Graphical models of time series: parameter estimation and topology selection

Jitkomut Songsiri

Electrical Engineering Department University of California, Los Angeles

Sep 3, 2008

Outline

- Introduction
- Graphical Models and Conditional Independence
- Convex Formulation of ML Estimation of Autoregressive Models
- Examples
- Conclusions and Future Plans

Graphical Models

represent dependency or causality structure between random variables

- economics (interexchange rates, stock prices, etc.)
- brain networks (functional connectivity between brain regions)
- haemodynamic systems (heart rate, blood pressure, etc.)

• . . .

Conditional Independence Graph

- Nodes correspond to random variables X_i
- Link (i, j) is absent if X_i and X_j are **conditionally independent**

- visual representation of the relation between many variables
- by exploiting the graph structure, many large-scale problems can be solved with less complexity

Conditional Independence for Gaussian Time series

Gaussian random variable $X \sim \mathcal{N}(0, \Sigma)$

 X_i and X_j are conditionally independent if $(\Sigma^{-1})_{ij} = 0$ (Demster (1972))

Gaussian time series $X(t) = (X_1(t), X_2(t), \dots, X_n(t))$, $t \in \mathbb{Z}$

 X_i and X_j are conditionally independent if $(S(\omega)^{-1})_{ij} = 0$, $\forall \omega$

 $S(\omega)$ is the spectral density matrix of x(t)(Brillinger (1996))

ML Estimation of Autoregressive Models with

Conditional Independence Constraints

Multivariate Autoregressive Model

$$y(t) = -A_1 y(t-1) - A_2 y(t-2) - \dots - A_p y(t-p) + w(t)$$

- $w(t) \sim \mathcal{N}(0, \Sigma)$
- $A_k \in \mathbf{R}^{n \times n}$
- Equivalent form :

$$B_0 y(t) = -B_1 y(t-1) - B_2 y(t-2) - \dots - B_p y(t-p) + v(t)$$

- $v(t) \sim \mathcal{N}(0, I)$
- $B_0 = \Sigma^{-1/2}$
- $B_k = \Sigma^{-1/2} A_k$, k = 1, ..., p

Characterization of Conditional Independence

$$S(z)^{-1} = Y_0 + \sum_{k=1}^{p} \left(z^{-k} Y_k + z^k Y_k^T \right)$$
$$Y_k = \sum_{i=0}^{p-k} B_i^T B_{i+k} , \ k = 0, 1, \dots, p$$

 Y_k is the sum of k^{th} -off-diagonal blocks of $B^T B$, $B = \begin{bmatrix} B_0 & B_1 & \dots & B_p \end{bmatrix}$

$$[S(\omega)^{-1}]_{ij} = 0 \quad \iff \quad [Y_k]_{ij} = [Y_k]_{ji} = 0 , \ k = 0, \dots, p$$

Conditional Maximum-likelihood Estimation

- N + p measurements, $y_1, y_2, \ldots, y_{N+p}$
- \bullet Condition on the initial p states
- Log-likelihood function:

$$\log L(B) = N \log \det B_0 - \frac{N}{2} \operatorname{tr} (RB^T B),$$

where

$$R = \frac{HH^{T}}{N}, \qquad H = \begin{bmatrix} y_{p+1} & y_{p+2} & \dots & y_{N+p} \\ y_{p} & y_{p+1} & \dots & y_{N+p-1} \\ \vdots & \vdots & & \vdots \\ y_{1} & y_{2} & \dots & y_{N} \end{bmatrix}$$

Summary

minimize
$$-\log \det B_0 + \frac{1}{2} \operatorname{tr}(RB^T B)$$

subject to $Y_k = \sum_{i=0}^{p-k} B_i^T B_{i+k}, \ k = 0, 1, \dots, p$
 $[Y_k]_{ij} = [Y_k]_{ji} = 0, \ k = 0, \dots, p, \ (i, j) \in \mathcal{V}.$

variables •
$$B = (B_0, B_1, \dots, B_p) \in \mathbf{S}^n \oplus \mathbf{R}^{n \times np}$$

• $Y_0 \in \mathbf{S}^n$, $Y_k \in \mathbf{R}^{n \times n}$, $k = 1, \dots, p$

Nonconvex because of quadratic equality constraints

Convex Formulation

Notation

 $P: \mathbf{S}^n \to \mathbf{S}^n_{\mathcal{V}}$ is a projection of X on \mathcal{V}

$$P(X)_{ij} = \begin{cases} X_{ij} & (i,j) \in \mathcal{V} \\ 0 & \text{otherwise.} \end{cases}$$

example $\mathcal{V} = \{(1,3), (1,4), (2,4), (3,5)\}$

Convex Formulation

Conditional ML Estimation

minimize
$$-\log \det B_0 + \frac{1}{2} \operatorname{tr}(RB^T B)$$

subject to $P(\sum_{i=0}^{p-k} B_i^T B_{i+k}) = 0, k = 0, 1, \dots p$

variable
$$B = (B_0, B_1, \ldots, B_p) \in \mathbf{S}^n \oplus \mathbf{R}^{n \times np}$$

Equivalent Form

minimize
$$-\log \det X_{00} + \operatorname{tr}(RX)$$

subject to $P\left(\sum_{i=0}^{p-k} X_{i,i+k}\right) = 0, \quad k = 0, 1, \dots, p$
 $X \succeq 0, \operatorname{rank}(X) = n$ (P2)

variable $X \in \mathbf{S}^{n(p+1)}$ with $X = B^T B$

(P1)

Relaxation

minimize
$$-\log \det X_{00} + \operatorname{tr}(RX)$$

subject to $P\left(\sum_{i=0}^{p-k} X_{i,i+k}\right) = 0, \quad k = 0, 1, \dots, p$ (P3)
 $X \succeq 0$

variable $X \in \mathbf{S}^{n(p+1)}$

- The optimal value of (P3) is less than or equal to the optimal value of (P2), since we minimize on a larger set
- If X^* has rank n, then by factorizing $X^* = B^T B$, B must be optimal in (P1)
- The relaxation is exact if X^* always has rank n

Exactness of Relaxation

• The low-rank property of X^{\ast} can be proved for block-Toeplitz and positive definite R

$$R = \begin{bmatrix} R_0 & R_1 & \cdots & R_p \\ R_1^T & R_0 & \cdots & R_{p-1} \\ \vdots & \vdots & \ddots & \vdots \\ R_p^T & R_{p-1}^T & \cdots & R_0 \end{bmatrix}$$

• For almost-Toeplitz

$$R = \frac{HH^T}{N},$$

 X^* has low rank in the experiments. R is close to a block-Toeplitz matrix when $N \to \infty$

Dual Problem

maximize
$$\log \det W + n$$

subject to $\begin{bmatrix} W & 0 \\ 0 & 0 \end{bmatrix} \preceq R + P(Z)$ (D3)

variables
$$W \in \mathbf{S}^n$$
 and $Z = \begin{bmatrix} Z_0 & Z_1 & \cdots & Z_p \\ Z_1^T & Z_0 & \cdots & Z_{p-1} \\ \vdots & \vdots & \ddots & \vdots \\ Z_p^T & Z_{p-1}^T & \cdots & Z_0 \end{bmatrix}$, $Z_k \in \mathbf{R}^{n \times n}$

 ${\cal P}(Z)$ is the blockwise projection of ${\cal Z}$

- X = I is strictly feasible \Rightarrow Slater's condition holds \Rightarrow Strong duality holds and the dual optimum is attained if the optimal value is finite
- Z = 0 is strictly feasible \Rightarrow the primal optimum is attained

Karush-Kuhn-Tucker (KKT) Conditions

1. Primal feasibility.

$$X \succeq 0, \qquad X_{00} \succ 0, \qquad P(\sum_{i=0}^{p-k} X_{i,i+k}) = 0, \quad k = 0, \dots, p.$$

2. Dual feasibility.

$$W \succ 0, \qquad R + P(Z) \succeq \begin{bmatrix} W & 0 \\ 0 & 0 \end{bmatrix}.$$

3. Zero duality gap.

$$X_{00}^{-1} = W,$$
 $\operatorname{tr}\left(X\left(R+P(Z)-\left[\begin{array}{cc}W&0\\0&0\end{array}\right]\right)\right)=0.$

Low-rank Property of X^*

Let R be a symmetric block-Toeplitz matrix.

$$R \succeq \begin{bmatrix} I_n & 0\\ 0 & 0 \end{bmatrix} \implies R \succ 0$$

The low-rank property of X^{\ast} follows from

$$R + P(Z^*) \succeq \begin{bmatrix} W^* & 0\\ 0 & 0 \end{bmatrix} \implies R + P(Z^*) \succ 0$$

and

$$X^* \left(R + P(Z^*) - \left[\begin{array}{cc} W^* & 0\\ 0 & 0 \end{array} \right] \right) = 0$$

Primal and Dual Problems

Examples

- Air pollution data
- Stock return data
- fMRI data

Model Selection Problem

- L : maximized log-likelihood
- N : sample size
- k : number of effective parameters

An autoregressive model of order p has p+1 parameters, B_0,\ldots,B_p

$$k = \frac{n(n+1)}{2} - |\mathcal{V}| + p(n^2 - 2|\mathcal{V}|)$$

$$\begin{vmatrix} \text{AIC} &= 2k - 2L \\ \text{AIC}_c &= 2k \left(\frac{N}{N-k-1}\right) - 2L \\ \text{BIC} &= k \log N - 2L \end{vmatrix}$$

Terminology

Coherence spectrum

$$\bar{S}(\omega) = U(\omega)S(\omega)U^{H}(\omega) , \quad U(\omega) = \begin{bmatrix} S_{11}^{-1/2}(\omega) & & \\ & \ddots & \\ & & S_{nn}^{-1/2}(\omega) \end{bmatrix}$$

i.e., normalized spectral density matrix

Partial coherence spectrum (with $G(\omega) = S(\omega)^{-1}$)

$$\bar{G}(\omega) = V(\omega)G(\omega)V^{H}(\omega) , \quad V(\omega) = \begin{bmatrix} G_{11}^{-1/2}(\omega) & & \\ & \ddots & \\ & & G_{nn}^{-1/2}(\omega) \end{bmatrix}$$

i.e., normalized inverse of spectral density matrix

Example I : Air Pollution Data

- CO, NO, NO₂, O₃, and solar radiation intensity
- recorded from Jan 1 to Dec 31, 2006 from Azusa, Los Angeles

Average of daily data

Example I : Air Pollution Data

Example II : Stock Return Data

Stock closing prices of 5 markets in Europe:

- FTSE 100 share index (United Kingdom)
- CAC 40 (France)
- Frankfurt DAX 30 composite index (Germany)
- MIBTEL (Italy)
- Austrian Traded index ATX (Austria)

recorded from Jan 1, 1999- Jul 31, 2008

Markets	EMU	Non-EMU
LARGE	FR,GE,IT	UK
SMALL	AU	

Example II : Stock Return Data

Example II: Stock Return Data

- The large markets are highly correlated
- UK has a strong connection via France only
- The small market, AU is likely to be isolated from the others

Example II : Stock Return Data

Partial mutual information

$$I = -\frac{1}{2\pi} \int_0^{2\pi} \log(1 - |\bar{G}(\omega)|^2) \, d\omega.$$

(g) AIC, p = 14

(h) BIC, p = 1

Example III: fMRI Data

Average of fMRI time series over all voxels

- Four subregions (IFG, IFS, LOT, STS) are activated by 4 visual stimuli
- The stimuli involve images of pictures and words
- Average the data over all voxels in each region

Example III: fMRI Data

Summaries and Future Plans

Summaries

- We consider conditional independence of multivariate Gaussian time series and its graphical representation
- Maximum-likelihood estimation of AR models with conditional independence constraints leads to a nonconvex problem
- A convex formulation provides exact solutions to ML problem by showing that the optimal solution has low rank
- Graphical inference problems can be solved by fitting AR models according to all possible sparsity constraints
- The best topogology is selected by applying some model selection criterion such as AIC, BIC
- The method is applied to air pollution data, stock index returns, and fMRI data

Future Plans

Model and topology selection

- The goal is to recover the sparsity pattern in Y_k automatically
- The location of zeros in all matrices Y_k must be the same

$$\begin{array}{ll} \text{maximize} & \log \det X_{00} - \operatorname{tr}(RX) + \gamma \|W\|_1 \\ \text{subject to} & Y_k = \sum_{i=0}^{p-k} X_{i,i+k} \ , \ k = 0, 1, \dots, p \\ \\ & -W_{ij} \leq [Y_k]_{ij} \leq W_{ij}, \quad \forall i \neq j, k = 0, 1, \dots p \\ & X \succeq 0, \quad W_{ij} \geq 0, \quad \forall i \neq j. \end{array}$$

- γ is the regularization parameter
- W is the maximum modulus of all matrices Y_k except diagonal elements

Future Plans

Extension of the proof to non-Toeplitz ${\it R}$

- The matrix R in the ML problem is close to a block-Toeplitz matrix if the sample size (N) is relatively large
- Relax the assumption in the proof to almost-Toeplitz ${\cal R}$

Granger causality

- defined in terms of predictibility. The cause should improve the predictions of the effect
- correspond to sparse AR coefficients and sparse covariance matrix of the input noise
- has a convex formulation for solving maximum-likelihood estimation of AR models with Granger causality constraints
- has wide applications in economic time series and neural systems (Eicheler (2005), Valdes-Sosa et.al (2005), Fujita et.al (2007), etc.)

Future Plans

fMRI application

- requires refinements of AR model
 - categorical inputs
 - switching
 - dependence on subjects
- Vast literatures on functional connectivity

```
(Friston (1994), Cohen (1997), Boynton (1996), Josephs (1997), Rajapakse (1998), Friston (2005))
```