Regularization techniques

Jitkomut Songsiri

Department of Electrical Engineering Faculty of Engineering Chulalongkorn University

CUEE

January 27, 2023

Overview of optimization concept

Outline

1 Overview of regularization

2 ℓ_2 regularization

3 ℓ_1 regularization

4 Generalizations of ℓ_1 -regularized problems

5 Regularizations from optimization point of views

Overview of optimization concept

Overview of regularization

Jitkomut Songsiri Overview of regularizatior

Overview

we provide a concept of estimation with two objectives:

```
\underset{x}{\text{minimize}} \quad f(x) := g(x) + \gamma h(x)
```

- x is model parameter
- g is a loss function that indicates model fitting
- *h* is a regularization function that affects solution properties (aka penalty)
- $\blacksquare \ \gamma > 0$ is a penalty weight controlling a balance between model quality and regularization of x

we will layout the ideas by demostrating with a quadratic loss first

when \boldsymbol{g} is a least-squares loss function

Overview of optimization concept

Overview

typyical characteristic of least-squares solutions to

$$\underset{\beta}{\text{minimize}} \quad \|y - X\beta\|_2, \quad y \in \mathbf{R}^N, \quad \beta \in \mathbf{R}^p$$

 \blacksquare entries in the solution β are nonzero

 \blacksquare if $p\gg N$, LS estimate is not unique

one can regularize the estimation process by solving

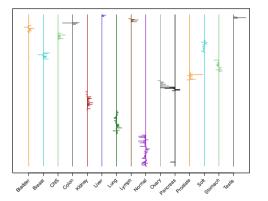
$$\mathop{\mathsf{minimize}}_eta \|y - Xeta\|_2 \quad {\mathsf{subject to}} \quad \sum_{j=1}^p |eta_j| \leq t$$

regard that ||β||₁ ≤ t is our budget on the norm of parameter
 using ℓ₁ norm and small t yield a sparse solution

Overview of optimization concept

Example: 15-class gene expression cancer

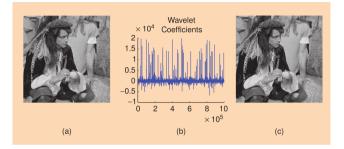
example: 15-class gene expression cancer data



feature weights estimated from a lasso-regularized multinomial classifier (sparse)

Overview of optimization concept

Example: image reconstruction by wavelet representation



- zeroing out the wavelet coefficient but keeping the largest 25,000 ones
- relatively few wavelet coefficients capture most of the signal energy
- the difference between the original image (left) and the reconstructed image (right) are hardly noticeable

Why regularizations are needed?

reasons for alternatives to the least-squares estimate

- prediction accuracy:
 - LS estimate has low bias but large variance
 - shrinking some entries of eta to zero introduces some bias but reduce the variance of eta
 - when making predictions on new data set, it may improve the overall prediction accuracy
- interpretation: when having a large number of predictors, we often would like to identify a *smaller* subset of β that exhibit *strongest* effects

l_2 regularization

Overview of optimization concept

Jitkomut Songsiri ℓ_2 regularization

◆□▶ ◆□▶ ▲ ミ ★ ミ ★ ミ ク へ ()

ℓ_2 -regularized least-squares

adding the 2-norm penalty to the objective function

$$\underset{\beta}{\mathsf{minimize}} \quad \|y - X\beta\|_2^2 + \gamma \|\beta\|_2^2$$

- \blacksquare seek for an approximate solution of $X\beta\approx y$ with small norm
- also called Tikhonov regularized least-squares or ridge regression
- $\blacksquare \ \gamma > 0$ controls the trade off between the fitting error and the size of x

• has the analytical solution for any $\gamma > 0$:

$$\beta = (X^T X + \gamma I)^{-1} X^T y$$

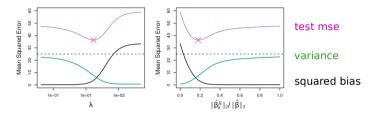
(no restrictions on shape, rank of X)

interpreted as a MAP estimation with the log-prior of the Gaussian

Overview of optimization concept

MSE of ridge regression

test mse versus regularization parameter λ



- \blacksquare as λ increases, we have a trade-off between bias and variance
- \blacksquare variance drops significantly as λ from 0 to 10 with little increase in bias; this leads MSE to decrease
- \blacksquare MSE at $\lambda=\infty$ is as high as MSE at $\lambda=0$ but the minimum MSE is acheived at intermediate value of λ

Overview of optimization concept

Similar form of ℓ_2 -regularized LS

the ℓ_2 -norm is an inequality constraint:

minimize
$$\|y - X\beta\|_2$$
 subject to $\beta_1^2 + \dots + \beta_p^2 \le t$

t is specified by the user

- t serves as a budget of the sum squared of β
- \blacksquare the $\ell_2\text{-regularized}$ LS on page 10 is the Lagrangian form of this problem
- \blacksquare for every value of γ on page 10 there is a corresponding t such that the two formulations have the same estimates of β

Practical issues

some concerns on implementing ridge regression

- the ℓ_2 penalty on β should NOT apply to the intercept β_0 since β_0 measures the mean value of the response when x_1, \ldots, x_p are zero
- ridge solutions are **not equivariant** under scaling of inputs: $\tilde{x}_j = \alpha_j x_j$

$$\tilde{X} = \begin{bmatrix} \alpha_1 x_1 & \alpha_2 x_2 & \cdots & \alpha_p x_p \end{bmatrix} \triangleq XD$$

• $\hat{\beta}_j$ depends on λ and the scaling of other predictors

$$\hat{\beta} = (D^T X^T X D + \gamma I)^{-1} D^T X^T y$$

• it is best to apply ℓ_2 regularization after standardizing X

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_{ij}-\bar{x}_j)^2}} \quad \text{(all predictors are on the same scale)}$$

Overview of optimization concept

1 regularization

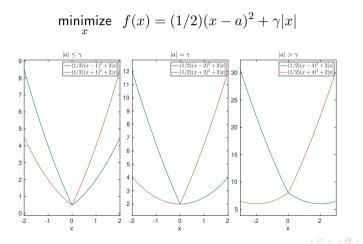
Overview of optimization concept

Jitkomut Songsiri ℓ_1 regularization

◆□▶ ◆□▶ ▲ ミ ★ ミ ★ ミ ク へ ()

Scalar ℓ_1 -regularized least-squares

Idea: adding |x| to a minimization problem introduces a sparse solution consider a scalar problem:



Overview of optimization concept

Optimal solution

to derive the optimal solution, we consider the two cases:

if
$$x \ge 0$$
 then $f(x) = (1/2)(x - (a - \gamma))^2$ (parabola with center at $a - \gamma$)

$$x^{\star} = a - \gamma$$
, provided that $a \ge \gamma$

if $a < \gamma$, then $x^* = 0$ (because parabola f is centered at $a - \gamma$ which is negative) if $x \le 0$ then $f(x) = (1/2)(x - (a + \gamma))^2$

$$x^{\star} = a + \gamma$$
, provided that $a \leq -\gamma$

if $a \ge -\gamma$ then $x^* = 0$ (because parabola f is centered at $a + \gamma$ which is positive) conclusion: when $|a| \le \gamma$ then x^* must be zero

Overview of optimization concept

the optimal solution to minimization of $f(x) = (1/2)(x-a)^2 + \gamma |x|$ is

$$x^{\star} = \begin{cases} (|a| - \gamma) \mathbf{sign}(a), & |a| > \gamma \\ 0, & |a| \le \gamma \end{cases}$$

meaning: if γ is large enough, x^* will be zero

generalization to vector case: $x \in \mathbf{R}^n$

minimize
$$f(x) = (1/2)||x - a||^2 + \gamma ||x||_1$$

the optimal solution has the same form

$$x^{\star} = \begin{cases} (|a| - \gamma) \mathbf{sign}(a), & |a| > \gamma \\ 0, & |a| \le \gamma \end{cases}$$

where all operations are done in *elementwise*

Overview of optimization concept

ℓ_1 -regularized least-squares

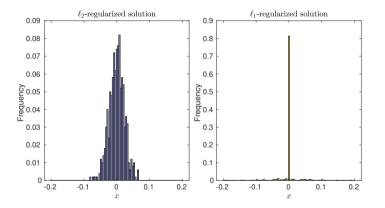
adding the ℓ_1 -norm penalty to the least-square problem

$$\underset{\beta}{\mathsf{minimize}} \ \ (1/2) \|y - X\beta\|_2^2 + \gamma \|\beta\|_1, \quad y \in \mathbf{R}^N, \quad \beta \in \mathbf{R}^p$$

- \blacksquare a convex heuristic method for finding a sparse β that gives $X\beta\approx y$
- also called Lasso or basis pursuit
- **a** nondifferentiable problem due to $\|\cdot\|_1$ term
- no analytical solution, but can be solved efficiently
- interpreted as a MAP estimation with the log-prior of the Laplacian distribution

Example

 $X \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m$ with $m = 100, n = 500, \gamma = 0.2$



solution of l₂ regularization is more widely spread
solution of l₁ regularization is concentrated at zero

Overview of optimization concept

Similar form of ℓ_1 -regularized LS

the ℓ_1 -norm is an inequality constraint:

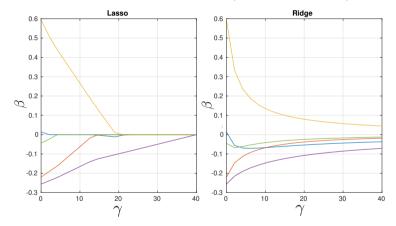
$$\underset{\beta}{\text{minimize}} \quad \|y - X\beta\|_2 \quad \text{subject to} \quad \|\beta\|_1 \leq t$$

t is specified by the user

- t serves as a budget of the sum of absolute values of x
- \blacksquare the $\ell_1\text{-regularized}$ LS on page 18 is the Lagrangian form of this problem
- for each t where $\|\beta\|_1 \le t$ is active, there is a corresponding value of γ that yields the same solution from page 18

Solution paths of regularized LS

solve the regularized LS when n = 5 and vary γ (penalty parameter)



 \blacksquare for lasso, many entries of β are exactly zero as γ varies

• for ridge, many entries of β are nonzero but converging to small values

Overview of optimization concept

Jitkomut Songsiri

21 / 59

Contour of quadratic loss and constraints

both regularized LS problems has the objective function: minimize_{β} $||y - X\beta||_2^2$ but with different constraints:

ridge: $\beta_1^2 + \cdots + \beta_p^2 \leq t$ lasso: $|\beta_1| + \cdots + |\beta_p| \leq t$ β, β_2 β, β,

the contour can hit a corner of $\ell_1\text{-norm}$ ball where some β_k must be zero

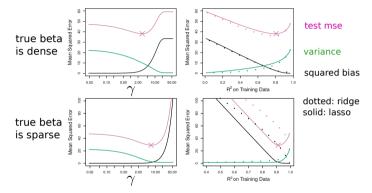
Overview of optimization concept

Jitkomut Songsiri

22 / 59

Comparing ridge and lasso

left: as γ increases, lasso estimate gives a trade-off in variance and bias



- plot test MSE against R^2 on training data to compare the two models
- dense ground-truth: minimum MSE of ridge is smaller than that of lasso
- sparse ground-truth: lasso tends to outperform ridge in term of bias, variance and MSE

Overview of optimization concept

Subgradient calculus for computing lasso

standardized one-predictor lasso formulation:

$$\underset{\beta}{\text{minimize}} \quad \frac{1}{2N} \sum_{i=1}^{N} (y_i - x_i \beta)^2 + \gamma |\beta|$$

standardization: $\frac{1}{N}\sum_{i}^{N}y_{i}=0$, $\frac{1}{N}\sum_{i}x_{i}=0$, and $\frac{1}{N}\sum_{i}x_{i}^{2}=1$

- \blacksquare the term $f(\beta) = |\beta|$ is non-differentiable at zero
- convex theory: g is a subgradient of f at x if it satisfies

$$f(y) \ge f(x) + g^T(y - x), \quad \forall y \in \operatorname{dom} f$$

(which is similar to the first-order condition for a convex function)

- a subgradient is not unique; subgradient of |β| is any number between -1 and 1 (or simply sign(β))
- \blacksquare a subgradient of $f(\beta) = \|\beta\|_1$ is g where $\|g\|_\infty \leq 1$

Overview of optimization concept

Optimality condition of scalar lasso

optimality condition (with subgradient g): use notation $\sum_i x_i y_i = \langle x, y \rangle$

$$eta + \gamma g = rac{1}{N} \langle x, y
angle$$
 (effect of N is apparent)

where $g = sign(\beta)$ if $\beta \neq 0$ and $g \in [-1, 1]$ if $\beta = 0$ the optimality condition can be written as

$$\hat{\beta} = \begin{cases} \frac{1}{N} \langle x, y \rangle - \gamma, & \text{if } \frac{1}{N} \langle x, y \rangle > \gamma \\ 0, & \text{if } \frac{1}{N} \langle x, y \rangle \leq \gamma \\ \frac{1}{N} \langle x, y \rangle + \gamma, & \text{if } \frac{1}{N} \langle x, y \rangle < -\gamma \end{cases}$$

a lasso estimate can be expressed using soft-thresholding operator

$$\hat{\beta} = S_{\gamma} \left(\frac{1}{N} \langle x, y \rangle \right), \quad S_{\gamma}(z) = \operatorname{sign}(z) (|z| - \gamma)_{+}$$

Properties of lasso formulation

lasso formulation: minimize_{β} $(1/2)||y - X\beta||_2^2 + \gamma ||\beta||_1$

- it is a quadratic programming (and hence, convex)
- when X is not full column rank (either $p \leq N$ with colinearity or $p \geq N$), the LS fitted values are unique but $\hat{\beta}$ is not
- when $\gamma > 0$ and if X are in general position (Hastie et.al 2015) then the lasso solutions are unique
- the optimality condition from the convex theory is

$$-X^T(y - X\beta) + \gamma g = 0$$

where $g = (g_1, \ldots, g_p)$ is a subgradient of $\|\cdot\|_1$

$$g_i = \mathbf{sign}(\beta_i) \quad \text{if } \beta_i \neq 0, \quad g_i \in [-1, 1] \quad \text{if } \beta_i = 0$$

Overview of optimization concept

Computing lasso estimate in practice

standardization: on the predictor matrix X (\hat{eta} would not depend on the units)

- each column is centered: $\frac{1}{N}\sum_{i=1}^{N} x_{ij} = 0$
- each column has unit variance: $\frac{1}{N}\sum_{i=1}^{N}x_{ij}^2=1$

standardization: on the response y (so that the intercept term β_0 is not needed) centered at zero mean: $\frac{1}{N} \sum_{i=1}^{N} y_i = 0$

• we can recover the optimal solutions for the uncentered data by

$$\hat{\beta}_0 = \bar{y} - \sum_{j=1}^p \bar{x}_j \hat{\beta}_j$$

where \bar{y} and $\{\bar{x}_j\}_{j=1}^p$ are the original mean from the data

Overview of optimization concept

Standardized lasso formulation

$$\underset{\beta}{\mathsf{minimize}} \quad \frac{1}{2N} \|y - X\beta\|_2^2 + \gamma \|\beta\|_1, \quad y \in \mathbf{R}^N, \beta \in \mathbf{R}^p$$

the factor N makes γ values comparable for different sample sizes

library packages for solving lasso problems:

- lasso in MATLAB: using ADMM algorithm
- glmnet with lasso option in R: using cyclic coordinate descent algorithm
- scikit-learn with linear_model in Python: using coordinate descent
 algorithm

all above algorithms use the soft-thresholding operator

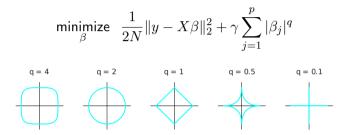
Overview of optimization concept

Generalizations of ℓ_1 -regularized problems

Jitkomut Songsiri Generalizations of ℓ_1 -regularized problems

ℓ_q regularization

for a fixed real number $q \ge 0$, consider



- \blacksquare lasso for q=1 and ridge for q=2
- for q = 0, $\sum_{j=1}^{p} |\beta_j|^q$ counts the number of nonzeros in β (called **best subset selection**)
- for q < 1, the constraint region is *nonconvex*

Overview of optimization concept

many variants are proposed for acheiving particular structures in solutions

- ℓ_1 regularization with other cost objectives
- elastic net: for highly correlated variables and lasso doesn't perform well
- group lasso: for acheiving sparsity in group
- fused lasso: for neighboring variables to be similar

Sparse methods

example of ℓ_1 regularization used with other cost objectives

```
 \underset{\beta}{\text{minimize}} \quad f(\beta) + \gamma \|\beta\|_1
```

problems are in the form of minimizing some loss function with ℓ_1 penalty

- sparse logistic regression
- sparse Gaussian graphical model (graphical lasso)
- sparse PCA
- sparse SVM
- sparse LDA (linear discriminant analysis)

and many more (see Hastie et. al 2015)

Sparse logistic regression

a logistic model for binary y

$$\log \frac{P(y=1|x)}{P(y=0|x)} = \beta_0 + \beta^T x \quad \Rightarrow \quad P(y=1|x) = \frac{e^{\beta_0 + \beta^T x}}{1 + e^{\beta_0 + \beta^T x}}$$

 ℓ_1 -regularized logistic regression:

$$\underset{\beta_0,\beta}{\text{maximize}} \quad \sum_{i=1}^{N} \left[y_i(\beta_0 + \beta^T x_i) - \log(1 + e^{\beta_0 + \beta^T x_i}) \right] - \gamma \sum_{j=1}^{p} |\beta_j|$$

use the lasso term to shrink some regression coefficients toward zero

- typically, the intercept term β_0 is not penalized
- \blacksquare solved by lassoglm in MATLAB or glmnet in R

Overview of optimization concept

Sparse Gaussian graphical model

a problem of estimating a sparse inverse of covariance matrix of Gaussian variable

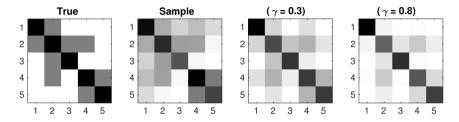
$$\max_{X} \underset{X}{\operatorname{maximize}} \log \det X - \operatorname{tr}(SX) - \gamma \|X\|_1 \qquad \text{(graphical lasso)}$$

where $||X||_1 = \sum_{ij} |X_{ij}|$

- known fact: if $Y \sim \mathcal{N}(0, \Sigma)$ then the zero pattern of Σ^{-1} gives a conditional independent structure among components of Y
- given samples of random vectors y_1, y_2, \ldots, y_N , we aim to estimate a sparse Σ^{-1} and use its sparsity to interpret relationship among variables
- S is the sample covariance matrix, computed from the data
- with a good choice of γ , the solution X gives an estimate of Σ^{-1}
- can be solved by glasso in R or GraphicalLasso class in Python Scikit-Learn

Example: Gaussian graphical model

5-dimensional Gaussian with sparse Σ^{-1}



• the ground-truth Σ^{-1} has a sparse structure

- \blacksquare it's hard to infer the structure from the sample covariance inverse using N=30
- graphical lasso solutions depend on the penalty parameter
- \blacksquare the higher γ the sparser graph we get

Elastic net

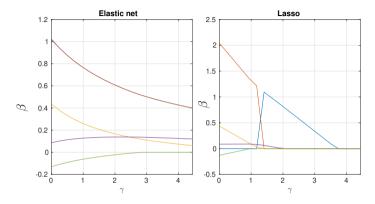
a combination between the ℓ_1 and ℓ_2 regularizations

$$\underset{\beta}{\text{minimize}} \quad (1/2) \|y - X\beta\|_2^2 + \gamma \left\{ (1/2)(1-\alpha) \|\beta\|_2^2 + \alpha \|\beta\|_1 \right\}$$

where $\alpha \in [0,1]$ and γ are parameters

- \blacksquare when $\alpha=1$ it's lasso and when $\alpha=0$ it's a ridge regression
- used when we expect groups of very correlated variables (e.g. microarray, genes)
- strictly convex problem for any $\alpha < 1$ and $\gamma > 0$ (unique solution)

generate $X \in \mathbf{R}^{20 \times 5}$ where β_1 and β_2 are highly correlated



• if $x_1 = x_2$, the ridge estimate of β_1 and β_2 will be equal (it can be proved)

- the blue and orange lines correspond to the variables β_1 and β_2
- the lasso does not reflect the relative importance of the two variables
- \blacksquare the elastic net selects the estimates of β_1 and β_2 together

Overview of optimization concept

Group lasso

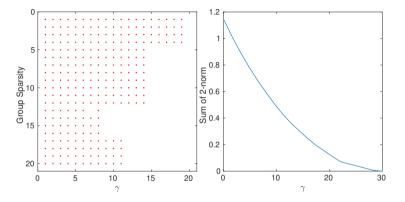
to have all entries in β within a group become zero simultaneously

let $\beta = (\beta_1, \beta_2, \dots, \beta_K)$ where $\beta_j \in \mathbf{R}^p$

minimize
$$(1/2) \|y - Xeta\|_2^2 + \gamma \sum_{j=1}^K \|eta_j\|_2$$

- the sum of ℓ_2 norm is a generalization of ℓ_1 -like penalty
- **a** as γ is large enough, either x_j is entirely zero or all its element is nonzero
- when p = 1, group lasso reduces to the lasso
- a nondifferentiable convex problem but can be solved efficiently

generate the problem with $\beta = (\beta_1, \beta_2, \dots, \beta_5)$ where $\beta_i \in \mathbf{R}^4$



as γ increases, some of partition β_i becomes entirely zero
 as the sum of 2-norm is zero, the entire vector β is zero

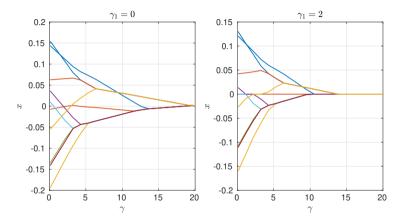
Fused lasso

to have neighboring variables similar and sparse

minimize
$$(1/2) \|y - X\beta\|_2^2 + \gamma_1 \|\beta\|_1 + \gamma_2 \sum_{j=2}^p |\beta_j - \beta_{j-1}|$$

- the ℓ_1 penalty serves to shrink β_i toward zero
- \blacksquare the second penalty is $\ell_1\text{-type}$ encouraging some pairs of consecutive entries to be similar
- also known as total variation denoising in signal processing
- γ_1 controls the sparsity of β and γ_2 controls the similarity of neighboring entries
- a nondifferentiable convex problem but can be solved efficiently

generate $X \in \mathbf{R}^{100 \times 10}$ and vary γ_2 with two values of γ_1



- \blacksquare as γ_2 increases, consecutive entries of β tend to be equal
- for a higher value of γ_1 , some of the entries of β become zero

Overview of optimization concept

Sparse PCA

definition: given $Z \in \mathbf{R}^{N \times p}$, PCA finds a unit-norm $x \in \mathbf{R}^p$ such that

$$\operatorname{var}(Zx) = \operatorname{var}\begin{bmatrix} z_1^T x \\ \vdots \\ z_N^T x \end{bmatrix} = \frac{1}{N} \sum_{i=1}^N (z_i^T x)^2 = \frac{1}{N} \sum_{i=1}^N x^T z_i z_i^T x = x^T \left(\frac{Z^T Z}{N}\right) x$$

is at maximum (assume data in Z is normalized to zero mean)

- x is the right-singular vector of Z (or right eigenvector of $Z^T Z$) w.r.t $\sigma_{\max}(Z)$
- y = Zx is called the first principal component of the data Z
- x is called the principal component loading
- the r-principal components are Y = ZX where $X_{p \times r}$ is solved from

$$\max_{X} \max (X^T Z^T Z X) \quad \text{subject to } X^T X = I_r$$
(1)

(r columns of X are loadings and mutually orthogonal)

Overview of optimization concept

- PCA originally was defined as a sequential procedure to find r components; however, the optimization explains that the loadings vector in X maximize the total variance among all such collections
- each column of Y is a linear combination of data, $y_i = Zx_i$ where loading x_i gives the weight of such combination
- the problem (1) is non-convex due to the objective function and the quadratic constraint

SDP formulation of sparse PCA

let us call $\Sigma = (1/N) Z^T Z$ a sample covariance matrix and consider

maximize
$$x^T \Sigma x$$
 subject to $||x||_2 = 1$, $||x||_0 \le k$ (2)

we look for the first principal loading that is promoted to be sparse

convex relaxation: define $X = xx^T$ [d'Aspremont et al 2007]

$$\underset{X}{\text{maximize } } \mathbf{tr}(\Sigma X) \quad \text{subject to } \mathbf{tr}(X) = 1, \ \mathbf{1}^T | X | \mathbf{1} \leq k, \ X \succeq 0$$

- tr(X) = 1 is from the unit-norm constraint • $\mathbf{1}^T | X | \mathbf{1} \le k$ is a weaker convex constraint for the cardinality constraint
- $X \succeq 0$ is enforced due to the form of $X = xx^T$ which is psdf
- we have dropped the rank-1 constraint of X (making the problem a relaxation)

Overview of optimization concept

Sparse SVM

soft-margin SVM versus sparse SVM [Ghaoui 2014]

 $\begin{array}{ll} \text{minimize}_{w,b,z} & (1/2) \|w\|_2^2 + \lambda \mathbf{1}^T z & \text{minimize}_{w,b,z} & \lambda \|w\|_1 + \frac{1}{N} \mathbf{1}^T z \\ \text{subject to} & z \succeq 0 & \text{subject to} & z \succeq 0 \\ & y_i(x_i^T w + b) \ge 1 - z_i, & y_i(x_i^T w + b) \ge 1 - z_i, \end{array}$

for $i=1,\ldots,N$ another common formulation of sparse SVM using hinge loss

minimize
$$\lambda \|w\|_1 + \frac{1}{N} \sum_{i=1}^N \max(0, 1 - y_i(x_i^T w + b))$$

use ||w||₁ in the objective (instead of || · ||₂) to encourage a sparsity in w
 for such a sparse w, term w^Tx involves only a few entries in x (use less features)
 a soft-margin SVM is a quadratic program; sparse SVM can be cast as an linear program

Overview of optimization concept

Another sparse SVM formulation

one of several formulations of sparse SVM was proposed by A.B. Chan et al 2007

idea: use $card(w) = r \Rightarrow ||w||_1 \le \sqrt{r} ||w||_2$ to add an ℓ_1 -norm constraint

$$\begin{array}{ll} \text{minimize} & t + \lambda \mathbf{1}^T z \\ \text{subject to} & y_i (x_i^T w + b) \geq 1 - z_i, \quad i = 1, 2, \dots, N \\ & z \succeq 0, \\ & \|w\|_2^2 \leq t, \quad \|w\|_1^2 \leq rt \end{array}$$

with variables $w \in \mathbf{R}^n, b \in \mathbf{R}, z \in \mathbf{R}^N, t \in \mathbf{R}$

we find a hyperplane with a large margin and the normal vector is also sparse

the problem is QCQP (quadratically constrained quadratic program)

Overview of optimization concept

Summary

- ridge regression is used to shrink the coefficient so that it has small norm; making the solution has less variance
- lasso is used to shrink the coefficient toward zero; promoting simplicity in the solution interpretation
- both ℓ_2 and $\ell_1\text{-regularized LS}$ are convex; can be solved efficiently even when p is large

Regularizations from optimization point of views

Jitkomut Songsiri Regularizations from optimization point of views ▲□▶▲□▶▲三▶▲三> シックの

Overview of optimization concept

why a problem of the form

$$\underset{x}{\text{minimize}} \quad f(x) := g(x) + \gamma \|x\|_1$$

produces sparse solutions? we will answer this by giving

- interpretation of solution shrinkage (both ℓ_1 and ℓ_2)
- $\hfill\blacksquare$ the analysis requires a quadratic approximation of g

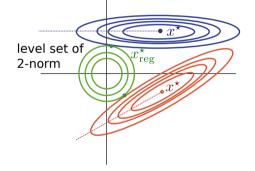
we will also provide a meaningful connection between early stopping and ℓ_2 penalty

How ℓ_2 penalty affects the optimal solution

setting: minimize $f(x) = g(x) + (\gamma/2) ||x||_2^2$ (parameter γ is also called weight decay)

- x^{\star} is a minimizer of g (unpenalized objective)
- x_{reg}^{\star} is a minimizer of f (regularized objective)

level set of objective



along the dashed line is the direction that Hessian is small; hence, the objective does not increase much

 ℓ_2 penalty has a **strong** effect on x_{reg}^{\star} in the direction of small Hessian (not a preference along this direction to improve objective)

the effect is like pulling x^{\star} toward zero

to explain the effect of ℓ_2 penalty, consider an approximation model

$$\hat{g}(x) = g(x^{\star}) + \underbrace{\nabla g(x^{\star})^{T}}_{=0} (x - x^{\star}) + (1/2)(x - x^{\star})^{T} H(x - x^{\star})$$

where H (Hessian) can be assumed $\succeq 0$ near x^* (local minimum of g) the zero-gradient of regularized objective: $\hat{f}(x) = \hat{g}(x) + (\gamma/2) ||x||_2^2$ is approximately

$$\nabla f(x) \approx \nabla \hat{f}(x) = H(x - x^{\star}) + \gamma x = 0$$

the regularized solution satisfies $x^{\star}_{\mathrm{reg}} = (H + \gamma I)^{-1} H x^{\star}$ or

$$x^{\star}_{\mathrm{reg}} = U(\Lambda + \gamma I)^{-1} \Lambda U^T x^{\star}, \quad \mathrm{using} \ H = U \Lambda U^T$$

• if λ_i is so large that $\lambda_i/(\lambda_i + \gamma) \approx 1$, then the penalty effect on $u_i^T x^*$ is small • if $\lambda_i \leq \gamma$ then $\lambda_i/(\lambda_i + \gamma)$ is very small; $u_i^T x^*$ is shrunk toward zero

Overview of optimization concept

Example

$$\begin{array}{l} \text{minimize } (x-x_c)^T H(x-x_c) + \|x\|_2^2 \text{ with } x_c = (2,-1), H = \begin{bmatrix} 11 & -9 \\ -9 & 11 \end{bmatrix} \\ \begin{array}{l} \overset{\bullet}{ \int \left\{ \begin{array}{c} 1 \\ -1 \end{array} \right\}}{ \int \left\{ \begin{array}{c} 1 \\ -1 \end{array} \right\}} & \overset{\bullet}{ \int \left\{ \begin{array}{c} 1 \\ -1 \end{array} \right\}}{ \int \left\{ \begin{array}{c} 1 \\ -1 \end{array} \right\}} & \overset{\bullet}{ \int \left\{ \begin{array}{c} 1 \\ -1 \end{array} \right\}}{ \int \left\{ \begin{array}{c} 1 \\ -1 \end{array} \right\}} & \overset{\bullet}{ \int \left\{ \begin{array}{c} 1 \\ -1 \end{array} \right\}}{ \int \left\{ \begin{array}{c} 1 \\ -1 \end{array} \right\}} & \overset{\bullet}{ \int \left\{ \begin{array}{c} 1 \\ -1 \end{array} \right\}}{ \int \left\{ \begin{array}{c} 1 \\ -1 \end{array} \right\}}{ \int \left\{ \begin{array}{c} 1 \\ -1 \end{array} \right\}} & \overset{\bullet}{ \int \left\{ \begin{array}{c} 1 \\ -1 \end{array} \right\}}{ \int \left\{ \begin{array}{c} 1 \end{array} \right\}}{ \int \left\{ \begin{array}{c} 1 \\ -1 \end{array} \right\}}{ \int \left\{ \begin{array}{c} 1 \\ -1 \end{array} \right\}}{ \int \left\{ \begin{array}{c} 1 \end{array} \right\}}{ \int \left\{ \begin{array}{c} 1$$

- the regularizer has a strong effect on direction u_2 when $\lambda_2 \leq \gamma \leq \lambda_1$
- when $\gamma \geq \lambda_2 \geq \lambda_1$, the regularization affects on both directions

Overview of optimization concept

How ℓ_1 penalty affects the optimal solution

setting: minimize $f(x) = g(x) + \gamma \|x\|_1$ for $x \in \mathbf{R}^n$

- x^* is a minimizer of g (unpenalized objective)
- x_{reg}^{\star} is a minimizer of f (regularized objective)
- approximate model: $\hat{g}(x) = g(x^{\star}) + (1/2)(x x^{\star})^T H(x x^{\star})$
- assume that H is diagonal and $\succeq 0$ (analysis is not simple for a general Hessian) minimizing $\hat{f}(x) = \hat{g}(x) + \gamma ||x||_1$ has optimality that zero is one of subgradients

$$0 \in \partial \hat{f}(x) = H(x - x^{\star}) + \gamma \operatorname{sign}(x) \Rightarrow H_i x - H_i x^{\star} + \gamma \operatorname{sign}(x_i) = 0$$

(using that $H = \operatorname{diag}(H_1, H_2, \ldots, H_n)$)

- at optimum if x>0 then $x=x^{\star}-\gamma/H_i$
- at optimum if x < 0 then $x = x^{\star} + \gamma/H_i$

minimizing an approximated ℓ_1 -regularized function has the analytical solution

$$x_{\mathrm{reg},i}^{\star} = \mathbf{sign}(x_i^{\star}) \cdot \max\left(|x_i^{\star}| - \frac{\gamma}{H_i}, 0\right), \quad i = 1, 2, \dots, n$$

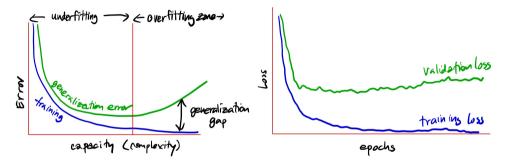
• ℓ_1 regularized problem results in sparse solution (when γ is large enough)

- when H_i is large, the contribution of g to the regularized objective is overwhelmed in direction i (not preferable to move to that direction) – hence, the regularizer pushes x^{*}_{reg,i} to zero
- when $|x_i^{\star}| > \gamma/H_i$, the regularizer does not move the optimal solution to zero but just shifts it by a distance equal to γ/H_i

Overview of optimization concept

Early stopping

the training set loss decreases over time but validation set error may start to rise again



early stopping: return to use solution at the iteration with lowest validation error

- run validation error evaluation periodically during training either in parallel by separate GPU or using small validation set compared to training set
- store the best solution in a seperate memory from training

Overview of optimization concept

Early stopping as a regularizer

early stopping is an unobtrusive form of regularization - no change in training process

- x^{\star} is a minimizer of f(x)
- approximate model: $\hat{f}(x) = f(x^{\star}) + (1/2)(x x^{\star})^T H(x x^{\star})$ ($H \succeq 0$ at x^{\star})

assume to use gradient descent with learning rate ϵ and early stop at iteration τ the gradient descent step for minimizing \hat{f} is

$$x^+ = x - \epsilon \nabla \hat{f}(x) = x - \epsilon H(x - x^*) \quad \Rightarrow \quad x^+ - x^* = (I - \epsilon H)(x - x^*)$$

use eigenvalue decomposition: $H = U\Lambda U^T$

$$U^{T}(x^{+} - x^{\star}) = U^{T}(I - \epsilon U\Lambda U^{T})(x - x^{\star}) = (I - \epsilon\Lambda)U^{T}(x - x^{\star})$$

Overview of optimization concept

Jitkomut Songsiri

56 / 59

if $|\lambda(I - \epsilon \Lambda)| \le 1$ (the matrix is stable), the iterations propragate as $U^T(x^{(\tau)} - x^\star) = (I - \epsilon \Lambda)^\tau U^T(x^{(0)} - x^\star)$

assume that we initialize at $x^{(0)}=0$ and we return the solution at iteration au

$$U^T x^{(\tau)} = \left[I - (I - \epsilon \Lambda)^{\tau}\right] U^T x^*$$

now compare with the ℓ_2 regularized solution

$$U^T x_{\text{reg}}^{\star} = (\Lambda + \gamma I)^{-1} \Lambda U^T x^{\star} = \left[I - (\Lambda + \gamma I)^{-1} \gamma \right] U^T x^{\star}$$

(using matrix inversion lemma: $(I + A)^{-1} = I - (I + A)^{-1}A$)

early stopping and ℓ_2 regularization can be seen equivalent if

$$(I - \epsilon \Lambda)^{\tau} = (\Lambda + \gamma I)^{-1} \gamma$$

which means: τ,ϵ,γ are chosen to the relation above

Overview of optimization concept

we can use the following facts

power (and inverse) of a diagonal matrix is diagonal

• $\log(1+x) \approx x$ when x is small (Taylor approximation)

then taking the log transformation of $(I - \epsilon \Lambda)^{\tau} = (\Lambda + \gamma I)^{-1} \gamma$ gives

$$au \log(1 - \epsilon \lambda) = \log(1 + \lambda/\gamma)^{-1}$$
 when $\epsilon \lambda \ll 1$ and $\lambda/\gamma \ll 1 \Rightarrow \tau \epsilon \lambda \approx \frac{\lambda}{\gamma}$

conclusion: $au \approx \frac{1}{\epsilon \gamma}$ or equivalently $\gamma \approx \frac{1}{\tau \epsilon}$

- training iterations plays a role inversely proportional to penalty parameter
- parameter value corresponding to direction of significant curvature (of objective) are regularized less — parameter of that direction tends to learn early
- solving ℓ_2 problem involves finding a good γ early stopping has an advantage that it determines the right amount of regularization by monitoring validation error instead

•

References

some figures and examples are taken from

- G.James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: with Applications in R, Springer, 2015
- T. Hastie, R. Tibshirani and J. Friedman, *The Elements of Statistical Learning: Data Mining, Inference and Prediction*, 2nd edition, Springer, 2009
- T. Hastie, R. Tibshirani and M. Wainwright, *Statistical Learning with Sparsity: The Lasso and Generalizations*, CRC Press, 2015
- G. Calafiore and L. El Ghaoui, Optimization Models, Cambridge University Press, 2014
- A. d'Aspremont, L.El. Ghaoui, M.I. Jordan and G.R.G. Lanckriet, A Direct Formulation for Sparse PCA using Semidefinite Programing, SIAM Review, Vol.49, No.3, 2007
- A.B. Chan, N. Vasconcelos, and G.R.G. Lanckriet, *Direct Convex Relaxations of Sparse SVM* Proceedings of the 24th Int. Conf. on Machine Learning (ICML), 2007
- I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, The MIT Press, 2016

Overview of optimization concept