Multi-objective optimization

Jitkomut Songsiri

Engineering

Sam

Departmen

Outline

1 Generalized inequality

Proper cone

2 Minimum and minimal elements

- Definition
- Dual cone
- Pareto frontier
- K-convex function

3 Vector optimization

- Pareto optimal
- Scalarization

Generalized inequality

Multi-objective optimization

Jitkomut Songsiri Generalized inequality

3 / 29

Convex cone

conic (nonnegative) combination of any two points x_1 and x_2 takes the form

$$x = \theta_1 x_1 + \theta_2 x_2$$
, with $\theta_1, \theta_2 \ge 0$

convex cone is a set that contains all conic combination of points in the set

examples: \bigotimes these sets are convex cone

non-negative orthant: $\mathbf{R}^n_+ = \{x \in \mathbf{R}^n \mid x \succeq 0\}$

norm cone: is the set described by $\{(x,t) \mid ||x|| \le t\}$

■ positive definite cone: Sⁿ₊ = {X ∈ Sⁿ | X ≥ 0} is the set of positive semidefinite matrices (with Sⁿ₊₊ as the set of positive definite matrices)

Multi-objective optimization

Examples

which of the following is a convex cone ?

- 1 a line
- 2 a half space
- 🛯 a slab
- 4 \mathbf{R}^n
- 5 a unit-norm ball

$$S = \{ x \in \mathbf{R}^n \mid a^T x = 0 \}$$

- $\textbf{7} \ S = \{ x \in \mathbf{R}^n \mid x = ay, \ a \ge 0 \} \text{ for some fixed } y \in \mathbf{R}^n$
- **8** orthogonal complement of \mathbf{S}^n_+

Proper cone

a convex cone $K \subseteq \mathbf{R}^n$ is a proper cone if

- K is closed (contains its boundary)
- K is solid (has non-empty interior)
- **3** K is pointed (contains no line, *i.e.*, if $x \in K$, then -x cannot be in K)

examples: Sthese are proper cones

- **non-negative orthant:** $\mathbf{R}^n_+ = \{x \in \mathbf{R}^n \mid x \succeq 0 \}$
- **positive definite cone:** $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$ is the set of positive semidefinite matrices (with \mathbf{S}_{++}^{n} as the set of positive definite matrices)

Generalized inequality

a **generalized inequality** defined by a proper cone *K*:

$$x \preceq_K y \iff y - x \in K, \quad x \prec_K y \iff y - x \in \operatorname{int} K$$

examples:

• component-wise inequality: $K = \mathbf{R}^n_+$

$$x \preceq_{\mathbf{R}^n_+} y \iff x_i \le y_i, \quad i = 1, 2, \dots, n$$

matrix inequality: $K = \mathbf{S}_{+}^{n}$

$$X \preceq_{S^n_+} Y \iff Y - X$$
 is positive semidefinite

a lot of times we can drop the subscript K in the generalized inequality of interest **properties:** many properties of \leq_K are similar to \leq in **R**

$$x \preceq_K y, \ u \preceq_K v \implies x + u \preceq_K y + v$$

Multi-objective optimization

Minimum and minimal elements

Multi-objective optimization

Jitkomut Songsiri Minimum and minimal elements

8 / 29

Minimum and minimal elements

 \preceq_K is not general linear ordering: we can have $x \not\preceq_K y$ and $y \not\preceq_K$

• $x \in S$ is the minimum element of S with respect to \preceq_K if

$$y \in S \implies x \preceq_K y$$

• $x \in S$ is a minimal element of S with respect to \preceq_K if

$$y \in S, y \preceq_k x \implies y = x$$

Multi-objective optimization

Dual cone and generalized inequalities

dual cone of a cone *K*:

$$K^* = \{ y \mid y^T x \ge 0, \quad \forall x \in K \}$$

examples: \otimes we can show that

•
$$K = \mathbf{R}_{+}^{n}$$
: $K^{*} = \mathbf{R}_{+}^{n}$
• $K = \mathbf{S}_{+}^{n}$: $K^{*} = \mathbf{S}_{+}^{n}$
• $K = \{(x, y) \mid ||x||_{2} \le t \}$: $K^{*} = \{(x, y) \mid ||x||_{2} \le t \}$
• $K = \{(x, y) \mid ||x||_{1} \le t \}$: $K^{*} = \{(x, y) \mid ||x||_{\infty} \le t \}$

when $K = K^*$, it is called **self dual cone**

Multi-objective optimization

Dual cone of non-negative orthant

 $K=\mathbf{R}^n_+\text{,}$ by definition of dual cone

$$K^* = \{ y \mid y^T x \ge 0, \quad \forall x \in \mathbf{R}^n_+ \}$$

- if $y \succeq 0$, then it's obvious that $y^T x \ge 0$ for all $x \succeq 0$ this shows that $\mathbf{R}^n_+ \subseteq K^*$
- $\hfill \ensuremath{\:\ensuremath{\lensuremath{\:\ensuremath{\lensuremath{\lensuremath{\l}\ensuremath{\ensuremath{\lensuremath{\lensuremath{\lensurem$
- since $y^T x \ge 0$ must hold for all $x \succeq 0$, it holds for when x is a standard unit vector
- when $x = e_1$, we have $y_1 \ge 0$, and when $x = e_k$, we obtain $y_k \ge 0$ equivalently, if $y \in K^*$ then $y \succeq 0$ this shows that $K^* \subseteq \mathbf{R}^n_+$
- from the above results, $K^* = \mathbf{R}^n_+$

Properties of dual cone

dual cones satisfy several properties:

- 1 K^* is closed and convex
- ${\bf 3}$ if K has nonempty interior, then K^* is pointed
- 4 if the closure of K is pointed then K^* has nonempty interior

 ∞ from these properties, if K is a proper cone, then so is its dual K^*

exercise
 exercise

Dual generalized inequalities

 K^{\ast} defines a generalized inequality

$$x \preceq_{K} y$$
 if and only if $\lambda^{T} x \leq \lambda^{T} y$, for all $\lambda \succeq_{K^{*}} 0$
 $x \prec_{K} y$ if and only if $\lambda^{T} x < \lambda^{T} y$, for all $\lambda \succ_{K^{*}} 0, \lambda \neq 0$

the property is just a re-statement of the relationship between a proper cone K and its dual K*

$$\lambda \succeq_{K^*} 0 \Leftrightarrow \lambda \in K^* \Leftrightarrow \lambda^T (y - x) \ge 0, \quad \text{for all } y - x \in K$$

for a specific example,

$$\lambda \succeq_{K^*} 0 \quad \Longleftrightarrow \quad \lambda^T z \ge 0, \ \forall z \in K$$

Multi-objective optimization

Minimum and minimal elements via dual inequalities

minimum element w.r.t. $\leq_K : x$ is the minimum element of S if and only if all $\lambda \succ_{K^*} 0$, x is the unique minimizer of $\lambda^T z$ over S

minimal element w.r.t. \preceq_K

- fact: if x minimizes $\lambda^T z$ over S for some $\lambda \succ_{K^*} 0$, then x is minimal
- (the converse is not true) e.g., $x_1 \in S_1$ is minimal but is not a minimizer of $\lambda^T z$ for $\lambda \succ 0$
- $x_2 \in S_2$ is not minimal but it does minimize $\lambda^T z$ over $z \in S_2$ for $\lambda = (0,1) \succeq 0$

Multi-objective optimization

Minimal elements of a convex set

- S₁ is non-convex; we see that $x_1 \in S_1$ is minimal but there exists no λ for which x minimizes $\lambda^T z$ over $z \in S_1$
- if x is a minimal element of a convex set S, then there exists a nonzero $\lambda \succeq_{K^*} 0$ such that x minimizes $\lambda^T z$ over S

Multi-objective optimization

Pareto optimal frontier

example: a product requires n resources (labor, electricity, gas, water) collected as a resource vector, \boldsymbol{x}

- the production set $P \subseteq \mathbf{R}^n$ is defined as the set of all resource vectors x that correspond to some production method
- production methods with resource vectors that are minimal elements of P (w.r.t. ≤) are called Pareto optimal or efficient
- the set of minimal elements of P is called the efficient production frontier
- one production method with resource vector x is *better* than another, with resource vector y if $x \preceq y$, $x \neq y$
- if $cost = \lambda^T x = \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n$ then λ_i is the price of resource i

find Pareto optimal production methods by minimizing

$$\lambda^T x = \lambda_1 x_1 + \dots + \lambda_n x_n$$

over the set P using any λ that $\lambda \succ 0$

fuel P x_1 x_2 x_4 x_3 labor

- x_1, x_2, x_3 are efficient (Pareto optimal)
- x_4 is not efficient (since x_2 corresponds to a production method that uses less labor while no more fuel)
- x_5 is not efficient (since x_2 is better)
- the point x_1 is efficient and is also the minimum cost production method for the price vector λ (which is positive)
- the point x_2 is efficient but cannot be found by minimizing the total cost $\lambda^T x$ for any $\lambda \succeq 0$

Multi-objective optimization

K-convex functions

let $K \subseteq \mathbf{R}^m$ be a proper cone with generalized inequality \preceq_K

we say $f : \mathbf{R}^n \to \mathbf{R}^m$ is K-convex if for all x, y, and $0 \le \theta \le 1$

$$f(\theta x + (1 - \theta)y) \preceq_K \theta f(x) + (1 - \theta)f(y)$$

example:
$$K = \mathbf{R}^m_+$$

 $f : \mathbf{R}^n \to \mathbf{R}^m$ is convex w.r.t. \mathbf{R}^m_+ if and only if
 $f(\theta x + (1 - \theta)y) \preceq \theta f(x) + (1 - \theta)f(y)$

• each component f_i is a convex function

Multi-objective optimization

Vector optimization

Multi-objective optimization

Jitkomut Songsiri Vector optimization

19 / 29

Introduction

setting: minimizing $f_0: \mathbf{R}^n \to \mathbf{R}^m$ (vector-valued function) over a feasible set

 $\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & x \in \mathcal{C} \end{array}$

- a vector optimization has a vector-valued objective function
 - \blacksquare example: $f_0(x) = ({\rm fuel}, {\rm time})$ the energy used and time spent of a vehicle parameter x
 - require a generalized inequality definition for comparing any two vectors of $f_0(x)$

$$\begin{bmatrix} 5\\2 \end{bmatrix} \preceq \begin{bmatrix} 10\\3 \end{bmatrix} \quad \mathsf{but} \quad \begin{bmatrix} 5\\2 \end{bmatrix} \not \preceq \begin{bmatrix} 2\\4 \end{bmatrix}$$

here, for $f_0(x) \in \mathbf{R}^n$, we typically use the **non-negative orthant** to define \preceq

Multi-objective optimization

General vector optimization

a vector optimization problem is defind as

$$\begin{array}{ll} \text{minimize (w.r.t. } K) & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,2,\ldots,m \\ & h_i(x)=0, \quad i=1,2,\ldots,p \end{array}$$

where

•
$$f_0: \mathbf{R}^n
ightarrow \mathbf{R}^q$$
 (vector-valued function)

- $K \subseteq \mathbf{R}^q$ is a proper cone
- f_i 's and h_i 's are inequality and equality constraint functions

here, f_0 takes value in \mathbf{R}^q and we use K to compare objective values

definition: we say the problem is convex vector optimization if f_0 is K-convex

Multi-objective optimization

Optimal points and values

define $\mathcal{O} = \{f_0(x) \mid \exists x \in \mathcal{D}, x \in \mathcal{C}\}$ the set of acheivable objective values

• u is said to be the **minimum** element of \mathcal{O} if $u \leq v$, for every $v \in \mathcal{O}$ • if \mathcal{O} has a minimum point (then it is unique) and

 \exists feasible x^{\star} such that $f_0(x^{\star}) \preceq f_0(y)$, for all feasible y

then we say x^{\star} is **optimal**

a point x^* is optimal if and only if it is feasible and $\mathcal{O} \subseteq f_0(x^*) + K(f_0(x^*))$ is 'better' which is below and the left of other $f_0(y)$

Multi-objective optimization

Jitkomut Songsiri

22 / 29

Pareto optimal points

consider when \mathcal{O} does not have a minimum element (often occur in most vector opt)

 $f_0(x) - K$ is the set of values that are better than or equal to $f_0(x)$

a problem can have many Pareto optimal points

• x is called **Pareto optimal** (or efficient) if $f_0(x)$ is a minimal element of \mathcal{O}

- recall: u is said to be a **minimal** element of \mathcal{O} if $v \in \mathcal{O}, v \leq u$ only if v = u
- a point x is Pareto optimal if and only if it is feasible and

$$(f_0(x) - K) \cup \mathcal{O} = \{f_0(x)\}$$

(the only achievable value better than or equal to $f_0(x)$ is $f_0(x)$ itself)

Multi-objective optimization

Scalarization

scalarization is a standard technique for finding Pareto optimal points

by choosing $\lambda \succeq_{K^*} 0$ (positive in the dual generalized inequality),

let x be an optimal point of the *scalar* optimization problem:

$$\begin{array}{ll} \text{minimize} & \lambda^T f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,2,\ldots,m \\ & h_i(x)=0, \quad i=1,2,\ldots,p \end{array}$$

then x is Pareto optimal for the vector problem on page 21

(this follows from dual characterization of minimal points)

 $K = \mathbf{R}^q_+$: for convex vector optimization, we can find Pareto optimal points by solving a *convex scalar* optimization because $\lambda^T f_0(x)$ is non-negative sum of convex functions

Multi-objective optimization

we can find Pareto optimal points by solving the scalarized problem by varying $\lambda \succ_{K^*} 0$

- all three points: $f_0(x_1), f_0(x_2), f_0(x_3)$ are Pareto optimal
- only $f_0(x_1)$ and $f_0(x_2)$ can be obtained by scalarization
- $f_0(x_1)$ minimizes $\lambda_1^T u$ over all $u \in \mathcal{O}$ and $f_0(x_2)$ minimizes $\lambda_2^T u$ where both $\lambda_1, \lambda_2 \succ 0$
- $f_0(x_3)$ cannot be found by scalarization

Multicriterion optimization

when $K = \mathbf{R}_{+}^{q}$, the vector optimization is called a **multicriterion** or **multi-objective** optimization (MOP)

objective function $f_0(x) = (F_1(x), F_2(x), \dots, F_q(x))$

an MOP is convex if F_i , for i = 1, 2, ..., q are convex and the constraint set is convex

suppose x and y are both feasible

- $F_i(x) \leq F_i(y)$ means that x is at least as good as y, according to ith obj
- $F_i(x) < F_i(y)$ means that x is *better* than y, according to ith obj
- if $F_i(x) \leq F_i(y)$ for i = 1, ..., q and for at least one j, $F_j(x) < F_j(y)$, we say x is better than y or x dominates y

Optimal solution of MOP

an optimal point x^{\star} satisfies

 $F_i(x^*) \leq F_i(y), \quad i = 1, 2, \dots, q, \quad \text{for all feasible } y$

in other words, x^{\star} is simultaneously optimal for each scalar problem

$$\begin{array}{ll} \mbox{minimize} & F_j(x) \\ \mbox{subjec to} & f_i(x) \leq 0, \quad i=1,2,\ldots,m \\ & h_i(x)=0, \quad i=1,2,\ldots,p, \end{array}$$

for $j = 1, 2, \ldots, q$

when there is an optimal point, we say that the objectives are noncompeting

Pareto optimal point x^{po} satisfies: if y is feasible and $F_i(y) \leq F_i(x^{\text{po}})$ for i = 1, 2, ..., q then $F_i(x^{\text{po}}) = F_i(y)$, i = 1, ..., q

Multi-objective optimization

Scalarizing multicriterion problems

we form the weighted sum objective

$$\lambda^T f_0(x) = \lambda_1 F_1(x) + \dots + \lambda_q F_q(x), \quad \lambda \succ 0$$

- interpret λ_i as the weight quantifying our desire to make F_i small
- the ratio λ_i/λ_j is the **relative weight** showing the relative importance of the *i*th objective compared to the *j*th objective
- recall that a weight vector $\lambda \succ 0$ yields the Pareto optimal point
- the set of Pareto optimal values is called the optimal trade-off surface or optimal trade-off curve for bicriterion

- Chapter 2 in B. Stephen and L. Vandenberghe, *Convex optimization*, Cambridge Press
- Lecture slide on convex set, Lieven Vandenberghe, Convex Optimization, EE236B, UCLA