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Generalized inequality
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Convex cone

conic (nonnegative) combination of any two points x1 and x2 takes the form

x = θ1x1 + θ2x2, with θ1, θ2 ≥ 0

convex cone is a set that contains all conic combination of points in the set

examples: . these sets are convex cone
non-negative orthant: Rn

+ = {x ∈ Rn | x ⪰ 0 }
norm cone: is the set described by {(x, t) | ∥x∥ ≤ t }
positive definite cone: Sn

+ = {X ∈ Sn | X ⪰ 0 } is the set of positive
semidefinite matrices (with Sn

++ as the set of positive definite matrices)
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Examples

which of the following is a convex cone ?
1 a line
2 a half space
3 a slab
4 Rn

5 a unit-norm ball
6 S = {x ∈ Rn | aTx = 0 }
7 S = {x ∈ Rn | x = ay, a ≥ 0} for some fixed y ∈ Rn

8 orthogonal complement of Sn
+
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Proper cone

a convex cone K ⊆ Rn is a proper cone if
1 K is closed (contains its boundary)
2 K is solid (has non-empty interior)
3 K is pointed (contains no line,i.e., if x ∈ K, then −x cannot be in K)

examples: . these are proper cones
non-negative orthant: Rn

+ = {x ∈ Rn | x ⪰ 0 }
positive definite cone: Sn

+ = {X ∈ Sn | X ⪰ 0 } is the set of positive
semidefinite matrices (with Sn

++ as the set of positive definite matrices)
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Generalized inequality
a generalized inequality defined by a proper cone K:

x ⪯K y ⇐⇒ y − x ∈ K, x ≺K y ⇐⇒ y − x ∈ intK

examples:
component-wise inequality: K = Rn

+

x ⪯Rn
+
y ⇐⇒ xi ≤ yi, i = 1, 2, . . . , n

matrix inequality: K = Sn
+

X ⪯Sn
+
Y ⇐⇒ Y −X is positive semidefinite

a lot of times we can drop the subscript K in the generalized inequality of interest
properties: many properties of ⪯K are similar to ≤ in R

x ⪯K y, u ⪯K v =⇒ x+ u ⪯K y + v
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Minimum and minimal elements
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Minimum and minimal elements
⪯K is not general linear ordering: we can have x ⪯̸K y and y ⪯̸K

x ∈ S is the minimum element of S with respect to ⪯K if

y ∈ S =⇒ x ⪯K y

x ∈ S is a minimal element of S with respect to ⪯K if

y ∈ S, y ⪯k x =⇒ y = x

minimum and minimal elements ?
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Dual cone and generalized inequalities

dual cone of a cone K:

K∗ = {y | yTx ≥ 0, ∀x ∈ K }

examples: . we can show that
K = Rn

+: K∗ = Rn
+

K = Sn
+: K∗ = Sn

+

K = {(x, y) | ∥x∥2 ≤ t }: K∗ = {(x, y) | ∥x∥2 ≤ t }
K = {(x, y) | ∥x∥1 ≤ t }: K∗ = {(x, y) | ∥x∥∞ ≤ t }

when K = K∗, it is called self dual cone
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Dual cone of non-negative orthant

K = Rn
+, by definition of dual cone

K∗ = {y | yTx ≥ 0, ∀x ∈ Rn
+ }

if y ⪰ 0, then it’s obvious that yTx ≥ 0 for all x ⪰ 0 – this shows that Rn
+ ⊆ K∗

if y ∈ K∗, we examine how the vector y should be
since yTx ≥ 0 must hold for all x ⪰ 0, it holds for when x is a standard unit vector
when x = e1, we have y1 ≥ 0, and when x = ek, we obtain yk ≥ 0 – equivalently,
if y ∈ K∗ then y ⪰ 0 – this shows that K∗ ⊆ Rn

+

from the above results, K∗ = Rn
+
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Properties of dual cone

dual cones satisfy several properties:
1 K∗ is closed and convex . exercise
2 K1 ⊆ K2 implies K∗

2 ⊆ K∗
1 . exercise

3 if K has nonempty interior, then K∗ is pointed
4 if the closure of K is pointed then K∗ has nonempty interior

. from these properties, if K is a proper cone, then so is its dual K∗
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Dual generalized inequalities
K∗ defines a generalized inequality

x ⪯K y if and only if λTx ≤ λT y, for all λ ⪰K∗ 0

x ≺K y if and only if λTx < λT y, for all λ ≻K∗ 0, λ ̸= 0

the property is just a re-statement of the relationship between a proper cone K
and its dual K∗

λ ⪰K∗ 0 ⇔ λ ∈ K∗ ⇔ λT (y − x) ≥ 0, for all y − x ∈ K

for a specific example,

λ ⪰K∗ 0 ⇐⇒ λT z ≥ 0, ∀z ∈ K
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Minimum and minimal elements via dual inequalities
minimum element w.r.t. ⪯K : x is the minimum element of S if and only if all
λ ≻K∗ 0, x is the unique minimizer of λT z over S

minimal element w.r.t. ⪯K

fact: if x minimizes λT z over S for some λ ≻K∗ 0, then x is minimal
(the converse is not true) e.g., x1 ∈ S1 is minimal but is not a minimizer of λT z
for λ ≻ 0

x2 ∈ S2 is not minimal but it does minimize λT z over z ∈ S2 for λ = (0, 1) ⪰ 0
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Minimal elements of a convex set

non-convex non-convex

where are minimal elements ?

convex

can we find    ?

S1 is non-convex; we see that x1 ∈ S1 is minimal but there exists no λ for which
x minimizes λT z over z ∈ S1

if x is a minimal element of a convex set S, then there exists a nonzero λ ⪰K∗ 0
such that x minimizes λT z over S
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Pareto optimal frontier

example: a product requires n resources (labor, electricity, gas, water) collected as a
resource vector, x

the production set P ⊆ Rn is defined as the set of all resource vectors x that
correspond to some production method
production methods with resource vectors that are minimal elements of P
(w.r.t. ⪯) are called Pareto optimal or efficient
the set of minimal elements of P is called the efficient production frontier
one production method with resource vector x is better than another, with
resource vector y if x ⪯ y, x ̸= y

if cost = λTx = λ1x1 + λ2x2 + · · ·+ λnxn then λi is the price of resource i
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find Pareto optimal production methods by minimizing

λTx = λ1x1 + · · ·+ λnxn

over the set P using any λ that λ ≻ 0
labor

fuel

x1, x2, x3 are efficient (Pareto optimal)
x4 is not efficient (since x2 corresponds to a production method that uses less
labor while no more fuel)
x5 is not efficient (since x2 is better)
the point x1 is efficient and is also the minimum cost production method for the
price vector λ (which is positive)
the point x2 is efficient but cannot be found by minimizing the total cost λTx for
any λ ⪰ 0
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K-convex functions

let K ⊆ Rm be a proper cone with generalized inequality ⪯K

we say f : Rn → Rm is K-convex if for all x, y, and 0 ≤ θ ≤ 1

f(θx+ (1− θ)y) ⪯K θf(x) + (1− θ)f(y)

example: K = Rm
+

f : Rn → Rm is convex w.r.t. Rm
+ if and only if

f(θx+ (1− θ)y) ⪯ θf(x) + (1− θ)f(y)

each component fi is a convex function
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Vector optimization
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Introduction

setting: minimizing f0 : Rn → Rm (vector-valued function) over a feasible set

minimize f0(x)
subject to x ∈ C

a vector optimization has a vector-valued objective function
example: f0(x) = (fuel,time) the energy used and time spent of a vehicle
parameter x
require a generalized inequality definition for comparing any two vectors of f0(x)[

5
2

]
⪯

[
10
3

]
but

[
5
2

]
⪯̸

[
2
4

]
here, for f0(x) ∈ Rn, we typically use the non-negative orthant to define ⪯
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General vector optimization

a vector optimization problem is defind as

minimize (w.r.t. K) f0(x)
subject to fi(x) ≤ 0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p

where
f0 : Rn → Rq (vector-valued function)
K ⊆ Rq is a proper cone
fi’s and hi’s are inequality and equality constraint functions

here, f0 takes value in Rq and we use K to compare objective values

definition: we say the problem is convex vector optimization if f0 is K-convex
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Optimal points and values
define O = {f0(x) | ∃x ∈ D, x ∈ C } the set of acheivable objective values

has no minimum element

u is said to be the minimum element of O if u ⪯ v, for every v ∈ O
if O has a minimum point (then it is unique) and

∃ feasible x⋆ such that f0(x
⋆) ⪯ f0(y), for all feasible y

then we say x⋆ is optimal
a point x⋆ is optimal if and only if it is feasible and O ⊆ f0(x

⋆) +K (f0(x⋆) is
’better’ which is below and the left of other f0(y))
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Pareto optimal points
consider when O does not have a minimum element (often occur in most vector opt)

f0(x)−K is the set of values that are better
than or equal to f0(x)

a problem can have many Pareto optimal
points

x is called Pareto optimal (or efficient) if f0(x) is a minimal element of O
recall: u is said to be a minimal element of O if v ∈ O, v ⪯ u only if v = u

a point x is Pareto optimal if and only if it is feasible and

(f0(x)−K) ∪ O = {f0(x)}

(the only achievable value better than or equal to f0(x) is f0(x) itself)
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.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Scalarization
scalarization is a standard technique for finding Pareto optimal points

by choosing λ ⪰K∗ 0 (positive in the dual generalized inequality),

let x be an optimal point of the scalar optimization problem:

minimize λT f0(x)
subject to fi(x) ≤ 0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p

then x is Pareto optimal for the vector problem on page 21

(this follows from dual characterization of minimal points)

K = Rq
+: for convex vector optimization, we can find Pareto optimal points by solving

a convex scalar optimization because λT f0(x) is non-negative sum of convex functions
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we can find Pareto optimal points by solving the scalarized problem by varying λ ≻K∗ 0

all three points: f0(x1), f0(x2), f0(x3) are Pareto optimal
only f0(x1) and f0(x2) can be obtained by scalarization
f0(x1) minimizes λT

1 u over all u ∈ O and f0(x2) minimizes λT
2 u where both

λ1, λ2 ≻ 0

f0(x3) cannot be found by scalarization
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Multicriterion optimization

when K = Rq
+, the vector optimization is called a multicriterion or multi-objective

optimization (MOP)

objective function f0(x) = (F1(x), F2(x), . . . , Fq(x))

an MOP is convex if Fi, for i = 1, 2, . . . , q are convex and the constraint set is convex

suppose x and y are both feasible
Fi(x) ≤ Fi(y) means that x is at least as good as y, according to ith obj
Fi(x) < Fi(y) means that x is better than y, according to ith obj
if Fi(x) ≤ Fi(y) for i = 1, . . . , q and for at least one j, Fj(x) < Fj(y), we say x
is better than y or x dominates y
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Optimal solution of MOP
an optimal point x⋆ satisfies

Fi(x
⋆) ≤ Fi(y), i = 1, 2, . . . , q, for all feasible y

in other words, x⋆ is simultaneously optimal for each scalar problem

minimize Fj(x)
subjec to fi(x) ≤ 0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p,

for j = 1, 2, . . . , q

when there is an optimal point, we say that the objectives are noncompeting

Pareto optimal point xpo satisfies: if y is feasible and Fi(y) ≤ Fi(x
po) for

i = 1, 2, . . . , q then Fi(x
po) = Fi(y), i = 1, . . . , q
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Scalarizing multicriterion problems

we form the weighted sum objective

λT f0(x) = λ1F1(x) + · · ·+ λqFq(x), λ ≻ 0

interpret λi as the weight quantifying our desire to make Fi small
the ratio λi/λj is the relative weight showing the relative importance of the ith
objective compared to the jth objective
recall that a weight vector λ ≻ 0 yields the Pareto optimal point
the set of Pareto optimal values is called the optimal trade-off surface or
optimal trade-off curve for bicriterion
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