ramming

Department of Electrical Engineering Faculty of Engineering Chulalongkorn University

CUEE

March 6, 2023

1 Quadratic function

2 Formulation

3 Applications

4 Algorithms

Optimization in engineering/ML

Quadratic function

Optimization in engineering/ML

Jitkomut Songsiri Quadratic function

Quadratic function

given $P \in \mathbf{R}^{n \times n}, q \in \mathbf{R}^n, r \in \mathbf{R}$, a quadratic function $f : \mathbf{R}^n \to \mathbf{R}$ is of the form $f(x) = (1/2)x^T P x + q^T x + r$

- x^T Px is aka an energy form (due to the quadratic form that appears in the energy/power of some physical variables)
- Solution verify that $x^T P x = \frac{x^T (P+P^T)x}{2}$; then the energy term only takes the symmetric part of P; hence, we often consider $P \in \mathbf{S}^n$ (P is assumed to be symmetric later on)
- $\nabla f(x) = Px + q$ (derivative of quadratic function becomes linear)
- the contour shape of *f* depends on the property of *P* (pdf, indefinite, magnitude of eigenvalues, direction of eigenvectors)

Optimization in engineering/ML

Quadratic function (positive definite) let $f(x) = (1/2)x^T P x + q^T x$ where $P \succ 0$

since P is invertible, we can complete the square

$$f(x) = (1/2)[(x + P^{-1}q)^T P(x + P^{-1}q) - q^T P^{-1}q]$$

ellipsoid parametrized by P^{-1} with center at $-P^{-1}\boldsymbol{q}$

Optimization in engineering/ML

Quadratic function (positive semidefinite) let $f(x_1, x_2) = (1/2)(x^T P x) + q^T x$ with q = (1, -3) and two cases of P

P ≻ 0: sublevel set of f is bounded (region inside the ellipsoid)
P ≿ 0: sublevel set of f is unbounded

(if
$$x = t(1, -1) \in \mathcal{N}(P)$$
 then $f(x) = tq^T(1, -1) = 4t \to -\infty$ by choosing $t \to -\infty$)

Optimization in engineering/ML

Quadratic function (indefinite) let $f(x_1, x_2) = (1/2)(x^T P x) + q^T x$ with $P = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$ (and invertible)

from $f(x) = (1/2)(x + P^{-1}q)^T P(x + P^{-1}q) + \text{ constant, we can pick } t, x$ such that $x + P^{-1}q = tv, Pv = \lambda^- v, t \to \infty$; hence, $f(x) = t^2\lambda^- ||v||^2 \to -\infty$ f can be unbounded below along some direction of x

Optimization in engineering/ML

Formulation

Optimization in engineering/ML

Jitkomut Songsiri Formulation

Standard form

a quadratic program (QP) is in the form

$$\begin{array}{ll} \mbox{minimize} & (1/2)x^T P x + q^T x \\ \mbox{subject to} & Gx \preceq h \\ & Ax = b, \end{array}$$

where $P \in \mathbf{S}^n, G \in \mathbf{R}^{m \times n}$ and $A \in \mathbf{R}^{p \times n}$

example: constrained least-squares

minimize
$$||Ax - b||_2^2$$

subject to $l \leq x \leq u$

QP has linear constraints

Properties of QP

- an unconstrained QP is unbounded below if P is not positive definite
- an unconstrained QP has a unique solution: $x = -P^{-1}q$ when $P \succ 0$
- \blacksquare a QP is a convex problem if P is positive semidifinite definite
 - if $P \succeq 0$ then a local minimizer x^* is a global minimizer (by convexity)
 - if $P \succ 0$ then x^* is a *unique* global solution (by strictly convexity)
- the feasible set (polyhedron) may be empty (hence, the problem is infeasible)
- the feasible set can be unbounded (but if $P \succ 0$ it implies boundedness)
- solution of a QP may not be at a vertex
- the dual of a QP is also a QP

Contour of quadratic objective

consider three cases of \boldsymbol{P} and different feasible sets

verify the location of the optimal solution for each constraint set

- left: a bounded set, a line, an unbounded feasible set
- **\blacksquare** middle: bounded and unbouded feasible sets, while f is unbounded below
- right: a bounded feasible set, while f is unbounded below and above

Equality-constrained QP

assume a full row rank matrix $A \in \mathbf{R}^{p \times n}$ and $P \succ 0$ on the **nullspace** of A

minimize
$$(1/2)x^T P x - q^T x$$
 subject to $Ax = b$

• it can be shown that $K = \begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix}$ is non-singular (called KKT matrix) • the zero-gradient of Lagrangian condition is the system of n + p equations

$$\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} q \\ b \end{bmatrix}$$

has a unique solution $(x^{\star}, \lambda^{\star})$

• x^{\star} is the unique **global** solution

proof in Thm 16.2, Nocedral book

Jitkomut Songsiri

Proof

suppose the KKT matrix is singular, $\exists z = (x, v) \neq 0$ such that Kz = 0, hence

• Ax = 0 (x lies in the nullspace of A) and $Px + A^T v = 0$ • $z^T K z = 0$ and this gives

$$z^{T} \begin{bmatrix} P & A^{T} \\ A & 0 \end{bmatrix} z = x^{T} P x + 2v^{T} A x = x^{T} P x = 0$$

- but $P \succ 0$ for all $y \in \mathcal{N}(A)$, hence $x^T P x = 0$ only holds when x = 0
- when x = 0, we conclude from $Px + A^Tv = 0$ that $A^Tv = 0$
- but A is full row rank (making $A^T v$ full column rank), we conclude that v = 0
- this leads to a contradiction, (x, v) = 0 so K can't be singular

Optimization in engineering/ML

a quadratically constrained quadratic program (QCQP) is in the form

minimize
$$(1/2)x^T P_0 x + q_0^T x$$

subject to $(1/2)x^T P_i x + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m$
 $Ax = b,$

assume P_i 's are positive semidefinite, $G \in \mathbf{R}^{m imes n}$ and $A \in \mathbf{R}^{p imes n}$

quadratic constraints

QCQP has both linear and quadratic constraints

Optimization in engineering/ML

Minimizing linear objective under a quadratic constraint

a special case of QCQP where the objective is linear

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & (x-d)^T P^{-1} (x-d) \leq 1 \end{array}$$

where $P \succ 0, d \in \mathbf{R}^n$ are given parameters

• make change of variable: $z = P^{-1/2}(x - d)$

minimize
$$\tilde{c}^T z + g$$
 subject to $z^T z \leq 1$

where $\tilde{c}=P^{1/2}c$ and $g=c^{T}d$ is a constant term

the equivalent problem has a closed-form solution:

$$z^{\star} = -\frac{\tilde{c}}{\|\tilde{c}\|_{2}} = -\frac{P^{1/2}c}{\|P^{1/2}c\|_{2}} \implies x^{\star} = P^{1/2}z^{\star} + d = -\frac{Pc}{\sqrt{c^{T}Pc}} + d$$

Optimization in engineering/ML

Applications

Optimization in engineering/ML

Jitkomut Songsiri Applications

Applications of quadratic programming

- unconstrained QP
 - least-squares
 - optimizing group representative step in k-mean clustering
- support vector machine
- control systems
- inverse problem (medical imaging, signal processing)
- least-squares with constraints (lasso and others)
- portfolio optimization

k-mean clustering

define c_i the group number of x_i (data) and a group assignment $G_j = \{i \mid c_i = j\}$

after the k groups are assigned, optimizing the group representative (z_j) is to minimize

$$J^{\mathsf{clust}} = J_1 + \dots + J_k, \quad J_j = (1/N) \sum_{i \in G_j} \|x_i - z_j\|_2^2$$

Optimization in engineering/ML

- updating group representatives is an unconstrained QP in $z = (z_1, \ldots, z_k)$
- the solution z_j is the mean (or centroid) of x_i in *j*th group

$$z_j = \frac{1}{|G_j|} \sum_{i \in G_j} x_i$$

- the scheme of k-mean algorithm consists of
 - partition the data x into k groups (not optimization problem)
 - update the representatives: unconstrained QP (closed-form solution)

Soft-margin SVM

problem parameters: $x_i \in \mathbf{R}^n$ and $y_i \in \mathbf{R}$ for $i = 1, ..., N, \lambda > 0$ optimization variables: $w \in \mathbf{R}^n, b \in \mathbf{R}, z \in \mathbf{R}^N$

 $\begin{array}{ll} \mbox{minimize} & (1/2) \|w\|_2^2 + \lambda \mathbf{1}^T z \\ \mbox{subject to} & y_i(x_i^T w + b) \geq 1 - z_i, \quad i = 1, 2, \dots, N \\ & z \succeq 0 \end{array}$

data are classified by separating hyperplane with maximized margin

- z_i is called a slack variable, allowing some of the hard constraints to be relaxed
- the problem has (convex) quadratic objective and linear constraints (QP)

Tracking problem

design problem: find u(t) for $t = 1, 2, \ldots, T$ to drive the linear system

$$x(t+1) = Ax(t) + Bu(t), \quad y(t) = Cx(t), \quad x(0) = 0$$

so that $y \approx y_{
m ref}$ the relationship between y and u is

$$y(t) = CA^{t-1}Bu(0) + CA^{t-2}Bu(1) + \dots + CABu(t-2) + CBu(t-1) + Du(t)$$

and can be arranged into vector form as

$$\begin{bmatrix} y(1)\\ y(2)\\ \vdots\\ y(T) \end{bmatrix} = \begin{bmatrix} CB & 0 & \cdots & 0\\ CAB & CB & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ CA^{T-1}B & \cdots & CAB & CB \end{bmatrix} \begin{bmatrix} u(0)\\ u(1)\\ \vdots\\ u(T-1) \end{bmatrix} \triangleq y_T = Hu_T \quad (1)$$

Optimization in engineering/ML

Specifications in control tracking

four types of constraints based on specification of u can be cast as a QP

let the optimization variable be $u^T = (u(1), \ldots, u(T))$

 \blacksquare trade-off between tracking and energy of u

minimize
$$||Hu_T - y_{ref}||_2^2 + \gamma ||u_T||_2^2$$
 (2)

(unconstrained, closed-form solution, depends on the property of H) magnitude of u must be bounded, $|u| \leq u_{\max}$

minimize
$$||Hu_T - y_{ref}||_2^2$$
 subject to $-u_{max} \leq u_T \leq u_{max}$ (3)

Optimization in engineering/ML

Jitkomut Songsiri

Specifications in control tracking

 \blacksquare the control signal does not change too rapidly, |u(k)-u(k-1)| is small

minimize_{$$u_T$$} $||Hu_T - y_{ref}||_2^2 + \gamma ||Du_T||_2^2$
subject to $-u_{max} \preceq u_T \preceq u_{max}$ (4)

where $D: \mathbf{R}^T \rightarrow \mathbf{R}^{T-1}$ is the difference matrix

• rate of change in u is bounded

$$\begin{array}{ll} \text{minimize}_{u_T} & \|Hu_T - y_{\text{ref}}\|_2^2 \\ \text{subject to} & -u_{\max} \preceq u_T \preceq u_{\max} \\ & -d_{\max} \mathbf{1} \preceq Du_T \preceq d_{\max} \mathbf{1} \end{array}$$
(5)

Lasso as a convex QP

a lasso or basis pursuit is the problem

$$\underset{x}{\mathsf{minimize}} \|Ax - b\|_2^2 \quad \mathsf{subject to} \quad \|x\|_1 \leq t$$

minimizing the residual norm while keeping norm of x small (controlled by t)

this can be cast as a convex QP (since $A^T A \succeq 0$) with variables $x, u \in \mathbf{R}^n$

$$\begin{array}{ll} \mbox{minimize} & x^T A^T A x - 2 b^T A x \\ \mbox{subject to} & -u \preceq x \preceq u \\ & \mathbf{1}^T u \leq t \end{array}$$

Optimization in engineering/ML

Jitkomut Songsiri

ℓ_1 -regularized least-squares

an ℓ_1 -regularized least-squares (Lagrangian form of lasso)

$$\min_{x} ||Ax - b||_2^2 + \gamma ||x||_1$$

QCQP formulation:

using the epigraph form, we can formulate the problem as

$$\begin{array}{ll} \text{minimize} & t + \gamma \mathbf{1}^T u \\ \text{subject to} & x^T A^T x - 2 b^T A x + b^T b \leq t \\ & -u \preceq x \preceq u \end{array}$$

with variables $x, u \in \mathbf{R}^n$ and $t \in \mathbf{R}$

Optimization in engineering/ML

QP formulation: note that we can write x as

 $x = u - v, \quad u, v \succeq 0 \quad \Rightarrow \quad |x| = u + v \quad (all elementwise)$

u and v are positive and negative parts of x, respectively

$$||x||_1 = \sum_k |x_k| = \mathbf{1}^T (u+v)$$

the problem can be formulated as a QP

$$\begin{array}{ll} \text{minimize} & \|Ax - y\|_2^2 + \gamma \mathbf{1}^T (u + v) \\ \text{subject to} & x = u - v \\ & u \succeq 0, \ v \succeq 0 \end{array}$$

with variables $x, u, v \in \mathbf{R}^n$

Optimization in engineering/ML

Markowitz portfolio optimization

setting:

• $r = (r_1, r_2, \dots, r_n) \in \mathbf{R}^n$; r_i is the (random) return of asset i

 \blacksquare the return has the mean \bar{r} and covariance Σ

optimization variable: $x \in \mathbf{R}^n$ where x_i is the portion to invest in asset i

problem parameters: $\Sigma \succeq 0, \bar{r} \in \mathbf{R}^n, \gamma > 0$

$$\begin{array}{ll} \text{minimize} & -\bar{r}^T x + \gamma x^T \Sigma x \\ \text{subject to} & x \succeq 0, \quad \mathbf{1}^T x = 1 \end{array}$$

• $\mathbf{var}(r^T x) = x^T \Sigma x$ is the risk of the portfolio

- the goal is to maximize the expected return while minimize the risk
- $\blacksquare \ \gamma$ is the risk-aversion parameter controlling the trade-off

Optimization in engineering/ML

Risk minimization with fixed return

setting: consider returns of n assets in T periods

- $R \in \mathbf{R}^{T \times n}$: R_{ij} is the gain of asset j in period i (%)
- $w \in \mathbf{R}^n$: asset allocation (or weight) where $\mathbf{1}^T w = 1$
- $r \in \mathbf{R}^T$: r_i is the return (of all assets) in period *i*, so r = Rw
- total portfolio value in period t is

$$V_t = V_1(1+r_1)(1+r_2)\cdots(1+r_{t-1})$$

and can be approximated when r_t is small as $V_{T+1}\approx V_1+T\operatorname{\mathbf{avg}}(r)V_1$

- unlike Markowitz that used statistical property of the returns, here we use a set of actual (or realized) returns
- as seen in Markowitz formulation, w that minimize risk for a given return is called Pareto optimal

Risk minimization with fixed return

goal: fix the return to a value ρ and minimize the risk over all portfolios

- the portfolio return is given by $\mathbf{avg}(r) = (1/T)\mathbf{1}^T(Rw) \triangleq \mu^T w = \rho$
- \blacksquare the risk is $\mathbf{var}[r] = (1/T) \|r \mathbf{avg}(r)\|^2 = (1/T) \|r \rho \mathbf{1}\|^2$

the problem of minimizing the risk with return ρ is

minimize
$$\|Rw - \rho \mathbf{1}\|^2$$

subject to $\begin{bmatrix} \mathbf{1}^T\\ \mu^T \end{bmatrix} w = \begin{bmatrix} 1\\ \rho \end{bmatrix}$

with variable $w \in \mathbf{R}^n$ and parameters R, ρ, μ

(no non-negative constraint in w – this gives quadratic programming with linear equality)

Optimization in engineering/ML

Algorithms

Optimization in engineering/ML

Jitkomut Songsiri Algorithms

Available methods

- active set method for convex QPs
- interior-point methods
- conjugate gradient (solving the reduced problem of equality-constrained QP)
- ellipsoid method (for convex programs): generate a sequence of ellipsoids that are guaranteed to contain the minizer
- gradient projection (for QP if the polyhedron is simple)
- many solvers and packages in the market

MATLAB: quadprog use trust-region-reflective or interior-point Python (convex QP and QCQP): cvxopt Active-set methods for convex QP

- standard form
- algorithm outline
- update working set (that contains active constraints)
- optimality condition

QP standard form for active-set methods

we consider the standard form of convex QP with inequality constraints:

$$\begin{array}{ll} \text{minimize} & (1/2)x^T P x + q^T x \\ \text{subject to} & a_i^T x = b_i, \ i \in \mathcal{E} \\ & a_i^T x \geq b_i, \ i \in \mathcal{I} \end{array}$$

• the active set $\mathcal{A}(x)$ consists of *i* of the constraints for which equality holds at *x*

$$\mathcal{A}(x) = \{ i \in \mathcal{E} \cup \mathcal{I} \mid a_i^T x = b_i \}$$

(we typically don't have knowledge of $\mathcal{A}(x^{\star})$)

- at iteration k when updating x_k , define \mathcal{W}_k as the working set which contains $i \in \mathcal{E}$ and some indices from \mathcal{I} that inequalities are imposed as equalities
- \blacksquare it is required that $a_i{}'\mathsf{s}$ for $i\in\mathcal{W}_k$ are linearly independent

Optimization in engineering/ML

Algorithm outline

the updates rely on subproblems that solve QP with linear equalities

- **1** given an initial **feasible** point x_0
- **2** the update takes the form of $x_{k+1} = x_k + \alpha_k s_k$
- ${f 3}$ at iterate x_k , we can determine ${\cal W}_k$
- If inding s_k is to solve QP subproblem with equality constraints for $i \in W_k$ (this is an easy problem refer to page 12)
- **5** update \mathcal{W}_k by either add or remove *i* corresponding to inequality constraints
- **6** the update terminates when $s_k = 0$ and KKT conditions are satisfied

QP subproblem to find the search direction

given x_k and the working set \mathcal{W}_k , we solve the QP

minimize
$$(1/2)s^T P s + (P x_k + q)^T s$$
 subject to $a_i^T s = 0, i \in \mathcal{W}_k$

and the optimal solution s is then assigned to search direction s_k

- the constraints corresponding to W_k are regarded as equalities where all other constraints are temporarily disregarded
- we solve QP subproblem using the technique on page 12 (solve KKT system) • using $L(s, \lambda) = (1/2)s^T P s + (P x_k + q)^T s - \sum_i \lambda_i a_i^T s$, the KKT system is

 $(A_w \text{ contains rows of } a_i^T \text{ for } i \in \mathcal{W}_k)$

Determining stepsize

to update $x_{k+1} = x_k + \alpha_k s_k$, we check the feasibility of x_{k+1}

- if $\alpha_k = 1$ makes x_{k+1} feasible (to all constraints) then set $x_{k+1} = x_k + s_k$; otherwise, find an appropriate value of $\alpha \in [0, 1]$
- **a** as we only need to check feasibility of constraints for $i \notin \mathcal{W}_k$

 \blacksquare if $a_i^T s_k \geq 0$ then we can use any $\alpha_k \geq 0$ because x_{k+1} is always feasible

$$a_i^T(x_k + \alpha_k s_k) = a_i^T x_k + \alpha_k a_i^T s_k \ge a_i^T x_k \ge b_i$$

• if $a_i^T s_k < 0$ for some $i \notin \mathcal{W}_k$, we make $a_i^T (x_k + \alpha_k s_k) \ge b_i$ only if we choose

$$\alpha_k \le \frac{b_i - a_i^T x_k}{a_i^T s_k}$$

(there can be many *i*'s that $a_i^T s_k < 0$, so we pick smallest α_k in [0, 1])

Optimization in engineering/ML

Jitkomut Songsiri

Blocking constraints

in conclusion, when $a_i^T s_k < 0$ for some $i \notin \mathcal{W}_k$, we set

$$\alpha_k = \min\left(1, \min_{i \notin \mathcal{W}_k, a_i^T s_k < 0} \frac{b_i - a_i^T x_k}{a_i^T s_k}\right)$$

blocking constraints are the constraints *i* for which the minimum occurs

• if $\alpha_k < 1$, step along s_k was blocked by some $i \notin \mathcal{W}_k$, so we adjust by $\mathcal{W}_{k+1} := \mathcal{W}_k \cup$ blocking constraints

• if $\alpha_k = 1$, then no blocking constraints and $\mathcal{W}_{k+1} = \mathcal{W}_k$

- iterate k until we find that $s_k \triangleq \hat{s} = 0$ (with the current working set $\hat{\mathcal{W}}$)
- the KKT condition of QP subproblem on page 35 suggests that

$$P\hat{x} + q = \sum_{i \in \hat{\mathcal{W}}} a_i \hat{\lambda}_i$$

Optimization in engineering/ML

Checking optimality

KKT conditions of the original QP problem on page 33

primal feasibility:
$$a_i^T x^* = b_i, \forall i \in \mathcal{A}(x^*), \quad a_i^T x^* \ge b_i, \forall i \in \mathcal{I} \setminus \mathcal{A}(x^*)$$

zero-gradient: $Px^{\star} + q - \sum_{i \in \mathcal{A}(x^{\star})} \lambda_i^{\star} a_i = 0$, **dual feasibility:** $\lambda_i^{\star} \ge 0, \forall i \in \mathcal{I} \cap \mathcal{A}(x^{\star})$

conditions obtained from $\hat{x}, \hat{\lambda}$

$$\begin{array}{l} P\hat{x} + q - \sum_{i \in \hat{\mathcal{W}}} \hat{\lambda}_i a_i - \sum_{i \notin \hat{\mathcal{W}}} 0 \cdot a_i = 0 \\ \mathbf{a}_i^T \hat{x} = b_i, \forall i \in \mathcal{A}(\hat{x}) \\ \mathbf{a}_i^T \hat{x} \geq b_i, \ \forall i \in \mathcal{I} \backslash \mathcal{A}(\hat{x}) \text{ because } a_i^T \hat{x} = b_i \text{ for } i \notin \mathcal{A}(\hat{x}) \text{ but } i \in \hat{\mathcal{W}} \\ \mathbf{a}_i^T \hat{x} \in \mathbf{b}_i, \ \forall i \in \mathcal{I} \backslash \mathcal{A}(\hat{x}) \text{ because } a_i^T \hat{x} = b_i \text{ for } i \notin \mathcal{A}(\hat{x}) \text{ but } i \in \hat{\mathcal{W}} \end{array}$$

Optimization in engineering/ML

Sign of Lagrange multipliers

we examine the sign of $\hat{\lambda}_i$ for $i \in \mathcal{I} \cap \hat{\mathcal{W}}$

- if $\hat{\lambda}_i \succeq 0$ then $\hat{\lambda}$ is dual feasible and \hat{x} is optimal (satisfying all KKT conditions)
- if $\hat{\lambda}_j < 0$ for some $j \in \mathcal{I} \cap \hat{\mathcal{W}}$
 - find j that $\hat{\lambda}_j$ is most negative
 - remove j from the working set: $\mathcal{W}_{k+1} := \mathcal{W}_k ackslash j$

(the decreasing rate of objective function when one constraint is removed is proportional to Lagranger multiplier of that constraint)

then continue iteration \boldsymbol{k} and solve the QP subproblem

Optimization in engineering/ML

Algorithm: active-set method for convex QP

```
Require: tolerance = 1e-5, maxiter = 50
1: Initialize: feasible point x_0
2: for k = 1 : maxiter do
3: solve QP subprobler
           solve QP subproblem on page 35 to find s_k
4:
           if ||s_k|| \leq \text{tolerance then}
5:
6:
7:
89:
                 compute \hat{\lambda} with \hat{\mathcal{W}} = \mathcal{W}_{l}
                 if \hat{\lambda}_i > 0 for all i \in \mathcal{W}_k \cap \mathcal{I} then
                       stop with solution x^{\star} = x_k
                 else
                       j = \operatorname{argmin}_{i \in \mathcal{W}_h \cap \mathcal{I}} \hat{\lambda}_j
10:
                         x_{k+1} := x_k; \mathcal{W}_{k+1} := \mathcal{W}_k \setminus \{j\}
11:
12:
13:
                   end if
             else
                   compute \alpha_k from page 37
14:
                   x_{k+1} := x_k + \alpha_k s_k
15:
                   if there are blocking constraints then
16:
                         obtain \mathcal{W}_{k+1} by adding one of blocking constraints to \mathcal{W}_k
17:
18:
                   else
                         \mathcal{W}_{k+1} := \mathcal{W}_k
19:
20: end
21: end for
                   end if
             end if
22: return x_k
```

References

- L. Vandenberghe, *Lecture notes on Optimization Methods for Large-Scale Systems*, EE236C, UCLA
- 2 D.P. Bertsekas, Nonlinear Programming, Athena Scientific, 1999
- **G**. Calafiore and L. El Ghaoui, *Optimization Models*, Cambridge University Press, 2014
- S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004
- 5 J. Nocedal and S.J. Wright, Numerical Optimization, 2nd edition, Springer, 2006
- S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra: Vectors, Matrices, and Least squares, Cambridge University Press, 2018
- J. Songsiri, System Identification, Chula Press, 2022

Optimization in engineering/ML