly known. Secondly, the clustering process using GMM requires multi-trial of EEG time series,
which may not be easily obtained in practice. If one has a few trials of time series with a certain length,
it is more beneficial to use long data points to improve estimation results (in subspace identification
and source selection process), rather than chopping data in to several trials so that GMM can apply.
In many situations, it is also possible to obtain a long multi trial of EEG data as the sampling rate of
EEG is very high.
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Appendix: Lead field matrix toolbox
A lead field matrix L is a matrix transformation from sources to scalp EEG signals. We describe how
to generate lead field matrix from realistic prior information such as MRI template, Brain tissue map
and others. Main templates that we used in this work include ICBM template and MNI152 template.

• ICBM (International Consortium for Brain Mapping) template is the average of T1 weighted MRI
data from single subject with 27 obtained data. The template is aligned within the stereotaxic
space which based on Talairach-Tournoux brain atlas.

• MNI152 (Montreal Neurological Institute) template is an improvement brain template from ICBM
by using MRI scans from 152 subjects to locate structures inside the brain.

The brainstorm toolbox in MATLAB is used to generate lead field in our experiments. Prior knowledges
for lead field matrix calculation are

• Head model: the model of human’s head from ICBM152

• Brain tissue map or TPM: the model of brain tissue from ICBM152

• MRI template: we use T1 images from MNI152 template

• Sensor placement system: the position of sensor placement from 10-20 system

• ROI template: the template of regions of interest based on Automated Anatomical Labeling
(AAL) template which relies on T1 MRI image from MNI152 template

Firstly, subject’s anatomy information is added including head model and brain tissue map as shown
in Figure 19 Consequently, reference MRI data is added to the subject’s anatomy information. In this

Figure 19: The brain tissue map with a subject head model.

work, we use T1 MRI image from MNI152 which allows us to extract regions of interest (ROI) easily
(details are described later). A preprocessing of MRI data, such as slice timing, realignment, is needed
for adding MRI data to the subject’s information. Moreover, coregistration is performed to adjust
coordinates of brain tissue map to MRI data as shown in Figure 20. Next, we fit sensor placement
from 10-20 system template to the subject’s head model as shown in Figure 21. Then, position of
each sensor on subject’s head model can be obtained. However, coordinate system of anatomy data is
different. The original coordinate system for brain data is Talairach atlas. Talairach coordinate system
relies on two points: AC (Anterior commissure) point and PC (Posterior commissure) point. MRI and
MNI coordinate system are used to index voxels in the space of MRI volume. SCS (Subject Coordinate
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Figure 20: The result of coregistration brain tissue map with the MRI data.

Figure 21: 10-20 system sensor placement based on the subject’s head model.

system) is the coordinate system based on Nasion, LPA (left pre-auricular point) and RPA (right pre-
auricular point) of subject. MRI data relies on MNI coordinate system but sensor placement system is
associated with SCS coordinate system. The position of source is obtained from Marsbar toolbox, an
additional toolbox in SPM which can extract ROI position easily. ROI data is based on avg152T1 MRI
template and the coordinate system relies on MNI coordinate system. The coordinate transform is
needed to transform from MNI coordinate system to SCS coordinate system. Consequently, positions
of all sources are added then we can compute the lead field matrix from all information.

The result is 3-dimensional lead field matrix gain, L, which describe the propagation of each source
to each sensor taking a form of

L =


(Lx)11 (Ly)11 (Lz)11 · · · (Lx)1m (Ly)1m (Lz)1m
(Lx)21 (Ly)21 (Lz)21 · · · (Lx)2m (Ly)2m (Lz)2m

...
...

... . . . ...
...

...
(Lx)r1 (Ly)r1 (Lz)r1 · · · (Lx)rm (Ly)rm (Lz)rm

 (30)

where m is a number of sources, r is a number of EEG sensors and subscript x, y, z are the direction
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Figure 22: An example of ROI data from marsbar toolbox in SPM12.

of electrical propagation in each axis. The forward problem is described by

y(t) = Lx(t),
y1(t)
y2(y)

...
yr(t)

 =


L11 L12 · · · L1m

L21 L22 · · · L2m

...
... . . . ...

Lr1 Lr2 · · · Lrm



x1(t)
x2(y)

...

...
xm(t)

 .

where yi(t) is the ith EEG signal, xj(t) is the jth source signal and Lij is a lead field gain from jth
source to ith EEG sensor. As a result, we can compute the matrix L from L by using direction normal
vectors from each source to each sensor.

Lij =
[
(Lx)ij (Ly)ij (Lz)ij

] (ex)ij(ey)ij
(ez)ij

 (31)

where eij =
[
(ex)

T
ij (ey)

T
ij (ez)

T
ij

]T is the direction normal vector from jth source to ith EEG
sensor.

The unit of lead-field gain matrix is volt per amp meter (V/A-m). In general, the unit of EEG data
is µV then the suggested unit for lead field matrix is µV/µA-mm.
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