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Generalized inequality
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conic (nonnegative) combination of any two points 21 and x5 takes the form
z =021 + Orx5, with 91,92 >0

convex cone is a set that contains all conic combination of points in the set

examples: % these sets are convex cone
R ={zcR"|z>0}
norm cone: is the set described by {(x,t) | ||z|| <t}

positive definite cone: Sy = {X € §" | X = 0 } is the set of positive
semidefinite matrices (with S’} , as the set of positive definite matrices)
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which of the following is a convex cone ?
a line
a half space
a slab
R”
a unit-norm ball
S={reR"|a’z=0}
S={reR"|xz=ay, a>0} for some fixed y € R"

n
orthogonal complement of S7
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a convex cone K C R" is a proper cone if

K is closed (contains its boundary)

K is solid (has non-empty interior)

K is pointed (contains no line,i.e., if z € K, then —z cannot be in K)
examples: & these are proper cones

Rl ={zeR"|z>0}
positive definite cone: S} = {X € §" | X = 0 } is the set of positive
semidefinite matrices (with S’/ , as the set of positive definite matrices)
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a generalized inequality defined by a proper cone K:
r=gy <<= y—cxrxe€K, x<gy << y—zxzcintk

examples:

component-wise inequality: K = R}
iji y = x; <y, 1=12....n
matrix inequality: K = S’}
X jgi Y <= Y — X is positive semidefinite

a lot of times we can drop the subscript K in the generalized inequality of interest

properties: many properties of < are similar to < in R
T23KkY, UKV = TH+uIgy-+tv
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Minimum and minimal elements
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Minimum and minimal elements
<k is not general linear ordering: we can have x Ak y and y Ak

m z € S is the minimum element of S with respect to < if
Yy < S ==z <KUY
m x € S is a minimal element of S with respect to < if

yes, y=xr = y==zx

minimum and minimal elements ?
r1
f > > z2
x

T3
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dual cone of a cone K:

K*={y|y'z>0, VzecK}

examples: ™ we can show that
K =R}: K* =R
K=S8": K*=S"
K=A{(z,y) [ llzla <t} K" ={(z,y) | [zfl2 <1t}
K=A{(z,y) [ llzlh <t} K ={(z,y) | [|2flc <t}

when K = K*, it is called self dual cone
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K = R}, by definition of dual cone

K ={y|y'z>0, VzeR}}

if ¥ = 0, then it's obvious that yTx > 0 for all z = 0 — this shows that R"} C K*
if y € K*, we examine how the vector y should be
since y'x > 0 must hold for all z > 0, it holds for when z is a standard unit vector

when = = eq, we have y; > 0, and when x = ¢, we obtain y; > 0 — equivalently,
if y € K* then y = 0 — this shows that K* C R’}

from the above results, K* = R’}
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dual cones satisfy several properties:
K* is closed and convex N exercise
K, C Ky implies K5 C KT D exercise
if K has nonempty interior, then K* is pointed
if the closure of K is pointed then K* has nonempty interior

® from these properties, if K is a proper cone, then so is its dual K*
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K* defines a generalized inequality

z =gy ifandonlyif Xz <Xy, forall X>=g-0
z <y ifandonlyif Mz <My, forall =g« 0,X#0

the property is just a re-statement of the relationship between a proper cone K
and its dual K*

A0 e K o N (y—2)>0, forall y—ze K
for a specific example,

A=k 0 — MNz>0, VzeK
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Minimum and minimal elements via dual inequalities

minimum element w.r.t. <g: x is the minimum element of .S if and only if all
X >+ 0, = is the unique minimizer of ATz over S

T

\'\1)\2 A= (1,0)

T2

minimal element w.r.t. <g
w fact: if x minimizes ATz over S for some A =g~ 0, then x is minimal

» (the converse is not true) e.g., x1 € S1 is minimal but is not a minimizer of ATz
for A =0

w x93 € Sy is not minimal but it does minimize ATz over z € S for A = (0,1) = 0
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Minimal elements of a convex set

non-convex non-convex convex

where are minimal elements ?
can we find A ?

m 57 is non-convex; we see that x; € S7 is minimal but there exists no A for which
2 minimizes ATz over z € 94

m if x is a minimal element of a convex set S, then there exists a nonzero A\ =+ 0
such that 2 minimizes ATz over S
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example: a product requires n resources (labor, electricity, gas, water) collected as a
resource vector, x

the production set P C R" is defined as the set of all resource vectors x that
correspond to some production method

production methods with resource vectors that are minimal elements of P
(w.r.t. <) are called Pareto optimal or efficient

the set of minimal elements of P is called the efficient production frontier

one production method with resource vector x is better than another, with
resource vector y if x <y, r # y

if cost = \w = \z1 + Aoxo + -+ - + Ay, then ); is the price of resource i
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fuel

find Pareto optimal production methods by minimizing

Moo=z + -+ Azn

over the set P using any A that A > 0

labor

m x1, 9,3 are efficient (Pareto optimal)

m x4 is not efficient (since x5 corresponds to a production method that uses less
labor while no more fuel)

m x5 is not efficient (since x2 is better)

m the point x; is efficient and is also the minimum cost production method for the
price vector A (which is positive)

w the point x5 is efficient but cannot be found by minimizing the total cost AT« for
any A >0
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let £ C R™ be a proper cone with generalized inequality <

we say [ : R” — R™ is K-convex if for all z,y, and 0 < 6 <1

f(0z+ (1 —0)y) <k 0f(z)+ (1 —0)f(y)

example: K = R’
f:R"™ = R™ is convex w.r.t. R'" if and only if

[0z + (1 —0)y) 2 0f(x)+ (1—0)f(y)

each component f; is a convex function
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Vector optimization
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setting: minimizing fy : R® — R™ (vector-valued function) over a feasible set

minimize  fo(z)
subjectto xz €C

a vector optimization has a vector-valued objective function

example: fo(z) = (fuel,time) the energy used and time spent of a vehicle
parameter
require a generalized inequality definition for comparing any two vectors of fy(x)

o =[5] o B2

here, for fo(x) € R™, we typically use the non-negative orthant to define <

Jitkomut Songsiri 20 /29



a vector optimization problem is defind as

minimize (w.r.t. K) fo(z)
subject to fi(z) <

where
fo: R — R? (vector-valued function)
K C RYis a proper cone

fi's and h;'s are inequality and equality constraint functions

here, fy takes value in R? and we use K to compare objective values

definition: we say the problem is convex vector optimization if f is K-convex
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define O = {fo(z) | 3x € D, = € C } the set of acheivable objective values

fol@) + K
Oy
@ @
fo(@*) .
O C fola*)+ K has no minimum element

u is said to be the minimum element of O if u < v, for every v € O

if O has a minimum point (then it is unique) and
I feasible * such that fo(2*) < fo(y), for all feasible y

then we say z* is optimal
a point x* is optimal if and only if it is feasible and O C fy(z*) + K (fo(z*) is
'better’ which is below and the left of other fy(y))
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consider when O does not have a minimum element (often occur in most vector opt)

O fo(xz) — K is the set of values that are better
fo(zP°) than or equal to fo(x)

a problem can have many Pareto optimal

points
C fo(aP*) - K

x is called Pareto optimal (or efficient) if fo(z) is a minimal element of O
recall: u is said to be a minimal element of O if v € O, v < u only if v =u
a point x is Pareto optimal if and only if it is feasible and

(fo(z) = K)UO = {fo(z)}

(the only achievable value better than or equal to fo(z) is fo(z) itself)
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scalarization is a standard technique for finding Pareto optimal points
by choosing A\ >+ 0 (positive in the dual generalized inequality),
let = be an optimal point of the scalar optimization problem:

minimize AT fo()
subject to  fi(x) <0, 1 .
hi(.%'):(), 1= s Ly .oy P

then x is Pareto optimal for the vector problem on page 21
(this follows from dual characterization of minimal points)

K= Ri: for convex vector optimization, we can find Pareto optimal points by solving
a convex scalar optimization because A\’ fy(x) is non-negative sum of convex functions
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we can find Pareto optimal points by solving the scalarized problem by varying A =g+ 0

Jola) (@)

folxs)

A A2
fo(z2)

all three points: fo(z1), fo(x2), fo(xs3) are Pareto optimal
only fo(z1) and fo(x2) can be obtained by scalarization

fo(w1) minimizes A'u over all u € O and fo(z2) minimizes A\l'u where both
)\1,)\2 =0

fo(x3) cannot be found by scalarization
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when K = Ri, the vector optimization is called a multicriterion or multi-objective
optimization (MOP)

objective function fy(z) = (Fi(x), Fa(x), ..., Fy(x))
an MOP is convex if F;, for i =1,2,...,q are convex and the constraint set is convex
suppose x and y are both feasible
Fi(z) < F;(y) means that z is at least as good as y, according to ith obj

Fi(x) < F;(y) means that x is better than y, according to ith obj

if Fij(x) < Fi(y) fori=1,...,q and for at least one j, Fj(x) < Fj(y), we say x
is better than y or x dominates y
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an optimal point x* satisfies
Fi(z*) < Fi(y), i=1,2,...,q, for all feasible y

in other words, z* is simultaneously optimal for each scalar problem

forj=1,2,...,q
when there is an optimal point, we say that the objectives are noncompeting

Pareto optimal point zP° satisfies: if y is feasible and F;(y) < F;(zP°) for
i=1,2,...,q then F;(zP°) = Fi(y),i=1,...,q
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we form the weighted sum objective

)\Tfo(x) = /\1F1($) +- )\qu(JI), A>=0

interpret \; as the weight quantifying our desire to make F; small

the ratio A;/); is the relative weight showing the relative importance of the ith
objective compared to the jth objective

recall that a weight vector A - 0 yields the Pareto optimal point

the set of Pareto optimal values is called the optimal trade-off surface or
optimal trade-off curve for bicriterion
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Chapter 2 in B. Stephen and L. Vandenberghe, Convex optimization, Cambridge
Press

Lecture slide on convex set, Lieven Vandenberghe, Convex Optimization, EE236B,
UCLA
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