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Abstract—Granger graphical models explain Granger causal-
ity between variables in time series through an estimation of zero
pattern of coefficients in multivariate autoregressive (AR) models.
In this paper, we consider a problem of estimating multiple
Granger graphical models simultaneously that share similar
topology structures from a set of time series data belonging to
distinct classes. This is achieved by estimating a group of AR
models and employing group fused lasso penalties to promote
sparsity in AR coefficients of each model and sparsity in the
difference between AR coefficients from two adjacent models. The
resulting problem is in a class of group fused lasso formulation
which fits nicely in a convex framework and then can be
solved by a fast alternating directions method of multipliers
(ADMM) algorithm. Advantages of the proposed method and the
performance of the algorithm are illustrated through randomly
generated data in a high-dimensional setting.

I. INTRODUCTION

There has been a growing interest on exploring causal
structures in multivariate time series considered in a num-
ber of fields, including biology, neuroscience, and finance;
see examples in [1], [2], [3], [4]. Such relationship can be
represented as a graphical model where the directional edges
specify the Granger causality structure of variables [5], which
states that time series yi is Granger-caused by time series yj if
knowing the past values of yj helps improve the prediction of
yi. The characterization of Granger causality for autoregressive
processes which is widely used to model multivariate time
series turns out to be very simple. Consider a q-dimensional
autoregressive (AR) process of order p given by

y(t) = A1y(t−1)+A2y(t−2)+ · · ·+Apy(t−p)+u(t) (1)

where y(·) ∈ Rq, Ak ∈ Rq×q , k = 1, 2, . . . , p and u(·) is
input noise. The absence of a directed edge from node j to
node i illustrates that yi is not Granger-caused by yj and this
can be characterized in terms of AR coefficients as [5]

(Ak)ij = 0, k = 1, 2, . . . , p (2)

(where (Ak)ij denotes the (i, j) entry of Ak.) To explore
Granger causality underlying in the data, we fit an AR model
to a time series of interest and determine the zero entries in the
estimated AR coefficients. To this end, an estimation problem
based on the least-squares method with ℓ1-regularization for
learning Granger graphical models of time series was proposed
in [6], [7]; see related work and applications in the references
therein. The problem in [6] was regarded as a group lasso
formulation [8] which is widely-known in the area of sparse
estimation.

In this paper, we extend the work in [6] to the task of
learning K Granger graphical models of from K sets of
time series under the assumption that the K graphical models
are similar (having some common edges) with some certain
differences. As an application of this framework, we can
consider a problem of learning brain networks from fMRI
(function magnetic resonance imaging) time series of two types
of patients: healthy patient and disordered patient (such as
patients having cancer, Alzheimer, or Schizophrenia.) Brain
connectivity networks of the two groups are expected to share
some common connections due to a normal operation of brain
functioning but they should not be identical because of some
abnormality from the disease. Therefore, simply estimating
a brain network of each group of patient separately fails to
make use the fact that the two graphical models should be
substantially similar. It is thus reasonable to jointly estimate the
two graphical models such that they are promoted to have some
common edges but at the same time we allow them to have
some certain differences. To this end, we propose an ℓ1 penalty
on the consecutive difference between the AR coefficients of
K models. This idea was initiated from a formulation called
fused lasso [9], [10] where the goal is to promote sparsity
in both the coefficients of the solution and their successive
differences.

Related ideas include problems of learning multiple Gaus-
sian graphical models [11], [12], [13], [14] which encodes
the conditional dependence relationships among multivariate
random variables. Learning a single Gaussian graphical model
is based on estimating a sparse inverse of covariance matrix
which can be formulated as a maximum likelihood estimation
with ℓ1 penalty on the inverse covariance. In those work,
jointly estimating multiple models was obtained by adding an
ℓ1 penalty on the differences between the inverse covariance
matrices of multiple models and has been typically known
as fused graphical lasso formulation. While this approach is
useful for many applications such as learning gene expression
network, or micro-array data, etc., its main limitation is that it
cannot be applicable to time series data.

We state the problem more clearly in Section II and
show that it can be regarded as a group fused lasso problem
in Section III, where we illustrate the effectiveness of our
approach over the group lasso formulation. Our approach for
learning multiple Granger graphical models can be formulated
as a convex optimization, which can be readily solved by
a generic solver such as SDPT3 or SeDumi called from a
MATLAB package CVX [15]. To solve the problem in large



scale, we apply an efficient alternating directions method of
multipliers (ADMM) algorithm [16] that is greatly faster than
generic convex optimization solvers and has been used for
solving problems in related fields recently. Details of the
algorithm is described in Section IV and numerical examples
on synthetic data are presented in Section V.

II. PROBLEM STATEMENT

In [6], the author has proposed an estimation formula-
tion for learning a Granger graphical model of time series.
Given the measurements y(1), y(2), . . . , y(N), the problem
is essentially to fit an AR process to measurement data in
a least-squares sense, while to promote sparsity in the AR
coefficients. The cost objective in the resulting optimization
problem consists of two terms: the quadratic penalty and the
ℓ1-regularization term, which can be described as

min
A

1
2∥Y −AH∥22 + λ

∑
i ̸=j

∥[(A1)ij (A2)ij · · · (Ap)ij ]∥2
(3)

with variables A = (A1, . . . , Ap), and Ak ∈ Rq×q , k =
1, . . . , p. The matrices Y and H contain the past measurements
of y(t). The first term in the objective represents a quadratic
goodness of fit indicating the mismatch error between the
model and the data. The second term which is an ℓ1 penalty
promotes a group sparsity in all time-lag AR coefficients
(applied only the off-diagonal entries) and the sparseness can
be controlled via the positive-valued regularization parameter
λ. If multiple sets of time series data are given without any
assumption on the similarity among those data sets, estimation
of multiple AR models with Granger causality can then be
obtained by solving (3) independently.

We propose a problem of jointly estimating K autoregres-
sive models where a common Granger-causality structure in
K models is referred as

minimize
A(1),...,A(K)

K∑
k=1

1

2
∥Y (k)−A(k)H(k)∥22+λ1

∑
i̸=j

K∑
k=1

∥∥∥B(k)
ij

∥∥∥
2

+ λ2

∑
i ̸=j

K−1∑
k=1

∥∥∥B(k+1)
ij −B

(k)
ij

∥∥∥
2

(4)

where B
(k)
ij =

[
(A

(k)
1 )ij (A

(k)
2 )ij · · · (A

(k)
p )ij

]T
∈ Rp.

The notation A(k) = (A
(k)
1 , . . . , A

(k)
p ) refers to the AR coeffi-

cients of the kth model; Y (k) and H(k) contain measurement
data of the kth time series. The two regularization parameters,
λ1 and λ2, are positive real numbers. The third term in
the objective is a sum of 2-norm which is an ℓ1 penalty
applied on the differences between corresponding off-diagonal
elements of AR coefficients from two consecutive models.
When the tuning parameter λ2 is large enough, many elements
of (A(1))ij , (A

(2))ij , . . . , (A
(K))ij will be identical, resulting

in a set of common edges in the K graphical models. When λ1

is large enough, many elements of (A(k))ij (for some k) will
be zero which indicates that sparse AR models are obtained.
Therefore, this formulation encourages not only the sparseness
of the models, but also similar network structure and similar
AR coefficients across the K models.

As a toy example to illustrate an advantage of this formu-
lation, we solve (4) by using q = 3, p = 2 and K = 3, i.e., we

estimate three 3-dimensional AR models of order 2. In the first
case, we set λ2 to be relatively large (compared to λ1). This
means we aim to have common values of AR coefficients in
the three models. Figure 1 shows the q2 values of (A(k))ij and
it illustrates that for each time-lag coefficient (each column in
the figure), all the three models share the same off-diagonal
coefficient values (blue circles) if we set λ2 to be large enough.
However, the diagonal entries of AR coefficients (red squares)
from the three models can be different. In the second case,
if λ1 is relatively large (compared to λ2), this means sparse
models are preferred but all the K network structures do not
need to lie in common. Therefore, Figure 2 shows that for
each time-lag coefficient (each column in the figure), all the
three models could have different coefficients. However, each
model (each row in the figure) contains many zero coefficients
and the zero entries of each time-lag coefficient must occur at
the same location because we promote a group sparsity across
(A

(k)
1 )ij , . . . , (A

(k)
p )ij .
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Fig. 1. Profiles of AR coefficients estimated by solving (4) when λ2 is
sufficiently large. Red squares denote the diagonal entries and blue circles
denote the off-diagonal entries of AR coefficients.
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Fig. 2. Profiles of AR coefficients estimated by solving (4) when λ1 is
sufficiently large. Red circles denote the zero entries and blue circles denote
the nonzero entries of AR coefficients.



III. GROUP FUSED LASSO VS GROUP LASSO

In this section, we rewrite the problem (4) into a vector
form, and show that the problem can be regarded as a group
fused Lasso formulation [17]. Define

x =
(
B

(1)
11 , . . . , B

(K)
11 , B

(1)
12 , . . . , B

(K)
12 , . . . , B(1)

qq , . . . , B(K)
qq

)
.

(5)
In another word, x is obtained by vectorizing the AR coef-
ficients of the K models. x has n entries where n = q2pK
and can be partitioned into q2 main blocks. Each main block
has K subblocks; each of which has size p. Suppose z =
(z1, z2, . . . , zL) and zk ∈ Rp for k = 1, 2, . . . , L. Define the
sum of 2-norm: ∥z∥2,1 =

∑L
k=1 ∥zk∥2 and a projection matrix

P ∈ R(q2−q)×q2 such that for any matrix X ∈ Rq×q , the off-
diagonal entries of X is obtained by P ·vec(X). For example,
for X = [xij ] ∈ R2×2

P =

[
0 1 0 0

0 0 1 0

]
, P · vec(X) =

[
x21

x12

]
.

As a result, the second term of the objective in (4) can be
written as λ2∥Px∥2,1 where P = P ⊗ IpK . Moreover, the last
term of the objective in (4) can be expressed as λ2∥Dx∥2,1
where D = P ⊗D and D is the forward difference matrix:

D =


−Ip Ip

−Ip Ip
. . . . . .

−Ip Ip

 .

By the definition of x in (5), it is straightforward (but requires
some derivation we opt to omit the details) to rewrite the
problem (4) in a vector form as

minimize
x

(1/2)∥Gx− b∥22 + λ1∥Px∥2,1 + λ2∥Dx∥2,1 (6)

with variable x ∈ Rn. The matrices G ∈ Rm×n, b ∈ Rm,P ∈
Rs×n and D ∈ Rr×n are parameters of the problem. It can be
shown that G is a sparse matrix. Moreover, G and b contain the
measurement values of K time series y(1)(t), . . . , y(K)(t) for
t = 1, 2, . . . , N . The dimensions of G, b,P and D are related
to those of (4) by n = q2pK,m = nNK, s = (n2 − n)pK
and r = (n2 − n)p(K − 1).

When λ2 = 0 and λ1 > 0, the problem (6) reduces to the
group lasso formulation [8], [18] and it essentially becomes
the problem (3) considered in [6]. The resulting problem
corresponds to estimating multiple AR models independently
and as we increase λ1, we obtain sparser models. If λ1 = 0 and
λ2 > 0, then the problem (6) is in a class of total variation
regularized problem [19] which finds many applications in-
cluding image reconstruction [20], [21] or estimation of piece-
wise constant parameters in time-varying models [22]. The
key feature that these work have in common is the additional
penalty on the difference of two successive variables (the term
∥Dx∥2,1) in the cost objective of their formulations. When
both λ1 and λ2 are positive and p = 1 in (4) (estimating a first-
order AR process), then it is equivalent to replacing the sum
of 2-norm in (6) by the 1-norm where we neglect the group
structure of the variable. In this case, the problem is simplified
to fused lasso proposed by [9]. For p > 1, the problem (6) is
termed as group fused lasso problem and has been discussed

in [17] with the application of image denoising. We note that
the formulation in [17] is identical to (6) when P = I and
D = D, or equivalently when q = 1, i.e., we estimate a scalar
AR process.

IV. ALTERNATING DIRECTION METHOD OF MULTIPLIERS
(ADMM)

In this section we describe an efficient algorithm for solv-
ing the problem (6) in large scale through convex optimization
techniques. Due to non-differentiability of ∥ · ∥2,1 terms in
the cost objective, we explore gradient-based methods that are
applicable to non-smooth problems. The alternating direction
method of multiplier (ADMM), which is a Douglas-Rachford
splitting technique applied to the dual problem [16], [23] is
one of the techniques that has been recently applied to many
large-scale machine learning problems due to i) its inexpensive
computational cost per iteration and ii) its favorably fast con-
vergence in practice. To apply this method, we reformulate the
problem by splitting the cost objective into several terms and
introducing some auxiliary variables and equality constraints.
In [23], it can be shown that ADMM can also be represented
as a proximal algorithm since its update rule relies on the
use of proximal operators. A proximal method is a technique
to minimize convex problems (but possibly non-smooth) by
splitting the cost objective into several terms, one of which
is differentiable and the iteration rule involves performing
the proximal operators of the splitted functions. A proximal
method can be beneficial only when the cost of computing
proximal operators is cheap depending on how we split the
cost function. Therefore, different splitting results in different
implementations of the proximal method for the same problem,
and not all of them is efficient.

In what follows, we shall explain in details how to split the
cost objective in (6) that leads to efficient ADMM framework
and describe the algorithm with implementation. If we define

f(x) = (1/2)∥Gx− b∥22,
g(x) = λ1∥x∥2,1, h(x) = λ2∥x∥2,1

then we can rearrange (6) into ADMM format as

minimize f(x1) + g(x2) + h(x3)

subject to
[
P
D

]
x1 =

[
x2

x3

]
(7)

with variables x1 ∈ Rn, x2 ∈ Rs and x3 ∈ Rr. The
augmented Lagrangian which is the Lagrangian function plus
the quadratic penalty for the constraint is given by

Lρ = f(x1) + g(x2) + h(x3) + (ρ/2)∥Px1 − x2 + z1/ρ∥22
+ (ρ/2)∥Dx1 − x3 + z2/ρ∥22, (8)

where ρ > 0 is called the penalty parameter and its value
affects the convergence speed. The ADMM algorithm is to
perform minimization on the augmented Lagrangian over x1

and (x2, x3) alternatingly. Since the terms involving x2 and
x3 in Lρ are separable, we can minimize Lρ over x2 and x3

separately. Denote x+
i the updated variable in the next step.



By following the details in [16], the update rule is given by

x+
1 = argmin

x1

1

2
∥Gx1 − b∥22 +

ρ

2
∥Px1 − x2 + z1/ρ∥22

+
ρ

2
∥Dx1 − x2 + z2/t∥22, (9)

x+
2 = argmin

x2

λ1∥x2∥2,1 +
ρ

2
∥Px+

1 − x2 + z1/ρ∥22, (10)

x+
3 = argmin

x3

λ2∥x3∥2,1 +
ρ

2
∥Dx+

1 − x3 + z2/ρ∥22, (11)

z+1 = z1 + ρ(Px+
1 − x+

2 ), (12)
z+2 = z2 + ρ(Dx+

1 − x+
3 ). (13)

The x1-update can be obtained in closed form by setting the
gradient of the objective to zero. This gives the linear equation:[

GTG+ ρ(PTP +DTD)
]
x+
1 =

GT b+ PT (ρx2 − z1) +DT (ρx3 − z2). (14)

Since GTG + ρ(PTP + DTD) is positive definite, we can
perform a Cholesky factorization and cache the Cholesky
factor, denoted by L. We also note that PTP is diagonal;
DTD is a banded matrix and GTG can be shown to be
sparse. Hence, performing Cholesky factorization can be very
efficient (and further improved if we exploit the structure of
GTG+ ρ(PTP +DTD)) and L is also sparse. The update on
x1 is then obtained by solving the linear equations: LT v = c,
Lx1 = v, where c = GT b+ PT (ρx2 − z1) +DT (ρx3 − z2).

The updates on x2 and x3 share the same structure which
can be written in a general form as

minimize
x

γ∥x∥2,1 + (1/2)∥x− u∥22,

for some γ > 0 and u ∈ Rn. Suppose u and x can be parti-
tioned into L blocks. The above problem is known as finding
the proximal operator of f1(x) = ∥x∥2,1 =

∑L
k=1 ∥xk∥2

which can be obtained in closed-form as

proxγf1(u) = argmin
x

γ∥x∥2,1 + (1/2)∥x− u∥22,

(proxγf1(u))k = max

{
1− γ

∥uk∥2
, 0

}
uk,

for k = 1, 2, . . . , L. The proximal operator of the sum
of 2-norm function is typically known as the block soft
thresholding operator [23]. As for completeness of the
ADMM algorithm for solving (6), we describe the update
rule explicitly as follows.

ADMM for Group Fused Lasso problem. Initialize
x1, x2, x3, z1, z2. Set an ADMM parameter ρ > 0. Denote
(x, x+) the variables in the current and next iteration, respec-
tively. Repeat the following steps

c = GT b+ PT (ρx2 − z1) +DT (ρx3 − z2),

x+
1 =

[
GTG+ ρ(PTP +DTD)

]−1
c,

x+
2 = prox(λ1/ρ)f1(Px+

1 + z1/ρ),

x+
3 = prox(λ2/ρ)f1(Dx+

1 + z2/ρ),

z+1 = z1 + ρ(Px+
1 − x+

2 ),

z+2 = z2 + ρ(Dx+
1 − x+

3 ),

until the primal residual, r and the dual residual, s, are less
than some tolerance values:

∥r∥2 =

∥∥∥∥[Px1 − x2

Dx1 − x3

]∥∥∥∥
2

≤ ϵpri,

∥s∥2 = ρ

∥∥∥∥[PT (x+
2 − x2)

DT (x+
3 − x3)

]∥∥∥∥
2

≤ ϵdual.

The tolerance values ϵpri and ϵdual can be computed
according to [16]. We see that the iteration will return x2 as
sparse vector due to the block soft-thresholding operator, while
x1 is close to x2 but not sparse.

Lastly we have some following comments on other algo-
rithms that are related to our problem. i) Another accelerated
proximal gradient algorithm such as FISTA (which has been
applied extensively in many image processing problems [20],
[24]) cannot apply to (6) directly since the resulting update rule
would involve finding the proximal operator of the sum of two
functions (λ1∥Px∥2,1 + λ2∥Dx∥2,1) which cannot be readily
built by the proximal operator of each function. ii) While the
general setting of our problem and the formulation considered
in [17] are not identical, it could be possible that the algorithm
used in [17] could be applicable to ours. In [17], they applied
FISTA algorithm and solve the proximal operator of the sum
of two functions by the proximal Dykstra algorithm [25].
To this end, it requires computing the proximal operator of
∥Px∥2,1 and ∥Dx∥2,1 separately. The first proximal operator is
simple, but the latter has to be solved by the projected gradient
algorithm on the dual of proximal problem. As a result, it
requires solving a subproblem in each iteration of the FISTA
update. We believe that the ADMM method should be more
efficient and can be implemented more directly in this problem.
iii) Our problem (6) can be fit into the framework considered
in [21] where their primary focus is on the primal-dual splitting
technique that compares favorably with the Douglas-Rachford
algorithm applied to the primal or to the dual problem (the
latter is ADMM).

V. NUMERICAL EXAMPLES

In this section, first we illustrate an advantage of using
the group fused lasso formulation in estimating multiple AR
models with the assumption that these AR models are sparse
and have a similar topology of Granger causality network. To
this end, we consider three 10-dimensional stable AR models
of order 2, i.e., q = 10, p = 2,K = 3. Then we set A(2) =
A(1) and add a few nonzero off-diagonal entries on A(2) and
do the same for A(3). We generate 100 data sets; each of
which contains 50 points of time series corrupted by noise of
unit variance. We note that the number of samples (N = 50)
is fairly low compared to the number of estimation variables.
Grid values of (λ1, λ2) in log-scale are chosen. For each fixed
λ2 there exists a closed-form expression of the maximum value
of λ1 such that the estimated model is the sparsest. This value
of λ1,max is derived from the optimality condition, but due to
space limitation, we do not include the formula here. For each
pair of (λ1, λ2) we solve (6) and obtain the estimated Granger
structure through the estimated zero pattern of AR coefficients
and compare it with the true structure. Figure 3 displays the
plot of True Positive Rate (TPR) versus the False Positive Rate
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(FPR) that are averaged over the 100 data sets. At a fixed
value of False Positives Rate, we see the curves from Group
Fused Lasso model (blue circles) lie above the Group Lasso
model (black squares) indicating that our approach yields a
more accurate Granger structure as we increase λ2 since we
put more penalty on forcing the K models to be similar.

Figure 4 explains a trade-off between the model errors
and the model sparseness but the model errors tend to be
increasing if the estimated Granger network is too dense
(overfitting problem.) We see that the Group Fused Lasso
yields a lower model error than that of the Group Lasso model
as λ2 increases.

The grey scale binary matrices in Figure 5 represent one
realization of the estimated zero patterns of AR coefficients
from the three models where black color represents nonzero
entries of B
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ij for k = 1, 2, 3. We select the zero patterns
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Fig. 5. Zero pattern of the estimated AR coefficients from Group Fused
Lasso (middle row) and Group Lasso (bottom row) formulations compared to
the true sparsity pattern.

estimated from Group Fused Lasso and Group Lasso that
yield about the same FPR which is approximately around
0.21 − 0.23. We see that the Granger causality networks of
Group Fused Lasso models share a high similarity among the
three models (by selecting λ2 to be large enough). However, if
we estimate the three AR models separately, then the Granger
structures shown in the bottom row of Figure 5 are quite
different.

In the last experiment, in order to solve large-scale prob-
lems in many applications, we illustrate the efficiency of
the ADMM algorithm when the problem dimension becomes
moderate to large. We solve the problem (6) with n = 4800.
Figure 6 (a) shows the relative error ∥x(k) − x⋆∥/∥x⋆∥ where
x(k) denotes the solution from ADMM algorithm at the kth

iteration and x⋆ is computed using CVX [15], which is a
MATLAB package for solving generic convex optimization
problems and returns a solution with high accuracy. The
ADMM parameter (ρ) was tuned by trial and error to give a fast
convergence. As can be seen, the ADMM algorithm can return
a solution with relative error of 10−3 just by a few hundred
iterations and within 2 − 3 seconds. In the next experiment,
we increase the problem dimension to n = 30, 000. In this
setting, a generic solver called by CVX faces a memory storage
problem. We run ADMM for 10, 000 iterations and assume
that its objective after 10, 000 iteration, denoted by p⋆ is
a nearly optimal value. Figure 6 (b) shows (p(k) − p⋆)/p⋆

versus the iteration number, k, where p(k) is the objective
of (7) at iteration k. It clearly shows that we can achieve
the relative error of 10−6 just by 300 iterations and this
takes only around 300 − 400 seconds, given that we have up
to 30, 000 variables. All the experiments are programmed in
MATLAB, and executed in PC with Intel Core i3 2.9 Hz and
RAM 2GB. We also note that the convergence speed depends
on the choice of ρ and our observation found that setting
ρ ≈ 10max{λ1, λ2} gives a good convergence result but we
do not have a theoretical explanation to support this.
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VI. CONCLUSIONS

We have presented an optimization formulation for es-
timating jointly multiple autoregressive models with sparse
coefficients and similarity Granger causality across the models.
Applications of this work includes learning multiple Granger
graphical models of time series such as fMRI collected from
different patient’s conditions where the goal is to learn brain
connectivities with some common edges but allow them to
have some structured differences due to variation in patient’s
condition. Our approach is based on the use of the sum of
2-norm of the difference between the AR coefficients of suc-
cessive models. The problem can be cast as a group fused lasso
formulation which also finds many other applications such as
total variation regularized problems in image reconstruction.
We have solved the problem via the ADMM method which in-
volves solving linear equations, matrix addition/multiplication,
and performing block soft thresholding in each iteration.
These operations can be implemented cheaply and even more
efficiently if sparse structures of the problem parameters are
further exploited. Numerical examples on synthetic data sets
showed that using the group fused lasso formulation yields a
better estimation result given that the true models have some
common structures.
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