Overview of optimization consepts

Jitkomut Songsiri

Pepartment of Electrical Engineering Faculty of Engineering Chulalongkorn University

August 28, 2023

CUEE

Overview of optimizati

Jitkomut Songsiri

・ロ・・四・・川・・日・・日・

Outline

- 1 Math background
- 2 General settings
- 3 Selected problem types in applications
 - Convex programs
 - Linear programming
 - Quadratic programming
 - Problem transformation
 - Stochastic optimization
 - Nonsmooth optimization
 - Multi-objective optimization
- 4 Optimality conditions
- 5 Overview of available methods
- 6 Optimization softwares

Math background

Overview of optimization concept

Jitkomut Songsiri Math background

Required knowledge

please review backgrounds on

- linear algebra with keywords:
 - system of linear equations, over-determined/under-determined, square systems
 - basic algebraic operations of vectors and matrices
 - vector and matrix norms
 - structured matrices (diagonal, symmetric, triangular, positive definite)
 - eigenvalue and eigenvector
- calculus of several variables with keywords:
 - contour, gradient, Jacobian, Hessian
 - limit, continuity, differentiability
 - sequence, convergence
- visualization of functions of several variables (surface, contour, tangent)

Tangent plane

a tangent plane of f(x) at x_0 is obtained by the first-order Taylor approximation

 $f(x) \approx f(x_0) + \nabla f(x_0)^T (x - x_0)$

the gradient of f is the normal vector of the tangent plane

Overview of optimization concept

Jitkomut Songsiri

Contour and level set

definitions:

• a contour of a function f is $\{x \in \mathbf{R}^n \mid f(x) = \alpha \}$

(also called a **level set** of f corresponding to α)

 \blacksquare a sublevel set of f corresponding to a value α is

$$S_{\alpha} = \{ x \in \mathbf{R}^n \mid f(x) \le \alpha \}$$

• $\nabla f(x)$ is orthogonal to the tangent line of the surface

 $\nabla f(x)$ is the rate of change in f; hence, ∇f points to the direction that f(x) increases

Overview of optimization concept

$$f(x) = 2 - 12(x_1 + x_2) + x_1^3 + x_2^3$$
 (f has a local maximum and minimum)

notice the gradient directions toward the local maximum and minimum

Overview of optimization concept

System of linear equations

a system of linear equations can be represented in a matrix form

y = Ax

setting: given $y \in \mathbf{R}^m$ and $A \in \mathbf{R}^{m \times n}$, find x that satisfies the equations

- square system (m = n): a solution exists and unique if A is invertible
- **u** tall system (m > n): the existence of solution depends on A, y whether $y \in \mathcal{R}(A)$
- **a** fat system (m < n): if a solution exists, then there are many solutions

if x_p is a particular solution, and $z \in \mathcal{N}(A)$ then $x = x_p + z$ is a general solution

in optimizaiton context, linear equality constraints are usually given as a fat system

$$\{ x \in \mathbf{R}^n \mid \sum_{i=1}^n x_i = 1 \}$$

Overview of optimization concept

Linear function

a linear function $f: \mathbf{R}^n \to \mathbf{R}$ is of the form

$$f(x) = a^T x = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

•
$$a = (a_1, a_2, \dots, a_n)$$
 is a given parameter

 \blacksquare the contour of f is a hyperplane with the normal vector \boldsymbol{a}

•
$$\nabla f(x) = a$$
 (constant, not depend on x)

• for $b \neq 0$, $f(x) = a^T x + b$ is called an affine function

the concept can be extended to a function of matrices: $f: \mathbf{R}^{m \times n} \to \mathbf{R}$

$$f(X) = \mathbf{tr}(A^T X) = \sum_{ij} a_{ij} x_{ij}$$

conceptually, f is a *linear* function of each entry in the variable

Overview of optimization concept

Quadratic function

given $P \in \mathbf{R}^{n imes n}, q \in \mathbf{R}^n, r \in \mathbf{R}$, a quadratic function $f : \mathbf{R}^n \to \mathbf{R}$ is of the form $f(x) = (1/2)x^T P x + q^T x + r$

- x^TPx is aka an energy form (due to the quadratic form that appears in the energy/power of some physical variables)
- Solution verify that $x^T P x = \frac{x^T (P+P^T)x}{2}$; then the energy term only takes the symmetric part of P; hence, we often consider $P \in \mathbf{S}^n$ (P is assumed to be symmetric later on)
- $\nabla f(x) = Px + q$ (derivative of quadratic function becomes linear)
- the contour shape of *f* depends on the property of *P* (pdf, indefinite, magnitude of eigenvalues, direction of eigenvectors)

Overview of optimization concept

Quadratic function (positive definite) let $f(x) = (1/2)x^T P x + q^T x$ where $P \succ 0$

since P is invertible, we can complete the square

$$f(x) = (1/2)[(x + P^{-1}q)^T P(x + P^{-1}q) - q^T P^{-1}q]$$

ellipsoid parametrized by P^{-1} with center at $-P^{-1}q$

Overview of optimization concept

Jitkomut Songsiri

Quadratic function (positive semidefinite) let $f(x_1, x_2) = (1/2)(x^T P x) + q^T x$ with q = (1, -3) and two cases of P

■ $P \succ 0$: sublevel set of f is bounded (region inside the ellipsoid) ■ $P \succeq 0$: sublevel set of f is unbounded

(if
$$x = t(1, -1) \in \mathcal{N}(P)$$
 then $f(x) = tq^T(1, -1) = 4t \to -\infty$ by choosing $t \to -\infty$)

Overview of optimization concept

Jitkomut Songsiri

Quadratic function (indefinite) let $f(x_1, x_2) = (1/2)(x^T P x) + q^T x$ with $P = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$ (and invertible)

from $f(x) = (1/2)(x + P^{-1}q)^T P(x + P^{-1}q) + \text{ constant, we can pick } t, x$ such that $x + P^{-1}q = tv, Pv = \lambda^- v, t \to \infty$; hence, $f(x) = t^2\lambda^- ||v||^2 \to -\infty$ f can be unbounded below along some direction of x

Overview of optimization concept

General settings

Overview of optimization concept

Jitkomut Songsiri General settings

< □ ▶ < 圕 ▶ < 壹 ▶ < 壹 ▶ Ξ の Q (~ 14 / 110

Optimization problem

an optimization is a problem of choosing a variable (x) that makes some objective function reach an extremum (can be minimum or maximum)

elements of optimization problem

- **optimization variable** *x*: the quantity we choose to achieve the optimization goal
- **objective function** f: a criterion that tells how objective varies upon x
- **constraints:** restrictions on x (sometimes we cannot choose x freely)

Overview of optimization concept

Examples of optimization

- finding a resource allocation ratio that maximizes the profit while the budget sum is less than a given value
- finding a control action to an airplane system that minimizes the deviation from the target while the control signal magnitude must be less than a value
- finding a design of devices/structure that minimizes the cost/weight while the size limit is from manufacturing conditions
- finding parameters in a model that minimizes the error between model output and observed data while the parameters must lie in a certain space, e.g., all parameters are non-negative
- reconstructing a transmitted signal that minimizes the deviation between predicted and observed while the rate of change in the signal is bounded by a given value

Overview of optimization concept

Problem setting

(mathematical) optimization problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

• $x = (x_1, \dots, x_n)$: optimization variable • $f_0 : \mathbf{R}^n \to \mathbf{R}$: objective function • $f_i : \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$: inequality constraint functions • $h_i : \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, p$: equality constraint functions

constraint set: $C = \{x \in \mathbf{R}^n \mid f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p\}$

domain of the problem: $\mathcal{D} = \bigcap_{i=0}^m \operatorname{dom} f_i \cap \bigcap_{i=1}^p \operatorname{dom} h_i$

Overview of optimization concept

Jitkomut Songsiri

17 / 110

(P1)

Optimal value

$$p^{\star} = \inf \{ f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ , i = 1, \dots, p \}$$

- we say x is **feasible** if $x \in \operatorname{dom} f_0(x)$ and $x \in \mathcal{C}$
- $p^{\star} = \infty$ if the problem is **infeasible**
- $p^{\star} = -\infty$ if the problem is unbounded below
- a feasible x is called **optimal** if $f_0(x) = p^*$; there can be many
- x is **locally optimal** if $\exists \epsilon > 0$ such that x is optimal for

minimize
$$f_0(z)$$

subject to $z \in C$, $||z - x||_2 \le \epsilon$

in other words, a locally optimal point is the best solution in a neighborhood

Overview of optimization concept

Jitkomut Songsiri

Example

find achievable objective values, p^{\star} and x^{\star} for each ${\mathcal C}$

Overview of optimization concept

Jitkomut Songsiri

Basic examples

 $f_0(x) = 1/x$; $p^* = 0$, no optimal point $f_0(x) = -\log x$; $p^* = -\infty$ (unbounded below) $f_0(x) = x \log x$; $p^* = -1/e$, x = 1/e is optimal $f_0(x) = x \log x + (1-x) \log(1-x)$; $p^* = -\log 2$, x = 1/2 is optimal $f_0(x) = x^3 - 3x; \ p^* = -\infty$, local optimum at x = 1 $f_0(x) = (x_1 - 2)^2 + (x_2 - 2)^2$; $p^* = 0, x = (2, 2)$ is optimal minimize $(x_1 - 2)^2 + (x_2 - 2)^2$ s.t. $x_1 + x_2 = 2$; $p^* = 2, x = (1, 1)$ is optimal **B** minimize $(x_1 - 2)^2 + (x_2 - 2)^2$ s.t. $x_1 + x_2 = 4$; $p^* = 0, x = (2, 2)$ is optimal minimize x_1 s.t. $x_1^2 < x_2$, $x_1^2 + x_2^2 < 2$; $p^* = -1, x = (-1, 1)$ is optimal in minimize $2x_1 + 2x_2$ s.t. $|x_1| + |x_2| < 1$; $p^* = -2$, any x satisfying $x_1 + x_2 = -1$ is optimal (not unique)

for these examples, you can inspect a solution or find a solution in closed-form

Overview of optimization concept

How objective and constraint functions are defined?

this is a process of problem formulation, motivated by an application

given: determine prices of a product for students and general audience, where the number of sold products and hence, profit vary upon the prices **setting:** let $x = (x_1, x_2) x_1$ is the price for students; x_2 is the price for general public

maximize
$$(x_1 - 2)e^{5.8 - 0.25x_1} + (x_2 - 1.5)e^{7.2 - 0.2x_2}$$
 (profit) subject to $e^{5.8 - 0.25x_1} + e^{7.2 - 0.2x_2} \le 200$, $x_1 \ge 0$, $x_2 \ge 0$

- blues: number of sold products; exponentially decrease as the price goes up
- aim to maximize the profit (as a function of prices that are non-negative)
- the objective is separable but the first constraint is not

Overview of optimization concept

Jitkomut Songsiri

example: given (A, y, x_0, r) as problem parameters

minimize $||Ax - y||_2$ subject to $||x - x_0||_2 \le r$

we aim to use a linear model Ax to approximate y while keeping such approximation valid in a norm ball

Overview of optimization concept

Terminology

setting: another way of representing (P1)

minimize $f_0(x)$ subject to $x \in \mathcal{C}$ (P2)

• optimal point: we can also say x^* is a **global minimizer** of f_0 over \mathcal{C}

 $f_0(x) \ge f_0(x^\star) \quad \forall x \in \mathcal{C}$

local optimal point: we can also say x^{\star} is a **local minimizer** of f_0 over \mathcal{C}

 $\exists \epsilon > 0 \quad \text{such that} \quad f_0(x) \geq f_0(x^\star) \quad \forall x \in \mathcal{C} \cap \|x - x^\star\| < \epsilon$

(strict local minimizer when $f_0(x) > f_0(x^*)$)

- the standard form has an **implicit constraint**: $x \in \mathcal{D}$
- the constraint set C contains explicit constraints
- the problem is called unconstrained if it has no explicit constraints

Overview of optimization concept

Example

find a local/strictly local/global minimizer

Overview of optimization concept

Jitkomut Songsiri

a feasibility problem

find x subject to $x \in \mathcal{C}$

can be considered as a special case of the general problem with $f_0(x) = 0$

minimize 0 subject to $x \in \mathcal{C}$

• $p^{\star} = 0$ if constraints are feasible; any feasible x is optimal • $p^{\star} = \infty$ if constraints are infeasible

examples: C_1 has two-, C_2 has infinitely many feasible points, while C_3 is infeasible

$$\begin{array}{rcl} \mathcal{C}_1 &=& \{x \in \mathbf{R}^2 \mid (x_1 - 1)^2 + x_2^2 = 1, x_1 + x_2 = 1 \ \} \\ \mathcal{C}_2 &=& \{x \in \mathbf{R}^2 \mid (x_1 - 1)^2 + x_2^2 \leq 1, x_1 + x_2 = 1 \ \} \\ \mathcal{C}_3 &=& \{x \in \mathbf{R}^2 \mid (x_1 - 1)^2 + x_2^2 \leq 1, x_1 + x_2 = -3 \ \} \end{array}$$

Overview of optimization concept

Jitkomut Songsiri

Review exercise

express the following problems in the standard form

• problem parameters: $l, u \in \mathbf{R}^n$

minimize $f_0(x)$ subject to $l \leq x \leq u$

• problem parameters: $A \in \mathbf{R}^{m \times n}, G \in \mathbf{R}^{p \times n}$

maximize $f_0(x)$ subject to $Ax \leq b, Gx = h$

problem parameter: $r \in \mathbf{R}^n$

minimize $||x||_2^2$ subject to $|x| \preceq r$

(the notation \leq is elementwise inequality of all elements in x)

Overview of optimization concept

Simple conclusions about optimization

consider a constrained problem: minimize f(x) subject to $x \in C$ (optimal value is p^*)

- 11 when the constraint functions are more stringent, the set ${\mathcal C}$ is smaller
- 2 what can you say about p^* if C is bigger (or smaller)?
- 3 let $g(x) \le f(x)$ for all x, and we minimize g(x) subject to $x \in C$; compare the new optimal value with p^*
- 4 the problem is equivalent to maximizing -f(x) subject to $x \in \mathcal{C}$
- P1, P2, P3 are the minimization of f(x) subject to $\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3$ respectively

$$\mathcal{C}_1 = \{ x \mid 0 \le x_1, x_2 \le 1 \}, \ \mathcal{C}_2 = \{ x \mid 1/2 \le x_1^2 + x_2^2 \le 1 \}, \\ \mathcal{C}_3 = \{ x \mid x_1 + x_2 \le 1, x_1 \ge 0, x_2 \ge 0 \}$$

which pair of optimal values can be compared ?

Overview of optimization concept

Jitkomut Songsiri

Problem types

we can categorize optimization problems by

constraints

- unconstrained problem
- constrained problems
- variable types
 - continuous optimization
 - discrete optimization
- linearity of objective and constraints
 - linear program
 - nonlinear program

convexity of objective and constraint set

- convex problem
- non-convex problem

smoothness of the objective

- smooth problem
- non-smooth problem
- parameter randomness
 - stochastic optimization
 - deterministic optimization

this course focuses on continuous and deterministic optimization

Overview of optimization concept

other specific problem types are integer programming, vector optimization

Overview of optimization concept

Jitkomut Songsiri

Unconstrained VS Constrained problems

easy example: variables in least-square problems are regarded as nonnegative values

minimize
$$||Ax - b||_2^2$$

minimize $||Ax - b||_2^2$
subject to $x \succeq 0$

solving unconstrained problems is based on the optimality condition:

$$\nabla f_0(x) = 0$$

find x that make the gradient zero in the cost objective (necessary condition)solving constrained problems depends on the type of constraint functions

- linear equality: constraint elimination method
- inequality equality: dedicated algorithms for some specific form

Optimality of unconstrained problems

assumption: f is twice continuously differentiable (smooth objective)1st-order necessary condition:

if x^{\star} is a local minimizer of f then $\nabla f(x^{\star}) = 0$

- **2nd-order necessary condition:** if x^* is a local minimizer of f then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succeq 0$ (positive semidefinite)
- **2nd-order sufficient condition:** if $\nabla f(x^{\star}) = 0$ and $\nabla^2 f(x^{\star}) \succ 0$ (pdf)

then x^{\star} is a strict local minimizer of f

local minimizers can be distinguished from other stationary points by examining positive definiteness of $\nabla^2 f$

example: $f(x) = x^4$ has $x^* = 0$ as a local minimizer; $\nabla^2 f(x^*) = 0$ (hence, 2nd-order sufficient condition fails)

Overview of optimization concept

Jitkomut Songsiri

Unconstrained maximization

a problem of minimizing f is equivalent to maximizing -f

2nd-order conditions:

• if x^* is a local maximizer of f then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \preceq 0$ (negative semidefinite)

• if
$$\nabla f(x^{\star}) = 0$$
 and $\nabla^2 f(x^{\star}) \prec 0$ (negative definite)

then x^{\star} is a strict local maximizer of f

Second secon

- a point at which the gradient is zero is a stationary point (aka critical point)
- a stationary point may be a local minimizer of f, or a local maximizer, or neither, in which case it is a saddle point

Overview of optimization concept

Example: Rosenbrock function

given that
$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$
, the gradient and Hessian of f are

$$\nabla f(x) = \begin{bmatrix} -400(x_1x_2 - x_1^3) - 2 + 2x_1 \\ 200(x_2 - x_1^2) \end{bmatrix}, \quad \nabla^2 f(x) = \begin{bmatrix} -400(x_2 - 3x_1^2) + 2 & -400x_1 \\ -400x_1 & 200 \end{bmatrix}$$
 where $\nabla f(x) = 0 \Leftrightarrow x = (1, 1)$

hence, (1,1) is the only stationary point and because

$$\nabla^2 f(1,1) = \begin{bmatrix} 802 & -400 \\ -400 & 200 \end{bmatrix} \succ 0,$$

we conclude that (1,1) is the only local minimizer of f

Overview of optimization concept

Saddle point

 $f(x) = 8x_1 + 12x_2 + x_1^2 - 2x_2^2$ has only one stationary point which is neither a maximum nor a minimum, but a saddle point

the stationary point is x = (-4, 3) $\nabla^2 f(x) = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix} \not\succeq 0$

Overview of optimization concept

Jitkomut Songsiri

Nonlinear least-squares (NLS)

NLS is a specific unconstrained problem of the form

minimize
$$f(x) := (1/2) \sum_{i=q}^{q} (r_i(x))^2$$

where $r_i : \mathbf{R}^n \to \mathbf{R}$ for $i = 1, 2, \dots, q$

often appear in curve fitting problems:

minimize
$$\sum_{i=1}^{N} (y_i - g(x_i))^2$$

where g is a (nonlinear) function for fitting the data $\{(x_i, y_i)\}_{i=1}^N$ express the minimization of $10(x_2 - x_1^2)^2 + (1 - x_1)^2$ as NLS

Overview of optimization concept

Nonlinear least-squares (NLS)

fitting a Gaussian curve: $g(x) = ae^{-(x-b)^2/c^2} + d$ to data points

optimization variable: $\theta = (a, b, c, d)$; explain how θ vary in the three Gaussian curves ?

Overview of optimization concept

Jitkomut Songsiri
Nonlinear least-squares (NLS)

gradient and Hessian of the objective function

- define $r(x) = (r_1(x), \ldots, r_m(x))$ that maps $\mathbf{R}^n \to \mathbf{R}^m$
- let $J(x) \in \mathbf{R}^{m \times n}$ be the Jacobian of r; then $\nabla f(x) = J(x)^T r(x)$

1st-order necessary condition is

$$\sum_{i=1}^{m} \frac{\partial r_i(x)}{\partial x} \cdot r_i(x) = 0$$

finding a stationary point is the problem of finding roots of nonlinear equations \bullet by product rule, the Hessian of f is given and approximated by

$$\nabla^2 f(x) = J(x)^T J(x) + S(x) \approx J(x)^T J(x)$$

where S(x) involves the 2nd-order derivative of J

Overview of optimization concept

Selected problem types in applications

Overview of optimization concept

Jitkomut Songsiri Selected problem types in applications

↓ □ ▶ ↓ □ ▶ ↓ Ξ ▶ ↓ Ξ ▶ ↓ Ξ → ○ < ○
38 / 110
</p>

Selected problem types

brief concepts about the following problem types

- convex optimization: see separate handouts (convex_optim.pdf)
- 2 stochastic optimization
- nonsmooth optimization
- 4 scalarized multi-objective optimization
- 5 multi-objective optimization

What to know about convex optimization

1 convex sets

- 2 convex functions
- 3 convex optimization: two common convex problems
 - linear programming
 - quadratic programming

Convex sets

a set ${\mathcal C}$ is said to be convex if for any $x,y\in {\mathcal C}$ we have

 $\theta x + (1 - \theta)y \in \mathcal{C}, \quad \text{for all } 0 \le \theta \le 1$

which of the following sets are convex ?

fact: an intersection of convex sets is convex (even infinitely many number of intersections)

Overview of optimization concept

Jitkomut Songsiri

Convex functions

convex function: $f:\mathbf{R}^n\to\mathbf{R}$ is convex if

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all x,y in the domain of f and $0\leq\theta\leq 1$

loosely speaking, f is convex if it has an upward shape

examples on **R**:

- affine: ax + b for any $a, b \in \mathbf{R}$
- exponential: e^{ax} for any $a \in \mathbf{R}$
- powers of absolute value: $|x|^p$ for $p \ge 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

Examples of convex functions on \mathbf{R}^n

- affine: $a^T x + b$
- **norm functions:** ||x||
- norms of affine: $||a^Tx + b||$
- quadratic: $x^T P x + q^T x$ when $P \succeq 0$
- negative entropy: $\sum_{i=1}^{n} x_i \log x_i$ on \mathbf{R}_{++}^n

fact: a set of inequality constraints described by convex functions is convex

$$C = \{x \in \mathbf{R}^n \mid f_i(x) \le 0, \ i = 1, 2, \dots, m\}$$

is a convex set if all f_i 's are convex functions

Overview of optimization concept

First- and second-order conditions of convex functions

suppose f is differentiable; then f is convex if and only if

 $\operatorname{\mathbf{dom}} f \ \text{ is convex and } \ f(y) \geq f(x) + \nabla f(x)^T(y-x), \quad \forall x,y \in \operatorname{\mathbf{dom}} f$

- the first-order Taylor approximation of f is a global underestimator of f if and only if f is convex
- if $\nabla f(x) = 0$ then for all $y \in \operatorname{dom} f, f(y) \ge f(x)$, *i.e.*, x is a global minimizer of f

assume that $\nabla^2 f$ exists at each point in dom f; then f is convex if and only if

$$\operatorname{\mathbf{dom}} f$$
 is convex and $\nabla^2 f(x) \succeq 0, \ \forall x \in \operatorname{\mathbf{dom}} f$

f is convex if and only if its Hessian matrix is positive semidefinite

Overview of optimization concept

Convex programs

convex optimization problem is one of the form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & a_i^T x = b_i, \quad i = 1, \dots, p \end{array}$$

where

- objective and constraint functions are convex
- equality constraint functions $h_i(x) = a_i^T x b_i$ must be affine

result: an optimal solution of a convex program is a global minimizer

Overview of optimization concept

Linear program (LP)

a general linear program has the form

minimize
$$c^T x$$

subject to $Gx \leq h$
 $Ax = b$

where
$$G \in \mathbf{R}^{m \times n}$$
 and $A \in \mathbf{R}^{p \times n}$

example: minimize the cheapest diet that satisfies the nutritional requiremenets

- $x = (x_1, \ldots, x_n)$ is nonnegative quantity of n different foods
- each food has a cost of c_j ; cost objective is $c^T x$
- one unit quantity of food j contains d_{ij} amount of nutrients i
- \blacksquare constraints are $Dx \succeq h$ and $x \succeq 0$

Overview of optimization concept

Geometrical interpretation

 \blacksquare hyperplane: solution set of a linear equation with coefficient vector $a \neq 0$

$$\{x \mid a^T x = b\}$$

• halfspace: solution set of a linear inequality with coefficient vector $a \neq 0$

$$\{x \mid a^T x \le b \}$$

we say a is the **normal vector**

polyhedron: solution set of a finite number of linear inequalities

$$\{x \mid a_1^T x \le b_1, \ a_2^T x \le b_2, \ \dots, \ a_m^T x \le b_m \} = \{x \mid Ax \le b \}$$

intersection of a finite number of halfspaces

Overview of optimization concept

Jitkomut Songsiri

extreme point of \mathcal{C}

a vector $x \in C$ is an extreme point (or a vertex) if we cannot find $y, z \in C$ both different from x and a scalar $\alpha \in [0, 1]$ such that $x = \alpha y + (1 - \alpha)z$

Overview of optimization concept

Solving LPs graphically

LP 1 (left) and LP 2 (right, with non-negative constraints)

• LP 1: feasible set is unbounded but the problem is bounded below for some c

$$c = (0, 1), x^{\star} = c = (-1, 0), x^{\star} = c = (-1, 1), x^{\star} = c = (1, 3), x^{\star} = (-1, 1), x^{\star} = (-1, 1)$$

Overview of optimization concept

Jitkomut Songsiri

49 / 110

if

Simple linear programs

minimize $c^T x$ over each of these simple sets

we can derive an explicit solution of these LPs

- **box constraint:** $l \preceq x \preceq u$
- **probability simplex** (or budget allocation): $\mathbf{1}^T x = 1, x \succeq 0$
- **not all budget is used:** $\mathbf{1}^T x \leq 1, x \succeq 0$
- **halfspace:** $a^T x \leq b$

draw the constraint set and inspect the solution for a given \boldsymbol{c}

Overview of optimization concept

Some problems may not look like an LP

example 1: functions that involve ℓ_1 and ℓ_∞ norms

minimize $||Fx - g||_1$ subject to $||x||_{\infty} \leq 1$

(minimize a cost measured by 1-norm having a worst-case budget constraint) by introducing u; imposing the constraint: $-u \leq Fx - g \leq u$; and noting that

$$||Fx - g||_1 = \sum_{i=1}^m |f_i^T x - g_i| \le \mathbf{1}^T u$$

the problem is equivalent to the LP

minimize
$$\mathbf{1}^T u$$

subject to $-u \leq Fx - g \leq u$,
 $-\mathbf{1} \leq x \leq \mathbf{1}$

Overview of optimization concept

Jitkomut Songsiri

Properties of LP

- another standard form: minimize $c^T x$ subject to Ax = b, $x \succeq 0$
- an LP may not have a solution (constraints are inconsistent or the feasible set is unbounded)
- we assume A is full row rank; if not, considering Ax = b
 - depending on A, the system could be inconsistent (hence, no extreme points), or
 - Ax = b contains redundant equations, which can be removed
- if a standard LP has a finite optimal solution then

a solution can always be chosen from among the vertices of the feasible set

(called **basic feasible solutions**)

- the dual of an LP is also an LP
- solutions of some simple LPs can be analytically inspected

Overview of optimization concept

Standard form

a quadratic program (QP) is in the form

$$\begin{array}{ll} \mbox{minimize} & (1/2)x^T P x + q^T x \\ \mbox{subject to} & Gx \preceq h \\ & Ax = b, \end{array}$$

where $P \in \mathbf{S}^n, G \in \mathbf{R}^{m \times n}$ and $A \in \mathbf{R}^{p \times n}$

example: constrained least-squares

minimize
$$||Ax - b||_2^2$$

subject to $l \leq x \leq u$

QP has linear constraints

Overview of optimization concept

Jitkomut Songsiri

Properties of QP

- an unconstrained QP is unbounded below if P is not positive definite
- an unconstrained QP has a unique solution: $x = -P^{-1}q$ when $P \succ 0$
- \blacksquare a QP is a convex problem if P is positive semidifinite definite
 - if $P \succeq 0$ then a local minimizer x^* is a global minimizer (by convexity)
 - if $P \succ 0$ then x^* is a *unique* global solution (by strictly convexity)
- the feasible set (polyhedron) may be empty (hence, the problem is infeasible)
- the feasible set can be unbounded (but if $P \succ 0$ it implies boundedness)
- solution of a QP may not be at a vertex
- the dual of a QP is also a QP

Contour of quadratic objective

consider three cases of \boldsymbol{P} and different feasible sets

verify the location of the optimal solution for each constraint set

- left: a bounded set, a line, an unbounded feasible set
- **\blacksquare** middle: bounded and unbouded feasible sets, while f is unbounded below
- right: a bounded feasible set, while f is unbounded below and above

Overview of optimization concept

Applications of quadratic programming

- unconstrained QP
 - least-squares
 - optimizing group representative step in k-mean clustering
- support vector machine
- control systems
- inverse problem (medical imaging, signal processing)
- least-squares with constraints (lasso and others)
- portfolio optimization

Soft-margin SVM

problem parameters: $x_i \in \mathbf{R}^n$ and $y_i \in \mathbf{R}$ for $i = 1, ..., N, \lambda > 0$ optimization variables: $w \in \mathbf{R}^n, b \in \mathbf{R}, z \in \mathbf{R}^N$

$$\begin{array}{ll} \mbox{minimize} & (1/2) \|w\|_2^2 + \lambda \mathbf{1}^T z \\ \mbox{subject to} & y_i(x_i^T w + b) \geq 1 - z_i, \quad i = 1, 2, \dots, N \\ & z \succeq 0 \end{array}$$

data are classified by separating hyperplane with maximized margin

- z_i is called a slack variable, allowing some of the hard constraints to be relaxed
- the problem has (convex) quadratic objective and linear constraints (QP)

Overview of optimization concept

Markowitz portfolio optimization

setting:

• $r = (r_1, r_2, \dots, r_n) \in \mathbf{R}^n$; r_i is the (random) return of asset i

 \blacksquare the return has the mean \bar{r} and covariance Σ

optimization variable: $x \in \mathbf{R}^n$ where x_i is the portion to invest in asset i

problem parameters: $\Sigma \succeq 0, \bar{r} \in \mathbf{R}^n, \gamma > 0$

$$\begin{array}{ll} \text{minimize} & -\bar{r}^T x + \gamma x^T \Sigma x \\ \text{subject to} & x \succeq 0, \quad \mathbf{1}^T x = 1 \end{array}$$

• $\mathbf{var}(r^T x) = x^T \Sigma x$ is the risk of the portfolio

- the goal is to maximize the expected return while minimize the risk
- γ is the risk-aversion parameter controlling the trade-off

Overview of optimization concept

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one can be obtained from the solution of the other, and vice versa

examples: P1 and P2 are equivalent (but they are not the same)

minimize $||Ax - y||_2$ (P1) minimize $||Ax - y||_2^2$ (P2)

maximize $\frac{1}{\|Ax-y\|_2}$ (P1) minimize $\|Ax-y\|_2^2$ (P2)

maximize |f(x)| (P1) maximize $\log |f(x)|$ (P2)

using monotonically increasing property of squared and log functions

Overview of optimization concept

Transformation that yield equivalent problems

some transformations are useful for problem re-formulation

- eliminating equality constraints
- introducing slack variables
- epigraph form
- minimizing over some variables
- using indicator function to represent constraints

Eliminating equality constraints

the problem

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax=b \end{array}$$

is equivalent to

minimize
$$f_0(Fz + x_0)$$

subject to $f_i(Fz + x_0) \le 0$, $i = 1, \dots, m$

where F and x_0 are such that

$$Ax = b \iff x = Fz + x_0$$
 for some x_0

Overview of optimization concept

Jitkomut Songsiri

Example: eliminating equality constraints

equality constraint in the form of Ax = b (non-trivial when A is fat)

minimize
$$||Hx - y||_2$$
 (P1) minimize $||\tilde{H}x - y||_2$ (P2)
subject to $x_1 + x_2 = 0$ where $\tilde{H} = \begin{bmatrix} h_1 - h_2 & h_3 & \cdots & h_n \end{bmatrix}$

find the nullspace of A and its basis vectors

 $\dim \mathcal{N}(A) = r \quad \Leftrightarrow \quad \exists F \in \mathbf{R}^{n \times r} \text{ such that } AF = 0 \text{ and } F \text{ is full column rank}$

find a particular solution of Ax = b, says x₀
a general solutions to Ax = b is expressed as x = Fz + x₀ for any z

Overview of optimization concept

Jitkomut Songsiri

Introducing slack variables

the problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, \dots, m$

is equivalent to

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) + s_i = 0, \quad i = 1, \dots, m \\ & s_i \geq 0, \quad i = 1, 2, \dots, m \end{array}$$

Overview of optimization concept

Jitkomut Songsiri

Epigraph form

the epigraph of a function f_0 is the area above the graph f_0

the standard problem is equivalent to

minimize (over
$$x, t$$
) t
subject to
 $f_0(x) - t \le 0,$
 $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$

we minimize t over the epigraph of f_0 (objective is now linear of (x,t))

Overview of optimization concept

Jitkomut Songsiri

Example: epigraph form

example 1: $||z||_{\infty} \leq t$ if and only if $|z_i| \leq t$ for all i

minimize_x
$$||Ax - y||_{\infty}$$
 (P1) minimize_(x,t) t (P2)
subject to $-t \le a_i^T x - y_i \le t$, $i = 1, ..., m$

example 2: $||Ax - y||_1 \le u$ if and only if $-u \le Ax - y \le u$ and $\mathbf{1}^T u \le t$

minimize_x
$$||Ax - y||_1$$
(P1)minimize_{(x,u)} $\mathbf{1}^T u$ (P2)subject to $-u \preceq Ax - y \preceq u$

Overview of optimization concept

Jitkomut Songsiri

Minimizing over some variables

the problem

$$\begin{array}{ll} \mbox{minimize} & f_0(x_1,x_2) \\ \mbox{subject to} & f_i(x_1) \leq 0, \quad i=1,\ldots,m \end{array}$$

is equivalent to

$$\begin{array}{ll} \mbox{minimize} & \tilde{f}_0(x_1) \\ \mbox{subject to} & f_i(x_1) \leq 0, \quad i=1,\ldots,m \end{array}$$

where $\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$

if the objective can be minimized over one variable easily, we can reduce the problem dimension

Overview of optimization concept

Example: minimizing over one variable

given $g_i : \mathbf{R}^n \to \mathbf{R}, y_i \in \mathbf{R}$ for $i = 1, \dots, N$, consider the problem

minimize
$$-N \log \left[\frac{1}{d}\right] + \frac{1}{d} \sum_{i=1}^{N} (g_i(x) - y_i)^2$$

first, we can minimize over d by setting the gradient w.r.t. 1/d to zero

$$d = \frac{1}{N} \sum_{i=1}^{N} (g_i(x) - y_i)^2$$

the reduced problem is

$$\underset{x}{\text{minimize}} \log \left[\frac{1}{N} \sum_{i=1}^{N} (g_i(x) - y_i)^2 \right] \quad \Longleftrightarrow \quad \underset{x}{\text{minimize}} \quad \sum_{i=1}^{N} (g_i(x) - y_i)^2$$

Overview of optimization concept

Jitkomut Songsiri

Stochastic optimization

a problem is called a stochastic optimization if

• $f_i(x)$ contains some randomness, *e.g.*, problem paraters are random variables, or

a random (Monte Carlo) choice is made in the search direction of the algorithm

example: an LP problem where \boldsymbol{c} is a \mathbf{random} vector

minimize
$$c^T x$$

subject to $Gx \preceq h$
 $Ax = b$

one way is to change the minimization objective

Overview of optimization concept

the cost $c^T x$ is random with mean $\bar{c}^T x$ and variance

$$\operatorname{var}(c^T x) = \operatorname{var}(x^T c) = x^T \operatorname{cov}(c) x \triangleq x^T \Sigma x$$

generally there is a trade-off between the mean and the varianceone way is to minimize a combination of the two quantities:

minimize
$$\bar{c}^T x + \gamma x^T \Sigma x$$

subject to $Gx \leq h$
 $Ax = b$

where γ controls the weight between the two \blacksquare the resulting problem is an QP

Overview of optimization concept

Nonsmooth optimization

a function is smooth if it is differentiable and the derivatives are continuous

• example:
$$f(x) = |x|$$
 is not smooth at $x = 0$

• example: f(x) = ||x|| is not smooth at x = 0

a problem is called **nonsmooth** if the objective or constraints are nonsmooth functions

example: lasso problems

minimize
$$||Ax - b||_2 + \gamma ||x||_1$$

then the methods relying on the gradient should be carefully revisited

Overview of optimization concept

Scalarized multi-objective optimization

a common form of multi-objective problem: for a given $\gamma > 0$,

minimize $f(x) + \gamma g(x)$

- we desire both f and g to be small but they are weighed in by a given weight, γ (or often called penalty parameter)
- \blacksquare as γ is higher, we penalize more on g, then the minimized g is smaller; in this case, we care less about f
- appear in model performance evaluation where two diffferent metrics are desired to be small
- example 1: minimize model error + model complexity
- example 2: minimize system tracking error + input power

Overview of optimization concept

Multi-objective optimization

setting: minimizing $f_0: \mathbf{R}^n \to \mathbf{R}^m$ (vector-valued function) over a feasible set

 $\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & x \in \mathcal{C} \end{array}$

a vector optimization has a vector-valued objective function

- \blacksquare example: $f_0(x) = ({\rm fuel}, {\rm time})$ the energy used and time spent of a vehicle parameter x
- require a generalized inequality definition for comparing any two vectors of $f_0(x)$

$$\begin{bmatrix} 5\\2 \end{bmatrix} \preceq \begin{bmatrix} 10\\3 \end{bmatrix} \quad \mathsf{but} \quad \begin{bmatrix} 5\\2 \end{bmatrix} \not \preceq \begin{bmatrix} 2\\4 \end{bmatrix}$$

here, for $f_0(x) \in \mathbf{R}^n$, we typically use the **non-negative orthant** to define \preceq

Overview of optimization concept

Jitkomut Songsiri
Achievable objective values

define $\mathcal{O} = \{f_0(x) \mid x \in \mathcal{C}\}$ the set of objective values of feasible points

• u is said to be the **minimum** element of \mathcal{O} if $u \leq v$, for every $v \in \mathcal{O}$ • u is said to be a **minimal** element of \mathcal{O} if $v \in \mathcal{O}$, $v \leq u$ only if v = u• if \mathcal{O} has a minimum point (then it is unique) and

 \exists feasible x such that $f_0(x) \preceq f_0(y)$, for all feasible y

then we say x is **optimal**

Overview of optimization concept

Jitkomut Songsiri

Pareto optimal points

consider when \mathcal{O} does not have a minimum element

• x is called **Pareto optimal** (or efficient) if $f_0(x)$ is a minimal element of \mathcal{O} • a technique to extract pareto optimal points: scalarization (more on this later)

Overview of optimization concept

Jitkomut Songsiri

Optimality conditions

Overview of optimization concept

Jitkomut Songsiri Optimality conditions

Unconstrained optimality

assumption: f is twice continuously differentiable (smooth objective)

- **necessary condition:** if x^* is a local minimizer of f then
 - $1 \nabla f(x^{\star}) = 0$
 - **2** $\nabla^2 f(x^{\star}) \succeq 0$ (positive semidefinite)
- **sufficient condition:** if $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succ 0$ (positive definite), then x^* is a strict local minimizer of f
- \blacksquare when f is convex and differentiable, any stationary point x^{\star} is a global minimizer of f

example: the Rosenbrock function:

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

verify that $x^{\star}=(1,1)$ is the only local minimizer of f

Overview of optimization concept

Jitkomut Songsiri

Constrained optimality

first, define the Lagrangian function

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

where λ, ν are called the Lagrange multipliers for inequality and equality constraints

the KKT conditions are necessary conditions for optimality

- **1** zero-gradient condition of L: $\nabla_x L(x^\star, \lambda^\star, \nu^\star) = 0$
- primal and dual feasibility

$$f_i(x^*) \le 0, i = 1, \dots, m, \quad h_i(x^*) = 0, i = 1, \dots, p, \quad \lambda^* \succeq 0$$

3 complementary slackness condition: $\lambda_i f_i(x) = 0$ for i = 1, 2, ..., m

fact: for convex problems, KKT conditions are sufficient and necessary for optimality

Overview of optimization concept

Optimality of contrained LS

derive KKT conditions for

$$\underset{x}{\text{minimize}} \ (1/2) \|Ax - y\|_2^2 \ \text{subject to} \ l \preceq x \preceq u$$

the Lagrangian is $L(x,\lambda_1,\lambda_2)=(1/2)\|Ax-y\|_2^2+\lambda_1^T(l-x)+\lambda_2^Tx-u)$

KKT conditions are

- **1** zero-gradient of L: $A^T(Ax y) \lambda_1 + \lambda_2 = 0$
- **2** primal feasibility: $l \preceq x \preceq u$
- **3** dual feasibility: $\lambda_1, \lambda_2 \succeq 0$
- 4 complementary slackness condition:

$$\lambda_{1i}(l_i - x_i) = 0, \quad \lambda_{2i}(x_i - u_i) = 0, \quad i = 1, 2, \dots, n$$

Overview of optimization concept

Jitkomut Songsiri

Intro to duality theory

some quick facts

define the dual function as the infimum of the Lagrangian over primal variables

$$g(\lambda, \nu) = \inf_{x \in \operatorname{dom} \mathcal{D}} L(x, \lambda, \nu)$$

for any $\lambda \succeq 0$, the dual function provides a lower bound for p^* , *i.e.*, $g(\lambda, \nu) \le p^*$ any optimization problem (called a primal problem) has its dual problem

 $\underset{\lambda,\nu}{\operatorname{maximize}} \ g(\lambda,\nu) \ \text{subject to} \ \lambda\succeq 0$

which is the problem of finding the best lower bound, denoted as $d^{\star}\text{, for }p^{\star}$

- more theoretical results about relations between primal and dual problems when $d^* = p^*$, we say we have strong duality
- solving the dual can be more beneficial in some cases

Overview of optimization concept

Overview of available methods

Overview of optimization concept

Jitkomut Songsiri Overview of available methods

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○ </td>80 / 110

- unconstrained problems: gradient descent, Newton, quasi Newton, trust-region
- convex programs: interior point, gradient projection, ellipsoid method
- convex programs of certain structures: proximal methods
- linear programming: simplex, interior point
- quadratic programming: interior point, active set, conjugate gradient, augmented Lagrangian

Essential considerations

numerical methods are mostly iterative

- generate a sequence of points $x^{(k)}$, k = 0, 1, 2, ... that converge to a solution; $x^{(k)}$ is called the *k*th *iterate*; $x^{(0)}$ is the *starting point*
- \blacksquare computing $x^{(k+1)}$ from $x^{(k)}$ is called one iteration of the algorithm
- each iteration typically requires evaluations of f (or $\nabla f, \nabla f^2$) at $x^{(k)}$
- the update rule is typically of the form

$$x^{(k+1)} = x^{(k)} + t_k s^{(k)}$$

 s^(k) is called a search direction and t_k is a step size

Algorithms for unconstrained problems

algorithms	search direction	meaning
steepest descent	$s^{(k)} = -\nabla f(x^{(k)})$	direction that f decreases
Newton	$s^{(k)} = -[\nabla^2 f(x^{(k)})]^{-1} \nabla f(x^{(k)})$	minimize quadratic
		approximation of f
quasi-Newton	$s^{(k)} = -[H^{(k)}]^{-1} \nabla f(x^{(k)})$	$H^{(k)}$ approximates the Hessian
conjugate gradient	$s^{(k)} = -\nabla f(x^{(k)}) + \beta_k s^{(k-1)}$	$s^{(k)}$ and $s^{(k-1)}$ are conjugate
		– aiming for less storage of
		matrices
trust-region	solution of subproblem	minimizes quadratic model
		with region constraint

for each iteration, the trust-region method solves for the search direction s

$$\begin{array}{ll} \mbox{minimize} & f(x^{(k)}) + \nabla f(x^{(k)})^T s + \frac{1}{2} s^T \nabla^2 f(x^{(k)}) s \\ \mbox{subject to} & \|s\| \leq \delta_k \end{array}$$

Overview of optimization concept

Properties of algorithms

we look at these factors when considering a method

- rate of convergence
- search direction (greatly impact the convergence)
- choice of step size (not all values is applicable)
- computational cost (storage needed, complexity)
- stopping criterion (practical conditions for checking optimality)
- descent property (objective values are monotonically decreasing)
- speed of an algorithm depends on:
 - the cost of evaluating f(x) (and possibly, $\nabla f(x)$, $\nabla f^2(x))$
 - the number of iterations required to acheive a certain accuracy

Rate of convergence

a sequence $x^{(k)}$ converges to x^{\star} and suppose

$$\lim_{k \to \infty} \frac{\|x^{(k+1)} - x^{\star}\|}{\|x^{(k)} - x^{\star}\|} = c$$

then we obtain

convergence rate	range of c	example of $x^{(k)} \rightarrow 1$
sublinear:	c = 1	$x^{(k)} = 1 + \frac{1}{k+1}$
linear:	$c \in (0,1)$	$x^{(k)} = 1 + (1/2)^k$
superlinear:	c = 0	$x^{(k)} = 1 + (1/2)^{1.7^k}$

we say $x^{(k)}$ converges to x^{\star} with order p if

$$\lim_{k \to \infty} \frac{\|x^{(k+1)} - x^{\star}\|}{\|x^{(k)} - x^{\star}\|^{p}} = C, \quad \text{for some } C$$

example: $x^{(k)} = 1 + (1/2)^{2^k}$ converges quadratically to 1

Overview of optimization concept

Convergence rate of algorithms

suppose $x^{(k)} \to x^{\star}$ (optimal solution); how fast does $x^{(k)}$ go to x^{\star} asymptotically?

error after k iterations: typical choices are

- Euclidean distance: $e_k = x^{(k)} x^{\star}$
- the cost difference: $e_k = f(x^{(k)}) f(x^{\star})$

Linear, superlinear and quadratic rate (another representation)

linear convergence: there exists $c \in (0,1)$ such that

 $\|e_{k+1}\| \leq c \|e_k\| \quad \text{for sufficiently large } k$

also represented as $||e_k|| \le Mc^k$ for M > 0 (converges geometrically) example: $e_k = (1/2)^k$

superlinear convergence: there exists a sequence c_k with $c_k \rightarrow 0$ s.t.

 $\|e_{k+1}\| \leq c_k \|e_k\|$ for sufficiently large k

when c_k can be further expressed as $c_k = C\beta^{p^k}$ with $C > 0, \beta \in (0, 1), p > 1$, we say e_k converges superlinearly with order p (e.g., $e_k = (1/2)^{1.7^k}$) **quadratic convergence:** there exists a c > 0 s.t.

$$||e_{k+1}|| \le c ||e_k||^2$$
 for sufficiently large k

example: $e_k = (1/2)^{2^k}$

Overview of optimization concept

Examples of convergence rates

convergence rate of $(0.8)^k, C(0.8)^{1.7^k}, C(0.8)^{2^k}$ in linear and log scales

Jitkomut Songsiri

Examples of convergence analysis

what is the convergence rate of the following results (from unconstrained optimization)

$$f(x^{(l)}) - p^{\star} \le \frac{2m^2}{L^2} \left(\frac{1}{2}\right)^{2^{l-n+1}} \tag{1}$$

$$f(x^{(k)}) - p^* \le \frac{cL \|x^{(0)} - x^*\|^2}{k}$$
(2)

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$
(3)

$$\frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2 \tag{4}$$

(assume c, L, m are problem parameters and n is a positive integer)

- \blacksquare an asymptotic analysis explains what happen in the limit as $x^{(k)} \to x^{\star}$
- but, in large-scale problems, an algorithm often stops before a full convergence
- we are more interested in the accuracy of solution after k iterations presented as big ${\cal O}$ of some function in k

Overview of optimization concept

Jitkomut Songsiri

Big \mathcal{O} and little o

Big \mathcal{O} : the notation $f(x) = \mathcal{O}(g(x))$ for $x \to c$

• reads "f(x) has a *smaller or same* rate of growth as g when $x \to c$ "

- \blacksquare mathematically, $\exists C>0$ such that $|f(x)|\leq C|g(x)|$ as $x\rightarrow c$
- example: $e^x = 1 + x + \mathcal{O}(x^2)$ as $x \to 0$

little o: the notation f(x) = o(g(x)) for $x \to c$

- \blacksquare reads f(x) has a smaller rate of growth than g when $x \rightarrow c$
- mathematically, $\lim_{x\to c} \frac{|f(x)|}{|g(x)|} = 0$

• example:
$$\cos x - 1 = o(x)$$
 as $x \to 0$

Overview of optimization concept

Solution precision after k iterations

there are two common ways to explain a convergence rate in large-scale problems

• the accuracy of solution after k iterations: e.g. $f(x^{(k)}) - f^{\star} \leq O(1/k^2)$

- the number of iterations required to obtain an ϵ -optimal solution: e.g. $k \geq \mathcal{O}(\frac{1}{\sqrt{\epsilon}})$
- a constant hidden in ${\mathcal O}$ usually depends on properties of f and the distance between $x^{(0)}$ and x^{\star}

Overview of optimization concept

Convergence rate vs Computational cost

we prefer a fast convergence rate and less computational cost

assume n is the dimension of optimization variable and k is the number of iterations

for example, we prefer

- convergence rate: $\mathcal{O}(1/k^2) \ge \mathcal{O}(1/k) \ge \mathcal{O}(1/\sqrt{k})$
- convergence rate: $\mathcal{O}(1/\sqrt{\epsilon}) \geq \mathcal{O}(1/\epsilon) \geq \mathcal{O}(1/\epsilon)$
- cost: $\mathcal{O}(\log(n)) \ge \mathcal{O}(n) \ge \mathcal{O}(n^3)$

(by using ' $X \ge Y$ ' we loosely mean 'prefer X to Y')

Overview of optimization concept

Stopping criterions

criterions rely on optimality measures

unconstrained optimality tolerance: if the gradient is small enough

absolute: $\|\nabla f(x^{(k)})\|_{\infty} \leq \epsilon$ relative: $\|\nabla f(x^{(k)})\|_{\infty} \leq \epsilon \|\nabla f(x^{(0)})\|_{\infty}$

constrained optimality tolerance: $\nabla_x L$ and $\lambda_i f_i(x)$ must be small

 $\max\{ \|\nabla_x L(x,\lambda,\nu)\|, \|(\lambda_1 f_1(x),\ldots,\lambda_m f_m(x))\| \} \le \epsilon$

constraint tolerance: ineq constraint should be less than zero, and equality constraint should be zero

 $f_i(x) \leq \epsilon$ (close to zero), $|h_i(x)| \leq \epsilon, \forall i$

convex problem with strong duality: if duality gap is zero

Overview of optimization concept

Stopping criterions

criterions based on function and step values

step tolerance: difference of two consecutive steps is small

absolute:
$$||x^{(k+1)} - x^{(k)}|| \le \epsilon$$
 relative: $\frac{||x^{(k+1)} - x^{(k)}||}{||x^{(k)}||} \le \epsilon$

function tolerance: the change in the objective value is small

absolute:
$$|f(x^{(k+1)}) - f(x^{(k)})| \le \epsilon$$
 relative: $\frac{|f(x^{(k+1)}) - f(x^{(k)})|}{|f(x^{(k)})|} \le \epsilon$

maximum number of iterations

Overview of optimization concept

Jitkomut Songsiri

Optimization softwares

Overview of optimization concept

Jitkomut Songsiri Optimization softwares

<□ ▶ < □ ▶ < 壹 ▶ < 壹 ▶ < Ξ ▶ Ξ の Q (~ 95 / 110

Numerical exercises

we will solve some small/moderate problems in class

- unconstrained problems
- nonlinear least-squares (some curve fitting problems)
- linear programs
- quadratic programs
 - trajectory control of linear system
 - least-squares with linear constraints
- constrained problems
- convex programs
 - regression problems using $\ell_2, \ell_1, \ell_\infty$ -norms and huber loss
 - portfolio optimization

Exercises: Unconstrained problems

minimize the following functions

 generate P ≻ 0, q randomly and let f(x) = (1/2)x^TPx - q^Tx
 f(x) = ∑_{i=1}ⁿ x_i log x_i
 f(x) = x₁² + x₁x₂ + 1.5x₂² - 2log(x₁) - log(x₂) using initial points: x₀ = (-1, -1), (1, 1), (2, 10)
 f(x) = x₁² - x₁x₂ + 2x₂² - 2x₁ + e^{x₁+x₂} using initial points x₀ = (5, 10), (10, 10)
 generate y_i ∈ {1, -1} and x_i ∈ ℝⁿ randomly for i = 1,..., N where n = 20, N = 200 and minimize

$$f(x) = \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + e^{-y_i x_i^T \beta} \right) \qquad \text{soft max loss in logistic regression}$$

6 Rosenbrock function: $f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$

Overview of optimization concept

Exercises: Nonlinear least-squares

1 minimize
$$\sum_{i=1}^{N} \left(y_i - [ae^{-(x_i-b)^2/c^2} + d] \right)^2$$
 with variables a, b, c, d
2 minimize $\sum_{i=1}^{N} \left(y_i - \frac{K}{1+e^{-b^Tx}} \right)^2$ with variables $K \in \mathbf{R}, b \in \mathbf{R}^n$

Overview of optimization concept

Exercises: Linear program

1 minimize
$$c^T x$$
 subject to $\mathbf{1}^T x \leq 1$, $x \succeq 0$
2 minimize $c^T x$ subject to $l \preceq x \preceq u$
3 minimize $c^T x$ subject to $\|x\|_{\infty} \leq 1$
4 minimize $c^T x$ subject to $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n \leq 1$
5 minimize $c^T x$ subject to $d^T x = \alpha, 0 \preceq x \preceq \mathbf{1}$ with $d \succ 0$ and $0 \leq \alpha \leq \mathbf{1}^T d$
6 sparse SVM: generate $y \in \{1, -1\}$ and $x_i \in \mathbf{R}^n$ randomly for $i = 1, \dots, N$ where $n = 20, N = 200$, set $\lambda > 0$

minimize
$$\lambda \|w\|_1 + \frac{1}{N} \sum_{i=1}^N \max(0, 1 - y_i(x_i^T w + b))$$

7 generate a tall $A \in \mathbf{R}^{m \times n}$ and $y \in \mathbf{R}^n$ randomly and minimize $||Ax - y||_1$ 8 generate a tall $A \in \mathbf{R}^{m \times n}$ and $y \in \mathbf{R}^n$ randomly and minimize $||Ax - y||_{\infty}$

Overview of optimization concept

Jitkomut Songsiri

Exercises: Quadratic program

1 minimize $(1/2)x^T P x - q^T x$ subject to Ax = b (3 cases: $P \succeq 0, P \not\geq 0, P \preceq 0$) 2 minimize $||Ax - y||_2^2$ subject to (i) $||x||_1 \le \alpha$ (ii) $l \preceq x \preceq u$ (iii) $x_3 = x_4 = 0$

3 soft-margin SVM: generate $y \in \{1, -1\}$ and $x_i \in \mathbf{R}^n$ randomly for $i = 1, \dots, N$

$$\begin{array}{ll} \text{minimize}_{w,b,z} & (1/2) \|w\|_2^2 + \lambda \mathbf{1}^T z \\ \text{subject to} & y_i(x_i^T w + b) \geq 1 - z_i, \ i = 1, 2 \dots, N \\ & z \succeq 0 \end{array}$$

4 given a linear system described by $y(t) = \sum_{\tau=0}^{t} h(\tau)u(t-\tau)$, $t = 0, 1, \ldots, N$ where the impulse response is given as $h(t) = \frac{1}{8}(0.8)^t(1-0.5\cos(2t))$, design $u(0), u(1), \ldots, u(N)$ to minimize

$$\frac{1}{N+1}\sum_{t=0}^{N}(y_{\text{ref}}(t)-y(t))^2 + \frac{\lambda_1}{N+1}\sum_{t=0}^{N}u(t)^2 + \frac{\lambda_2}{N}\sum_{t=0}^{N-1}(u(t+1)-u(t))^2$$

Overview of optimization concept

Jitkomut Songsiri

Exercises: Nonlinear constrained problems

1 minimize
$$\sum_{i=1}^{n} c_i / x_i$$
 subject to $a^T x = 1, x \succeq 0$ where $a, c \succ 0$

2 minimize $x_1 + x_2$ subject to $\log(x_1) + 4\log(x_2) \ge 1$

3 minimize $-2x_1 + x_2$ subject to $(1 - x_1)^3 - x_2 \ge 0$, $x_2 + 0.25x_1^2 - 1 \ge 0$ (try many choices of x_0)

4 minimize
$$e^{x_1x_2x_3x_4x_5} - (1/2)(x_1^3 + x_2^3 + 1)^2$$
 subject to

$$\sum_{i=1}^{5} x_i^2 = 10, \ x_2 x_3 - 5 x_4 x_5 = 0, \ x_1^3 + x_2^3 + 1 = 0$$

Overview of optimization concept

Jitkomut Songsiri

Exercises: Convex programs

1 minimize
$$||Ax - y||_2$$
 subject to $||x - x_0|| \le \epsilon$

2 portfolio optimization:

$$\underset{x}{\text{minimize}} \quad c^{T}x + \gamma x^{T}\Sigma x \quad \text{subject to} \quad \mathbf{1}^{T}x = 1, \ x \succeq 0$$

3 lasso: minimize $(1/2) ||Ax - y||_2^2 + \gamma ||x||_1$ 4 elastic net: minimize $(1/2) ||Ax - y||_2^2 + \gamma \{(1/2)(1 - \alpha) ||x||_2^2 + \alpha ||x||_1\}$ 5 let $p = (p_1, p_2, \dots, p_n)$ be pmf of X where $p_k = P(X = a_k)$ for $k = 1, \dots, n$

$$\begin{array}{ll} \text{maximize}_p & -\sum_{i=1}^n p_i \log p_i \\ \text{subject to} & -0.1 \leq \mathbf{E}[X] \leq 0.2 \\ & 0.5 \leq \mathbf{E}[X^2] \leq 0.7 \end{array}$$

use n = 10, a = (0, 0.1, -0.2, 2, 0.5, 2, 1, -1, 0.8, -0.3)

Overview of optimization concept

Jitkomut Songsiri

Unconstrained problems

MATLAB: optimization toolbox

fminunc uses quasi-newton and trust-region

- quasi-newton: requires description of f, uses relative optimality tolerance, relative step tolerance
- trust-region: requires description of f and ∇f , uses absolute optimality tolerance, relative function tolerance, and absolute step tolerance
- https://www.mathworks.com/help/optim/ug/fminunc.html

fminsearch uses a derivative-free method

Python: scipy.optimize

- several methods including BFGS, Newton-conjugate-gradient, trust-region Newton-conjugate-gradient, trust-region truncated generalized Lanczos, trust-region nearly exact, Nelder-Mead simplex (derivative free method)
- https://docs.scipy.org/doc/scipy/tutorial/optimize.html

Overview of optimization concept

Nonlinear least-squares

problem: minimize $r_1(x)^2 + \cdots + r_m^2(x)$ subject to $l \leq x \leq u$

algorithms: trust-region reflective (default) and Levenberg-Marquardt (LM)
 for the problem without bounds, LM uses the search direction equation

$$[J(x^{(k)})^T J(x^{(k)}) + \lambda^{(k)} I]s^{(k)} = -J(x^{(k)})^T r(x^{(k)})$$

 $\lambda^{(k)}$ is called *damping parameter* (large λ , closer to gradient step) • the nonlinear equation system $r(x) = (r_1(x), r_2(x), \dots, r_m(x))$ is called under-determined when m < n

MATLAB: optimization toolbox: Isqnonlin

- trust-region reflective (default) requires that the nonlinear system $r(x) \in \mathbf{R}^q$ cannot be underdetermined, *i.e.*, $q \ge n$
- https://www.mathworks.com/help/optim/ug/lsqnonlin.html
- curvefit solves a curve fitting problem, which is an application of NLS

Python: scipy.optimize.least_squares

- trust-region reflective is suitable for large sparse problems
- LM does not handle bound constraints and it does not work for under-determined nonlinear system
- another choice: **scipy.optimize.leastsq** solves the NLS without bounds
- scipy.optimize.curve_fit solves a curve-fitting problem using NLS

Linear programming (LP)

MATLAB: optimization toolbox

- linprog uses dual-simplex and interior-point methods
- https://www.mathworks.com/help/optim/ug/linprog.html

Python: scipy.optimize.linprog

- uses interior-point and simplex methods (support sparse large-scale matrices)
- https://docs.scipy.org/doc/scipy/reference/generated/scipy. optimize.linprog.html

Overview of optimization concept

Quadratic programming

MATLAB: optimization toolbox

quadprog uses interior-point, trust-region reflective, and active-set methods

- interior-point only accepts convex problems
- trust-region reflective handles problems with only bounds or only linear equality constraints (not both)
- active-set handles indefinite problems only if $P \succ 0$ on $\mathcal{N}(A)$
- https://www.mathworks.com/help/optim/ug/quadprog.html

Python: scipy.optimize.linprog

- uses interior-point and simplex methods (support sparse large-scale matrices)
- https://docs.scipy.org/doc/scipy/reference/generated/scipy. optimize.linprog.html

Overview of optimization concept

Constrained problems

MATLAB: optimization toolbox

fminunc uses several algorithms

- interior-point (default) several ways to provide Hessian of the Lagrangian
- trust-region reflective (requires gradient)
- sequential quadratic programming (SQP) (not for large-scale)
- active-set (not for large-scale)
- https://www.mathworks.com/help/optim/ug/fmincon.html

Python: scipy.optimize

- several methods including trust-region and sequential least-square programming (SLSQP)
- https://docs.scipy.org/doc/scipy/tutorial/optimize.html

Overview of optimization concept
Convex problems

MATLAB: cvx

- CVX is a MATLAB-based modeling system for convex optimization
- http://cvxr.com/cvx/

Python

- CVXPY: Python-embedded modeling language for convex optimization problems available at https://www.cvxpy.org/ by Stephen Boyd group
- CVXOPT: Python-based package for convex optimization available at http://cvxopt.org/ by M. Andersen, J. Dahl and L. Vandenberghe

References

- Chapter 1 and 2 in J. Nocedal and S.J. Wright, Numerical Optimization, 2nd edition, Springer, 2006
- Chapter 1 and 2 in I. Griver, S.G. Nash, and A. Sofer, *Linear and Nonlinear Optimization*, 2nd edition, SIAM, 2009
- **3** S. Boyd and L. Vandenberghe, *Convex Optimization*, Cambridge, 2004
- S.Boyd, N. Parikh, E. Chu, B.Peleato, and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Foundations and Trends in Machine Learning, 2011