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Abstract

This research concerns the design of a controller for a flexible robot arm, which is
modelled as a flexible beam clamped to a motor at the one end and free at the other end.
A mass is also attached to the free end of the beam. This system can be described by
an Euler-Bernoulli partial differential equation with initial and boundary conditions. In
order to reduce the vibration of the tip mass, we apply a control law, which is a linear
combination of the tip deflection and a linear functional of the beam deflection, through
the motor acceleration. We show that the infinitesimal generator of the closed-loop sys-
tem generates a contraction semigroup. Since the spectrum of a closed operator need not
to have only the eigenvalues, it is rather difficult to analyze the stability of the system by
using spectrum analysis approach. One of the techniques which is used here is to prove
that the spectrum set consists only of eigenvalues by using Sobolev Imbedding theorem.
We then prove that the closed-loop system is asymptotically stable.

Keywords: flexible beam, infinite-dimensional, semigroup

1 Introduction

In this paper, we consider a flexible robot arm, which is modelled as a flexible beam clamped
to a motor at the one end and free at the other end. A mass is also attached to the free
end of the beam. The behavior of the system can be described by an Euler-Bernoulli partial
differential equation, together with appropriate initial and boundary conditions. Thus, the
system is infinite-dimensional.

In general, we can formulate a linear infinite-dimensional control system into an abstract
Cauchy problem on a Banach space (or Hilbert space) Z

ż(t) = Az(t) + Bu(t), t ≥ 0, z(0) = z0 ∈ D(A) (1)

where A is a closed operator with D(A) dense in Z. The solution of this problem is

z(t) = T (t)z0 +

∫ t

0

T (t− s)u(s)ds (2)

where T (t) is a C0-semigroup of bounded operator on Z and it is the general form of eAt in
case of finite-dimensional systems.

∗Author to whom all correspondence should be addressed. Email: advmath@hotmail.com. Tel: +66-2
218-6487, Fax: +66-2 251-8991.

1



One way to design a controller for an infinite-dimensional control system is that we find a
finite-dimensional model, and then design the controller for this approximated model. How-
ever, neglecting the high frequency dynamics by using an approximated model may lead to a
“spillover” effect, which can destroy the stability of the original system. One of the papers
describing about this effect is Bontsema and Curtain [1]. They showed that spillover can only
occur if the approximation error exceeds the robustness margin of the controller. Moreover,
Ballas [2] examined the spillover effect due to uncontrolled high frequency modes, which lead
to closed-loop instabilities. From this viewpoint, the controller design for the original system
using the infinite-dimensional system approach is an alternative way that will be considered
here.

In previous works about flexible robot arms using infinite-dimensional models, there are
many ways to prove the (asymptotic or exponential) stability of the system. For example,
Guo [3, 4] used Riesz basis approach to prove exponential stability. They showed that there
is a sequence of generalized eigenfunctions of operator A forms Riesz basis for the state-space
and the spectral determined growth condition holds. Chen et. al. [5] and Morgül [6, 7] used the
energy multiplier method. The principle is to find the summation of the energy and a multiplier
function. The latter should be chosen in such a way that the summation, which represents the
energy of state variables, decreases exponentially. The choices of the energy multiplier function
depend on the system equations and the boundary conditions. Luo [8] proposed a direct strain
feedback and introduced a concept of A-dependent operator, which accounts for the proof of
the existence, uniqueness, and stability of the solution. The proof details were discussed later
in [9]. Luo et. al. [9] employed the frequency domain approach. They proved that norm of
the resolvent operator is uniformly bounded to obtain the exponential stability. Matsuno et.
al. [10, 11] applied LaSalle’s invariance principle which is the extension of Lyapunov stability
to the infinite-dimensional systems.

However, in the above-mentioned works, the effects of the tip mass and the motion of the
motor were not at once included in the mathematical model. Therefore, in this work, we will
consider them simultaneously and propose a control law to stabilize the system. Here we apply
a feedback through the angular acceleration of the motor to reduce the vibration of the tip mass.
The proposed control law is a linear combination of the tip deflection and a linear functional of
the beam deflection. We then prove that the closed-loop system is asymptotically stable. The
remainder of this paper is organized as follows.

In section 2, we consider a flexible beam system. The equations of motion can be represented
by partial differential equations with boundary conditions, which are examined in [9, 12, 13].
We then proposed the control law and formulate the closed-loop system equation into standard
form. In section 3, we first investigate the properties of the infinitesimal generator. We prove
that it generates a contraction semigroup and its spectrum consists of only isolated eigenvalues.
Then the asymptotic stability proof is obtained from the spectrum analysis by showing that
the real parts of the eigenvalues are less than zero. Finally, the conclusion is given in section 4.

2 System Equations

Consider a flexible beam in Fig 1, where w(t) is the deflection of the beam and θ(t) is the motor
angle. The equations of motion for this system are given by

ẅ(x, t) +
EI

ρ
w′′′′(x, t) = −xθ̈(t) 0 < x < l , t > 0, (3)

w(0, t) = w′(0, t) = w′′(l, t) = 0, (4)

m
[
ẅ(x, t) + lθ̈(t)

]
= EIw′′′(l, t), (5)

IHθ̈(t) = τ(t) + EIw′′(0, t). (6)
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Figure 1: Flexible beam

where the constants EI, ρ,m, IH and l are the physical parameters of the system.
We apply the feedback control law

τ(t) = −EIw′′(0, t) + KIH (ρ 〈ẇ, x〉+ mlẇ(l, t)) (7)

where K > 0 is a constant. Substituting (7) into (6), we get the closed-loop system

ẅ(x, t) +
EI

ρ
w′′′′(x, t) = −xK (ρ 〈ẇ, x〉+ mlẇ(l, t)) , (8)

w(0, t) = w′(0, t) = w′′(l, t) = 0, (9)

mẅ(x, t) + mlK (ρ 〈ẇ, x〉+ mlẇ(l, t)) = EIw′′′(l, t). (10)

Let us introduce a Hilbert space

H2
0 (0, l) =

{
u ∈ H2(0, l) | u(0) = u′(0) = 0

}
(11)

with a norm ‖u‖H2
0

= ‖u′′‖L2 and consider the Hilbert space H = H2
0 (0, l)⊕ L2(0, l)⊕ C with

an inner product,
〈u, v〉 = EI 〈u′′1, v′′1〉H + ρ 〈u2, v2〉H + m 〈u3, v3〉C . (12)

To prove thatH is a Hilbert space, we will use lemma 2.1, theorem 2.2, lemma 2.3 and lemma 2.4
respectively. Firstly, the proof that H2

0 (0, l) is a Hilbert space needs lemma 2.1 as follows.

Lemma 2.1 H2
0 (0, l) is a closed subspace of H2(0, l).

Proof. Let zn ∈ H2
0 (0, l) and zn → z

‖zn − z‖2
2 + ‖z′n − z′‖2

2 + ‖z′′n − z′′‖2
2 → 0 , n →∞

Therefore, each term must converge to zero. Since zn → z in L2 norm, there is a subsequence
znk

which converges to z almost everywhere. From the Sobolev Imbedding theorem, H2
0 (0, l) ⊂

C1
B(0, l). We can say that zn is a continuous function and so znk

is. As a result, znk
converges

to z everywhere. Consequently, we can conclude that

znk
(0) = 0 =⇒ z(0) = 0

Similarly, we get
z′nk

(0) = 0 =⇒ z′(0) = 0

That is z ∈ H2
0 (0, l). It shows that H2

0 (0, l) is a closed subspace of H2(0, l) �
Since every close subspace of a complete space is also complete, H2

0 (0, l) is a Hilbert space
with the norm defined by the conventional Sobolev norm (‖u‖2

H2 = ‖u‖2+‖u′‖2+‖u′′‖2). Next,
we will show that a newly-defined norm,

‖u‖2
H2

0
= ‖u′′‖2

is equivalent to the conventional one in lemma 2.4 by applying theorem 2.2 and lemma 2.3 as
follows.
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Theorem 2.2 Let Ω be an open interval in R and if u ∈ H1(Ω), then u is absolutely continuous.
Proof. see [14]

Lemma 2.3
‖w‖2 ≤ l4‖w′′‖2, ∀w ∈ H2

0 (0, l) (13)

Proof. From theorem 2.2 we can write the following,

w(x) =

∫ x

0

w′(x)dx + w(0).

Then,

|w(x)| ≤
∫ x

0

|w′(x)|dx ≤
∫ l

0

|w′(x)|dx

|w(x)|2 ≤
[∫ l

0

|w′(x)|dx

]2

≤ l‖w′‖2

That is,

‖w‖2 =

∫ l

0

|w(x)|2dx ≤ l2‖w′‖2 (14)

Similarly,

|w′(x)| ≤
∫ x

0

|w′′(x)|dx ≤
∫ l

0

|w′′(x)|dx

|w′(x)|2 ≤
[∫ l

0

|w′′(x)|dx

]2

≤ l‖w′′(x)‖2

‖w′‖2 =

∫ l

0

|w′(x)|2dx ≤ l2‖w′′‖2 (15)

The proof is complete by applying (15) to (14). �

Lemma 2.4 Define ‖w‖2
H2

0
= ‖w′′‖2, and we have the following.

‖ · ‖H2
0
∼ ‖ · ‖H2

Proof. If w ∈ H2
0 (0, l), from lemma 2.3 we get,

‖w‖2 + ‖w′‖2 + ‖w′′‖2 ≤ (l4 + l2 + 1)‖w′′‖2

and since
‖w′′‖2 ≤ ‖w‖2 + ‖w′‖2 + ‖w′′‖2,

we have
(‖w‖2 + ‖w′‖2 + ‖w′′‖2)

(l4 + l2 + 1)
≤ ‖w′′‖2 ≤ ‖w‖2 + ‖w′‖2 + ‖w′′‖2

It shows that ‖ · ‖H2
0
∼ ‖ · ‖H2 �

Thus, from lemma 2.4, H2
0 (0, l) is also a Hilbert space with the newly-defined norm. There-

fore, the proof that H is a Hilbert space can be explained as follows.

Theorem 2.5 H is a Hilbert space.
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Proof. Let zn = (z1n, z2n, z3n) be a Cauchy sequence in H,

EI‖z′′1n − z′′1m‖2 + ρ‖z2n − z2m‖2 + m|z3n − z3m|2 → 0 n, m →∞

Consider the first term in the left, since this norm is equivalent to the Sobolev norm and H2
0 (0, l)

is a Hilbert space, z1n converges to a member in H2
0 (0, l), says z1. Likewise, since L2(0, l) and

C are Hilbert spaces, z2n converges to z2 in L2(0, l) and z3n converges to z3 in C. Hence,
‖zn − z‖2

H → 0, where z ∈ H. This means every Cauchy sequence in H converges to a member
in H. Thus, H is a Hilbert space. �

Subsequently, we can write (8)-(10) in the form u̇ = Au where,

u(t) =
[
w(·, t) ẇ(·, t) ẇ(l, t)

]T ∈ H

A =

 0 I 0

−EI
ρ

∂4

∂x4 −Kxρ 〈·, x〉 −Kxml
EI
m

∂3

∂x3 |x=l −Klρ 〈·, x〉 −Klml

 (16)

D(A) =
{
(u1, u2, u3) ∈ H4(0, l)⊕H2

0 (0, l)⊕ C | u1(0) = u′1(0) = u′′1(l) = 0, u2(l) = u3

}
(17)

Note that A is an unbounded operator on this Hilbert space H. In the next section, we will
show that A generates a C0 semigroup.

3 Main Results

In this section, we will describe the main results of the paper as follows:
The first result is to show that A in (16) is an infinitesimal generator of a contraction

semigroup by applying the following theorem.

Theorem 3.1 [15] Let A be a closed operator with D(A) dense in Z. If

Re 〈Az, z〉 ≤ ω‖z‖2 ∀z ∈ D(A) (18)

Re 〈A∗z, z〉 ≤ ω‖z‖2 ∀z ∈ D(A∗) (19)

then A is the infinitesimal generator of a C0 semigroup T (t) satisfying ‖T (t)‖ ≤ eωt.

Lemma 3.2 Let A be defined as in (16). Then,

i. A−1 exists and is bound on H.

ii. A is a densely defined closed operator in H.

Proof. (i) A direct computation reveals that

A−1v =

 K
EI

q2(x)[ρ 〈v1, x〉+ mlv1(l)]− ρ
EI

∫ x

0

∫ x4

0

∫ l

x3

∫ l

x2
v2(x1)dx1dx2dx3dx4 + m

EI
q1(x)v3

v1(x)
v1(l)


(20)

where

q1(x) =
x3

6
− lx2

2
, q2(x) = ρ

(
l2x3

12
− l3x2

6
− x5

120

)
+ mlq1(x).

Let u =
[
u1 u2 u3

]T
= A−1v. Consider its norm,

u′′1(x) =
K

EI
{ρ 〈v1, x〉+ mlv1(l)} q′′2(x) +

m

EI
q′′1(x)v3 −

ρ

EI

∫ l

x

∫ l

x2

v2(x1)dx1dx2.
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It follows that

‖u′′1‖2 ≤ 4

∥∥∥∥ K

EI
ρ 〈v1, x〉 q′′2

∥∥∥∥2

+ 4

∥∥∥∥ K

EI
mlv1(l)q

′′
2

∥∥∥∥2

+ 4
∥∥∥mv3

EI
q′′1

∥∥∥2

+ 4

∥∥∥∥ ρ

EI

∫ l

x

∫ l

x2

v2(x1)dx1dx2

∥∥∥∥2

≤ 4

∣∣∣∣Kρ

EI

∣∣∣∣2 ‖q′′2‖2| 〈v1, x〉 |2 + 4

∣∣∣∣Kml

EI

∣∣∣∣2 ‖q′′2‖2|v1(l)|2

+4
∣∣∣ m

EI

∣∣∣2 ‖q′′1‖2|v3|2 + 4
∣∣∣ ρ

EI

∣∣∣2 ∫ l

0

∣∣∣∣∫ l

x

∫ l

x2

v2(x1)dx1dx2

∣∣∣∣2 dx.

Since q′′1 , q
′′
2 ∈ L2(0, l), we can define

C1 = 4

∣∣∣∣Kρ

EI

∣∣∣∣2 ‖q′′2‖2 , C2 = 4

∣∣∣∣Kml

EI

∣∣∣∣2 ‖q′′2‖2,

C3 = 4
∣∣∣ m

EI

∣∣∣2 ‖q′′1‖2 , C4 = 4
∣∣∣ ρ

EI

∣∣∣2 .

Consequently,

‖u′′1(x)‖2 ≤ C1‖v1‖2 · l3

3
+ C2|v1(l)|2 + C3|v3|2 + C4l sup

x∈(0,l)

∣∣∣∣∫ l

x

∫ l

x2

v2(x1)dx1dx2

∣∣∣∣2
≤ C1l

3

3
l4‖v′′1‖2 + C ′

2‖v′′1‖2 + C3|v3|2 + C4l sup
x∈(0,l)

∫ l

x

∣∣∣∣∫ l

x2

v2(x1)dx1

∣∣∣∣2 dx2 (21)

≤ C1l
7

3
‖v′′1‖2 + C ′

2‖v′′1‖2 + C3|v3|2 + C4l

∫ l

0

∣∣∣∣∫ l

x2

v2(x1)dx1

∣∣∣∣2 dx2

≤
(

C1l
7

3
+ C ′

2

)
‖v′′1‖2 + C3|v3|2 + C4l

2 sup
x2∈(0,l)

∣∣∣∣∫ l

x2

v2(x1)dx1

∣∣∣∣2
≤

(
C1l

7

3
+ C ′

2

)
‖v′′1‖2 + C3|v3|2 + C4l

2 sup
x2∈(0,l)

∫ l

x2

|v2(x1)|2 dx1

≤
(

C1l
7

3
+ C ′

2

)
‖v′′1‖2 + C3|v3|2 + C4l

2‖v2‖2, (22)

where the first and second term in (21) comes from (13) and the Sobolev Imbedding theorem
in (54) respectively.

For u2(x) = v1(x) and using (13), we get

‖u2‖2 = ‖v1‖2 ≤ l4‖v′′1‖2. (23)

Similarly, for u3 = v1(l) and from (54), we obtain

|u3|2 = |v1(l)|2 ≤ C5‖v′′1‖2. (24)

From (22)-(24),

‖u‖2
H = EI‖u′′1‖2 + ρ‖u2‖2 + m|u3|2

≤
{

EI

(
C1l

7

3
+ C ′

2

)
+ ρl4 + mC5

}
‖v′′1‖2 + EIC4l

2‖v2‖2 + EIC3|v3|2.

There is always M > 0 such that ‖A−1v‖2
H ≤ M‖v‖2

H. Thus, A−1 is a bounded operator.
(ii) As a result, from the Closed Graph theorem, A−1 is closed and so is A. �
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Lemma 3.3 The operator A defined in (16) generates a contraction semigroup.
Proof. By the definition of the adjoint operator, we have

A∗ =

 0 −I 0
EI
ρ

∂4

∂x4 −Kxρ 〈·, x〉 −Kxml

−EI
m

∂3

∂x3 |x=l −Kρl 〈·, x〉 −Klml

 , (25)

D(A∗) =
{
(v1, v2, v3) ∈ H4(0, l)⊕H2

0 (0, l)⊕ C | v2(0) = v′2(0) = v′′1(l) = 0, v3 = v2(l)
}

.

Consider

〈Au, u〉H = EI 〈u′′2, u′′1〉+ ρ

〈
−EI

ρ
u′′′′1 , u2

〉
− ρ 〈Kx [ρ 〈u2, x〉+ mlu3] , u2〉

+m

〈
−Kl [ρ 〈u2, x〉+ mlu3] +

EI

m
u′′′1 (l), u3

〉
C

= EI〈u′′1, u′′2〉 − EI 〈u′′1, u′′2〉 − EIu′′′1 (l)u2(l) + EIu′′′1 (l)u3

−K [ρ 〈u2, x〉+ mlu3]
(
ρ〈u2, x〉+ mlu3

)
= EI〈u′′1, u′′2〉 − EI 〈u′′1, u′′2〉 −K |ρ 〈u2, x〉+ mlu3|2

Therefore,
Re 〈Au, u〉H = −K |ρ 〈u2, x〉+ mlu3|2 ≤ 0. (26)

Similarly, from the adjoint operator of A in (25)

〈A∗u, u〉H = −EI 〈u′′2, u′′1〉+ ρ

〈
EI

ρ
u′′′′1 , u2

〉
− ρ 〈Kx [ρ 〈u2, x〉+ mlu3] , u2〉

+ m

〈
−Kl [ρ 〈u2, x〉+ mlu3]−

EI

m
u′′′1 (l), u3

〉
C

= −EI〈u′′1, u′′2〉+ EI 〈u′′1, u′′2〉+ EIu′′′1 (l)u2(l)− EIu′′′1 (l)u3

−K [ρ 〈u2, x〉+ mlu3]
[
ρ〈u2, x〉+ mlu3

]
= −EI〈u′′1, u′′2〉+ EI 〈u′′1, u′′2〉 −K |ρ 〈u2, x〉+ mlu3|2

Thus,
Re 〈A∗u, u〉H = −K |ρ 〈u2, x〉+ mlu3|2 ≤ 0. (27)

Since A is closed with D(A) dense in H and from (26)-(27), (18)-(19) is satisfied with ω = 0.
This shows that A generates the contraction semigroup, ‖T (t)‖ ≤ 1. �

Next, we will show that the spectrum of A, indeed, consists of only isolated eigenvalues with
finite multiplicity by applying the following theorem.

Theorem 3.4 [15] Let A be a closed linear operator with 0 ∈ ρ(A) and A−1 is compact. The
spectrum of A consists of only isolated eigenvalues with finite multiplicity.

Lemma 3.5 A−1 is compact.
Proof. The expression of A−1 : H → H in (20) can be written in the following form

A−1 =

T1 T2 T3

I 0 0
T4 0 0
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If all Ti’s are compact operators, then A−1 is compact. We will prove the compactness property
of each Ti as follows:
1. Consider T1 : H2

0 (0, l) → H2
0 (0, l) defined by

T1v =
K

EI
q2(x)(ρ 〈v, x〉+ mlv(l))

Let SN be a bounded set of v ∈ H2
0 (0, l) with ‖v‖H2

0
≤ N . Then,

‖T1v‖H2
0

=
K

EI
‖q2(x)‖H2

0
|ρ 〈v, x〉+ mlv(l)|

≤ K

EI
‖q2(x)‖H2

0
(ρ| 〈v, x〉 |+ ml|v(l)|)

≤ K

EI
‖q2(x)‖H2

0

{
ρl

√
l

3
‖v‖L2 + mlM1‖v‖H2

0

}
(28)

≤ K

EI
‖q2(x)‖H2

0

{
ρl

√
l

3
N ′ + mlM1N

}
(29)

≤ M2

where (28) is obtained by using the Sobolev imbedding theorem (54) and the Cauchy-Schwarzt
inequality. From the fact that ‖ · ‖H2 ∼ ‖ · ‖H2

0
, we get (29). This shows that T1v is uniformly

bounded.

Since q2(x) is continuous, i.e., for all x0 ∈ (0, l) and ε1 > 0, there exists δ1 > 0 such that

|x− x0| < δ1 ⇒ ‖q2(x)− q2(x0)‖ < ε1,

we have

‖T1v(x)− T1v(x0)‖ =
K

EI
|ρ 〈v, x〉+ mlv(l)|‖q2(x)− q2(x0)‖

≤ K

EI

{
ρl

√
l

3
N ′ + mlM1N

}
‖q2(x)− q2(x0)‖.

Let ε = EIε1/K(ρl
√

l
3
N ′ + mlM1N), so

|x− x0| < δ1 ⇒ ‖T1v(x)− T1v(x0)‖ < ε

Notice that δ1 does not depend on the choice of v ∈ SN , which implies that T1v is equicontin-
uous. From Arzela’s theorem, the image of T1v is a precompact set. Therefore, T1 is compact.
2. Consider T2 : L2(0, l) → H2

0 (0, l) defined by

T2v = − ρ

EI

∫ x

0

∫ x4

0

∫ l

x3

∫ l

x2

v(x1)dx1dx2dx3dx4

Let f ∈ L2(0, l) and let χS be the characteristic function of a set S. We know that χ(0,x) ∈
L2[0, l]× L2[0, l]. Thus, the operator A defined by

Af =

∫ x

0

f(τ)dτ =

∫ l

0

χ(0,x)f(τ)dτ

is a compact operator from L2(0, l) → L2(0, l) and T2 can be considered as the composition of
the operator A defined above. Since the compositions of compact operator are compact, we
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can conclude that T2 is compact.
3. Consider T3 : C → H2

0 (0, l) defined by

T3v =
m

EI
q1(x)v

As in the case of T1, we can see that T3 is compact.
4. I : H2

0 (0, l) → L2(0, l) is a compact operator. This can be proved by the Hilbert-Schmidt
Imbedding Theorem (see Appendix).
5. T5 : H2

0 (0, l) → C, T5v = v(l)
From the Sobolev Imbedding theorem [16], T5 is a bounded linear functional. Its image has
finite dimensional range, so T5 is compact.

According to all of the above, we can conclude that A−1 is compact. �

Lemma 3.6 The spectrum of A in (16) consists of only isolated eigenvalues with finite multi-
plicity.
Proof. By the definition of the resolvent set, 0 ∈ ρ(A). The proof is completed following
Lemma 3.5 and Theorem 3.4. �

In what follows, we analyze the eigenvalues of A by showing that all these eigenvalues lie on
the open-left half complex plane. We first begin with the following lemma.

Lemma 3.7 If λ and φ(x) =
[
φ1(x) φ2(x) φ3

]T
are an eigenvalue and the corresponding

eigenvector of A respectively, then

F (φ1) ≡ ρ 〈φ1, x〉+ mlφ1(l) 6= 0.

Proof. The eigenvalue problem is to find nontrivial φ ∈ D(A) and λ ∈ C such that

Aφ(x) = λφ(x).

From (16)-(17), we get the ordinary differential equation of φ1(x) and the boundary conditions.

φ′′′′1 (x) +
ρλ2

EI
φ1(x) = −ρKλ

EI
[ρ 〈φ1, x〉+ mlφ1(l)] x (30)

φ1(0) = φ′1(0) = φ′′1(l) = 0 (31)

φ′′′1 (l) =
Kmlλ

EI
[ρ 〈φ1, x〉+ mlφ1(l)] +

mλ2

EI
φ1(l). (32)

Next, we will find the solution φ1(x) of equations (30)-(32) by assuming φ1(x) = φh(x)+φp(x),
where φh(x) and φp(x) satisfy

φ′′′′h (x) +
ρλ2

EI
φh(x) = 0

φ′′′′p (x) +
ρλ2

EI
φp(x) = −ρK

EI
λ [ρ 〈φ1, x〉+ mlφ1(l)] · x.

Let β = (ρ/EI)1/4
√

λi, we can solve φh(x) and φp(x) as follows.

φh(x) = c1 cosh(βx) + c2 cos(βx) + c3 sinh(βx) + c4 sin(βx).

φp(x) = −KF (φ1)

λ
· x.

Since φ1(0) = φh(x) + φp(0) = 0, then c1 + c2 = 0 and φh(x) becomes

φh(x) = c1[cosh(βx)− cos(βx)] + c3 sinh(βx) + c4 sin(βx). (33)
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Next, to be concise, we will use the following symbols.

s ≡ sin(βl) c ≡ cos(βl) sh ≡ sinh(βl) ch ≡ cosh(βl)

Next, φ′1(0) = φ′h(0) + φ′p(0) = 0, and so

β(c3 + c4)−
K

λ
F (φ1) = 0. (34)

Similarly, from φ′′1(l) = φ′′h(l) + φ′′p(l) = 0, we get

β2 {c1(ch + c) + c3 · sh− c4 · s} = 0. (35)

From the last boundary condition in (32), we have

β3 {c1(sh− s) + c3 · ch− c4 · c} =
Kmlλ

EI
F (φ1) +

mλ2

EI

{
c1(ch− c) + c3 · sh + c4 · s−

Kl

λ
F (φ1)

}
=

mλ2

EI
{c1(ch− c) + c3 · sh + c4 · s}

or

c1

{
β3(sh− s)− mλ2

EI
(ch− c)

}
+ c3

{
β3 · ch− mλ2

EI
sh

}
+ c4

{
−β3 · c− mλ2

EI
s

}
= 0

c1

{
β3(sh− s) +

mβ4

ρ
(ch− c)

}
+ c3

{
β3 · ch +

mβ4

ρ
sh

}
+ c4

{
−β3 · c +

mβ4

ρ
s

}
= 0. (36)

Since λ = 0 /∈ σp(A), i.e., β 6= 0, (35)-(36) become

c1(ch + c) + c3 · sh− c4 · s = 0 (37)

c1

{
(sh− s) +

mβ

ρ
(ch− c)

}
+ c3

{
ch +

mβ

ρ
sh

}
+ c4

{
−c +

mβ

ρ
s

}
= 0. (38)

The expression in (34) shows that we have to calculate F (φ1) in term of c1, c2, c3.
From the notation,

F (φ1) = ρ 〈φ1, x〉+ mlφ1(l)

=
c1

β2
[ρβl(sh− s)− ρ(ch + c) + 2ρ] +

c3

β2
[ρβl · ch− ρ · sh] +

c4

β2
[−ρβl · c + ρ · s]

−ρKl3

3λ
F (φ1) + c1ml(ch− c) + c3ml · sh + c4ml · s− Kml2

λ
F (φ1)

or

F (φ1)

(
1 +

ρKl3

3λ
+

Kml2

λ

)
=

c1

β2
[ρβl(sh− s)− ρ(ch + c) + 2ρ + mlβ2(ch− c)]

+
c3

β2
[ρβl · ch− ρ · sh + mlβ2 · sh] +

c4

β2
[−ρβl · c + ρ · s + mlβ2 · s].

Therefore,

F (φ1) =
λ[f1(λ)c1 + f3(λ)c3 + f4(λ)c4]

g(λ)
(39)
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where

f1(λ) = ρβl(sh− s)− ρ(ch + c) + 2ρ + mlβ2(ch− c)

f3(λ) = ρβl · ch− ρ · sh + mlβ2 · sh
f4(λ) = −ρβl · c + ρ · s + mlβ2 · s

g(λ) = β2(λ +
ρKl3

3
+ Kml2).

Sincer F (φ) is calculated, we are now ready to prove by constradiction. Let F (φ1) ≡ ρ 〈φ1, x〉+
mlφ1(l) = 0. From (34), we get c4 = −c3. Substitute it into (39),(37) and (38), we have

c1(ch + c) + c3(sh + s) = 0 (40)

c1

{
(sh− s) +

mβ

ρ
(ch− c)

}
+ c3

{
(ch + c) +

mβ

ρ
(sh− s)

}
= 0 (41)

c1

{
ρlβ(sh− s)− ρ(ch + c) + 2ρ + mlβ2(ch− c)

}
+ c3

{
ρlβ(ch + c)− ρ(sh + s) + mlβ2(sh− s)

}
= 0. (42)

We will show that (40)-(41) have only one solution, that is, c1 = c3 = 0, by arranging them as
follows. (ch + c) (sh + s)

(sh− s) + mβ
ρ

(ch− c) (ch + c) + mβ
ρ

(sh− s)

ρlβ(sh− s)− ρ(ch + c) + 2ρ + mlβ2(ch− c) ρlβ(ch + c)− ρ(sh + s) + mlβ2(sh− s)

[
c1

c3

]
=

[
0
0

]
.

It is equivalent to (ch + c) (sh + s)

(sh− s) + mβ
ρ

(ch− c) (ch + c) + mβ
ρ

(sh− s)

2ρ 0

[
c1

c3

]
=

[
0
0

]
.

Thus, c1 = 0. It can be proved that the term (sh + s) and (ch + c) + mβ
ρ

(sh − s) are not

simultaneously equal to zero at the same β. Therefore, c3 = 0 and then φ1(x) = 0. As a result,
φ(x) is not the eigenvector of A, which is the contradiction. �

This result gives an important role in the proof that the real part of all eigenvalues are less
than zero, which can be shown in the following lemma.

Lemma 3.8 For any 0 < K < ∞, we have

Re λ(A) < 0.

Proof. According to the eigenvalue problem derived in (??)-(32), take the inner product with
φ1 on both sides in (30).

〈φ′′′′1 , φ1〉+
ρλ2

EI
〈φ1, φ1〉+

ρKλ

EI
(ρ 〈φ1, x〉+ mlφ1(l)) 〈x, φ1〉 = 0. (43)

Since

〈φ′′′′1 , φ1〉 =

∫ l

0

φ′′′′1 φ1dx

= φ′′′1 φ1 |l0 −
∫ l

0

φ′′′1 φ′1dx

= φ′′′1 (l)φ1(l)− φ′′1φ
′
1 |l0 +

∫ l

0

φ′′1φ
′′
1dx

= φ′′′1 (l)φ1(l) + ‖φ′′‖2

= λ
ρKml

EI
〈φ1, x〉φ1(l) + λ

Km2l2

EI
|φ1(l)|2 + λ2 m

EI
|φ1(l)|2 + ‖φ′′‖2, (44)
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and by substituting (44) in (43), we obtain

λρKml 〈φ1, x〉φ1(l) + λKm2l2|φ1(l)|2 + λ2m|φ1(l)|2 + EI‖φ′′‖2 + ρλ2‖φ1‖2

+ λρ2K| 〈φ1, x〉 |2 + λρKmlφ1(l) 〈x, φ1〉 = 0.

λ2
{
m|φ1(l)|2 + ρ‖φ1‖2

}
+ EI‖φ′′‖2 + λK

{
ρ2| 〈φ1, x〉 |2 + m2l2|φ1(l)|2

}
+ λK {2ρmlRe(φ1(l) 〈x, φ1〉)} = 0.

λ2
{
m|φ1(l)|2 + ρ‖φ1‖2

}
+ λK |ρ 〈φ1, x〉+ mlφ1(l)|2 + EI‖φ′′‖2 = 0. (45)

Let λ = a + ib, then (45) can be written as

(a2 − b2 + i2ab)
{
m|φ1(l)|2 + ρ‖φ1‖2

}
+ EI‖φ′′‖2 + (a + ib)K |ρ 〈φ1, x〉+ mlφ1(l)|2 = 0, (46)

which can be splitted into two equations as

(a2 − b2)(m|φ1(l)|2 + ρ‖φ1‖2) + EI‖φ′′‖2 + a ·K |ρ 〈φ1, x〉+ mlφ1(l)|2 = 0, (47)

and
2ab(m|φ1(l)|2 + ρ‖φ1‖2) + b ·K |ρ 〈φ1, x〉+ mlφ1(l)|2 = 0. (48)

First, suppose b = 0 in (47), we have

a2(m|φ1(l)|2 + ρ‖φ1‖2) + a ·K |ρ 〈φ1, x〉+ mlφ1(l)|2 + EI‖φ′′‖2 = 0. (49)

According to lemma 3.7, |ρ 〈φ1, x〉+ mlφ1(l)| is not equal to zero. Then all coefficients of a are
real number greater than zero. Therefore, all roots a of (49) are less than zero.

Next, when b 6= 0 in (48),

a = −K |ρ 〈φ1, x〉+ mlφ1(l)|2

2(m|φ1(l)|2 + ρ‖φ1‖2)
< 0 (50)

Therefore, Re(λ) < 0. �

Finally, to prove the closed-loop stability we need the following theorem to show the asymptotic
stability of the semigroup generated by A.

Theorem 3.9 [17, 18] Let T (t) be a uniformly bounded semigroup on a Banach space X with
an infinitesimal generator A. Suppose that

i. σ(A) ∩ iR is countable,

ii. σP (A∗) ∩ iR = ∅,

then T (t) is asymptotically stable.

Theorem 3.10 The semigroup generated by A is asymptotically stable.
Proof Since σ(A) = σP (A) and when K < ∞, all eigenvalues lie on the open left-half plane,
we can conclude that there is no eigenvalue on the imaginary axis. Thus, σ(A) ∪ iR is an
empty set, which is countable. Moreover,σP (A∗) = σr(A) = ∅. The semigroup of closed-loop
system is a contraction semigroup which is uniformly bounded. Therefore, the proof follows
from Lemmas 3.3, 3.6, 3.8 and Theorem 3.9.
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4 Conclusion

In this work, we consider the design of a controller for a one-link flexible robot arm, modelled
as an infinite-dimensional system, where the effects of the tip mass and the motion of the motor
were included simultaneously in the mathematical model. The proposed control law is a linear
combination of the tip deflection and a linear functional of the beam deflection. It was shown
that (1) the infinitesimal generator of the closed-loop system generates a contraction semigroup,
(2) the spectrum of the generator consists of only isolated eigenvalues with finite multiplicity,
and (3) the real parts of these eigenvalues are less than zero. Therefore, the closed-loop system
is asymptotically stable.
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A Appendix

In this section, we mention the Sobolev Imbedding theorem [16] which is necessary and fre-
quently used in this work.

Definition A.1 Let X and Y be a Banach space, X is imbedded in Y and use the notation
X → Y , if

i. X is a vector subspace of Y

ii. The identity operator I : X → Y is continuous, or equivalently, there is M > 0 such that

‖Ix‖Y ≤ M‖x‖X , ∀x ∈ X

Theorem A.2 (The Sobolev imbedding theorem) Let Ω be a domain in R , j, m ∈ N ∪
{0} and 1 ≤ p < ∞.

Hj+m(Ω) → Cj
B(Ω) (51)

Hj+m(Ω) → Cj,λ(Ω) , 0 < λ ≤ m− 1

2
(52)

Theorem A.3 (The Hilbert-Schmidt Imbedding theorem) Let Ω be a domain in R and
m, k ∈ N ∪ {0} with k > 1/2, then the mapping

I : Hm+k(Ω) → Hm(Ω) (53)

is a compact operator.

Remarks

i. From (51), when j = 3, m = 1, H4(0, l) → C3
B(0, l). If j = 1, m = 1, then H2(0, l) →

C1
B(0, l). In other words, a function in H4 or H2 can be considered continuous. Note that,

the higher order Sobolev space is, the more differentiable a function in the space is.

ii. Consider (52), if j = 0, m = 2, 0 < λ ≤ 3/2 and Ω = (0, l), then

H2(0, l) → C0,λ[0, l]

13



From the definition of imbedding,

‖u‖C0,λ[0,l] ≤ M‖u‖H2(0,l) ∀u ∈ H2(0, l)

where the norm in Cm,λ(Ω) is defined by

‖u; Cm,λ(Ω)‖ = ‖u; Cm(Ω)‖+ max
0≤|α|≤m

sup
x,y∈Ω x 6=y

|Dαu(x)−Dαu(y)|
|x− y|λ

Therefore,

‖u‖C[0,l] ≤ M‖u‖H2(0,l)

‖u‖C[0,l] ≤ M1‖u‖H2
0 (0,l) (because ‖ · ‖H2

0
∼ ‖ · ‖H2)

sup
x∈[0,l]

|u(x)| ≤ M1‖u′′‖

|u(l)| ≤ M1‖u′′‖ ∀u ∈ H2
0 (0, l) (54)

This shows that we can find the magnitude bound of a function in H2
0 (0, l) limited by the

norm in H2
0 (0, l).

iii. From (53), if m = 0, k = 2, then I : H2(0, l) → L2(0, l) is a compact operator. Since
H2

0 (0, l) ⊂ H2(0, l), I : H2
0 (0, l) → L2(0, l) is also a compact operator.
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