

Outline

1 Overview of regularization
$2 \ell_{2}$ regularization
$3 \ell_{1}$ regularization

4 Generalizations of ℓ_{1}-regularized problems

5 Regularizations from optimization point of views

Overview of regularization

Overview

we provide a concept of estimation with two objectives:

$$
\underset{x}{\operatorname{minimize}} f(x):=g(x)+\gamma h(x)
$$

- x is model parameter
- g is a loss function that indicates model fitting
- h is a regularization function that affects solution properties (aka penalty)
- $\gamma>0$ is a penalty weight controlling a balance between model quality and regularization of x
we will layout the ideas by demostrating with a quadratic loss first
when g is a least-squares loss function

Overview

typyical characteristic of least-squares solutions to

$$
\underset{\beta}{\operatorname{minimize}}\|y-X \beta\|_{2}, \quad y \in \mathbf{R}^{N}, \quad \beta \in \mathbf{R}^{p}
$$

- entries in the solution β are nonzero
- if $p \gg N$, LS estimate is not unique
one can regularize the estimation process by solving

$$
\underset{\beta}{\operatorname{minimize}}\|y-X \beta\|_{2} \quad \text { subject to } \sum_{j=1}^{p}\left|\beta_{j}\right| \leq t
$$

- regard that $\|\beta\|_{1} \leq t$ is our budget on the norm of parameter
- using ℓ_{1} norm and small t yield a sparse solution

Example: 15-class gene expression cancer

example: 15 -class gene expression cancer data

feature weights estimated from a lasso-regularized multinomial classifier (sparse)

Example: image reconstruction by wavelet representation

- zeroing out the wavelet coefficient but keeping the largest 25,000 ones
- relatively few wavelet coefficients capture most of the signal energy
- the difference between the original image (left) and the reconstructed image (right) are hardly noticeable

Why regularizations are needed?

reasons for alternatives to the least-squares estimate

- prediction accuracy:
- LS estimate has low bias but large variance
- shrinking some entries of β to zero introduces some bias but reduce the variance of β
- when making predictions on new data set, it may improve the overall prediction accuracy

■ interpretation: when having a large number of predictors, we often would like to identify a smaller subset of β that exhibit strongest effects

6. regularization

ミ
Jitkomut Songsiri ℓ_{2} regularization

ℓ_{2}-regularized least-squares

adding the 2 -norm penalty to the objective function

$$
\underset{\beta}{\operatorname{minimize}}\|y-X \beta\|_{2}^{2}+\gamma\|\beta\|_{2}^{2}
$$

- seek for an approximate solution of $X \beta \approx y$ with small norm
- also called Tikhonov regularized least-squares or ridge regression

■ $\gamma>0$ controls the trade off between the fitting error and the size of x

- has the analytical solution for any $\gamma>0$:

$$
\beta=\left(X^{T} X+\gamma I\right)^{-1} X^{T} y
$$

(no restrictions on shape, rank of X)

- interpreted as a MAP estimation with the log-prior of the Gaussian

MSE of ridge regression

test mse versus regularization parameter λ

- as λ increases, we have a trade-off between bias and variance
- variance drops significantly as λ from 0 to 10 with little increase in bias; this leads MSE to decrease
- MSE at $\lambda=\infty$ is as high as MSE at $\lambda=0$ but the minimum MSE is acheived at intermediate value of λ

Similar form of ℓ_{2}-regularized LS

the ℓ_{2}-norm is an inequality constraint:

$$
\underset{\beta}{\operatorname{minimize}}\|y-X \beta\|_{2} \quad \text { subject to } \beta_{1}^{2}+\cdots+\beta_{p}^{2} \leq t
$$

- t is specified by the user
- t serves as a budget of the sum squared of β
- the ℓ_{2}-regularized LS on page 10 is the Lagrangian form of this problem
- for every value of γ on page 10 there is a corresponding t such that the two formulations have the same estimates of β

Practical issues

some concerns on implementing ridge regression

- the ℓ_{2} penalty on β should NOT apply to the intercept β_{0} since β_{0} measures the mean value of the response when x_{1}, \ldots, x_{p} are zero
\square ridge solutions are not equivariant under scaling of inputs: $\tilde{x}_{j}=\alpha_{j} x_{j}$

$$
\tilde{X}=\left[\begin{array}{llll}
\alpha_{1} x_{1} & \alpha_{2} x_{2} & \cdots & \alpha_{p} x_{p}
\end{array}\right] \triangleq X D
$$

- $\hat{\beta}_{j}$ depends on λ and the scaling of other predictors

$$
\hat{\beta}=\left(D^{T} X^{T} X D+\gamma I\right)^{-1} D^{T} X^{T} y
$$

- it is best to apply ℓ_{2} regularization after standardizing X

$$
\tilde{x}_{i j}=\frac{x_{i j}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)^{2}}} \quad \text { (all predictors are on the same scale) }
$$

f. regularization

ミ
Jitkomut Songsiri ℓ_{1} regularization

Scalar ℓ_{1}-regularized least-squares

Idea: adding $|x|$ to a minimization problem introduces a sparse solution consider a scalar problem:

$$
\underset{x}{\operatorname{minimize}} f(x)=(1 / 2)(x-a)^{2}+\gamma|x|
$$

Optimal solution

to derive the optimal solution, we consider the two cases:

- if $x \geq 0$ then $f(x)=(1 / 2)(x-(a-\gamma))^{2}$ (parabola with center at $a-\gamma$)

$$
x^{\star}=a-\gamma, \quad \text { provided that } a \geq \gamma
$$

if $a<\gamma$, then $x^{\star}=0$ (because parabola f is centered at $a-\gamma$ which is negative)

- if $x \leq 0$ then $f(x)=(1 / 2)(x-(a+\gamma))^{2}$

$$
x^{\star}=a+\gamma, \quad \text { provided that } a \leq-\gamma
$$

if $a \geq-\gamma$ then $x^{\star}=0$ (because parabola f is centered at $a+\gamma$ which is positive) conclusion: when $|a| \leq \gamma$ then x^{\star} must be zero
the optimal solution to minimization of $f(x)=(1 / 2)(x-a)^{2}+\gamma|x|$ is

$$
x^{\star}= \begin{cases}(|a|-\gamma) \operatorname{sign}(a), & |a|>\gamma \\ 0, & |a| \leq \gamma\end{cases}
$$

meaning: if γ is large enough, x^{*} will be zero
generalization to vector case: $x \in \mathbf{R}^{n}$

$$
\underset{x}{\operatorname{minimize}} f(x)=(1 / 2)\|x-a\|^{2}+\gamma\|x\|_{1}
$$

the optimal solution has the same form

$$
x^{\star}= \begin{cases}(|a|-\gamma) \operatorname{sign}(a), & |a|>\gamma \\ 0, & |a| \leq \gamma\end{cases}
$$

where all operations are done in elementwise

ℓ_{1}-regularized least-squares

adding the ℓ_{1}-norm penalty to the least-square problem

$$
\underset{\beta}{\operatorname{minimize}}(1 / 2)\|y-X \beta\|_{2}^{2}+\gamma\|\beta\|_{1}, \quad y \in \mathbf{R}^{N}, \quad \beta \in \mathbf{R}^{p}
$$

- a convex heuristic method for finding a sparse β that gives $X \beta \approx y$
- also called Lasso or basis pursuit
- a nondifferentiable problem due to $\|\cdot\|_{1}$ term
- no analytical solution, but can be solved efficiently

■ interpreted as a MAP estimation with the log-prior of the Laplacian distribution

Example

$X \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$ with $m=100, n=500, \gamma=0.2$

- solution of ℓ_{2} regularization is more widely spread
- solution of ℓ_{1} regularization is concentrated at zero

Similar form of ℓ_{1}-regularized LS

the ℓ_{1}-norm is an inequality constraint:

$$
\underset{\beta}{\operatorname{minimize}}\|y-X \beta\|_{2} \quad \text { subject to }\|\beta\|_{1} \leq t
$$

- t is specified by the user
- t serves as a budget of the sum of absolute values of x
- the ℓ_{1}-regularized LS on page 18 is the Lagrangian form of this problem
- for each t where $\|\beta\|_{1} \leq t$ is active, there is a corresponding value of γ that yields the same solution from page 18

Solution paths of regularized LS

solve the regularized LS when $n=5$ and vary γ (penalty parameter)

- for lasso, many entries of β are exactly zero as γ varies
- for ridge, many entries of β are nonzero but converging to small values

Contour of quadratic loss and constraints

both regularized LS problems has the objective function: minimize $_{\beta}\|y-X \beta\|_{2}^{2}$ but with different constraints:

$$
\text { ridge: } \quad \beta_{1}^{2}+\cdots+\beta_{p}^{2} \leq t \quad \text { lasso: } \quad\left|\beta_{1}\right|+\cdots+\left|\beta_{p}\right| \leq t
$$

the contour can hit a corner of ℓ_{1}-norm ball where some β_{k} must be zero

Comparing ridge and lasso

left: as γ increases, lasso estimate gives a trade-off in variance and bias

- plot test MSE against R^{2} on training data to compare the two models
- dense ground-truth: minimum MSE of ridge is smaller than that of lasso
- sparse ground-truth: lasso tends to outperform ridge in term of bias, variance and MSE

Subgradient calculus for computing lasso

standardized one-predictor lasso formulation:

$$
\underset{\beta}{\operatorname{minimize}} \frac{1}{2 N} \sum_{i=1}^{N}\left(y_{i}-x_{i} \beta\right)^{2}+\gamma|\beta|
$$

standardization: $\frac{1}{N} \sum_{i}^{N} y_{i}=0, \frac{1}{N} \sum_{i} x_{i}=0$, and $\frac{1}{N} \sum_{i} x_{i}^{2}=1$

- the term $f(\beta)=|\beta|$ is non-differentiable at zero
- convex theory: g is a subgradient of f at x if it satisfies

$$
f(y) \geq f(x)+g^{T}(y-x), \quad \forall y \in \operatorname{dom} f
$$

(which is similar to the first-order condition for a convex function)

- a subgradient is not unique; subgradient of $|\beta|$ is any number between -1 and 1 (or simply $\operatorname{sign}(\beta)$)
- a subgradient of $f(\beta)=\|\beta\|_{1}$ is g where $\|g\|_{\infty} \leq 1$

Optimality condition of scalar lasso

optimality condition (with subgradient g): use notation $\sum_{i} x_{i} y_{i}=\langle x, y\rangle$

$$
\beta+\gamma g=\frac{1}{N}\langle x, y\rangle \quad \text { (effect of } N \text { is apparent) }
$$

where $g=\boldsymbol{\operatorname { s i g n }}(\beta)$ if $\beta \neq 0$ and $g \in[-1,1]$ if $\beta=0$ the optimality condition can be written as

$$
\hat{\beta}= \begin{cases}\frac{1}{N}\langle x, y\rangle-\gamma, & \text { if } \frac{1}{N}\langle x, y\rangle>\gamma \\ 0, & \text { if } \frac{1}{N}\langle x, y\rangle \leq \gamma \\ \frac{1}{N}\langle x, y\rangle+\gamma, & \text { if } \frac{1}{N}\langle x, y\rangle<-\gamma\end{cases}
$$

a lasso estimate can be expressed using soft-thresholding operator

$$
\hat{\beta}=\mathcal{S}_{\gamma}\left(\frac{1}{N}\langle x, y\rangle\right), \quad S_{\gamma}(z)=\operatorname{sign}(z)(|z|-\gamma)_{+}
$$

Properties of lasso formulation

lasso formulation: $\operatorname{minimize}_{\beta}(1 / 2)\|y-X \beta\|_{2}^{2}+\gamma\|\beta\|_{1}$

- it is a quadratic programming (and hence, convex)
- when X is not full column rank (either $p \leq N$ with colinearity or $p \geq N$), the LS fitted values are unique but $\hat{\beta}$ is not
- when $\gamma>0$ and if X are in general position (Hastie et.al 2015) then the lasso solutions are unique
- the optimality condition from the convex theory is

$$
-X^{T}(y-X \beta)+\gamma g=0
$$

where $g=\left(g_{1}, \ldots, g_{p}\right)$ is a subgradient of $\|\cdot\|_{1}$

$$
g_{i}=\operatorname{sign}\left(\beta_{i}\right) \quad \text { if } \beta_{i} \neq 0, \quad g_{i} \in[-1,1] \quad \text { if } \beta_{i}=0
$$

Computing lasso estimate in practice

standardization: on the predictor matrix X ($\hat{\beta}$ would not depend on the units)

- each column is centered: $\frac{1}{N} \sum_{i=1}^{N} x_{i j}=0$
- each column has unit variance: $\frac{1}{N} \sum_{i=1}^{N} x_{i j}^{2}=1$
standardization: on the response y (so that the intercept term β_{0} is not needed)
- centered at zero mean: $\frac{1}{N} \sum_{i=1}^{N} y_{i}=0$
- we can recover the optimal solutions for the uncentered data by

$$
\hat{\beta}_{0}=\bar{y}-\sum_{j=1}^{p} \bar{x}_{j} \hat{\beta}_{j}
$$

where \bar{y} and $\left\{\bar{x}_{j}\right\}_{j=1}^{p}$ are the original mean from the data

Standardized lasso formulation

$$
\underset{\beta}{\operatorname{minimize}} \frac{1}{2 N}\|y-X \beta\|_{2}^{2}+\gamma\|\beta\|_{1}, \quad y \in \mathbf{R}^{N}, \beta \in \mathbf{R}^{p}
$$

the factor N makes γ values comparable for different sample sizes
library packages for solving lasso problems:

- lasso in MATLAB: using ADMM algorithm
- glmnet with lasso option in R: using cyclic coordinate descent algorithm

■ scikit-learn with linear_model in Python: using coordinate descent algorithm
all above algorithms use the soft-thresholding operator

Generalizations of G-regularized problems

Jitkomut Songsiri Generalizations of ℓ_{1}-regularized
Overview of optimization concept

ℓ_{q} regularization

for a fixed real number $q \geq 0$, consider

$$
\underset{\beta}{\operatorname{minimize}} \frac{1}{2 N}\|y-X \beta\|_{2}^{2}+\gamma \sum_{j=1}^{p}\left|\beta_{j}\right|^{q}
$$

- lasso for $q=1$ and ridge for $q=2$
- for $q=0, \sum_{j=1}^{p}\left|\beta_{j}\right|^{q}$ counts the number of nonzeros in β (called best subset selection)
- for $q<1$, the constraint region is nonconvex

Generalizations of ℓ_{1}-regularization

many variants are proposed for acheiving particular structures in solutions

- ℓ_{1} regularization with other cost objectives
- elastic net: for highly correlated variables and lasso doesn't perform well
- group lasso: for acheiving sparsity in group
- fused lasso: for neighboring variables to be similar

Sparse methods

example of ℓ_{1} regularization used with other cost objectives

$$
\underset{\beta}{\operatorname{minimize}} f(\beta)+\gamma\|\beta\|_{1}
$$

problems are in the form of minimizing some loss function with ℓ_{1} penalty

- sparse logistic regression
- sparse Gaussian graphical model (graphical lasso)
- sparse PCA
- sparse SVM
- sparse LDA (linear discriminant analysis)
and many more (see Hastie et. al 2015)

Sparse logistic regression

a logistic model for binary y

$$
\log \frac{P(y=1 \mid x)}{P(y=0 \mid x)}=\beta_{0}+\beta^{T} x \quad \Rightarrow \quad P(y=1 \mid x)=\frac{e^{\beta_{0}+\beta^{T} x}}{1+e^{\beta_{0}+\beta^{T} x}}
$$

ℓ_{1}-regularized logistic regression:

$$
\underset{\beta_{0}, \beta}{\operatorname{maximize}} \sum_{i=1}^{N}\left[y_{i}\left(\beta_{0}+\beta^{T} x_{i}\right)-\log \left(1+e^{\beta_{0}+\beta^{T} x_{i}}\right)\right]-\gamma \sum_{j=1}^{p}\left|\beta_{j}\right|
$$

- use the lasso term to shrink some regression coefficients toward zero
- typically, the intercept term β_{0} is not penalized
- solved by lassoglm in MATLAB or glmnet in R

Sparse Gaussian graphical model

a problem of estimating a sparse inverse of covariance matrix of Gaussian variable

$$
\underset{X}{\operatorname{maximize}} \log \operatorname{det} X-\operatorname{tr}(S X)-\gamma\|X\|_{1} \quad \text { (graphical lasso) }
$$

where $\|X\|_{1}=\sum_{i j}\left|X_{i j}\right|$
■ known fact: if $Y \sim \mathcal{N}(0, \Sigma)$ then the zero pattern of Σ^{-1} gives a conditional independent structure among components of Y

- given samples of random vectors $y_{1}, y_{2}, \ldots, y_{N}$, we aim to estimate a sparse Σ^{-1} and use its sparsity to interpret relationship among variables
- S is the sample covariance matrix, computed from the data
- with a good choice of γ, the solution X gives an estimate of Σ^{-1}
- can be solved by glasso in R or GraphicalLasso class in Python Scikit-Learn

Example: Gaussian graphical model

5-dimensional Gaussian with sparse Σ^{-1}

- the ground-truth Σ^{-1} has a sparse structure
- it's hard to infer the structure from the sample covariance inverse using $N=30$
- graphical lasso solutions depend on the penalty parameter
- the higher γ the sparser graph we get

Elastic net

a combination between the ℓ_{1} and ℓ_{2} regularizations

$$
\underset{\beta}{\operatorname{minimize}}(1 / 2)\|y-X \beta\|_{2}^{2}+\gamma\left\{(1 / 2)(1-\alpha)\|\beta\|_{2}^{2}+\alpha\|\beta\|_{1}\right\}
$$

where $\alpha \in[0,1]$ and γ are parameters

- when $\alpha=1$ it's lasso and when $\alpha=0$ it's a ridge regression
- used when we expect groups of very correlated variables (e.g. microarray, genes)
- strictly convex problem for any $\alpha<1$ and $\gamma>0$ (unique solution)
generate $X \in \mathbf{R}^{20 \times 5}$ where β_{1} and β_{2} are highly correlated

- if $x_{1}=x_{2}$, the ridge estimate of β_{1} and β_{2} will be equal (it can be proved)
- the blue and orange lines correspond to the variables β_{1} and β_{2}
- the lasso does not reflect the relative importance of the two variables
- the elastic net selects the estimates of β_{1} and β_{2} together

Group lasso

to have all entries in β within a group become zero simultaneously
let $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{K}\right)$ where $\beta_{j} \in \mathbf{R}^{p}$

$$
\operatorname{minimize}(1 / 2)\|y-X \beta\|_{2}^{2}+\gamma \sum_{j=1}^{K}\left\|\beta_{j}\right\|_{2}
$$

- the sum of ℓ_{2} norm is a generalization of ℓ_{1}-like penalty
- as γ is large enough, either x_{j} is entirely zero or all its element is nonzero
- when $p=1$, group lasso reduces to the lasso
- a nondifferentiable convex problem but can be solved efficiently
generate the problem with $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{5}\right)$ where $\beta_{i} \in \mathbf{R}^{4}$

- as γ increases, some of partition β_{i} becomes entirely zero
- as the sum of 2 -norm is zero, the entire vector β is zero

Fused lasso

to have neighboring variables similar and sparse

$$
\underset{\beta}{\operatorname{minimize}}(1 / 2)\|y-X \beta\|_{2}^{2}+\gamma_{1}\|\beta\|_{1}+\gamma_{2} \sum_{j=2}^{p}\left|\beta_{j}-\beta_{j-1}\right|
$$

- the ℓ_{1} penalty serves to shrink β_{i} toward zero
- the second penalty is ℓ_{1}-type encouraging some pairs of consecutive entries to be similar
- also known as total variation denoising in signal processing
- γ_{1} controls the sparsity of β and γ_{2} controls the similarity of neighboring entries
- a nondifferentiable convex problem but can be solved efficiently
generate $X \in \mathbf{R}^{100 \times 10}$ and vary γ_{2} with two values of γ_{1}

- as γ_{2} increases, consecutive entries of β tend to be equal
- for a higher value of γ_{1}, some of the entries of β become zero

Sparse PCA

definition: given $Z \in \mathbf{R}^{N \times p}$, PCA finds a unit-norm $x \in \mathbf{R}^{p}$ such that

$$
\operatorname{var}(Z x)=\operatorname{var}\left[\begin{array}{c}
z_{1}^{T} x \\
\vdots \\
z_{N}^{T} x
\end{array}\right]=\frac{1}{N} \sum_{i=1}^{N}\left(z_{i}^{T} x\right)^{2}=\frac{1}{N} \sum_{i=1}^{N} x^{T} z_{i} z_{i}^{T} x=x^{T}\left(\frac{Z^{T} Z}{N}\right) x
$$

is at maximum (assume data in Z is normalized to zero mean)

- x is the right-singular vector of Z (or right eigenvector of $Z^{T} Z$) w.r.t $\sigma_{\max }(Z)$
- $y=Z x$ is called the first principal component of the data Z
- x is called the principal component loading
- the r-principal components are $Y=Z X$ where $X_{p \times r}$ is solved from

$$
\begin{equation*}
\underset{X}{\operatorname{maximize}} \operatorname{tr}\left(X^{T} Z^{T} Z X\right) \quad \text { subject to } X^{T} X=I_{r} \tag{1}
\end{equation*}
$$

(r columns of X are loadings and mutually orthogonal)

Sparse PCA

- PCA originally was defined as a sequential procedure to find r components; however, the optimization explains that the loadings vector in X maximize the total variance among all such collections
- each column of Y is a linear combination of data, $y_{i}=Z x_{i}$ where loading x_{i} gives the weight of such combination
- the problem (1) is non-convex due to the objective function and the quadratic constraint

SDP formulation of sparse PCA

let us call $\Sigma=(1 / N) Z^{T} Z$ a sample covariance matrix and consider

$$
\begin{equation*}
\underset{x}{\operatorname{maximize}} x^{T} \Sigma x \quad \text { subject to }\|x\|_{2}=1, \quad\|x\|_{0} \leq k \tag{2}
\end{equation*}
$$

we look for the first principal loading that is promoted to be sparse
convex relaxation: define $X=x x^{T}$
[d'Aspremont et al 2007]

$$
\underset{X}{\operatorname{maximize}} \operatorname{tr}(\Sigma X) \quad \text { subject to } \operatorname{tr}(X)=1, \quad \mathbf{1}^{T}|X| \mathbf{1} \leq k, \quad X \succeq 0
$$

- $\operatorname{tr}(X)=1$ is from the unit-norm constraint
- $\mathbf{1}^{T}|X| \mathbf{1} \leq k$ is a weaker convex constraint for the cardinality constraint
- $X \succeq 0$ is enforced due to the form of $X=x x^{T}$ which is psdf
- we have dropped the rank-1 constraint of X (making the problem a relaxation)

Sparse SVM

soft-margin SVM versus sparse SVM [Ghaoui 2014]

$$
\begin{array}{llll}
\operatorname{minimize}_{w, b, z} & (1 / 2)\|w\|_{2}^{2}+\lambda \mathbf{1}^{T} z & \text { minimize }_{w, b, z} & \lambda\|w\|_{1}+\frac{1}{N} \mathbf{1}^{T} z \\
\text { subject to } & z \succeq 0 & \text { subject to } & z \succeq 0 \\
& y_{i}\left(x_{i}^{T} w+b\right) \geq 1-z_{i}, & & y_{i}\left(x_{i}^{T} w+b\right) \geq 1-z_{i}
\end{array}
$$

for $i=1, \ldots, N$
another common formulation of sparse SVM using hinge loss

$$
\underset{w, b}{\operatorname{minimize}} \lambda\|w\|_{1}+\frac{1}{N} \sum_{i=1}^{N} \max \left(0,1-y_{i}\left(x_{i}^{T} w+b\right)\right)
$$

- use $\|w\|_{1}$ in the objective (instead of $\|\cdot\|_{2}$) to encourage a sparsity in w
- for such a sparse w, term $w^{T} x$ involves only a few entries in x (use less features)
- a soft-margin SVM is a quadratic program; sparse SVM can be cast as an linear program

Another sparse SVM formulation

one of several formulations of sparse SVM was proposed by A.B. Chan et al 2007
idea: use $\operatorname{card}(w)=r \Rightarrow\|w\|_{1} \leq \sqrt{r}\|w\|_{2}$ to add an ℓ_{1}-norm constraint

$$
\begin{array}{ll}
\operatorname{minimize} & t+\lambda \mathbf{1}^{T} z \\
\text { subject to } & y_{i}\left(x_{i}^{T} w+b\right) \geq 1-z_{i}, \quad i=1,2, \ldots, N \\
& z \succeq 0, \\
& \|w\|_{2}^{2} \leq t, \quad\|w\|_{1}^{2} \leq r t
\end{array}
$$

with variables $w \in \mathbf{R}^{n}, b \in \mathbf{R}, z \in \mathbf{R}^{N}, t \in \mathbf{R}$

- we find a hyperplane with a large margin and the normal vector is also sparse
- the problem is QCQP (quadratically constrained quadratic program)
- ridge regression is used to shrink the coefficient so that it has small norm; making the solution has less variance
- lasso is used to shrink the coefficient toward zero; promoting simplicity in the solution interpretation
- both ℓ_{2} and ℓ_{1}-regularized LS are convex; can be solved efficiently even when p is large

Regularizations from optimization point of views

Jitkomut Songsiri Regularizations from optimization

Sparse estimation

why a problem of the form

$$
\underset{x}{\operatorname{minimize}} f(x):=g(x)+\gamma\|x\|_{1}
$$

produces sparse solutions? we will answer this by giving

- interpretation of solution shrinkage (both ℓ_{1} and ℓ_{2})
- the analysis requires a quadratic approximation of g
we will also provide a meaningful connection between early stopping and ℓ_{2} penalty

How ℓ_{2} penalty affects the optimal solution

setting: minimize $f(x)=g(x)+(\gamma / 2)\|x\|_{2}^{2}$ (parameter γ is also called weight decay)

- x^{\star} is a minimizer of g (unpenalized objective)
- $x_{\text {reg }}^{\star}$ is a minimizer of f (regularized objective)

along the dashed line is the direction that Hessian is small; hence, the objective does not increase much
ℓ_{2} penalty has a strong effect on $x_{\text {reg }}^{\star}$ in the direction of small Hessian (not a preference along this direction to improve objective)
the effect is like pulling x^{\star} toward zero
to explain the effect of ℓ_{2} penalty, consider an approximation model

$$
\hat{g}(x)=g\left(x^{\star}\right)+\underbrace{\nabla g\left(x^{\star}\right)^{T}}_{=0}\left(x-x^{\star}\right)+(1 / 2)\left(x-x^{\star}\right)^{T} H\left(x-x^{\star}\right)
$$

where H (Hessian) can be assumed $\succeq 0$ near x^{\star} (local minimum of g) the zero-gradient of regularized objective: $\hat{f}(x)=\hat{g}(x)+(\gamma / 2)\|x\|_{2}^{2}$ is approximately

$$
\nabla f(x) \approx \nabla \hat{f}(x)=H\left(x-x^{\star}\right)+\gamma x=0
$$

the regularized solution satisfies $x_{\mathrm{reg}}^{\star}=(H+\gamma I)^{-1} H x^{\star}$ or

$$
x_{\mathrm{reg}}^{\star}=U(\Lambda+\gamma I)^{-1} \Lambda U^{T} x^{\star}, \quad \text { using } \quad H=U \Lambda U^{T}
$$

- if λ_{i} is so large that $\lambda_{i} /\left(\lambda_{i}+\gamma\right) \approx 1$, then the penalty effect on $u_{i}^{T} x^{\star}$ is small
- if $\lambda_{i} \leq \gamma$ then $\lambda_{i} /\left(\lambda_{i}+\gamma\right)$ is very small; $u_{i}^{T} x^{\star}$ is shrunk toward zero

Example

minimize $\left(x-x_{c}\right)^{T} H\left(x-x_{c}\right)+\|x\|_{2}^{2}$ with $x_{c}=(2,-1), H=\left[\begin{array}{cc}11 & -9 \\ -9 & 11\end{array}\right]$

- vary $\gamma \in\left(10^{-4}, 10^{x_{3}}\right)$ in log-scale and compute $x_{\text {reg }}^{\star}(\gamma)$ for each γ
- $x_{\text {reg }}^{\star}(0)=x_{c}$ and $x_{\text {reg }}^{\star}(\gamma) \rightarrow 0$ as γ increases (the regularizer pulls $x_{\text {reg }}^{\star}$ toward zero)
- the regularizer has a strong effect on direction u_{2} when $\lambda_{2} \leq \gamma \leq \lambda_{1}$
- when $\gamma \geq \lambda_{2} \geq \lambda_{1}$, the regularization affects on both directions

How ℓ_{1} penalty affects the optimal solution

setting: minimize $f(x)=g(x)+\gamma\|x\|_{1}$ for $x \in \mathbf{R}^{n}$

- x^{\star} is a minimizer of g (unpenalized objective)
- $x_{\text {reg }}^{\star}$ is a minimizer of f (regularized objective)
- approximate model: $\hat{g}(x)=g\left(x^{\star}\right)+(1 / 2)\left(x-x^{\star}\right)^{T} H\left(x-x^{\star}\right)$
- assume that H is diagonal and $\succeq 0$ (analysis is not simple for a general Hessian) minimizing $\hat{f}(x)=\hat{g}(x)+\gamma\|x\|_{1}$ has optimality that zero is one of subgradients

$$
0 \in \partial \hat{f}(x)=H\left(x-x^{\star}\right)+\gamma \operatorname{sign}(x) \Rightarrow H_{i} x-H_{i} x^{\star}+\gamma \operatorname{sign}\left(x_{i}\right)=0
$$

(using that $H=\operatorname{diag}\left(H_{1}, H_{2}, \ldots, H_{n}\right)$)

- at optimum if $x>0$ then $x=x^{\star}-\gamma / H_{i}$
- at optimum if $x<0$ then $x=x^{\star}+\gamma / H_{i}$
minimizing an approximated ℓ_{1}-regularized function has the analytical solution

$$
x_{\mathrm{reg}, i}^{\star}=\operatorname{sign}\left(x_{i}^{\star}\right) \cdot \max \left(\left|x_{i}^{\star}\right|-\frac{\gamma}{H_{i}}, 0\right), \quad i=1,2, \ldots, n
$$

- ℓ_{1} regularized problem results in sparse solution (when γ is large enough)
- when H_{i} is large, the contribution of g to the regularized objective is overwhelmed in direction i (not preferable to move to that direction) - hence, the regularizer pushes $x_{\mathrm{reg}, i}^{\star}$ to zero
- when $\left|x_{i}^{\star}\right|>\gamma / H_{i}$, the regularizer does not move the optimal solution to zero but just shifts it by a distance equal to γ / H_{i}

Early stopping

the training set loss decreases over time but validation set error may start to rise again

early stopping: return to use solution at the iteration with lowest validation error

- run validation error evaluation periodically during training - either in parallel by separate GPU or using small validation set compared to training set
- store the best solution in a seperate memory from training

Early stopping as a regularizer

early stopping is an unobtrusive form of regularization - no change in training process

- x^{\star} is a minimizer of $f(x)$
- approximate model: $\hat{f}(x)=f\left(x^{\star}\right)+(1 / 2)\left(x-x^{\star}\right)^{T} H\left(x-x^{\star}\right)\left(H \succeq 0\right.$ at $\left.x^{\star}\right)$
- assume to use gradient descent with learning rate ϵ and early stop at iteration τ the gradient descent step for minimizing \hat{f} is

$$
x^{+}=x-\epsilon \nabla \hat{f}(x)=x-\epsilon H\left(x-x^{\star}\right) \quad \Rightarrow \quad x^{+}-x^{\star}=(I-\epsilon H)\left(x-x^{\star}\right)
$$

use eigenvalue decomposition: $H=U \Lambda U^{T}$

$$
U^{T}\left(x^{+}-x^{\star}\right)=U^{T}\left(I-\epsilon U \Lambda U^{T}\right)\left(x-x^{\star}\right)=(I-\epsilon \Lambda) U^{T}\left(x-x^{\star}\right)
$$

if $|\lambda(I-\epsilon \Lambda)| \leq 1$ (the matrix is stable), the iterations propragate as

$$
U^{T}\left(x^{(\tau)}-x^{\star}\right)=(I-\epsilon \Lambda)^{\tau} U^{T}\left(x^{(0)}-x^{\star}\right)
$$

assume that we initialize at $x^{(0)}=0$ and we return the solution at iteration τ

$$
U^{T} x^{(\tau)}=\left[I-(I-\epsilon \Lambda)^{\tau}\right] U^{T} x^{\star}
$$

now compare with the ℓ_{2} regularized solution

$$
U^{T} x_{\mathrm{reg}}^{\star}=(\Lambda+\gamma I)^{-1} \Lambda U^{T} x^{\star}=\left[I-(\Lambda+\gamma I)^{-1} \gamma\right] U^{T} x^{\star}
$$

(using matrix inversion lemma: $(I+A)^{-1}=I-(I+A)^{-1} A$) early stopping and ℓ_{2} regularization can be seen equivalent if

$$
(I-\epsilon \Lambda)^{\tau}=(\Lambda+\gamma I)^{-1} \gamma
$$

which means: τ, ϵ, γ are chosen to the relation above
we can use the following facts

- power (and inverse) of a diagonal matrix is diagonal
$-\log (1+x) \approx x$ when x is small (Taylor approximation)
then taking the log transformation of $(I-\epsilon \Lambda)^{\tau}=(\Lambda+\gamma I)^{-1} \gamma$ gives

$$
\tau \log (1-\epsilon \lambda)=\log (1+\lambda / \gamma)^{-1} \quad \text { when } \epsilon \lambda \ll 1 \text { and } \lambda / \gamma \ll 1 \Rightarrow \tau \epsilon \lambda \approx \frac{\lambda}{\gamma}
$$

conclusion: $\tau \approx \frac{1}{\epsilon \gamma}$ or equivalently $\gamma \approx \frac{1}{\tau \epsilon}$

- training iterations plays a role inversely proportional to penalty parameter
- parameter value corresponding to direction of significant curvature (of objective) are regularized less - parameter of that direction tends to learn early
- solving ℓ_{2} problem involves finding a good γ - early stopping has an advantage that it determines the right amount of regularization by monitoring validation error instead

References

some figures and examples are taken from

- G.James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: with Applications in R, Springer, 2015
- T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edition, Springer, 2009
- T. Hastie, R. Tibshirani and M. Wainwright, Statistical Learning with Sparsity: The Lasso and Generalizations, CRC Press, 2015
- G. Calafiore and L. El Ghaoui, Optimization Models, Cambridge University Press, 2014
- A. d'Aspremont, L.EI. Ghaoui, M.I. Jordan and G.R.G. Lanckriet, A Direct Formulation for Sparse PCA using Semidefinite Programing, SIAM Review, Vol.49, No.3, 2007
- A.B. Chan, N. Vasconcelos, and G.R.G. Lanckriet, Direct Convex Relaxations of Sparse SVM Proceedings of the 24th Int. Conf. on Machine Learning (ICML), 2007
- I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, The MIT Press, 2016

