

Outline

1 Math background
2 General settings
3 Selected problem types in applications

- Convex programs
- Linear programming
- Quadratic programming
- Problem transformation
- Stochastic optimization
- Nonsmooth optimization
- Multi-objective optimization

4 Optimality conditions
5 Overview of available methods
6 Optimization softwares

Math background

Required knowledge

please review backgrounds on

- linear algebra with keywords:
- system of linear equations, over-determined/under-determined, square systems
- basic algebraic operations of vectors and matrices
- vector and matrix norms
- structured matrices (diagonal, symmetric, triangular, positive definite)
- eigenvalue and eigenvector
- calculus of several variables with keywords:
- contour, gradient, Jacobian, Hessian
- limit, continuity, differentiability
- sequence, convergence
- visualization of functions of several variables (surface, contour, tangent)

Tangent plane

a tangent plane of $f(x)$ at x_{0} is obtained by the first-order Taylor approximation

$$
f(x) \approx f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right)
$$

$$
\begin{gathered}
\qquad f(x)=x_{1}^{2}+(1 / 4) x_{2}^{2} \\
x_{0}=(1,2), \nabla f\left(x_{0}\right)=(2,1) \\
\text { plane }: 2+2\left(x_{1}-1\right)+\left(x_{2}-2\right)=0
\end{gathered}
$$

the gradient of f is the normal vector of the tangent plane

Contour and level set

definitions:

- a contour of a function f is $\left\{x \in \mathbf{R}^{n} \mid f(x)=\alpha\right\}$
(also called a level set of f corresponding to α)
- a sublevel set of f corresponding to a value α is

$$
S_{\alpha}=\left\{x \in \mathbf{R}^{n} \mid f(x) \leq \alpha\right\}
$$

$\square \nabla f(x)$ is orthogonal to the tangent line of the surface
$\nabla f(x)$ is the rate of change in f; hence, ∇f points to the direction that $f(x)$ increases

$$
f(x)=2-12\left(x_{1}+x_{2}\right)+x_{1}^{3}+x_{2}^{3}(f \text { has a local maximum and minimum })
$$

notice the gradient directions toward the local maximum and minimum

System of linear equations

a system of linear equations can be represented in a matrix form

$$
y=A x
$$

setting: given $y \in \mathbf{R}^{m}$ and $A \in \mathbf{R}^{m \times n}$, find x that satisfies the equations

- square system $(m=n)$: a solution exists and unique if A is invertible
- tall system $(m>n)$: the existence of solution depends on A, y whether $y \in \mathcal{R}(A)$
- fat system $(m<n)$: if a solution exists, then there are many solutions
if x_{p} is a particular solution, and $z \in \mathcal{N}(A)$ then $x=x_{p}+z$ is a general solution
in optimizaiton context, linear equality constraints are usually given as a fat system

$$
\left\{x \in \mathbf{R}^{n} \mid \sum_{i=1}^{n} x_{i}=1\right\}
$$

Linear function

a linear function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is of the form

$$
f(x)=a^{T} x=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

- $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a given parameter
- the contour of f is a hyperplane with the normal vector a
$\square \nabla f(x)=a$ (constant, not depend on x)
- for $b \neq 0, f(x)=a^{T} x+b$ is called an affine function
the concept can be extended to a function of matrices: $f: \mathbf{R}^{m \times n} \rightarrow \mathbf{R}$

$$
f(X)=\operatorname{tr}\left(A^{T} X\right)=\sum_{i j} a_{i j} x_{i j}
$$

conceptually, f is a linear function of each entry in the variable

Quadratic function

given $P \in \mathbf{R}^{n \times n}, q \in \mathbf{R}^{n}, r \in \mathbf{R}$, a quadratic function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is of the form

$$
f(x)=(1 / 2) x^{T} P x+q^{T} x+r
$$

- $x^{T} P x$ is aka an energy form (due to the quadratic form that appears in the energy/power of some physical variables)
- verify that $x^{T} P x=\frac{x^{T}\left(P+P^{T}\right) x}{2}$; then the energy term only takes the symmetric part of P; hence, we often consider $P \in \mathbf{S}^{n}$ (P is assumed to be symmetric later on)
- $\nabla f(x)=P x+q$ (derivative of quadratic function becomes linear)
- the contour shape of f depends on the property of P (pdf, indefinite, magnitude of eigenvalues, direction of eigenvectors)

Quadratic function (positive definite)

let $f(x)=(1 / 2) x^{T} P x+q^{T} x$ where $P \succ 0$

since P is invertible, we can complete the square

$$
f(x)=(1 / 2)\left[\left(x+P^{-1} q\right)^{T} P\left(x+P^{-1} q\right)-q^{T} P^{-1} q\right]
$$

ellipsoid parametrized by P^{-1} with center at $-P^{-1} q$

Quadratic function (positive semidefinite)

let $f\left(x_{1}, x_{2}\right)=(1 / 2)\left(x^{T} P x\right)+q^{T} x$ with $q=(1,-3)$ and two cases of P

Surface of degenerated ellipsoid in R^{2}

$$
P=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \succeq 0
$$

■ $P \succ 0$: sublevel set of f is bounded (region inside the ellipsoid)

- $P \succeq 0$: sublevel set of f is unbounded
(if $x=t(1,-1) \in \mathcal{N}(P)$ then $f(x)=t q^{T}(1,-1)=4 t \rightarrow-\infty$ by choosing $t \rightarrow-\infty)$

Quadratic function (indefinite)

let $f\left(x_{1}, x_{2}\right)=(1 / 2)\left(x^{T} P x\right)+q^{T} x$ with $P=\left[\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right]$ (and invertible)

from $f(x)=(1 / 2)\left(x+P^{-1} q\right)^{T} P\left(x+P^{-1} q\right)+$ constant, we can pick t, x such that $x+P^{-1} q=t v, P v=\lambda^{-} v, t \rightarrow \infty$; hence, $f(x)=t^{2} \lambda^{-}\|v\|^{2} \rightarrow-\infty$ f can be unbounded below along some direction of x

General settings

Optimization problem

an optimization is a problem of choosing a variable (x) that makes some objective function reach an extremum (can be minimum or maximum)

elements of optimization problem

- optimization variable x : the quantity we choose to achieve the optimization goal
- objective function f : a criterion that tells how objective varies upon x
- constraints: restrictions on x (sometimes we cannot choose x freely)

Examples of optimization

- finding a resource allocation ratio that maximizes the profit while the budget sum is less than a given value
- finding a control action to an airplane system that minimizes the deviation from the target while the control signal magnitude must be less than a value
- finding a design of devices/structure that minimizes the cost/weight while the size limit is from manufacturing conditions
- finding parameters in a model that minimizes the error between model output and observed data while the parameters must lie in a certain space, e.g., all parameters are non-negative
- reconstructing a transmitted signal that minimizes the deviation between predicted and observed while the rate of change in the signal is bounded by a given value

Problem setting

(mathematical) optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \tag{P1}\\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

■ $x=\left(x_{1}, \ldots, x_{n}\right)$: optimization variable

- $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$: objective function
- $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}, i=1, \ldots, m$: inequality constraint functions
- $h_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}, i=1, \ldots, p$: equality constraint functions
constraint set: $\mathcal{C}=\left\{x \in \mathbf{R}^{n} \mid f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p\right\}$
domain of the problem: $\mathcal{D}=\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i}$

Optimal value

$$
p^{\star}=\inf \left\{f_{0}(x) \mid f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0,, i=1, \ldots, p\right\}
$$

- we say x is feasible if $x \in \operatorname{dom} f_{0}(x)$ and $x \in \mathcal{C}$
- $p^{\star}=\infty$ if the problem is infeasible
- $p^{\star}=-\infty$ if the problem is unbounded below
- a feasible x is called optimal if $f_{0}(x)=p^{\star}$; there can be many

■ x is locally optimal if $\exists \epsilon>0$ such that x is optimal for

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(z) \\
\text { subject to } & z \in \mathcal{C}, \quad\|z-x\|_{2} \leq \epsilon
\end{array}
$$

in other words, a locally optimal point is the best solution in a neighborhood

Example

find achievable objective values, p^{\star} and x^{\star} for each \mathcal{C}

Basic examples

I $f_{0}(x)=1 / x ; p^{\star}=0$, no optimal point
2 $f_{0}(x)=-\log x ; p^{\star}=-\infty$ (unbounded below)
$3 f_{0}(x)=x \log x ; p^{\star}=-1 / e, x=1 / e$ is optimal
$4 f_{0}(x)=x \log x+(1-x) \log (1-x) ; p^{\star}=-\log 2, x=1 / 2$ is optimal
[5 $f_{0}(x)=x^{3}-3 x ; p^{\star}=-\infty$, local optimum at $x=1$
[6 $f_{0}(x)=\left(x_{1}-2\right)^{2}+\left(x_{2}-2\right)^{2} ; p^{\star}=0, x=(2,2)$ is optimal
7 minimize $\left(x_{1}-2\right)^{2}+\left(x_{2}-2\right)^{2}$ s.t. $x_{1}+x_{2}=2 ; \quad p^{\star}=2, x=(1,1)$ is optimal
8 minimize $\left(x_{1}-2\right)^{2}+\left(x_{2}-2\right)^{2}$ s.t. $x_{1}+x_{2}=4 ; \quad p^{\star}=0, x=(2,2)$ is optimal
0 minimize x_{1} s.t. $x_{1}^{2} \leq x_{2}, \quad x_{1}^{2}+x_{2}^{2} \leq 2 ; \quad p^{\star}=-1, x=(-1,1)$ is optimal
I0 minimize $2 x_{1}+2 x_{2}$ s.t. $\left|x_{1}\right|+\left|x_{2}\right| \leq 1 ; p^{\star}=-2$, any x satisfying $x_{1}+x_{2}=-1$ is optimal (not unique)
for these examples, you can inspect a solution or find a solution in closed-form

How objective and constraint functions are defined?

this is a process of problem formulation, motivated by an application
given: determine prices of a product for students and general audience, where the number of sold products and hence, profit vary upon the prices setting: let $x=\left(x_{1}, x_{2}\right) x_{1}$ is the price for students; x_{2} is the price for general public

$$
\begin{array}{ll}
\text { maximize } & \left(x_{1}-2\right) e^{5.8-0.25 x_{1}}+\left(x_{2}-1.5\right) e^{7.2-0.2 x_{2}} \quad \text { (profit) } \\
\text { subject to } & e^{5.8-0.25 x_{1}}+e^{7.2-0.2 x_{2}} \leq 200, \quad x_{1} \geq 0, \quad x_{2} \geq 0
\end{array}
$$

- blues: number of sold products; exponentially decrease as the price goes up
- aim to maximize the profit (as a function of prices that are non-negative)
- the objective is separable but the first constraint is not
example: given $\left(A, y, x_{0}, r\right)$ as problem parameters

$$
\text { minimize }\|A x-y\|_{2} \quad \text { subject to } \quad\left\|x-x_{0}\right\|_{2} \leq r
$$

we aim to use a linear model $A x$ to approximate y while keeping such approximation valid in a norm ball

Terminology

- setting: another way of representing (P1)

$$
\begin{equation*}
\text { minimize } f_{0}(x) \text { subject to } x \in \mathcal{C} \tag{P2}
\end{equation*}
$$

- optimal point: we can also say x^{\star} is a global minimizer of f_{0} over \mathcal{C}

$$
f_{0}(x) \geq f_{0}\left(x^{\star}\right) \quad \forall x \in \mathcal{C}
$$

- local optimal point: we can also say x^{\star} is a local minimizer of f_{0} over \mathcal{C}

$$
\exists \epsilon>0 \quad \text { such that } \quad f_{0}(x) \geq f_{0}\left(x^{\star}\right) \quad \forall x \in \mathcal{C} \cap\left\|x-x^{\star}\right\|<\epsilon
$$

(strict local minimizer when $f_{0}(x)>f_{0}\left(x^{\star}\right)$)

- the standard form has an implicit constraint: $x \in \mathcal{D}$
- the constraint set \mathcal{C} contains explicit constraints
- the problem is called unconstrained if it has no explicit constraints

Example

find a local/strictly local/global minimizer

Feasibility problem

a feasibility problem

$$
\text { find } x \text { subject to } x \in \mathcal{C}
$$

can be considered as a special case of the general problem with $f_{0}(x)=0$

$$
\text { minimize } 0 \text { subject to } x \in \mathcal{C}
$$

- $p^{\star}=0$ if constraints are feasible; any feasible x is optimal
- $p^{\star}=\infty$ if constraints are infeasible
examples: \mathcal{C}_{1} has two-, \mathcal{C}_{2} has infinitely many feasible points, while \mathcal{C}_{3} is infeasible

$$
\begin{aligned}
& \mathcal{C}_{1}=\left\{x \in \mathbf{R}^{2} \mid\left(x_{1}-1\right)^{2}+x_{2}^{2}=1, x_{1}+x_{2}=1\right\} \\
& \mathcal{C}_{2}=\left\{x \in \mathbf{R}^{2} \mid\left(x_{1}-1\right)^{2}+x_{2}^{2} \leq 1, x_{1}+x_{2}=1\right\} \\
& \mathcal{C}_{3}=\left\{x \in \mathbf{R}^{2} \mid\left(x_{1}-1\right)^{2}+x_{2}^{2} \leq 1, x_{1}+x_{2}=-3\right\}
\end{aligned}
$$

Review exercise

express the following problems in the standard form

- problem parameters: $l, u \in \mathbf{R}^{n}$

$$
\text { minimize } f_{0}(x) \text { subject to } l \preceq x \preceq u
$$

- problem parameters: $A \in \mathbf{R}^{m \times n}, G \in \mathbf{R}^{p \times n}$

$$
\text { maximize } f_{0}(x) \text { subject to } A x \preceq b, G x=h
$$

- problem parameter: $r \in \mathbf{R}^{n}$

$$
\text { minimize }\|x\|_{2}^{2} \text { subject to }|x| \preceq r
$$

(the notation \preceq is elementwise inequality of all elements in x)

Simple conclusions about optimization

consider a constrained problem: minimize $f(x)$ subject to $x \in \mathcal{C}$ (optimal value is p^{\star})

11 when the constraint functions are more stringent, the set \mathcal{C} is smaller
2 what can you say about p^{\star} if \mathcal{C} is bigger (or smaller) ?
3 let $g(x) \leq f(x)$ for all x, and we minimize $g(x)$ subject to $x \in \mathcal{C}$; compare the new optimal value with p^{\star}
44 the problem is equivalent to maximizing $-f(x)$ subject to $x \in \mathcal{C}$
$\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3$ are the minimization of $f(x)$ subject to $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ respectively

$$
\begin{gathered}
\mathcal{C}_{1}=\left\{x \mid 0 \leq x_{1}, x_{2} \leq 1\right\}, \quad \mathcal{C}_{2}=\left\{x \mid 1 / 2 \leq x_{1}^{2}+x_{2}^{2} \leq 1\right\}, \\
\mathcal{C}_{3}=\left\{x \mid x_{1}+x_{2} \leq 1, x_{1} \geq 0, x_{2} \geq 0\right\}
\end{gathered}
$$

which pair of optimal values can be compared ?

Problem types

we can categorize optimization problems by

- Constraints
- unconstrained problem
- constrained problems
- variable types
- continuous optimization
- discrete optimization

■ linearity of objective and constraints

- linear program
- nonlinear program
- convexity of objective and constraint set
- convex problem
- non-convex problem
- smoothness of the objective
- smooth problem
- non-smooth problem
- parameter randomness
- stochastic optimization
- deterministic optimization
this course focuses on continuous and deterministic optimization

other specific problem types are integer programming, vector optimization

Unconstrained VS Constrained problems

easy example: variables in least-square problems are regarded as nonnegative values

$$
\begin{array}{lll}
\text { minimize }\|A x-b\|_{2}^{2} & \text { minimize } & \|A x-b\|_{2}^{2} \\
\text { subject to } & x \succeq 0
\end{array}
$$

- solving unconstrained problems is based on the optimality condition:

$$
\nabla f_{0}(x)=0
$$

find x that make the gradient zero in the cost objective (necessary condition)

- solving constrained problems depends on the type of constraint functions
- linear equality: constraint elimination method
- inequality equality: dedicated algorithms for some specific form

Optimality of unconstrained problems

assumption: f is twice continuously differentiable (smooth objective)

- 1st-order necessary condition:

$$
\text { if } x^{\star} \text { is a local minimizer of } f \text { then } \nabla f\left(x^{\star}\right)=0
$$

- 2nd-order necessary condition: if x^{\star} is a local minimizer of f then $\nabla f\left(x^{\star}\right)=0$ and $\nabla^{2} f\left(x^{\star}\right) \succeq 0$ (positive semidefinite)
- 2nd-order sufficient condition: if $\nabla f\left(x^{\star}\right)=0$ and $\nabla^{2} f\left(x^{\star}\right) \succ 0$ (pdf)

$$
\text { then } x^{\star} \text { is a strict local minimizer of } f
$$

local minimizers can be distinguished from other stationary points by examining positive definiteness of $\nabla^{2} f$
example: $f(x)=x^{4}$ has $x^{\star}=0$ as a local minimizer; $\nabla^{2} f\left(x^{\star}\right)=0$ (hence, 2 nd-order sufficient condition fails)

Unconstrained maximization

a problem of minimizing f is equivalent to maximizing $-f$

2nd-order conditions:

- if x^{\star} is a local maximizer of f then $\nabla f\left(x^{\star}\right)=0$ and $\nabla^{2} f\left(x^{\star}\right) \preceq 0$ (negative semidefinite)
- if $\nabla f\left(x^{\star}\right)=0$ and $\nabla^{2} f\left(x^{\star}\right) \prec 0$ (negative definite)

$$
\text { then } x^{\star} \text { is a strict local maximizer of } f
$$

* conclusions:
- a point at which the gradient is zero is a stationary point (aka critical point)
- a stationary point may be a local minimizer of f, or a local maximizer, or neither, in which case it is a saddle point

Example: Rosenbrock function

given that $f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}$, the gradient and Hessian of f are
$\nabla f(x)=\left[\begin{array}{cc}-400\left(x_{1} x_{2}-x_{1}^{3}\right)-2+2 x_{1} \\ 200\left(x_{2}-x_{1}^{2}\right)\end{array}\right], \quad \nabla^{2} f(x)=\left[\begin{array}{cc}-400\left(x_{2}-3 x_{1}^{2}\right)+2 & -400 x_{1} \\ -400 x_{1} & 200\end{array}\right]$

* pls verify that $\nabla f(x)=0 \Leftrightarrow x=(1,1)$
hence, $(1,1)$ is the only stationary point and because

$$
\nabla^{2} f(1,1)=\left[\begin{array}{cc}
802 & -400 \\
-400 & 200
\end{array}\right] \succ 0
$$

we conclude that $(1,1)$ is the only local minimizer of f

Saddle point

$f(x)=8 x_{1}+12 x_{2}+x_{1}^{2}-2 x_{2}^{2}$ has only one stationary point which is neither a maximum nor a minimum, but a saddle point

the stationary point is

$$
x=(-4,3)
$$

$$
\nabla^{2} f(x)=\left[\begin{array}{cc}
2 & 0 \\
0 & -4
\end{array}\right] \nsucceq 0
$$

Nonlinear least-squares (NLS)

NLS is a specific unconstrained problem of the form

$$
\underset{x}{\operatorname{minimize}} f(x):=(1 / 2) \sum_{i=q}^{q}\left(r_{i}(x)\right)^{2}
$$

where $r_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ for $i=1,2, \ldots, q$

- often appear in curve fitting problems:

$$
\operatorname{minimize} \sum_{i=1}^{N}\left(y_{i}-g\left(x_{i}\right)\right)^{2}
$$

where g is a (nonlinear) function for fitting the data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$
(2) express the minimization of $10\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}$ as NLS

Nonlinear least-squares (NLS)

fitting a Gaussian curve: $g(x)=a e^{-(x-b)^{2} / c^{2}}+d$ to data points

optimization variable: $\theta=(a, b, c, d)$; explain how θ vary in the three Gaussian curves ?

Nonlinear least-squares (NLS)

gradient and Hessian of the objective function

- define $r(x)=\left(r_{1}(x), \ldots, r_{m}(x)\right)$ that maps $\mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$
- let $J(x) \in \mathbf{R}^{m \times n}$ be the Jacobian of r; then $\nabla f(x)=J(x)^{T} r(x)$
- 1st-order necessary condition is

$$
\sum_{i=1}^{m} \frac{\partial r_{i}(x)}{\partial x} \cdot r_{i}(x)=0
$$

finding a stationary point is the problem of finding roots of nonlinear equations

- by product rule, the Hessian of f is given and approximated by

$$
\nabla^{2} f(x)=J(x)^{T} J(x)+S(x) \approx J(x)^{T} J(x)
$$

where $S(x)$ involves the 2 nd-order derivative of J

Selected problem types in applications

Selected problem types

brief concepts about the following problem types

1 convex optimization: see separate handouts (convex_optim.pdf)
2 stochastic optimization
13 nonsmooth optimization
4 scalarized multi-objective optimization
5 multi-objective optimization

What to know about convex optimization

11 convex sets
2 convex functions
3 convex optimization: two common convex problems

- linear programming
- quadratic programming

Convex sets

a set \mathcal{C} is said to be convex if for any $x, y \in \mathcal{C}$ we have

$$
\theta x+(1-\theta) y \in \mathcal{C}, \quad \text { for all } 0 \leq \theta \leq 1
$$

which of the following sets are convex ?

fact: an intersection of convex sets is convex (even infinitely many number of intersections)

Convex functions

convex function: $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

for all x, y in the domain of f and $0 \leq \theta \leq 1$
loosely speaking, f is convex if it has an upward shape examples on \mathbf{R} :

- affine: $a x+b$ for any $a, b \in \mathbf{R}$
- exponential: $e^{a x}$ for any $a \in \mathbf{R}$
- powers of absolute value: $|x|^{p}$ for $p \geq 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

Examples of convex functions on \mathbf{R}^{n}

- affine: $a^{T} x+b$
- norm functions: $\|x\|$
- norms of affine: $\left\|a^{T} x+b\right\|$
- quadratic: $x^{T} P x+q^{T} x$ when $P \succeq 0$
- negative entropy: $\sum_{i=1}^{n} x_{i} \log x_{i}$ on \mathbf{R}_{++}^{n}
fact: a set of inequality constraints described by convex functions is convex

$$
\mathcal{C}=\left\{x \in \mathbf{R}^{n} \mid f_{i}(x) \leq 0, i=1,2, \ldots, m\right\}
$$

is a convex set if all f_{i} 's are convex functions

First- and second-order conditions of convex functions

suppose f is differentiable; then f is convex if and only if

$$
\operatorname{dom} f \text { is convex and } f(y) \geq f(x)+\nabla f(x)^{T}(y-x), \quad \forall x, y \in \operatorname{dom} f
$$

- the first-order Taylor approximation of f is a global underestimator of f if and only if f is convex
- if $\nabla f(x)=0$ then for all $y \in \operatorname{dom} f, f(y) \geq f(x)$,i.e., x is a global minimizer of f
assume that $\nabla^{2} f$ exists at each point in $\operatorname{dom} f$; then f is convex if and only if $\operatorname{dom} f$ is convex and $\nabla^{2} f(x) \succeq 0, \quad \forall x \in \operatorname{dom} f$
f is convex if and only if its Hessian matrix is positive semidefinite

Convex programs

convex optimization problem is one of the form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& a_{i}^{T} x=b_{i}, \quad i=1, \ldots, p
\end{array}
$$

where

- objective and constraint functions are convex
- equality constraint functions $h_{i}(x)=a_{i}^{T} x-b_{i}$ must be affine
result: an optimal solution of a convex program is a global minimizer

Linear program (LP)

a general linear program has the form

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

where $G \in \mathbf{R}^{m \times n}$ and $A \in \mathbf{R}^{p \times n}$
example: minimize the cheapest diet that satisfies the nutritional requiremenets

- $x=\left(x_{1}, \ldots, x_{n}\right)$ is nonnegative quantity of n different foods
- each food has a cost of c_{j}; cost objective is $c^{T} x$
- one unit quantity of food j contains $d_{i j}$ amount of nutrients i
- constraints are $D x \succeq h$ and $x \succeq 0$

Geometrical interpretation

- hyperplane: solution set of a linear equation with coefficient vector $a \neq 0$

$$
\left\{x \mid a^{T} x=b\right\}
$$

- halfspace: solution set of a linear inequality with coefficient vector $a \neq 0$

$$
\left\{x \mid a^{T} x \leq b\right\}
$$

we say a is the normal vector

- polyhedron: solution set of a finite number of linear inequalities

$$
\left\{x \mid a_{1}^{T} x \leq b_{1}, a_{2}^{T} x \leq b_{2}, \ldots, a_{m}^{T} x \leq b_{m}\right\}=\{x \mid A x \leq b\}
$$

intersection of a finite number of halfspaces

extreme point of \mathcal{C}
a vector $x \in \mathcal{C}$ is an extreme point (or a vertex) if we cannot find $y, z \in \mathcal{C}$ both different from x and a scalar $\alpha \in[0,1]$ such that $x=\alpha y+(1-\alpha) z$

Solving LPs graphically

LP 1 (left) and LP 2 (right, with non-negative constraints)

minimize	$c^{T} x$	minimize	$c^{T} x$
subject to	$x_{1}+x_{2} \leq 6$	subject to	$x_{1}+x_{2} \leq 6$
	$x_{1}-x_{2} \leq 3$		$x_{1}-x_{2} \leq 3$
	$x_{1}+3 x_{2} \geq 6$		$x_{1}+3 x_{2} \geq 6$
		$x_{1}, x_{2} \geq 0$	

- LP 1: feasible set is unbounded but the problem is bounded below for some c

$$
c=(0,1), x^{\star}=c=(-1,0), x^{\star}=c=(-1,1), x^{\star}=c=(1,3), x^{\star}=
$$

- LP 2: feasible set is a bounded polyhedron
- $x^{\star}=x$ if

$$
\begin{aligned}
& x^{\star}=x \text { if } \\
& x^{\star}=x \text { if }
\end{aligned}
$$

- $x^{\star}=x$ if
- x^{\star} is not unique if

Simple linear programs

minimize $c^{T} x$ over each of these simple sets
we can derive an explicit solution of these LPs
■ box constraint: $l \preceq x \preceq u$

- probability simplex (or budget allocation): $\mathbf{1}^{T} x=1, x \succeq 0$
- not all budget is used: $\mathbf{1}^{T} x \leq 1, x \succeq 0$
- halfspace: $a^{T} x \leq b$
draw the constraint set and inspect the solution for a given c

Some problems may not look like an LP

example 1: functions that involve ℓ_{1} and ℓ_{∞} norms

$$
\text { minimize }\|F x-g\|_{1} \text { subject to }\|x\|_{\infty} \leq 1
$$

(minimize a cost measured by 1-norm having a worst-case budget constraint) by introducing u; imposing the constraint: $-u \preceq F x-g \preceq u$; and noting that

$$
\|F x-g\|_{1}=\sum_{i=1}^{m}\left|f_{i}^{T} x-g_{i}\right| \leq \mathbf{1}^{T} u
$$

the problem is equivalent to the LP

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} u \\
\text { subject to } & -u \preceq F x-g \preceq u, \\
& -\mathbf{1} \preceq x \preceq \mathbf{1}
\end{array}
$$

Properties of LP

- another standard form: minimize $c^{T} x$ subject to $A x=b, x \succeq 0$
- an LP may not have a solution (constraints are inconsistent or the feasible set is unbounded)
- we assume A is full row rank; if not, considering $A x=b$
- depending on A, the system could be inconsistent (hence, no extreme points), or
- $A x=b$ contains redundant equations, which can be removed
- if a standard LP has a finite optimal solution then
a solution can always be chosen from among the vertices of the feasible set
(called basic feasible solutions)
- the dual of an LP is also an LP
- solutions of some simple LPs can be analytically inspected

Standard form

a quadratic program ($\mathbf{Q P}$) is in the form

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x \\
\text { subject to } & G x \preceq h \\
& A x=b,
\end{array}
$$

where $P \in \mathbf{S}^{n}, G \in \mathbf{R}^{m \times n}$ and $A \in \mathbf{R}^{p \times n}$
example: constrained least-squares

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|_{2}^{2} \\
\text { subject to } & l \preceq x \preceq u
\end{array}
$$

QP has linear constraints

Properties of QP

- an unconstrained QP is unbounded below if P is not positive definite
- an unconstrained QP has a unique solution: $x=-P^{-1} q$ when $P \succ 0$
- a QP is a convex problem if P is positive semidifinite definite
- if $P \succeq 0$ then a local minimizer x^{\star} is a global minimizer (by convexity)
- if $P \succ 0$ then x^{\star} is a unique global solution (by strictly convexity)
- the feasible set (polyhedron) may be empty (hence, the problem is infeasible)
- the feasible set can be unbounded (but if $P \succ 0$ it implies boundedness)
- solution of a QP may not be at a vertex
- the dual of a QP is also a QP

Contour of quadratic objective

consider three cases of P and different feasible sets

x_{1}
verify the location of the optimal solution for each constraint set

- left: a bounded set, a line, an unbounded feasible set
- middle: bounded and unbouded feasible sets, while f is unbounded below
- right: a bounded feasible set, while f is unbounded below and above

Applications of quadratic programming

- unconstrained QP
- least-squares
- optimizing group representative step in k-mean clustering
- support vector machine
- control systems
- inverse problem (medical imaging, signal processing)
- least-squares with constraints (lasso and others)
- portfolio optimization

Soft-margin SVM

problem parameters: $x_{i} \in \mathbf{R}^{n}$ and $y_{i} \in \mathbf{R}$ for $i=1, \ldots, N, \lambda>0$ optimization variables: $w \in \mathbf{R}^{n}, b \in \mathbf{R}, z \in \mathbf{R}^{N}$

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2)\|w\|_{2}^{2}+\lambda \mathbf{1}^{T} z \\
\text { subject to } & y_{i}\left(x_{i}^{T} w+b\right) \geq 1-z_{i}, \quad i=1,2, \ldots, N \\
& z \succeq 0
\end{array}
$$

- data are classified by separating hyperplane with maximized margin
- z_{i} is called a slack variable, allowing some of the hard constraints to be relaxed
- the problem has (convex) quadratic objective and linear constraints (QP)

Markowitz portfolio optimization

setting:

■ $r=\left(r_{1}, r_{2}, \ldots, r_{n}\right) \in \mathbf{R}^{n} ; r_{i}$ is the (random) return of asset i

- the return has the mean \bar{r} and covariance Σ
optimization variable: $x \in \mathbf{R}^{n}$ where x_{i} is the portion to invest in asset i
problem parameters: $\Sigma \succeq 0, \bar{r} \in \mathbf{R}^{n}, \gamma>0$

$$
\begin{array}{ll}
\operatorname{minimize} & -\bar{r}^{T} x+\gamma x^{T} \Sigma x \\
\text { subject to } & x \succeq 0, \quad \mathbf{1}^{T} x=1
\end{array}
$$

- $\operatorname{var}\left(r^{T} x\right)=x^{T} \Sigma x$ is the risk of the portfolio
- the goal is to maximize the expected return while minimize the risk
- γ is the risk-aversion parameter controlling the trade-off

Equivalent convex problems

two problems are (informally) equivalent if the solution of one can be obtained from the solution of the other, and vice versa
examples: P1 and P2 are equivalent (but they are not the same)

$$
\begin{array}{llllll}
\operatorname{minimize} & \|A x-y\|_{2} & (\mathrm{P} 1) & \text { minimize } & \|A x-y\|_{2}^{2} & (\mathrm{P} 2) \\
\text { maximize } & \frac{1}{\|A x-y\|_{2}} & (\mathrm{P} 1) & \text { minimize } & \|A x-y\|_{2}^{2} & (\mathrm{P} 2) \\
\text { maximize } & |f(x)| & (\mathrm{P} 1) & \text { maximize } & \log |f(x)| & (\mathrm{P} 2) \tag{P2}
\end{array}
$$

using monotonically increasing property of squared and log functions

Transformation that yield equivalent problems

some transformations are useful for problem re-formulation

- eliminating equality constraints
- introducing slack variables
- epigraph form
- minimizing over some variables
- using indicator function to represent constraints

Eliminating equality constraints

the problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}\left(F z+x_{0}\right) \\
\text { subject to } & f_{i}\left(F z+x_{0}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

where F and x_{0} are such that

$$
A x=b \quad \Longleftrightarrow \quad x=F z+x_{0} \text { for some } x_{0}
$$

Example: eliminating equality constraints

equality constraint in the form of $A x=b$ (non-trivial when A is fat)

$$
\begin{array}{lllllll}
\operatorname{minimize} & \|H x-y\|_{2} & (\mathrm{P} 1) & \text { minimize } & \|\tilde{H} x-y\|_{2} & \tag{P2}\\
\text { subject to } & x_{1}+x_{2}=0 & & \text { where } & \tilde{H}=\left[\begin{array}{lllll}
h_{1}-h_{2} & h_{3} & \cdots & h_{n}
\end{array}\right]
\end{array}
$$

- find the nullspace of A and its basis vectors

$$
\operatorname{dim} \mathcal{N}(A)=r \quad \Leftrightarrow \quad \exists F \in \mathbf{R}^{n \times r} \text { such that } A F=0 \text { and } F \text { is full column rank }
$$

- find a particular solution of $A x=b$, says x_{0}
- a general solutions to $A x=b$ is expressed as $x=F z+x_{0}$ for any z

Introducing slack variables

the problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x)+s_{i}=0, \quad i=1, \ldots, m \\
& s_{i} \geq 0, \quad i=1,2, \ldots, m
\end{array}
$$

Epigraph form

the epigraph of a function f_{0} is the area above the graph f_{0}

the standard problem is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } x, t) & t \\
\text { subject to } & f_{0}(x)-t \leq 0 \\
& f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

we minimize t over the epigraph of f_{0} (objective is now linear of (x, t))

Example: epigraph form

example 1: $\|z\|_{\infty} \leq t$ if and only if $\left|z_{i}\right| \leq t$ for all i
$\operatorname{minimize}_{x} \quad\|A x-y\|_{\infty} \quad(\mathrm{P} 1) \quad \operatorname{minimize}{ }_{(x, t)} \quad t$ subject to $\quad-t \leq a_{i}^{T} x-y_{i} \leq t \quad, i=1, \ldots, m$
example 2: $\|A x-y\|_{1} \leq u$ if and only if $-u \preceq A x-y \preceq u$ and $\mathbf{1}^{T} u \leq t$

$$
\begin{array}{ll}
\operatorname{minimize}_{x} & \|A x-y\|_{1} \\
\text { minimize }_{(x, u)} & \mathbf{1}^{T} u \tag{P2}\\
\text { subject to } & -u \preceq A x-y \preceq u
\end{array}
$$

Minimizing over some variables

the problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}\left(x_{1}, x_{2}\right) \\
\text { subject to } & f_{i}\left(x_{1}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & \tilde{f}_{0}\left(x_{1}\right) \\
\text { subject to } & f_{i}\left(x_{1}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

where $\tilde{f}_{0}\left(x_{1}\right)=\inf _{x_{2}} f_{0}\left(x_{1}, x_{2}\right)$
if the objective can be minimized over one variable easily, we can reduce the problem dimension

Example: minimizing over one variable

given $g_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}, y_{i} \in \mathbf{R}$ for $i=1, \ldots, N$, consider the problem

$$
\underset{x, d}{\operatorname{minimize}}-N \log \left[\frac{1}{d}\right]+\frac{1}{d} \sum_{i=1}^{N}\left(g_{i}(x)-y_{i}\right)^{2}
$$

first, we can minimize over d by setting the gradient w.r.t. $1 / d$ to zero

$$
d=\frac{1}{N} \sum_{i=1}^{N}\left(g_{i}(x)-y_{i}\right)^{2}
$$

the reduced problem is

$$
\underset{x}{\operatorname{minimize}} \log \left[\frac{1}{N} \sum_{i=1}^{N}\left(g_{i}(x)-y_{i}\right)^{2}\right] \Longleftrightarrow \underset{x}{\operatorname{minimize}} \sum_{i=1}^{N}\left(g_{i}(x)-y_{i}\right)^{2}
$$

Stochastic optimization

a problem is called a stochastic optimization if

- $f_{i}(x)$ contains some randomness, e.g., problem paraters are random variables, or
- a random (Monte Carlo) choice is made in the search direction of the algorithm
example: an LP problem where c is a random vector

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

one way is to change the minimization objective
the cost $c^{T} x$ is random with mean $\bar{c}^{T} x$ and variance

$$
\operatorname{var}\left(c^{T} x\right)=\operatorname{var}\left(x^{T} c\right)=x^{T} \operatorname{cov}(c) x \triangleq x^{T} \Sigma x
$$

- generally there is a trade-off between the mean and the variance
- one way is to minimize a combination of the two quantities:

$$
\begin{array}{ll}
\operatorname{minimize} & \bar{c}^{T} x+\gamma x^{T} \Sigma x \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

where γ controls the weight between the two

- the resulting problem is an QP

Nonsmooth optimization

a function is smooth if it is differentiable and the derivatives are continuous

- example: $f(x)=|x|$ is not smooth at $x=0$
- example: $f(x)=\|x\|$ is not smooth at $x=0$
a problem is called nonsmooth if the objective or constraints are nonsmooth functions
example: lasso problems

$$
\operatorname{minimize} \quad\|A x-b\|_{2}+\gamma\|x\|_{1}
$$

then the methods relying on the gradient should be carefully revisited

Scalarized multi-objective optimization

a common form of multi-objective problem: for a given $\gamma>0$,

$$
\operatorname{minimize} f(x)+\gamma g(x)
$$

- we desire both f and g to be small but they are weighed in by a given weight, γ (or often called penalty parameter)
- as γ is higher, we penalize more on g, then the minimized g is smaller; in this case, we care less about f
- appear in model performance evaluation where two diffferent metrics are desired to be small
- example 1: minimize model error + model complexity
- example 2: minimize system tracking error + input power

Multi-objective optimization

setting: minimizing $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ (vector-valued function) over a feasible set

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & x \in \mathcal{C}
\end{array}
$$

a vector optimization has a vector-valued objective function

- example: $f_{0}(x)=$ (fuel,time) the energy used and time spent of a vehicle parameter x
- require a generalized inequality definition for comparing any two vectors of $f_{0}(x)$

$$
\left[\begin{array}{l}
5 \\
2
\end{array}\right] \preceq\left[\begin{array}{c}
10 \\
3
\end{array}\right] \text { but }\left[\begin{array}{l}
5 \\
2
\end{array}\right] \npreceq\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

here, for $f_{0}(x) \in \mathbf{R}^{n}$, we typically use the non-negative orthant to define \preceq

Achievable objective values

define $\mathcal{O}=\left\{f_{0}(x) \mid x \in \mathcal{C}\right\}$ the set of objective values of feasible points

- u is said to be the minimum element of \mathcal{O} if $u \preceq v$, for every $v \in \mathcal{O}$

■ u is said to be a minimal element of \mathcal{O} if $v \in \mathcal{O}, v \preceq u$ only if $v=u$

- if \mathcal{O} has a minimum point (then it is unique) and

$$
\exists \text { feasible } x \text { such that } \quad f_{0}(x) \preceq f_{0}(y), \quad \text { for all feasible } y
$$

then we say x is optimal

Pareto optimal points

consider when \mathcal{O} does not have a minimum element

- x is called Pareto optimal (or efficient) if $f_{0}(x)$ is a minimal element of \mathcal{O}
- a technique to extract pareto optimal points: scalarization (more on this later)

Optimality conditions

Unconstrained optimality

assumption: f is twice continuously differentiable (smooth objective)

- necessary condition: if x^{\star} is a local minimizer of f then
$1 \nabla f\left(x^{\star}\right)=0$
$2 \nabla^{2} f\left(x^{\star}\right) \succeq 0$ (positive semidefinite)
- sufficient condition: if $\nabla f\left(x^{\star}\right)=0$ and $\nabla^{2} f\left(x^{\star}\right) \succ 0$ (positive definite), then x^{\star} is a strict local minimizer of f
- when f is convex and differentiable, any stationary point x^{\star} is a global minimizer of f
example: the Rosenbrock function:

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

verify that $x^{\star}=(1,1)$ is the only local minimizer of f

Constrained optimality

first, define the Lagrangian function

$$
L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

where λ, ν are called the Lagrange multipliers for inequality and equality constraints the KKT conditions are necessary conditions for optimality

1 zero-gradient condition of $L: \nabla_{x} L\left(x^{\star}, \lambda^{\star}, \nu^{\star}\right)=0$
2 primal and dual feasibility

$$
f_{i}\left(x^{\star}\right) \leq 0, i=1, \ldots, m, \quad h_{i}\left(x^{\star}\right)=0, i=1, \ldots, p, \quad \lambda^{\star} \succeq 0
$$

33 complementary slackness condition: $\lambda_{i} f_{i}(x)=0$ for $i=1,2, \ldots, m$
fact: for convex problems, KKT conditions are sufficient and necessary for optimality

Optimality of contrained LS

derive KKT conditions for

$$
\underset{x}{\operatorname{minimize}}(1 / 2)\|A x-y\|_{2}^{2} \text { subject to } l \preceq x \preceq u
$$

the Lagrangian is $\left.L\left(x, \lambda_{1}, \lambda_{2}\right)=(1 / 2)\|A x-y\|_{2}^{2}+\lambda_{1}^{T}(l-x)+\lambda_{2}^{T} x-u\right)$
KKT conditions are
1 zero-gradient of L : $A^{T}(A x-y)-\lambda_{1}+\lambda_{2}=0$
2 primal feasibility: $l \preceq x \preceq u$
(3) dual feasibility: $\lambda_{1}, \lambda_{2} \succeq 0$

4 complementary slackness condition:

$$
\lambda_{1 i}\left(l_{i}-x_{i}\right)=0, \quad \lambda_{2 i}\left(x_{i}-u_{i}\right)=0, \quad i=1,2, \ldots, n
$$

Intro to duality theory

some quick facts

- define the dual function as the infimum of the Lagrangian over primal variables

$$
g(\lambda, \nu)=\inf _{x \in \operatorname{dom} \mathcal{D}} L(x, \lambda, \nu)
$$

- for any $\lambda \succeq 0$, the dual function provides a lower bound for p^{\star}, i.e., $g(\lambda, \nu) \leq p^{\star}$
- any optimization problem (called a primal problem) has its dual problem

$$
\underset{\lambda, \nu}{\operatorname{maximize}} g(\lambda, \nu) \text { subject to } \lambda \succeq 0
$$

which is the problem of finding the best lower bound, denoted as d^{\star}, for p^{\star}

- more theoretical results about relations between primal and dual problems - when $d^{\star}=p^{\star}$, we say we have strong duality
- solving the dual can be more beneficial in some cases

Overview of available methods

Overview of available methods

- unconstrained problems: gradient descent, Newton, quasi Newton, trust-region
- convex programs: interior point, gradient projection, ellipsoid method
- convex programs of certain structures: proximal methods
- linear programming: simplex, interior point
- quadratic programming: interior point, active set, conjugate gradient, augmented Lagrangian

Essential considerations

numerical methods are mostly iterative
■ generate a sequence of points $x^{(k)}, k=0,1,2, \ldots$ that converge to a solution; $x^{(k)}$ is called the k th iterate; $x^{(0)}$ is the starting point

- computing $x^{(k+1)}$ from $x^{(k)}$ is called one iteration of the algorithm
- each iteration typically requires evaluations of f (or $\nabla f, \nabla f^{2}$) at $x^{(k)}$
- the update rule is typically of the form

$$
x^{(k+1)}=x^{(k)}+t_{k} s^{(k)}
$$

- $s^{(k)}$ is called a search direction and t_{k} is a step size

Algorithms for unconstrained problems

algorithms	search direction	meaning
steepest descent	$s^{(k)}=-\nabla f\left(x^{(k)}\right)$	direction that f decreases
Newton	$s^{(k)}=-\left[\nabla^{2} f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)$	minimize quadratic approximation of f
quasi-Newton	$s^{(k)}=-\left[H^{(k)}\right]^{-1} \nabla f\left(x^{(k)}\right)$	$H^{(k)}$ approximates the Hessian conjugate gradient $s^{(k)}=-\nabla f\left(x^{(k)}\right)+\beta_{k} s^{(k-1)}$ sust-region solution of subproblem $s^{(k-1)}$ are conjugate - aiming for less storage of matrices minimizes quadratic model with region constraint

for each iteration, the trust-region method solves for the search direction s

$$
\begin{array}{ll}
\operatorname{minimize} & f\left(x^{(k)}\right)+\nabla f\left(x^{(k)}\right)^{T} s+\frac{1}{2} s^{T} \nabla^{2} f\left(x^{(k)}\right) s \\
\text { subject to } & \|s\| \leq \delta_{k}
\end{array}
$$

Properties of algorithms

we look at these factors when considering a method

- rate of convergence
- search direction (greatly impact the convergence)
- choice of step size (not all values is applicable)
- computational cost (storage needed, complexity)
- stopping criterion (practical conditions for checking optimality)
- descent property (objective values are monotonically decreasing)
- speed of an algorithm depends on:
- the cost of evaluating $f(x)$ (and possibly, $\nabla f(x), \nabla f^{2}(x)$)
- the number of iterations required to acheive a certain accuracy

Rate of convergence

a sequence $x^{(k)}$ converges to x^{\star} and suppose

$$
\lim _{k \rightarrow \infty} \frac{\left\|x^{(k+1)}-x^{\star}\right\|}{\left\|x^{(k)}-x^{\star}\right\|}=c
$$

then we obtain

convergence rate	range of c	example of $x^{(k)} \rightarrow 1$
sublinear:	$c=1$	$x^{(k)}=1+\frac{1}{k+1}$
linear:	$c \in(0,1)$	$x^{(k)}=1+(1 / 2)^{k}$
superlinear:	$c=0$	$x^{(k)}=1+(1 / 2)^{1.7^{k}}$

we say $x^{(k)}$ converges to x^{\star} with order p if

$$
\lim _{k \rightarrow \infty} \frac{\left\|x^{(k+1)}-x^{\star}\right\|}{\left\|x^{(k)}-x^{\star}\right\|^{p}}=C, \quad \text { for some } C
$$

example: $x^{(k)}=1+(1 / 2)^{2^{k}}$ converges quadratically to 1

Convergence rate of algorithms

suppose $x^{(k)} \rightarrow x^{\star}$ (optimal solution); how fast does $x^{(k)}$ go to x^{\star} asymptotically?
error after k iterations: typical choices are

- Euclidean distance: $e_{k}=x^{(k)}-x^{\star}$
- the cost difference: $e_{k}=f\left(x^{(k)}\right)-f\left(x^{\star}\right)$

Linear, superlinear and quadratic rate (another representation)

- linear convergence: there exists $c \in(0,1)$ such that

$$
\left\|e_{k+1}\right\| \leq c\left\|e_{k}\right\| \quad \text { for sufficiently large } k
$$

- also represented as $\left\|e_{k}\right\| \leq M c^{k}$ for $M>0$ (converges geometrically)
- example: $e_{k}=(1 / 2)^{k}$
- superlinear convergence: there exists a sequence c_{k} with $c_{k} \rightarrow 0$ s.t.

$$
\left\|e_{k+1}\right\| \leq c_{k}\left\|e_{k}\right\| \quad \text { for sufficiently large } k
$$

when c_{k} can be further expressed as $c_{k}=C \beta^{p^{k}}$ with $C>0, \beta \in(0,1), p>1$, we say e_{k} converges superlinearly with order p (e.g., $e_{k}=(1 / 2)^{1.7^{k}}$)

- quadratic convergence: there exists a $c>0$ s.t.

$$
\left\|e_{k+1}\right\| \leq c\left\|e_{k}\right\|^{2} \quad \text { for sufficiently large } k
$$

example: $e_{k}=(1 / 2)^{2^{k}}$

Examples of convergence rates

convergence rate of $(0.8)^{k}, C(0.8)^{1.7^{k}}, C(0.8)^{2^{k}}$ in linear and log scales

Examples of convergence analysis

what is the convergence rate of the following results (from unconstrained optimization)

$$
\begin{align*}
f\left(x^{(l)}\right)-p^{\star} & \leq \frac{2 m^{2}}{L^{2}}\left(\frac{1}{2}\right)^{2^{l-n+1}} \tag{1}\\
f\left(x^{(k)}\right)-p^{\star} & \leq \frac{c L\left\|x^{(0)}-x^{\star}\right\|^{2}}{k} \tag{2}\\
f\left(x^{(k)}\right)-p^{\star} & \leq c^{k}\left(f\left(x^{(0)}\right)-p^{\star}\right) \tag{3}\\
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} & \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2} \tag{4}
\end{align*}
$$

(assume c, L, m are problem parameters and n is a positive integer)

- an asymptotic analysis explains what happen in the limit as $x^{(k)} \rightarrow x^{\star}$
- but, in large-scale problems, an algorithm often stops before a full convergence
- we are more interested in the accuracy of solution after k iterations presented as big \mathcal{O} of some function in k

Big \mathcal{O} : the notation $f(x)=\mathcal{O}(g(x))$ for $x \rightarrow c$

- reads " $f(x)$ has a smaller or same rate of growth as g when $x \rightarrow c$ "
- mathematically, $\exists C>0$ such that $|f(x)| \leq C|g(x)|$ as $x \rightarrow c$
- example: $e^{x}=1+x+\mathcal{O}\left(x^{2}\right)$ as $x \rightarrow 0$
little o : the notation $f(x)=o(g(x))$ for $x \rightarrow c$
- reads $f(x)$ has a smaller rate of growth than g when $x \rightarrow c$
- mathematically, $\lim _{x \rightarrow c} \frac{|f(x)|}{|g(x)|}=0$
- example: $\cos x-1=o(x)$ as $x \rightarrow 0$

Solution precision after k iterations

there are two common ways to explain a convergence rate in large-scale problems

- the accuracy of solution after k iterations: e.g. $f\left(x^{(k)}\right)-f^{\star} \leq \mathcal{O}\left(1 / k^{2}\right)$
- the number of iterations required to obtain an ϵ-optimal solution: e.g. $k \geq \mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)$
- a constant hidden in \mathcal{O} usually depends on properties of f and the distance between $x^{(0)}$ and x^{\star}

Convergence rate vs Computational cost

we prefer a fast convergence rate and less computational cost
assume n is the dimension of optimization variable and k is the number of iterations
for example, we prefer

- convergence rate: $\mathcal{O}\left(1 / k^{2}\right) \geq \mathcal{O}(1 / k) \geq \mathcal{O}(1 / \sqrt{k})$
- convergence rate: $\mathcal{O}(1 / \sqrt{\epsilon}) \geq \mathcal{O}(1 / \epsilon) \geq \mathcal{O}(1 / \epsilon)$
- cost: $\mathcal{O}(\log (n)) \geq \mathcal{O}(n) \geq \mathcal{O}\left(n^{3}\right)$
(by using ' $X \geq Y^{\prime}$ ' we loosely mean 'prefer X to Y ')

Stopping criterions

criterions rely on optimality measures

- unconstrained optimality tolerance: if the gradient is small enough

$$
\text { absolute: }\left\|\nabla f\left(x^{(k)}\right)\right\|_{\infty} \leq \epsilon \quad \text { relative: }\left\|\nabla f\left(x^{(k)}\right)\right\|_{\infty} \leq \epsilon\left\|\nabla f\left(x^{(0)}\right)\right\|_{\infty}
$$

- constrained optimality tolerance: $\nabla_{x} L$ and $\lambda_{i} f_{i}(x)$ must be small

$$
\max \left\{\left\|\nabla_{x} L(x, \lambda, \nu)\right\|,\left\|\left(\lambda_{1} f_{1}(x), \ldots, \lambda_{m} f_{m}(x)\right)\right\|\right\} \leq \epsilon
$$

- constraint tolerance: ineq constraint should be less than zero, and equality constraint should be zero

$$
f_{i}(x) \leq \epsilon \text { (close to zero) }, \quad\left|h_{i}(x)\right| \leq \epsilon, \forall i
$$

- convex problem with strong duality: if duality gap is zero

Stopping criterions

criterions based on function and step values

- step tolerance: difference of two consecutive steps is small

$$
\text { absolute: }\left\|x^{(k+1)}-x^{(k)}\right\| \leq \epsilon \quad \text { relative: } \frac{\left\|x^{(k+1)}-x^{(k)}\right\|}{\left\|x^{(k)}\right\|} \leq \epsilon
$$

- function tolerance: the change in the objective value is small

$$
\text { absolute: }\left|f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right)\right| \leq \epsilon \quad \text { relative: } \frac{\left|f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right)\right|}{\left|f\left(x^{(k)}\right)\right|} \leq \epsilon
$$

- maximum number of iterations

Optimization softwares

Numerical exercises

we will solve some small/moderate problems in class

- unconstrained problems
- nonlinear least-squares (some curve fitting problems)
- linear programs
- quadratic programs
- trajectory control of linear system
- least-squares with linear constraints
- constrained problems
- convex programs
- regression problems using $\ell_{2}, \ell_{1}, \ell_{\infty}$-norms and huber loss
- portfolio optimization

Exercises: Unconstrained problems

minimize the following functions
1 generate $P \succ 0, q$ randomly and let $f(x)=(1 / 2) x^{T} P x-q^{T} x$
2 $f(x)=\sum_{i=1}^{n} x_{i} \log x_{i}$
3 $f(x)=x_{1}^{2}+x_{1} x_{2}+1.5 x_{2}^{2}-2 \log \left(x_{1}\right)-\log \left(x_{2}\right)$ using initial points:

$$
x_{0}=(-1,-1),(1,1),(2,10)
$$

$4 f(x)=x_{1}^{2}-x_{1} x_{2}+2 x_{2}^{2}-2 x_{1}+e^{x_{1}+x_{2}}$ using initial points $x_{0}=(5,10),(10,10)$
5 generate $y_{i} \in\{1,-1\}$ and $x_{i} \in \mathbf{R}^{n}$ randomly for $i=1, \ldots, N$ where $n=20, N=200$ and minimize

$$
f(x)=\frac{1}{N} \sum_{i=1}^{N} \log \left(1+e^{-y_{i} x_{i}^{T} \beta}\right) \quad \text { soft max loss in logistic regression }
$$

6 Rosenbrock function: $f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}$

Exercises: Nonlinear least-squares

1 minimize $\sum_{i=1}^{N}\left(y_{i}-\left[a e^{-\left(x_{i}-b\right)^{2} / c^{2}}+d\right]\right)^{2}$ with variables a, b, c, d
2 minimize $\sum_{i=1}^{N}\left(y_{i}-\frac{K}{1+e^{-b^{T} x}}\right)^{2}$ with variables $K \in \mathbf{R}, b \in \mathbf{R}^{n}$

Exercises: Linear program

11 minimize $c^{T} x$ subject to $\mathbf{1}^{T} x \leq 1, x \succeq 0$
2 minimize $c^{T} x$ subject to $l \preceq x \preceq u$
(3) minimize $c^{T} x$ subject to $\|x\|_{\infty} \leq 1$

4 minimize $c^{T} x$ subject to $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq 1$
5 minimize $c^{T} x$ subject to $d^{T} x=\alpha, 0 \preceq x \preceq \mathbf{1}$ with $d \succ 0$ and $0 \leq \alpha \leq \mathbf{1}^{T} d$
[6 sparse SVM: generate $y \in\{1,-1\}$ and $x_{i} \in \mathbf{R}^{n}$ randomly for $i=1, \ldots, N$ where $n=20, N=200$, set $\lambda>0$

$$
\underset{w, b}{\operatorname{minimize}} \quad \lambda\|w\|_{1}+\frac{1}{N} \sum_{i=1}^{N} \max \left(0,1-y_{i}\left(x_{i}^{T} w+b\right)\right)
$$

7 generate a tall $A \in \mathbf{R}^{m \times n}$ and $y \in \mathbf{R}^{n}$ randomly and minimize $\|A x-y\|_{1}$
8 generate a tall $A \in \mathbf{R}^{m \times n}$ and $y \in \mathbf{R}^{n}$ randomly and minimize $\|A x-y\|_{\infty}$

Exercises: Quadratic program

1 minimize $(1 / 2) x^{T} P x-q^{T} x$ subject to $A x=b$ (3 cases: $P \succeq 0, P \nsucceq 0, P \preceq 0$)
$\boxed{2}$ minimize $\|A x-y\|_{2}^{2}$ subject to (i) $\|x\|_{1} \leq \alpha$ (ii) $l \preceq x \preceq u$ (iii) $x_{3}=x_{4}=0$
3 soft-margin SVM: generate $y \in\{1,-1\}$ and $x_{i} \in \mathbf{R}^{n}$ randomly for $i=1, \ldots, N$

$$
\begin{array}{ll}
\operatorname{minimize}_{w, b, z} & (1 / 2)\|w\|_{2}^{2}+\lambda \mathbf{1}^{T} z \\
\text { subject to } & y_{i}\left(x_{i}^{T} w+b\right) \geq 1-z_{i}, \quad i=1,2 \ldots, N \\
& z \succeq 0
\end{array}
$$

4 given a linear system described by $y(t)=\sum_{\tau=0}^{t} h(\tau) u(t-\tau), t=0,1, \ldots, N$ where the impulse response is given as $h(t)=\frac{1}{8}(0.8)^{t}(1-0.5 \cos (2 t))$, design $u(0), u(1), \ldots, u(N)$ to minimize

$$
\frac{1}{N+1} \sum_{t=0}^{N}\left(y_{\mathrm{ref}}(t)-y(t)\right)^{2}+\frac{\lambda_{1}}{N+1} \sum_{t=0}^{N} u(t)^{2}+\frac{\lambda_{2}}{N} \sum_{t=0}^{N-1}(u(t+1)-u(t))^{2}
$$

Exercises: Nonlinear constrained problems

11 minimize $\sum_{i=1}^{n} c_{i} / x_{i}$ subject to $a^{T} x=1, x \succeq 0$ where $a, c \succ 0$
2 minimize $x_{1}+x_{2}$ subject to $\log \left(x_{1}\right)+4 \log \left(x_{2}\right) \geq 1$
3 minimize $-2 x_{1}+x_{2}$ subject to $\left(1-x_{1}\right)^{3}-x_{2} \geq 0, x_{2}+0.25 x_{1}^{2}-1 \geq 0$ (try many choices of x_{0})
4 minimize $e^{x_{1} x_{2} x_{3} x_{4} x_{5}}-(1 / 2)\left(x_{1}^{3}+x_{2}^{3}+1\right)^{2}$ subject to

$$
\sum_{i=1}^{5} x_{i}^{2}=10, \quad x_{2} x_{3}-5 x_{4} x_{5}=0, x_{1}^{3}+x_{2}^{3}+1=0
$$

Exercises: Convex programs

1 minimize $\|A x-y\|_{2}$ subject to $\left\|x-x_{0}\right\| \leq \epsilon$
2 portfolio optimization:

$$
\underset{x}{\operatorname{minimize}} c^{T} x+\gamma x^{T} \Sigma x \quad \text { subject to } \mathbf{1}^{T} x=1, \quad x \succeq 0
$$

3 lasso: minimize $(1 / 2)\|A x-y\|_{2}^{2}+\gamma\|x\|_{1}$
4 elastic net: minimize $(1 / 2)\|A x-y\|_{2}^{2}+\gamma\left\{(1 / 2)(1-\alpha)\|x\|_{2}^{2}+\alpha\|x\|_{1}\right\}$
5 let $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ be pmf of X where $p_{k}=P\left(X=a_{k}\right)$ for $k=1, \ldots, n$

$$
\begin{array}{cl}
\operatorname{maximize}_{p} & -\sum_{i=1}^{n} p_{i} \log p_{i} \\
\text { subject to } & -0.1 \leq \mathbf{E}[X] \leq 0.2 \\
& 0.5 \leq \mathbf{E}\left[X^{2}\right] \leq 0.7
\end{array}
$$

use $n=10, a=(0,0.1,-0.2,2,0.5,2,1,-1,0.8,-0.3)$

Unconstrained problems

MATLAB: optimization toolbox

fminunc uses quasi-newton and trust-region

- quasi-newton: requires description of f, uses relative optimality tolerance, relative step tolerance
- trust-region: requires description of f and ∇f, uses absolute optimality tolerance, relative function tolerance, and absolute step tolerance
- https://www.mathworks.com/help/optim/ug/fminunc.html
fminsearch uses a derivative-free method

Python: scipy.optimize

- several methods including BFGS, Newton-conjugate-gradient, trust-region Newton-conjugate-gradient, trust-region truncated generalized Lanczos, trust-region nearly exact, Nelder-Mead simplex (derivative free method)
■ https://docs.scipy.org/doc/scipy/tutorial/optimize.html

Nonlinear least-squares

problem: minimize $r_{1}(x)^{2}+\cdots+r_{m}^{2}(x)$ subject to $l \preceq x \preceq u$

- algorithms: trust-region reflective (default) and Levenberg-Marquardt (LM)
- for the problem without bounds, LM uses the search direction equation

$$
\left[J\left(x^{(k)}\right)^{T} J\left(x^{(k)}\right)+\lambda^{(k)} I\right] s^{(k)}=-J\left(x^{(k)}\right)^{T} r\left(x^{(k)}\right)
$$

$\lambda^{(k)}$ is called damping parameter (large λ, closer to gradient step)

- the nonlinear equation system $r(x)=\left(r_{1}(x), r_{2}(x), \ldots, r_{m}(x)\right)$ is called under-determined when $m<n$

MATLAB: optimization toolbox: Isqnonlin

- trust-region reflective (default) requires that the nonlinear system $r(x) \in \mathbf{R}^{q}$ cannot be underdetermined, i.e., $q \geq n$
- https://www.mathworks.com/help/optim/ug/lsqnonlin.html
- curvefit solves a curve fitting problem, which is an application of NLS

Python: scipy.optimize.least _squares

- trust-region reflective is suitable for large sparse problems
- LM does not handle bound constraints and it does not work for under-determined nonlinear system
- another choice: scipy.optimize.leastsq solves the NLS without bounds
- scipy.optimize.curve_fit solves a curve-fitting problem using NLS

Linear programming (LP)

MATLAB: optimization toolbox

- linprog uses dual-simplex and interior-point methods

■ https://www.mathworks.com/help/optim/ug/linprog.html

Python: scipy.optimize.linprog

- uses interior-point and simplex methods (support sparse large-scale matrices)
- https://docs.scipy.org/doc/scipy/reference/generated/scipy. optimize.linprog.html

Quadratic programming

MATLAB: optimization toolbox

quadprog uses interior-point, trust-region reflective, and active-set methods

- interior-point only accepts convex problems
- trust-region reflective handles problems with only bounds or only linear equality constraints (not both)
- active-set handles indefinite problems only if $P \succ 0$ on $\mathcal{N}(A)$
- https://www.mathworks.com/help/optim/ug/quadprog.html

Python: scipy.optimize.linprog

■ uses interior-point and simplex methods (support sparse large-scale matrices)

- https://docs.scipy.org/doc/scipy/reference/generated/scipy. optimize.linprog.html

Constrained problems

MATLAB: optimization toolbox

fminunc uses several algorithms

- interior-point (default) - several ways to provide Hessian of the Lagrangian
- trust-region reflective (requires gradient)
- sequential quadratic programming (SQP) (not for large-scale)
- active-set (not for large-scale)
- https://www.mathworks.com/help/optim/ug/fmincon.html

Python: scipy.optimize

- several methods including trust-region and sequential least-square programming (SLSQP)
■ https://docs.scipy.org/doc/scipy/tutorial/optimize.html

Convex problems

MATLAB: cvx

- CVX is a MATLAB-based modeling system for convex optimization
- http://cvxr.com/cvx/

Python

- CVXPY: Python-embedded modeling language for convex optimization problems available at https://www.cvxpy.org/ by Stephen Boyd group
- CVXOPT: Python-based package for convex optimization available at http://cvxopt.org/ by M. Andersen, J. Dahl and L. Vandenberghe

References

1 Chapter 1 and 2 in J. Nocedal and S.J. Wright, Numerical Optimization, 2nd edition, Springer, 2006
2 Chapter 1 and 2 in I. Griver, S.G. Nash, and A. Sofer, Linear and Nonlinear Optimization, 2nd edition, SIAM, 2009
3 S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, 2004
4 S.Boyd, N. Parikh, E. Chu, B.Peleato, and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Foundations and Trends in Machine Learning, 2011

