

Outline

1 Quadratic function

2 Formulation

3 Applications

4 Algorithms

Quadratic function

Quadratic function

given $P \in \mathbf{R}^{n \times n}, q \in \mathbf{R}^{n}, r \in \mathbf{R}$, a quadratic function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is of the form

$$
f(x)=(1 / 2) x^{T} P x+q^{T} x+r
$$

- $x^{T} P x$ is aka an energy form (due to the quadratic form that appears in the energy/power of some physical variables)
- verify that $x^{T} P x=\frac{x^{T}\left(P+P^{T}\right) x}{2}$; then the energy term only takes the symmetric part of P; hence, we often consider $P \in \mathbf{S}^{n}$ (P is assumed to be symmetric later on)
- $\nabla f(x)=P x+q$ (derivative of quadratic function becomes linear)
- the contour shape of f depends on the property of P (pdf, indefinite, magnitude of eigenvalues, direction of eigenvectors)

Quadratic function (positive definite)

let $f(x)=(1 / 2) x^{T} P x+q^{T} x$ where $P \succ 0$

since P is invertible, we can complete the square

$$
f(x)=(1 / 2)\left[\left(x+P^{-1} q\right)^{T} P\left(x+P^{-1} q\right)-q^{T} P^{-1} q\right]
$$

ellipsoid parametrized by P^{-1} with center at $-P^{-1} q$

Quadratic function (positive semidefinite)

let $f\left(x_{1}, x_{2}\right)=(1 / 2)\left(x^{T} P x\right)+q^{T} x$ with $q=(1,-3)$ and two cases of P

Surface of degenerated ellipsoid in R^{2}

$$
P=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \succeq 0
$$

■ $P \succ 0$: sublevel set of f is bounded (region inside the ellipsoid)

- $P \succeq 0$: sublevel set of f is unbounded
(if $x=t(1,-1) \in \mathcal{N}(P)$ then $f(x)=t q^{T}(1,-1)=4 t \rightarrow-\infty$ by choosing $t \rightarrow-\infty)$

Quadratic function (indefinite)

let $f\left(x_{1}, x_{2}\right)=(1 / 2)\left(x^{T} P x\right)+q^{T} x$ with $P=\left[\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right]$ (and invertible)

from $f(x)=(1 / 2)\left(x+P^{-1} q\right)^{T} P\left(x+P^{-1} q\right)+$ constant, we can pick t, x such that $x+P^{-1} q=t v, P v=\lambda^{-} v, t \rightarrow \infty$; hence, $f(x)=t^{2} \lambda^{-}\|v\|^{2} \rightarrow-\infty$ f can be unbounded below along some direction of x

Formulation

Standard form

a quadratic program ($\mathbf{Q P}$) is in the form

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

where $P \in \mathbf{S}^{n}, G \in \mathbf{R}^{m \times n}$ and $A \in \mathbf{R}^{p \times n}$
example: constrained least-squares

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|_{2}^{2} \\
\text { subject to } & l \preceq x \preceq u
\end{array}
$$

QP has linear constraints

Properties of QP

- an unconstrained QP is unbounded below if P is not positive definite
- an unconstrained QP has a unique solution: $x=-P^{-1} q$ when $P \succ 0$
- a QP is a convex problem if P is positive semidifinite definite
- if $P \succeq 0$ then a local minimizer x^{\star} is a global minimizer (by convexity)
- if $P \succ 0$ then x^{\star} is a unique global solution (by strictly convexity)
- the feasible set (polyhedron) may be empty (hence, the problem is infeasible)
- the feasible set can be unbounded (but if $P \succ 0$ it implies boundedness)
- solution of a QP may not be at a vertex
- the dual of a QP is also a QP

Contour of quadratic objective

consider three cases of P and different feasible sets

x_{1}
verify the location of the optimal solution for each constraint set

- left: a bounded set, a line, an unbounded feasible set
- middle: bounded and unbouded feasible sets, while f is unbounded below
- right: a bounded feasible set, while f is unbounded below and above

Equality-constrained QP

assume a full row rank matrix $A \in \mathbf{R}^{p \times n}$ and $P \succ 0$ on the nullspace of A

$$
\underset{x}{\operatorname{minimize}}(1 / 2) x^{T} P x-q^{T} x \quad \text { subject to } A x=b
$$

- it can be shown that $K=\left[\begin{array}{cc}P & A^{T} \\ A & 0\end{array}\right]$ is non-singular (called KKT matrix)
- the zero-gradient of Lagrangian condition is the system of $n+p$ equations

$$
\left[\begin{array}{cc}
P & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
q \\
b
\end{array}\right]
$$

has a unique solution $\left(x^{\star}, \lambda^{\star}\right)$

- x^{\star} is the unique global solution proof in Thm 16.2, Nocedral book

Proof

suppose the KKT matrix is singular, $\exists z=(x, v) \neq 0$ such that $K z=0$, hence

- $A x=0(x$ lies in the nullspace of $A)$ and $P x+A^{T} v=0$
- $z^{T} K z=0$ and this gives

$$
z^{T}\left[\begin{array}{cc}
P & A^{T} \\
A & 0
\end{array}\right] z=x^{T} P x+2 v^{T} A x=x^{T} P x=0
$$

- but $P \succ 0$ for all $y \in \mathcal{N}(A)$, hence $x^{T} P x=0$ only holds when $x=0$
- when $x=0$, we conclude from $P x+A^{T} v=0$ that $A^{T} v=0$
- but A is full row rank (making $A^{T} v$ full column rank), we conclude that $v=0$
- this leads to a contradiction, $(x, v)=0$ so K can't be singular

QCQP

a quadratically constrained quadratic program (QCQP) is in the form

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P_{0} x+q_{0}^{T} x \\
\text { subject to } & (1 / 2) x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& A x=b,
\end{array}
$$

assume P_{i} 's are positive semidefinite, $G \in \mathbf{R}^{m \times n}$ and $A \in \mathbf{R}^{p \times n}$

quadratic constraints
QCQP has both linear and quadratic constraints

Minimizing linear objective under a quadratic constraint

a special case of QCQP where the objective is linear

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & (x-d)^{T} P^{-1}(x-d) \leq 1
\end{array}
$$

where $P \succ 0, d \in \mathbf{R}^{n}$ are given parameters

- make change of variable: $z=P^{-1 / 2}(x-d)$

$$
\text { minimize } \tilde{c}^{T} z+g \text { subject to } z^{T} z \leq 1
$$

where $\tilde{c}=P^{1 / 2} c$ and $g=c^{T} d$ is a constant term

- the equivalent problem has a closed-form solution:

$$
z^{\star}=-\frac{\tilde{c}}{\|\tilde{c}\|_{2}}=-\frac{P^{1 / 2} c}{\left\|P^{1 / 2} c\right\|_{2}} \quad \Longrightarrow \quad x^{\star}=P^{1 / 2} z^{\star}+d=-\frac{P c}{\sqrt{c^{T} P c}}+d
$$

Applications

Applications of quadratic programming

- unconstrained QP
- least-squares
- optimizing group representative step in k-mean clustering
- support vector machine
- control systems

■ inverse problem (medical imaging, signal processing)

- least-squares with constraints (lasso and others)
- portfolio optimization

k-mean clustering

define c_{i} the group number of x_{i} (data) and a group assignment $G_{j}=\left\{i \mid c_{i}=j\right\}$

after the k groups are assigned, optimizing the group representative $\left(z_{j}\right)$ is to minimize

$$
J^{\text {clust }}=J_{1}+\cdots+J_{k}, \quad J_{j}=(1 / N) \sum_{i \in G_{j}}\left\|x_{i}-z_{j}\right\|_{2}^{2}
$$

- updating group representatives is an unconstrained QP in $z=\left(z_{1}, \ldots, z_{k}\right)$
- the solution z_{j} is the mean (or centroid) of x_{i} in j th group

$$
z_{j}=\frac{1}{\left|G_{j}\right|} \sum_{i \in G_{j}} x_{i}
$$

- the scheme of k-mean algorithm consists of
- partition the data x into k groups (not optimization problem)
- update the representatives: unconstrained QP (closed-form solution)

Soft-margin SVM

problem parameters: $x_{i} \in \mathbf{R}^{n}$ and $y_{i} \in \mathbf{R}$ for $i=1, \ldots, N, \lambda>0$ optimization variables: $w \in \mathbf{R}^{n}, b \in \mathbf{R}, z \in \mathbf{R}^{N}$

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2)\|w\|_{2}^{2}+\lambda \mathbf{1}^{T} z \\
\text { subject to } & y_{i}\left(x_{i}^{T} w+b\right) \geq 1-z_{i}, \quad i=1,2, \ldots, N \\
& z \succeq 0
\end{array}
$$

- data are classified by separating hyperplane with maximized margin
- z_{i} is called a slack variable, allowing some of the hard constraints to be relaxed
- the problem has (convex) quadratic objective and linear constraints (QP)

Tracking problem

design problem: find $u(t)$ for $t=1,2, \ldots, T$ to drive the linear system

$$
x(t+1)=A x(t)+B u(t), \quad y(t)=C x(t), \quad x(0)=0
$$

so that $y \approx y_{\text {ref }}$
the relationship between y and u is

$$
y(t)=C A^{t-1} B u(0)+C A^{t-2} B u(1)+\cdots+C A B u(t-2)+C B u(t-1)+D u(t)
$$

and can be arranged into vector form as

$$
\left[\begin{array}{c}
y(1) \tag{1}\\
y(2) \\
\vdots \\
y(T)
\end{array}\right]=\left[\begin{array}{cccc}
C B & 0 & \cdots & 0 \\
C A B & C B & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
C A^{T-1} B & \cdots & C A B & C B
\end{array}\right]\left[\begin{array}{c}
u(0) \\
u(1) \\
\vdots \\
u(T-1)
\end{array}\right] \triangleq \quad y_{T}=H u_{T}
$$

Specifications in control tracking

four types of constraints based on specification of u can be cast as a QP
let the optimization variable be $u^{T}=(u(1), \ldots, u(T))$

- trade-off between tracking and energy of u

$$
\begin{equation*}
\underset{u_{T}}{\operatorname{minimize}}\left\|H u_{T}-y_{\text {ref }}\right\|_{2}^{2}+\gamma\left\|u_{T}\right\|_{2}^{2} \tag{2}
\end{equation*}
$$

(unconstrained, closed-form solution, depends on the property of H)

- magnitude of u must be bounded, $|u| \leq u_{\text {max }}$

$$
\begin{equation*}
\underset{u_{T}}{\operatorname{minimize}}\left\|H u_{T}-y_{\text {ref }}\right\|_{2}^{2} \text { subject to }-u_{\max } \preceq u_{T} \preceq u_{\max } \tag{3}
\end{equation*}
$$

Specifications in control tracking

- the control signal does not change too rapidly, $|u(k)-u(k-1)|$ is small

$$
\begin{array}{ll}
\operatorname{minimize}_{u_{T}} & \left\|H u_{T}-y_{\text {ref }}\right\|_{2}^{2}+\gamma\left\|D u_{T}\right\|_{2}^{2} \tag{4}\\
\text { subject to } & -u_{\max } \preceq u_{T} \preceq u_{\max }
\end{array}
$$

where $D: \mathbf{R}^{T} \rightarrow \mathbf{R}^{T-1}$ is the difference matrix

- rate of change in u is bounded

$$
\begin{array}{ll}
\operatorname{minimize}_{u_{T}} & \left\|H u_{T}-y_{\mathrm{ref}}\right\|_{2}^{2} \\
\text { subject to } & -u_{\max } \preceq u_{T} \preceq u_{\max } \tag{5}\\
& -d_{\max } \mathbf{1} \preceq D u_{T} \preceq d_{\max } \mathbf{1}
\end{array}
$$

Lasso as a convex QP

a lasso or basis pursuit is the problem

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|_{2}^{2} \quad \text { subject to } \quad\|x\|_{1} \leq t
$$

minimizing the residual norm while keeping norm of x small (controlled by t)

this can be cast as a convex QP (since $A^{T} A \succeq 0$) with variables $x, u \in \mathbf{R}^{n}$

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} A^{T} A x-2 b^{T} A x \\
\text { subject to } & -u \preceq x \preceq u \\
& \mathbf{1}^{T} u \leq t
\end{array}
$$

ℓ_{1}-regularized least-squares

an ℓ_{1}-regularized least-squares (Lagrangian form of lasso)

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|_{2}^{2}+\gamma\|x\|_{1}
$$

QCQP formulation:
using the epigraph form, we can formulate the problem as

$$
\begin{array}{ll}
\operatorname{minimize} & t+\gamma \mathbf{1}^{T} u \\
\text { subject to } & x^{T} A^{T} x-2 b^{T} A x+b^{T} b \leq t \\
& -u \preceq x \preceq u
\end{array}
$$

with variables $x, u \in \mathbf{R}^{n}$ and $t \in \mathbf{R}$

QP formulation: note that we can write x as

$$
x=u-v, \quad u, v \succeq 0 \quad \Rightarrow \quad|x|=u+v \quad \text { (all elementwise) }
$$

u and v are positive and negative parts of x, respectively

$$
\|x\|_{1}=\sum_{k}\left|x_{k}\right|=\mathbf{1}^{T}(u+v)
$$

the problem can be formulated as a QP

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-y\|_{2}^{2}+\gamma \mathbf{1}^{T}(u+v) \\
\text { subject to } & x=u-v \\
& u \succeq 0, \quad v \succeq 0
\end{array}
$$

with variables $x, u, v \in \mathbf{R}^{n}$

Markowitz portfolio optimization

setting:

■ $r=\left(r_{1}, r_{2}, \ldots, r_{n}\right) \in \mathbf{R}^{n} ; r_{i}$ is the (random) return of asset i

- the return has the mean \bar{r} and covariance Σ
optimization variable: $x \in \mathbf{R}^{n}$ where x_{i} is the portion to invest in asset i
problem parameters: $\Sigma \succeq 0, \bar{r} \in \mathbf{R}^{n}, \gamma>0$

$$
\begin{array}{ll}
\operatorname{minimize} & -\bar{r}^{T} x+\gamma x^{T} \Sigma x \\
\text { subject to } & x \succeq 0, \quad \mathbf{1}^{T} x=1
\end{array}
$$

- $\operatorname{var}\left(r^{T} x\right)=x^{T} \Sigma x$ is the risk of the portfolio
- the goal is to maximize the expected return while minimize the risk
- γ is the risk-aversion parameter controlling the trade-off

Risk minimization with fixed return

setting: consider returns of n assets in T periods

- $R \in \mathbf{R}^{T \times n}: R_{i j}$ is the gain of asset j in period $i(\%)$
$\boxed{-} w \in \mathbf{R}^{n}$: asset allocation (or weight) where $\mathbf{1}^{T} w=1$
- $r \in \mathbf{R}^{T}: r_{i}$ is the return (of all assets) in period i, so $r=R w$
- total portfolio value in period t is

$$
V_{t}=V_{1}\left(1+r_{1}\right)\left(1+r_{2}\right) \cdots\left(1+r_{t-1}\right)
$$

and can be approximated when r_{t} is small as $V_{T+1} \approx V_{1}+T \mathbf{a v g}(r) V_{1}$

- unlike Markowitz that used statistical property of the returns, here we use a set of actual (or realized) returns
- as seen in Markowitz formulation, w that minimize risk for a given return is called Pareto optimal

Risk minimization with fixed return

goal: fix the return to a value ρ and minimize the risk over all portfolios

- the portfolio return is given by $\operatorname{avg}(r)=(1 / T) \mathbf{1}^{T}(R w) \triangleq \mu^{T} w=\rho$
- the risk is $\operatorname{var}[r]=(1 / T)\|r-\mathbf{a v g}(r)\|^{2}=(1 / T)\|r-\rho \mathbf{1}\|^{2}$
the problem of minimizing the risk with return ρ is

$$
\begin{array}{ll}
\text { minimize } & \|R w-\rho \mathbf{1}\|^{2} \\
\text { subject to } & {\left[\begin{array}{l}
\mathbf{1}^{T} \\
\mu^{T}
\end{array}\right] w=\left[\begin{array}{l}
1 \\
\rho
\end{array}\right]}
\end{array}
$$

with variable $w \in \mathbf{R}^{n}$ and parameters R, ρ, μ
(no non-negative constraint in w - this gives quadratic programming with linear equality)

Algorithms

Available methods

- active set method for convex QPs
- interior-point methods
- conjugate gradient (solving the reduced problem of equality-constrained QP)
- ellipsoid method (for convex programs): generate a sequence of ellipsoids that are guaranteed to contain the minizer
- gradient projection (for QP if the polyhedron is simple)
- many solvers and packages in the market

MATLAB: quadprog use trust-region-reflective or interior-point Python (convex QP and QCQP): cvxopt

Active-set methods for convex QP

- standard form
- algorithm outline
- update working set (that contains active constraints)
- optimality condition

QP standard form for active-set methods

we consider the standard form of convex QP with inequality constraints:

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x \\
\text { subject to } & a_{i}^{T} x=b_{i}, \quad i \in \mathcal{E} \\
& a_{i}^{T} x \geq b_{i}, \quad i \in \mathcal{I}
\end{array}
$$

- the active set $\mathcal{A}(x)$ consists of i of the constraints for which equality holds at x

$$
\mathcal{A}(x)=\left\{i \in \mathcal{E} \cup \mathcal{I} \mid a_{i}^{T} x=b_{i}\right\}
$$

(we typically don't have knowledge of $\mathcal{A}\left(x^{\star}\right)$)

- at iteration k when updating x_{k}, define \mathcal{W}_{k} as the working set which contains $i \in \mathcal{E}$ and some indices from \mathcal{I} that inequalities are imposed as equalities
■ it is required that a_{i} 's for $i \in \mathcal{W}_{k}$ are linearly independent

Algorithm outline

the updates rely on subproblems that solve QP with linear equalities
1 given an initial feasible point x_{0}
2 the update takes the form of $x_{k+1}=x_{k}+\alpha_{k} s_{k}$
3 at iterate x_{k}, we can determine \mathcal{W}_{k}
4 finding s_{k} is to solve QP subproblem with equality constraints for $i \in \mathcal{W}_{k}$ (this is an easy problem - refer to page 12)
5 update \mathcal{W}_{k} by either add or remove i corresponding to inequality constraints
6 the update terminates when $s_{k}=0$ and KKT conditions are satisfied

QP subproblem to find the search direction

given x_{k} and the working set \mathcal{W}_{k}, we solve the QP

$$
\operatorname{minimize}(1 / 2) s^{T} P s+\left(P x_{k}+q\right)^{T} s \quad \text { subject to } \quad a_{i}^{T} s=0, \quad i \in \mathcal{W}_{k}
$$

and the optimal solution s is then assigned to search direction s_{k}

- the constraints corresponding to \mathcal{W}_{k} are regarded as equalities where all other constraints are temporarily disregarded
- we solve QP subproblem using the technique on page 12 (solve KKT system)

■ using $L(s, \lambda)=(1 / 2) s^{T} P s+\left(P x_{k}+q\right)^{T} s-\sum_{i} \lambda_{i} a_{i}^{T} s$, the KKT system is

$$
\left[\begin{array}{cc}
P & -A_{w}^{T} \tag{6}\\
A_{w} & 0
\end{array}\right]\left[\begin{array}{l}
s \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
-\left(P x_{k}+q\right) \\
0
\end{array}\right]
$$

(A_{w} contains rows of a_{i}^{T} for $i \in \mathcal{W}_{k}$)

Determining stepsize

to update $x_{k+1}=x_{k}+\alpha_{k} s_{k}$, we check the feasibility of x_{k+1}

- if $\alpha_{k}=1$ makes x_{k+1} feasible (to all constraints) then set $x_{k+1}=x_{k}+s_{k}$; otherwise, find an appropriate value of $\alpha \in[0,1]$
- as we only need to check feasibility of constraints for $i \notin \mathcal{W}_{k}$
- if $a_{i}^{T} s_{k} \geq 0$ then we can use any $\alpha_{k} \geq 0$ because x_{k+1} is always feasible

$$
a_{i}^{T}\left(x_{k}+\alpha_{k} s_{k}\right)=a_{i}^{T} x_{k}+\alpha_{k} a_{i}^{T} s_{k} \geq a_{i}^{T} x_{k} \geq b_{i}
$$

- if $a_{i}^{T} s_{k}<0$ for some $i \notin \mathcal{W}_{k}$, we make $a_{i}^{T}\left(x_{k}+\alpha_{k} s_{k}\right) \geq b_{i}$ only if we choose

$$
\alpha_{k} \leq \frac{b_{i}-a_{i}^{T} x_{k}}{a_{i}^{T} s_{k}}
$$

(there can be many i 's that $a_{i}^{T} s_{k}<0$, so we pick smallest α_{k} in $[0,1]$)

Blocking constraints

in conclusion, when $a_{i}^{T} s_{k}<0$ for some $i \notin \mathcal{W}_{k}$, we set

$$
\alpha_{k}=\min \left(1, \min _{i \notin \mathcal{W}_{k}, a_{i}^{T} s_{k}<0} \frac{b_{i}-a_{i}^{T} x_{k}}{a_{i}^{T} s_{k}}\right)
$$

- blocking constraints are the constraints i for which the minimum occurs
- if $\alpha_{k}<1$, step along s_{k} was blocked by some $i \notin \mathcal{W}_{k}$, so we adjust by $\mathcal{W}_{k+1}:=\mathcal{W}_{k} \cup$ blocking constraints
- if $\alpha_{k}=1$, then no blocking constraints and $\mathcal{W}_{k+1}=\mathcal{W}_{k}$
- iterate k until we find that $s_{k} \triangleq \hat{s}=0$ (with the current working set $\hat{\mathcal{W}}$)
- the KKT condition of QP subproblem on page 35 suggests that

$$
P \hat{x}+q=\sum_{i \in \hat{\mathcal{W}}} a_{i} \hat{\lambda}_{i}
$$

Checking optimality

KKT conditions of the original QP problem on page 33
primal feasibility: $a_{i}^{T} x^{\star}=b_{i}, \forall i \in \mathcal{A}\left(x^{\star}\right), \quad a_{i}^{T} x^{\star} \geq b_{i}, \forall i \in \mathcal{I} \backslash \mathcal{A}\left(x^{\star}\right)$
zero-gradient: $P x^{\star}+q-\sum_{i \in \mathcal{A}\left(x^{\star}\right)} \lambda_{i}^{\star} a_{i}=0, \quad$ dual feasibility: $\lambda_{i}^{\star} \geq 0, \forall i \in \mathcal{I} \cap \mathcal{A}\left(x^{\star}\right)$

conditions obtained from $\hat{x}, \hat{\lambda}$

check sign of λ for $i=1,4$

- $P \hat{x}+q-\sum_{i \in \hat{\mathcal{W}}} \hat{\lambda}_{i} a_{i}-\sum_{i \notin \hat{\mathcal{W}}} 0 \cdot a_{i}=0$
- $a_{i}^{T} \hat{x}=b_{i}, \forall i \in \mathcal{A}(\hat{x})$
- $a_{i}^{T} \hat{x} \geq b_{i}, \forall i \in \mathcal{I} \backslash \mathcal{A}(\hat{x})$ because $a_{i}^{T} \hat{x}=b_{i}$ for $i \notin \mathcal{A}(\hat{x})$ but $i \in \hat{\mathcal{W}}$
- it's left to check if $\hat{\lambda}$ for all $i \in \mathcal{I} \cap \hat{\mathcal{W}}$

Sign of Lagrange multipliers

we examine the sign of $\hat{\lambda}_{i}$ for $i \in \mathcal{I} \cap \hat{\mathcal{W}}$

- if $\hat{\lambda}_{i} \succeq 0$ then $\hat{\lambda}$ is dual feasible and \hat{x} is optimal (satisfying all KKT conditions)
- if $\hat{\lambda}_{j}<0$ for some $j \in \mathcal{I} \cap \hat{\mathcal{W}}$
- find j that $\hat{\lambda}_{j}$ is most negative
- remove j from the working set: $\mathcal{W}_{k+1}:=\mathcal{W}_{k} \backslash j$
(the decreasing rate of objective function when one constraint is removed is proportional to Lagranger multiplier of that constraint)
then continue iteration k and solve the QP subproblem

Algorithm: active-set method for convex QP

Require: tolerance $=1 \mathrm{e}-5$, maxiter $=50$
1: Initialize: feasible point x_{0}
2: for $k=1$: maxiter do
solve QP subproblem on page 35 to find s_{k}
if $\left\|s_{k}\right\| \leq$ tolerance then
compute $\hat{\lambda}$ with $\hat{\mathcal{W}}=\mathcal{W}_{k}$
if $\hat{\lambda}_{i} \geq 0$ for all $i \in \mathcal{W}_{k} \cap \mathcal{I}$ then
stop with solution $x^{\star}=x_{k}$
else
$j=\operatorname{argmin}_{j \in \mathcal{W}_{k} \cap \mathcal{I}} \hat{\lambda}_{j}$
$x_{k+1}:=x_{k} ; \mathcal{W}_{k+1}:=\mathcal{W}_{k} \backslash\{j\}$
11: end if
12: else
13: \quad compute α_{k} from page 37
14: $\quad x_{k+1}:=x_{k}+\alpha_{k} s_{k}$
15: if there are blocking constraints then
16: obtain \mathcal{W}_{k+1} by adding one of blocking constraints to \mathcal{W}_{k}
17: else
18: $\quad \mathcal{W}_{k+1}:=\mathcal{W}_{k}$
19: end if
20: end if
21: end for
: return x_{k}

References

1 L. Vandenberghe, Lecture notes on Optimization Methods for Large-Scale Systems, EE236C, UCLA
2 D.P. Bertsekas, Nonlinear Programming, Athena Scientific, 1999
3 G. Calafiore and L. El Ghaoui, Optimization Models, Cambridge University Press, 2014
4 S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004

5 J. Nocedal and S.J. Wright, Numerical Optimization, 2nd edition, Springer, 2006
6 S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra: Vectors, Matrices, and Least squares, Cambridge University Press, 2018
7 J. Songsiri, System Identification, Chula Press, 2022

