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1 Overview of regularization

2 ℓ2 regularization

3 ℓ1 regularization
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Overview
we provide a concept of estimation with two objectives:

minimize
x

f(x) := g(x) + γh(x)

x is model parameter
g is a loss function that indicates model fitting
h is a regularization function that affects solution properties (aka penalty)
γ > 0 is a penalty weight controlling a balance between model quality and
regularization of x

we will layout the ideas by demostrating with a quadratic loss first

when g is a least-squares loss function
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Overview
typyical characteristic of least-squares solutions to

minimize
β

∥y −Xβ∥2, y ∈ RN , β ∈ Rp

entries in the solution β are nonzero
if p ≫ N , LS estimate is not unique

one can regularize the estimation process by solving

minimize
β

∥y −Xβ∥2 subject to
p∑

j=1

|βj | ≤ t

regard that ∥β∥1 ≤ t is our budget on the norm of parameter
using ℓ1 norm and small t yield a sparse solution
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Example: 15-class gene expression cancer

example: 15-class gene expression cancer data
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feature weights estimated from a lasso-regularized multinomial classifier (sparse)
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Example: image reconstruction by wavelet representation

zeroing out the wavelet coefficient but keeping the largest 25,000 ones
relatively few wavelet coefficients capture most of the signal energy
the difference between the original image (left) and the reconstructed image
(right) are hardly noticeable
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Why regularizations are needed?

reasons for alternatives to the least-squares estimate
prediction accuracy:

LS estimate has low bias but large variance
shrinking some entries of β to zero introduces some bias but reduce the variance of β
when making predictions on new data set, it may improve the overall prediction
accuracy

interpretation: when having a large number of predictors, we often would like to
identify a smaller subset of β that exhibit strongest effects
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ℓ2 regularization
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ℓ2-regularized least-squares

adding the 2-norm penalty to the objective function

minimize
β

∥y −Xβ∥22 + γ∥β∥22

seek for an approximate solution of Xβ ≈ y with small norm
also called Tikhonov regularized least-squares or ridge regression
γ > 0 controls the trade off between the fitting error and the size of x
has the analytical solution for any γ > 0:

β = (XTX + γI)−1XT y

(no restrictions on shape, rank of X)
interpreted as a MAP estimation with the log-prior of the Gaussian
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MSE of ridge regression

test mse versus regularization parameter λ
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as λ increases, we have a trade-off between bias and variance
variance drops significantly as λ from 0 to 10 with little increase in bias; this leads
MSE to decrease
MSE at λ = ∞ is as high as MSE at λ = 0 but the minimum MSE is acheived at
intermediate value of λ
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Similar form of ℓ2-regularized LS

the ℓ2-norm is an inequality constraint:

minimize
β

∥y −Xβ∥2 subject to β2
1 + · · ·+ β2

p ≤ t

t is specified by the user
t serves as a budget of the sum squared of β
the ℓ2-regularized LS on page 10 is the Lagrangian form of this problem
for every value of γ on page 10 there is a corresponding t such that the two
formulations have the same estimates of β
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Practical issues
some concerns on implementing ridge regression

the ℓ2 penalty on β should NOT apply to the intercept β0 since β0 measures the
mean value of the response when x1, . . . , xp are zero
ridge solutions are not equivariant under scaling of inputs: x̃j = αjxj

X̃ =
[
α1x1 α2x2 · · · αpxp

]
≜ XD

β̂j depends on λ and the scaling of other predictors

β̂ = (DTXTXD + γI)−1DTXT y

it is best to apply ℓ2 regularization after standardizing X

x̃ij =
xij√

1
n

∑n
i=1(xij − x̄j)2

(all predictors are on the same scale)
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ℓ1 regularization
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Scalar ℓ1-regularized least-squares
Idea: adding |x| to a minimization problem introduces a sparse solution
consider a scalar problem:

minimize
x

f(x) = (1/2)(x− a)2 + γ|x|
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Optimal solution

to derive the optimal solution, we consider the two cases:
if x ≥ 0 then f(x) = (1/2)(x− (a− γ))2 (parabola with center at a− γ)

x⋆ = a− γ, provided that a ≥ γ

if a < γ, then x⋆ = 0 (because parabola f is centered at a− γ which is negative)
if x ≤ 0 then f(x) = (1/2)(x− (a+ γ))2

x⋆ = a+ γ, provided that a ≤ −γ

if a ≥ −γ then x⋆ = 0 (because parabola f is centered at a+ γ which is positive)
conclusion: when |a| ≤ γ then x⋆ must be zero

Overview of optimization concept Jitkomut Songsiri 16 / 59



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

the optimal solution to minimization of f(x) = (1/2)(x− a)2 + γ|x| is

x⋆ =

{
(|a| − γ)sign(a), |a| > γ

0, |a| ≤ γ

meaning: if γ is large enough, x∗ will be zero

generalization to vector case: x ∈ Rn

minimize
x

f(x) = (1/2)∥x− a∥2 + γ∥x∥1

the optimal solution has the same form

x⋆ =

{
(|a| − γ)sign(a), |a| > γ

0, |a| ≤ γ

where all operations are done in elementwise
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ℓ1-regularized least-squares

adding the ℓ1-norm penalty to the least-square problem

minimize
β

(1/2)∥y −Xβ∥22 + γ∥β∥1, y ∈ RN , β ∈ Rp

a convex heuristic method for finding a sparse β that gives Xβ ≈ y

also called Lasso or basis pursuit
a nondifferentiable problem due to ∥ · ∥1 term
no analytical solution, but can be solved efficiently
interpreted as a MAP estimation with the log-prior of the Laplacian distribution
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Example
X ∈ Rm×n, b ∈ Rm with m = 100, n = 500, γ = 0.2
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solution of ℓ2 regularization is more widely spread
solution of ℓ1 regularization is concentrated at zero
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Similar form of ℓ1-regularized LS

the ℓ1-norm is an inequality constraint:

minimize
β

∥y −Xβ∥2 subject to ∥β∥1 ≤ t

t is specified by the user
t serves as a budget of the sum of absolute values of x
the ℓ1-regularized LS on page 18 is the Lagrangian form of this problem
for each t where ∥β∥1 ≤ t is active, there is a corresponding value of γ that yields
the same solution from page 18
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Solution paths of regularized LS
solve the regularized LS when n = 5 and vary γ (penalty parameter)
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for lasso, many entries of β are exactly zero as γ varies
for ridge, many entries of β are nonzero but converging to small values
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Contour of quadratic loss and constraints
both regularized LS problems has the objective function: minimizeβ ∥y −Xβ∥22
but with different constraints:

ridge: β2
1 + · · ·+ β2

p ≤ t lasso: |β1|+ · · ·+ |βp| ≤ t

β
^

β
^2

. .β

1

β
2

β
1

β

the contour can hit a corner of ℓ1-norm ball where some βk must be zero
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Comparing ridge and lasso
left: as γ increases, lasso estimate gives a trade-off in variance and bias

M
ea

n 
Sq

ua
re

d 
Er

ro
r

0.02 0.10 0.50 2.00 10.00 50.00

0
10

20
30

40
50

60

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

R2 on Training Data

M
ea

n 
Sq

ua
re

d 
Er

ro
r

M
ea

n 
Sq

ua
re

d 
Er

ro
r

0.02 0.10 0.50 2.00 10.00 50.00

0
20

40
60

80
10

0

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
20

40
60

80
10

0

R2 on Training Data

M
ea

n 
Sq

ua
re

d 
Er

ro
r

squared bias

variance

test mse

dotted: ridge
solid: lasso

true beta
is dense

true beta
is sparse

plot test MSE against R2 on training data to compare the two models
dense ground-truth: minimum MSE of ridge is smaller than that of lasso
sparse ground-truth: lasso tends to outperform ridge in term of bias, variance and
MSE
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Subgradient calculus for computing lasso
standardized one-predictor lasso formulation:

minimize
β

1

2N

N∑
i=1

(yi − xiβ)
2 + γ|β|

standardization: 1
N

∑N
i yi = 0, 1

N

∑
i xi = 0, and 1

N

∑
i x

2
i = 1

the term f(β) = |β| is non-differentiable at zero
convex theory: g is a subgradient of f at x if it satisfies

f(y) ≥ f(x) + gT (y − x), ∀y ∈ dom f

(which is similar to the first-order condition for a convex function)
a subgradient is not unique; subgradient of |β| is any number between -1 and 1
(or simply sign(β))
a subgradient of f(β) = ∥β∥1 is g where ∥g∥∞ ≤ 1
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Optimality condition of scalar lasso
optimality condition (with subgradient g): use notation

∑
i xiyi = ⟨x, y⟩

β + γg =
1

N
⟨x, y⟩ (effect of N is apparent)

where g = sign(β) if β ̸= 0 and g ∈ [−1, 1] if β = 0
the optimality condition can be written as

β̂ =


1
N ⟨x, y⟩ − γ, if 1

N ⟨x, y⟩ > γ

0, if 1
N ⟨x, y⟩ ≤ γ

1
N ⟨x, y⟩+ γ, if 1

N ⟨x, y⟩ < −γ

a lasso estimate can be expressed using soft-thresholding operator

β̂ = Sγ

(
1

N
⟨x, y⟩

)
, Sγ(z) = sign(z)(|z|−γ)+

λSλ(x)

x(0,0)

Overview of optimization concept Jitkomut Songsiri 25 / 59



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Properties of lasso formulation

lasso formulation: minimizeβ (1/2)∥y −Xβ∥22 + γ∥β∥1
it is a quadratic programming (and hence, convex)
when X is not full column rank (either p ≤ N with colinearity or p ≥ N), the LS
fitted values are unique but β̂ is not
when γ > 0 and if X are in general position (Hastie et.al 2015) then the lasso
solutions are unique
the optimality condition from the convex theory is

−XT (y −Xβ) + γg = 0

where g = (g1, . . . , gp) is a subgradient of ∥ · ∥1

gi = sign(βi) if βi ̸= 0, gi ∈ [−1, 1] if βi = 0
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Computing lasso estimate in practice

standardization: on the predictor matrix X (β̂ would not depend on the units)
each column is centered: 1

N

∑N
i=1 xij = 0

each column has unit variance: 1
N

∑N
i=1 x

2
ij = 1

standardization: on the response y (so that the intercept term β0 is not needed)
centered at zero mean: 1

N

∑N
i=1 yi = 0

we can recover the optimal solutions for the uncentered data by

β̂0 = ȳ −
p∑

j=1

x̄j β̂j

where ȳ and {x̄j}pj=1 are the original mean from the data
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Standardized lasso formulation

minimize
β

1

2N
∥y −Xβ∥22 + γ∥β∥1, y ∈ RN , β ∈ Rp

the factor N makes γ values comparable for different sample sizes

library packages for solving lasso problems:
lasso in MATLAB: using ADMM algorithm
glmnet with lasso option in R: using cyclic coordinate descent algorithm
scikit-learn with linear_model in Python: using coordinate descent
algorithm

all above algorithms use the soft-thresholding operator
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Generalizations of ℓ1-regularized problems

Overview of optimization concept
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ℓq regularization
for a fixed real number q ≥ 0, consider

minimize
β

1

2N
∥y −Xβ∥22 + γ

p∑
j=1

|βj |q

q = 4 q = 2 q = 1 q = 0.5 q = 0.1

lasso for q = 1 and ridge for q = 2

for q = 0,
∑p

j=1 |βj |q counts the number of nonzeros in β (called best subset
selection)
for q < 1, the constraint region is nonconvex
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Generalizations of ℓ1-regularization

many variants are proposed for acheiving particular structures in solutions
ℓ1 regularization with other cost objectives
elastic net: for highly correlated variables and lasso doesn’t perform well
group lasso: for acheiving sparsity in group
fused lasso: for neighboring variables to be similar
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Sparse methods

example of ℓ1 regularization used with other cost objectives

minimize
β

f(β) + γ∥β∥1

problems are in the form of minimizing some loss function with ℓ1 penalty
sparse logistic regression
sparse Gaussian graphical model (graphical lasso)
sparse PCA
sparse SVM
sparse LDA (linear discriminant analysis)

and many more (see Hastie et. al 2015)
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Sparse logistic regression
a logistic model for binary y

log
P (y = 1|x)
P (y = 0|x)

= β0 + βTx ⇒ P (y = 1|x) = eβ0+βT x

1 + eβ0+βT x

ℓ1-regularized logistic regression:

maximize
β0,β

N∑
i=1

[
yi(β0 + βTxi)− log(1 + eβ0+βT xi)

]
− γ

p∑
j=1

|βj |

use the lasso term to shrink some regression coefficients toward zero
typically, the intercept term β0 is not penalized
solved by lassoglm in MATLAB or glmnet in R

Overview of optimization concept Jitkomut Songsiri 33 / 59



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sparse Gaussian graphical model

a problem of estimating a sparse inverse of covariance matrix of Gaussian variable

maximize
X

log detX − tr(SX)− γ∥X∥1 (graphical lasso)

where ∥X∥1 =
∑

ij |Xij |
known fact: if Y ∼ N (0,Σ) then the zero pattern of Σ−1 gives a conditional
independent structure among components of Y
given samples of random vectors y1, y2, . . . , yN , we aim to estimate a sparse Σ−1

and use its sparsity to interpret relationship among variables
S is the sample covariance matrix, computed from the data
with a good choice of γ, the solution X gives an estimate of Σ−1

can be solved by glasso in R or GraphicalLasso class in Python Scikit-Learn
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Example: Gaussian graphical model

5-dimensional Gaussian with sparse Σ−1

True

1 2 3 4 5

1

2

3

4

5

Sample

1 2 3 4 5

1

2

3

4

5

(  = 0.3)

1 2 3 4 5

1

2

3

4

5

(  = 0.8)

1 2 3 4 5

1

2

3

4

5

the ground-truth Σ−1 has a sparse structure
it’s hard to infer the structure from the sample covariance inverse using N = 30

graphical lasso solutions depend on the penalty parameter
the higher γ the sparser graph we get
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Elastic net

a combination between the ℓ1 and ℓ2 regularizations

minimize
β

(1/2)∥y −Xβ∥22 + γ
{
(1/2)(1− α)∥β∥22 + α∥β∥1

}
where α ∈ [0, 1] and γ are parameters

when α = 1 it’s lasso and when α = 0 it’s a ridge regression
used when we expect groups of very correlated variables (e.g. microarray, genes)
strictly convex problem for any α < 1 and γ > 0 (unique solution)
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generate X ∈ R20×5 where β1 and β2 are highly correlated

0 1 2 3 4
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Elastic net

0 1 2 3 4
-0.5

0

0.5

1

1.5

2

2.5
Lasso

if x1 = x2, the ridge estimate of β1 and β2 will be equal (it can be proved)
the blue and orange lines correspond to the variables β1 and β2
the lasso does not reflect the relative importance of the two variables
the elastic net selects the estimates of β1 and β2 together
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Group lasso

to have all entries in β within a group become zero simultaneously

let β = (β1, β2, . . . , βK) where βj ∈ Rp

minimize (1/2)∥y −Xβ∥22 + γ

K∑
j=1

∥βj∥2

the sum of ℓ2 norm is a generalization of ℓ1-like penalty
as γ is large enough, either xj is entirely zero or all its element is nonzero
when p = 1, group lasso reduces to the lasso
a nondifferentiable convex problem but can be solved efficiently
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generate the problem with β = (β1, β2, . . . , β5) where βi ∈ R4

0 5 10 15 20

0

5

10

15

20

G
ro

u
p
 S

p
a
rs

it
y

0 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2

S
u
m

 o
f 
2
-n

o
rm

as γ increases, some of partition βi becomes entirely zero
as the sum of 2-norm is zero, the entire vector β is zero
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Fused lasso

to have neighboring variables similar and sparse

minimize
β

(1/2)∥y −Xβ∥22 + γ1∥β∥1 + γ2

p∑
j=2

|βj − βj−1|

the ℓ1 penalty serves to shrink βi toward zero
the second penalty is ℓ1-type encouraging some pairs of consecutive entries to be
similar
also known as total variation denoising in signal processing
γ1 controls the sparsity of β and γ2 controls the similarity of neighboring entries
a nondifferentiable convex problem but can be solved efficiently
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generate X ∈ R100×10 and vary γ2 with two values of γ1

0 5 10 15 20
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 5 10 15 20
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

as γ2 increases, consecutive entries of β tend to be equal
for a higher value of γ1, some of the entries of β become zero
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Sparse PCA
definition: given Z ∈ RN×p, PCA finds a unit-norm x ∈ Rp such that

var(Zx) = var

z
T
1 x
...

zTNx

 =
1

N

N∑
i=1

(zTi x)
2 =

1

N

N∑
i=1

xT ziz
T
i x = xT

(
ZTZ

N

)
x

is at maximum (assume data in Z is normalized to zero mean)
x is the right-singular vector of Z (or right eigenvector of ZTZ) w.r.t σmax(Z)

y = Zx is called the first principal component of the data Z

x is called the principal component loading
the r-principal components are Y = ZX where Xp×r is solved from

maximize
X

tr(XTZTZX) subject to XTX = Ir (1)

(r columns of X are loadings and mutually orthogonal)
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Sparse PCA

PCA originally was defined as a sequential procedure to find r components;
however, the optimization explains that the loadings vector in X maximize the
total variance among all such collections
each column of Y is a linear combination of data, yi = Zxi where loading xi gives
the weight of such combination
the problem (1) is non-convex due to the objective function and the quadratic
constraint
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SDP formulation of sparse PCA
let us call Σ = (1/N)ZTZ a sample covariance matrix and consider

maximize
x

xTΣx subject to ∥x∥2 = 1, ∥x∥0 ≤ k (2)

we look for the first principal loading that is promoted to be sparse

convex relaxation: define X = xxT [d’Aspremont et al 2007]

maximize
X

tr(ΣX) subject to tr(X) = 1, 1T |X|1 ≤ k, X ⪰ 0

tr(X) = 1 is from the unit-norm constraint
1T |X|1 ≤ k is a weaker convex constraint for the cardinality constraint
X ⪰ 0 is enforced due to the form of X = xxT which is psdf
we have dropped the rank-1 constraint of X (making the problem a relaxation)
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Sparse SVM
soft-margin SVM versus sparse SVM [Ghaoui 2014]

minimizew,b,z (1/2)∥w∥22 + λ1T z minimizew,b,z λ∥w∥1 + 1
N 1T z

subject to z ⪰ 0 subject to z ⪰ 0
yi(x

T
i w + b) ≥ 1− zi, yi(x

T
i w + b) ≥ 1− zi,

for i = 1, . . . , N
another common formulation of sparse SVM using hinge loss

minimize
w,b

λ∥w∥1 +
1

N

N∑
i=1

max(0, 1− yi(x
T
i w + b))

use ∥w∥1 in the objective (instead of ∥ · ∥2) to encourage a sparsity in w

for such a sparse w, term wTx involves only a few entries in x (use less features)
a soft-margin SVM is a quadratic program; sparse SVM can be cast as an
linear program
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Another sparse SVM formulation

one of several formulations of sparse SVM was proposed by A.B. Chan et al 2007

idea: use card(w) = r ⇒ ∥w∥1 ≤
√
r∥w∥2 to add an ℓ1-norm constraint

minimize t+ λ1T z
subject to yi(x

T
i w + b) ≥ 1− zi, i = 1, 2, . . . , N

z ⪰ 0,
∥w∥22 ≤ t, ∥w∥21 ≤ rt

with variables w ∈ Rn, b ∈ R, z ∈ RN , t ∈ R
we find a hyperplane with a large margin and the normal vector is also sparse
the problem is QCQP (quadratically constrained quadratic program)
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Summary

ridge regression is used to shrink the coefficient so that it has small norm; making
the solution has less variance
lasso is used to shrink the coefficient toward zero; promoting simplicity in the
solution interpretation
both ℓ2 and ℓ1-regularized LS are convex; can be solved efficiently even when p is
large
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Regularizations from optimization point of views

Overview of optimization concept
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Sparse estimation

why a problem of the form

minimize
x

f(x) := g(x) + γ∥x∥1

produces sparse solutions? we will answer this by giving
interpretation of solution shrinkage (both ℓ1 and ℓ2)
the analysis requires a quadratic approximation of g

we will also provide a meaningful connection between early stopping and ℓ2 penalty
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How ℓ2 penalty affects the optimal solution

setting: minimize f(x) = g(x) + (γ/2)∥x∥22 (parameter γ is also called weight decay)
x⋆ is a minimizer of g (unpenalized objective)
x⋆reg is a minimizer of f (regularized objective)

level set of objective

level set of 
2-norm

along the dashed line is the direction that Hes-
sian is small; hence, the objective does not in-
crease much

ℓ2 penalty has a strong effect on x⋆reg in the di-
rection of small Hessian (not a preference along
this direction to improve objective)

the effect is like pulling x⋆ toward zero
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to explain the effect of ℓ2 penalty, consider an approximation model

ĝ(x) = g(x⋆) +∇g(x⋆)T︸ ︷︷ ︸
=0

(x− x⋆) + (1/2)(x− x⋆)TH(x− x⋆)

where H (Hessian) can be assumed ⪰ 0 near x⋆ (local minimum of g)
the zero-gradient of regularized objective: f̂(x) = ĝ(x) + (γ/2)∥x∥22 is approximately

∇f(x) ≈ ∇f̂(x) = H(x− x⋆) + γx = 0

the regularized solution satisfies x⋆reg = (H + γI)−1Hx⋆ or

x⋆reg = U(Λ + γI)−1ΛUTx⋆, using H = UΛUT

if λi is so large that λi/(λi + γ) ≈ 1, then the penalty effect on uTi x
⋆ is small

if λi ≤ γ then λi/(λi + γ) is very small; uTi x⋆ is shrunk toward zero
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Example
minimize (x− xc)

TH(x− xc) + ∥x∥22 with xc = (2,−1),H =

[
11 −9
−9 11

]

-2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

U =
1√
2

[
1 1
−1 1

]
≜

[
u1 u2

]
Λ =

[
20 0
0 2

]
≜ diag(λ1, λ2)

x⋆ = (H + γI)−1Hxc

= u1
λ1(u

T
1 xc)

λ1 + γ
+ u2

λ2(u
T
2 xc)

λ2 + γ

vary γ ∈ (10−4, 103) in log-scale and compute x⋆reg(γ) for each γ

x⋆reg(0) = xc and x⋆reg(γ) → 0 as γ increases (the regularizer pulls x⋆reg toward
zero)
the regularizer has a strong effect on direction u2 when λ2 ≤ γ ≤ λ1

when γ ≥ λ2 ≥ λ1, the regularization affects on both directions
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How ℓ1 penalty affects the optimal solution

setting: minimize f(x) = g(x) + γ∥x∥1 for x ∈ Rn

x⋆ is a minimizer of g (unpenalized objective)
x⋆reg is a minimizer of f (regularized objective)
approximate model: ĝ(x) = g(x⋆) + (1/2)(x− x⋆)TH(x− x⋆)

assume that H is diagonal and ⪰ 0 (analysis is not simple for a general Hessian)
minimizing f̂(x) = ĝ(x) + γ∥x∥1 has optimality that zero is one of subgradients

0 ∈ ∂f̂(x) = H(x− x⋆) + γsign(x) ⇒ Hix−Hix
⋆ + γsign(xi) = 0

(using that H = diag(H1,H2, . . . , Hn))
at optimum if x > 0 then x = x⋆ − γ/Hi

at optimum if x < 0 then x = x⋆ + γ/Hi
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minimizing an approximated ℓ1-regularized function has the analytical solution

x⋆reg,i = sign(x⋆i ) ·max

(
|x⋆i | −

γ

Hi
, 0

)
, i = 1, 2, . . . , n

ℓ1 regularized problem results in sparse solution (when γ is large enough)
when Hi is large, the contribution of g to the regularized objective is overwhelmed
in direction i (not preferable to move to that direction) – hence, the regularizer
pushes x⋆reg,i to zero
when |x⋆i | > γ/Hi, the regularizer does not move the optimal solution to zero but
just shifts it by a distance equal to γ/Hi
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Early stopping
the training set loss decreases over time but validation set error may start to rise again

early stopping: return to use solution at the iteration with lowest validation error
run validation error evaluation periodically during training – either in parallel by
separate GPU or using small validation set compared to training set
store the best solution in a seperate memory from training
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Early stopping as a regularizer

early stopping is an unobtrusive form of regularization – no change in training process
x⋆ is a minimizer of f(x)
approximate model: f̂(x) = f(x⋆) + (1/2)(x− x⋆)TH(x− x⋆) (H ⪰ 0 at x⋆)
assume to use gradient descent with learning rate ϵ and early stop at iteration τ

the gradient descent step for minimizing f̂ is

x+ = x− ϵ∇f̂(x) = x− ϵH(x− x⋆) ⇒ x+ − x⋆ = (I − ϵH)(x− x⋆)

use eigenvalue decomposition: H = UΛUT

UT (x+ − x⋆) = UT (I − ϵUΛUT )(x− x⋆) = (I − ϵΛ)UT (x− x⋆)
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if |λ(I − ϵΛ)| ≤ 1 (the matrix is stable), the iterations propragate as

UT (x(τ) − x⋆) = (I − ϵΛ)τUT (x(0) − x⋆)

assume that we initialize at x(0) = 0 and we return the solution at iteration τ

UTx(τ) = [I − (I − ϵΛ)τ ]UTx⋆

now compare with the ℓ2 regularized solution

UTx⋆reg = (Λ + γI)−1ΛUTx⋆ =
[
I − (Λ + γI)−1γ

]
UTx⋆

(using matrix inversion lemma: (I +A)−1 = I − (I +A)−1A)
early stopping and ℓ2 regularization can be seen equivalent if

(I − ϵΛ)τ = (Λ + γI)−1γ

which means: τ, ϵ, γ are chosen to the relation above
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we can use the following facts
power (and inverse) of a diagonal matrix is diagonal
log(1 + x) ≈ x when x is small (Taylor approximation)

then taking the log transformation of (I − ϵΛ)τ = (Λ + γI)−1γ gives

τ log(1− ϵλ) = log(1 + λ/γ)−1 when ϵλ ≪ 1 and λ/γ ≪ 1 ⇒ τϵλ ≈ λ

γ

conclusion: τ ≈ 1
ϵγ or equivalently γ ≈ 1

τϵ

training iterations plays a role inversely proportional to penalty parameter
parameter value corresponding to direction of significant curvature (of objective)
are regularized less — parameter of that direction tends to learn early
solving ℓ2 problem involves finding a good γ – early stopping has an advantage
that it determines the right amount of regularization by monitoring validation
error instead
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