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Quadratic function
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Quadratic function

given P ∈ Rn×n, q ∈ Rn, r ∈ R, a quadratic function f : Rn → R is of the form

f(x) = (1/2)xTPx+ qTx+ r

xTPx is aka an energy form (due to the quadratic form that appears in the
energy/power of some physical variables)
. verify that xTPx = xT (P+PT )x

2 ; then the energy term only takes the
symmetric part of P ; hence, we often consider P ∈ Sn (P is assumed to be
symmetric later on)
∇f(x) = Px+ q (derivative of quadratic function becomes linear)
the contour shape of f depends on the property of P (pdf, indefinite, magnitude
of eigenvalues, direction of eigenvectors)
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Quadratic function (positive definite)
let f(x) = (1/2)xTPx+ qTx where P ≻ 0
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since P is invertible, we can complete the square
f(x) = (1/2)[(x+ P−1q)TP (x+ P−1q)− qTP−1q]

ellipsoid parametrized by P−1 with center at −P−1q
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Quadratic function (positive semidefinite)
let f(x1, x2) = (1/2)(xTPx) + qTx with q = (1,−3) and two cases of P
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P ≻ 0: sublevel set of f is bounded (region inside the ellipsoid)
P ⪰ 0: sublevel set of f is unbounded
(if x = t(1,−1) ∈ N (P ) then f(x) = tqT (1,−1) = 4t → −∞ by choosing
t → −∞)
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Quadratic function (indefinite)
let f(x1, x2) = (1/2)(xTPx) + qTx with P =

[
2 1
1 −1

]
(and invertible)
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from f(x) = (1/2)(x+ P−1q)TP (x+ P−1q)+ constant, we can pick t, x
such that x+ P−1q = tv, Pv = λ−v, t → ∞; hence, f(x) = t2λ−∥v∥2 → −∞
f can be unbounded below along some direction of x
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Formulation
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Standard form

a quadratic program (QP) is in the form

minimize (1/2)xTPx+ qTx
subject to Gx ⪯ h

Ax = b,

where P ∈ Sn, G ∈ Rm×n and A ∈ Rp×n

convex QP

linear constraints
example: constrained least-squares

minimize ∥Ax− b∥22
subject to l ⪯ x ⪯ u

QP has linear constraints
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Properties of QP

an unconstrained QP is unbounded below if P is not positive definite
an unconstrained QP has a unique solution: x = −P−1q when P ≻ 0

a QP is a convex problem if P is positive semidifinite definite
if P ⪰ 0 then a local minimizer x⋆ is a global minimizer (by convexity)
if P ≻ 0 then x⋆ is a unique global solution (by strictly convexity)

the feasible set (polyhedron) may be empty (hence, the problem is infeasible)
the feasible set can be unbounded (but if P ≻ 0 it implies boundedness)
solution of a QP may not be at a vertex
the dual of a QP is also a QP
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Contour of quadratic objective
consider three cases of P and different feasible sets
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verify the location of the optimal solution for each constraint set
left: a bounded set, a line, an unbounded feasible set
middle: bounded and unbouded feasible sets, while f is unbounded below
right: a bounded feasible set, while f is unbounded below and above
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Equality-constrained QP

assume a full row rank matrix A ∈ Rp×n and P ≻ 0 on the nullspace of A

minimize
x

(1/2)xTPx− qTx subject to Ax = b

it can be shown that K =

[
P AT

A 0

]
is non-singular (called KKT matrix)

the zero-gradient of Lagrangian condition is the system of n+ p equations[
P AT

A 0

] [
x
λ

]
=

[
q
b

]
has a unique solution (x⋆, λ⋆)

x⋆ is the unique global solution proof in Thm 16.2, Nocedral book
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Proof

suppose the KKT matrix is singular, ∃z = (x, v) ̸= 0 such that Kz = 0, hence
Ax = 0 (x lies in the nullspace of A) and Px+AT v = 0

zTKz = 0 and this gives

zT
[
P AT

A 0

]
z = xTPx+ 2vTAx = xTPx = 0

but P ≻ 0 for all y ∈ N (A), hence xTPx = 0 only holds when x = 0

when x = 0, we conclude from Px+AT v = 0 that AT v = 0

but A is full row rank (making AT v full column rank), we conclude that v = 0

this leads to a contradiction, (x, v) = 0 so K can’t be singular
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QCQP
a quadratically constrained quadratic program (QCQP) is in the form

minimize (1/2)xTP0x+ qT0 x
subject to (1/2)xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

Ax = b,

assume Pi’s are positive semidefinite, G ∈ Rm×n and A ∈ Rp×n

QCQP

quadratic constraints

QCQP has both linear and quadratic constraints
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Minimizing linear objective under a quadratic constraint
a special case of QCQP where the objective is linear

minimize cTx
subject to (x− d)TP−1(x− d) ≤ 1

where P ≻ 0, d ∈ Rn are given parameters
make change of variable: z = P−1/2(x− d)

minimize c̃T z + g subject to zT z ≤ 1

where c̃ = P 1/2c and g = cTd is a constant term
the equivalent problem has a closed-form solution:

z⋆ = − c̃

∥c̃∥2
= − P 1/2c

∥P 1/2c∥2
=⇒ x⋆ = P 1/2z⋆ + d = − Pc√

cTPc
+ d
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Applications
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Applications of quadratic programming

unconstrained QP
least-squares
optimizing group representative step in k-mean clustering

support vector machine
control systems
inverse problem (medical imaging, signal processing)
least-squares with constraints (lasso and others)
portfolio optimization
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k-mean clustering
define ci the group number of xi (data) and a group assignment Gj = {i | ci = j}

after the k groups are assigned, optimizing the group representative (zj) is to minimize

Jclust = J1 + · · ·+ Jk, Jj = (1/N)
∑
i∈Gj

∥xi − zj∥22
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updating group representatives is an unconstrained QP in z = (z1, . . . , zk)

the solution zj is the mean (or centroid) of xi in jth group

zj =
1

|Gj |
∑
i∈Gj

xi

the scheme of k-mean algorithm consists of
partition the data x into k groups (not optimization problem)
update the representatives: unconstrained QP (closed-form solution)
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Soft-margin SVM

problem parameters: xi ∈ Rn and yi ∈ R for i = 1, . . . , N, λ > 0

optimization variables: w ∈ Rn, b ∈ R, z ∈ RN

minimize (1/2)∥w∥22 + λ1T z
subject to yi(x

T
i w + b) ≥ 1− zi, i = 1, 2, . . . , N

z ⪰ 0

data are classified by separating hyperplane with maximized margin
zi is called a slack variable, allowing some of the hard constraints to be relaxed
the problem has (convex) quadratic objective and linear constraints (QP)
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Tracking problem
design problem: find u(t) for t = 1, 2, . . . , T to drive the linear system

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t), x(0) = 0

so that y ≈ yref

the relationship between y and u is

y(t) = CAt−1Bu(0) + CAt−2Bu(1) + · · ·+ CABu(t− 2) + CBu(t− 1) +Du(t)

and can be arranged into vector form as
y(1)
y(2)

...
y(T )

 =


CB 0 · · · 0
CAB CB · · · 0

... ... . . . ...
CAT−1B · · · CAB CB




u(0)
u(1)

...
u(T − 1)

 ≜ yT = HuT (1)
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Specifications in control tracking

four types of constraints based on specification of u can be cast as a QP

let the optimization variable be uT = (u(1), . . . , u(T ))

trade-off between tracking and energy of u

minimize
uT

∥HuT − yref∥22 + γ∥uT ∥22 (2)

(unconstrained, closed-form solution, depends on the property of H)
magnitude of u must be bounded, |u| ≤ umax

minimize
uT

∥HuT − yref∥22 subject to − umax ⪯ uT ⪯ umax (3)
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Specifications in control tracking

the control signal does not change too rapidly, |u(k)− u(k − 1)| is small

minimizeuT ∥HuT − yref∥22 + γ∥DuT ∥22
subject to −umax ⪯ uT ⪯ umax

(4)

where D : RT → RT−1 is the difference matrix
rate of change in u is bounded

minimizeuT ∥HuT − yref∥22
subject to −umax ⪯ uT ⪯ umax

−dmax1 ⪯ DuT ⪯ dmax1
(5)
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Lasso as a convex QP
a lasso or basis pursuit is the problem

minimize
x

∥Ax− b∥22 subject to ∥x∥1 ≤ t

minimizing the residual norm while keeping norm of x small (controlled by t)

this can be cast as a convex QP (since ATA ⪰ 0) with variables x, u ∈ Rn

minimize xTATAx− 2bTAx
subject to −u ⪯ x ⪯ u

1Tu ≤ t
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ℓ1-regularized least-squares

an ℓ1-regularized least-squares (Lagrangian form of lasso)

minimize
x

∥Ax− b∥22 + γ∥x∥1

QCQP formulation:

using the epigraph form, we can formulate the problem as

minimize t+ γ1Tu
subject to xTATx− 2bTAx+ bT b ≤ t

−u ⪯ x ⪯ u

with variables x, u ∈ Rn and t ∈ R
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QP formulation: note that we can write x as

x = u− v, u, v ⪰ 0 ⇒ |x| = u+ v (all elementwise)

u and v are positive and negative parts of x, respectively

∥x∥1 =
∑
k

|xk| = 1T (u+ v)

the problem can be formulated as a QP

minimize ∥Ax− y∥22 + γ1T (u+ v)
subject to x = u− v

u ⪰ 0, v ⪰ 0

with variables x, u, v ∈ Rn
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Markowitz portfolio optimization

setting:
r = (r1, r2, . . . , rn) ∈ Rn; ri is the (random) return of asset i
the return has the mean r̄ and covariance Σ

optimization variable: x ∈ Rn where xi is the portion to invest in asset i

problem parameters: Σ ⪰ 0, r̄ ∈ Rn, γ > 0

minimize −r̄Tx+ γxTΣx
subject to x ⪰ 0, 1Tx = 1

var(rTx) = xTΣx is the risk of the portfolio
the goal is to maximize the expected return while minimize the risk
γ is the risk-aversion parameter controlling the trade-off
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Risk minimization with fixed return

setting: consider returns of n assets in T periods
R ∈ RT×n: Rij is the gain of asset j in period i (%)
w ∈ Rn: asset allocation (or weight) where 1Tw = 1

r ∈ RT : ri is the return (of all assets) in period i, so r = Rw

total portfolio value in period t is

Vt = V1(1 + r1)(1 + r2) · · · (1 + rt−1)

and can be approximated when rt is small as VT+1 ≈ V1 + T avg(r)V1

unlike Markowitz that used statistical property of the returns, here we use a set of
actual (or realized) returns
as seen in Markowitz formulation, w that minimize risk for a given return is called
Pareto optimal
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Risk minimization with fixed return

goal: fix the return to a value ρ and minimize the risk over all portfolios
the portfolio return is given by avg(r) = (1/T )1T (Rw) ≜ µTw = ρ

the risk is var[r] = (1/T )∥r − avg(r)∥2 = (1/T )∥r − ρ1∥2

the problem of minimizing the risk with return ρ is

minimize ∥Rw − ρ1∥2

subject to
[
1T

µT

]
w =

[
1
ρ

]
with variable w ∈ Rn and parameters R, ρ, µ

(no non-negative constraint in w – this gives quadratic programming with linear
equality)
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Algorithms
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Available methods

active set method for convex QPs
interior-point methods
conjugate gradient (solving the reduced problem of equality-constrained QP)
ellipsoid method (for convex programs): generate a sequence of ellipsoids that are
guaranteed to contain the minizer
gradient projection (for QP if the polyhedron is simple)
many solvers and packages in the market

MATLAB: quadprog use trust-region-reflective or interior-point
Python (convex QP and QCQP): cvxopt
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Active-set methods for convex QP

standard form
algorithm outline
update working set (that contains active constraints)
optimality condition
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QP standard form for active-set methods
we consider the standard form of convex QP with inequality constraints:

minimize (1/2)xTPx+ qTx
subject to aTi x = bi, i ∈ E

aTi x ≥ bi, i ∈ I

the active set A(x) consists of i of the constraints for which equality holds at x

A(x) = { i ∈ E ∪ I | aTi x = bi }

(we typically don’t have knowledge of A(x⋆))
at iteration k when updating xk, define Wk as the working set which contains
i ∈ E and some indices from I that inequalities are imposed as equalities
it is required that ai’s for i ∈ Wk are linearly independent
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Algorithm outline

the updates rely on subproblems that solve QP with linear equalities
1 given an initial feasible point x0
2 the update takes the form of xk+1 = xk + αksk

3 at iterate xk, we can determine Wk

4 finding sk is to solve QP subproblem with equality constraints for i ∈ Wk (this
is an easy problem – refer to page 12)

5 update Wk by either add or remove i corresponding to inequality constraints
6 the update terminates when sk = 0 and KKT conditions are satisfied
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QP subproblem to find the search direction

given xk and the working set Wk, we solve the QP

minimize (1/2)sTPs+ (Pxk + q)T s subject to aTi s = 0, i ∈ Wk

and the optimal solution s is then assigned to search direction sk

the constraints corresponding to Wk are regarded as equalities where all other
constraints are temporarily disregarded
we solve QP subproblem using the technique on page 12 (solve KKT system)
using L(s, λ) = (1/2)sTPs+ (Pxk + q)T s−

∑
i λia

T
i s, the KKT system is[

P −AT
w

Aw 0

] [
s
λ

]
=

[
−(Pxk + q)

0

]
(6)

(Aw contains rows of aTi for i ∈ Wk)
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Determining stepsize

to update xk+1 = xk + αksk, we check the feasibility of xk+1

if αk = 1 makes xk+1 feasible (to all constraints) then set xk+1 = xk + sk;
otherwise, find an appropriate value of α ∈ [0, 1]
as we only need to check feasibility of constraints for i /∈ Wk

if aTi sk ≥ 0 then we can use any αk ≥ 0 because xk+1 is always feasible

aTi (xk + αksk) = aTi xk + αka
T
i sk ≥ aTi xk ≥ bi

if aTi sk < 0 for some i /∈ Wk, we make aTi (xk + αksk) ≥ bi only if we choose

αk ≤ bi − aTi xk

aTi sk

(there can be many i’s that aTi sk < 0, so we pick smallest αk in [0, 1])
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Blocking constraints
in conclusion, when aTi sk < 0 for some i /∈ Wk, we set

αk = min

(
1, min

i/∈Wk,a
T
i sk<0

bi − aTi xk
aTi sk

)

blocking constraints are the constraints i for which the minimum occurs
if αk < 1, step along sk was blocked by some i /∈ Wk, so we adjust by
Wk+1 := Wk∪ blocking constraints
if αk = 1, then no blocking constraints and Wk+1 = Wk

iterate k until we find that sk ≜ ŝ = 0 (with the current working set Ŵ)
the KKT condition of QP subproblem on page 35 suggests that

Px̂+ q =
∑
i∈Ŵ

aiλ̂i
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Checking optimality
KKT conditions of the original QP problem on page 33

primal feasibility: aTi x
⋆ = bi, ∀i ∈ A(x⋆), aTi x

⋆ ≥ bi, ∀i ∈ I\A(x⋆)

zero-gradient: Px⋆ + q −
∑

i∈A(x⋆)

λ⋆
i ai = 0, dual feasibility: λ⋆

i ≥ 0, ∀i ∈ I ∩ A(x⋆)

conditions obtained from x̂, λ̂

P x̂+ q −
∑

i∈Ŵ λ̂iai −
∑

i/∈Ŵ 0 · ai = 0

aTi x̂ = bi, ∀i ∈ A(x̂)

aTi x̂ ≥ bi, ∀i ∈ I\A(x̂) because aTi x̂ = bi for i /∈ A(x̂) but i ∈ Ŵ
it’s left to check if λ̂ for all i ∈ I ∩ Ŵ
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Sign of Lagrange multipliers

we examine the sign of λ̂i for i ∈ I ∩ Ŵ
if λ̂i ⪰ 0 then λ̂ is dual feasible and x̂ is optimal (satisfying all KKT conditions)
if λ̂j < 0 for some j ∈ I ∩ Ŵ

find j that λ̂j is most negative
remove j from the working set: Wk+1 := Wk\j

(the decreasing rate of objective function when one constraint is removed is
proportional to Lagranger multiplier of that constraint)

then continue iteration k and solve the QP subproblem
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Algorithm: active-set method for convex QP
Require: tolerance = 1e-5 , maxiter = 50
1: Initialize: feasible point x0

2: for k = 1 : maxiter do
3: solve QP subproblem on page 35 to find sk
4: if ∥sk∥ ≤ tolerance then
5: compute λ̂ with Ŵ = Wk

6: if λ̂i ≥ 0 for all i ∈ Wk ∩ I then
7: stop with solution x⋆ = xk

8: else
9: j = argminj∈Wk∩I λ̂j

10: xk+1 := xk ; Wk+1 := Wk\{j}
11: end if
12: else
13: compute αk from page 37
14: xk+1 := xk + αksk

15: if there are blocking constraints then
16: obtain Wk+1 by adding one of blocking constraints to Wk

17: else
18: Wk+1 := Wk

19: end if
20: end if
21: end for
22: return xk
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