Math review exercises

Jitkomut Songsiri

Department of Electrical Engineering Chulalongkorn University

July 23, 2023

Notes to readers. These exercises are in undergrad-level (year 1-2) and meant to be a review before students taking any upper-undergrad or graduate classes in control systems, and optimization. You are expected to solve these exercises by yourself (and by hand).

Contents

1	Not	Notation														
2	Mat	Matrix and vector														
	2.1	Multiplications	2													
	2.2	Get it right	2													
	2.3	Common expressions	3													
	2.4	Represent vectors in \mathbf{R}^2 plane	3													
	2.5	Eigenvalues and eigenvectors	4													
	2.6	Nullspace and range space	4													
3	Calo	culus	4													
	3.1	Derivatives	4													
	3.2	Regions in \mathbf{R}^2	4													
	3.3	Regions in \mathbf{R}^3	6													

1 Notation

notation	description
R	set of real numbers
\mathbf{R}^n	set of real vectors of length n
$\mathbf{R}^{m imes n}$	set of real matrices of size $m imes n$
С	set of complex numbers
\mathbf{C}^n	set of complex vectors of length n
$\mathbf{C}^{m imes n}$	set of complex matrices of size $m \times n$
\mathbf{S}^n	set of symmetric matrices of size $n \times n$
$\mathcal{N}(T)$	nullspace of linear transformation T
$\mathcal{R}(T)$	range space of linear transformation ${\cal T}$
$\mathbf{cov}(X)$	covariance matrix of X
$\nabla f, \nabla^2 f$	gradient and Hessian of $f: \mathbf{R}^n o \mathbf{R}$

A column vector is denoted by $x \in \mathbf{R}^n$ where x_i is the *i*th element of x. A regtangular matrix $A \in \mathbf{R}^{m \times n}$ is denoted by a capital letter where a_{ij} is the (i, j) entry of A. The matrix A^T is the transpose of A. We can partition A and B into

column blocks and row blocks, respectively.

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}, \quad B = \begin{bmatrix} b_1^T \\ \vdots \\ b_m^T \end{bmatrix}.$$

We denote \mathbf{e}_k a standard unit vector in \mathbf{R}^n , e.g., $\mathbf{e}_1 = (1, 0, \dots, 0)$, $\mathbf{e}_2 = (0, 1, 0, \dots, 0)$. An all-one vector is denoted as $\mathbf{1} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T$. We can construct a diagonal matrix from a vector using a notation of $\operatorname{diag}(x) = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}$. The 2-norm of a vector x is denoted by $\|x\|_2 = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$ and it should be clear that $\|x\|_2^2 = x^T x$.

2 Matrix and vector

2.1 Multiplications

Perform the following multiplications in 1 minute each.

$$\begin{bmatrix} -2 & 3 & 3\\ 0 & -2 & 0\\ 3 & 3 & 2 \end{bmatrix} \begin{bmatrix} -3\\ -1\\ 4 \end{bmatrix} =$$
(1)

$$\begin{bmatrix} -3 & -1 & 4 \end{bmatrix} \begin{bmatrix} -2 & 3 & 3 \\ 0 & -2 & 0 \\ 3 & 3 & 2 \end{bmatrix} =$$
(2)

$$\begin{bmatrix} -3 & -1 & 4 \end{bmatrix} \begin{bmatrix} -2 & 3 & 3 \\ 0 & -2 & 0 \\ 3 & 3 & 2 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 4 \end{bmatrix} =$$
(3)

$$\begin{bmatrix} -2 & 3 & 3\\ 0 & -2 & 0\\ 3 & 3 & 2 \end{bmatrix} \begin{bmatrix} -3 & -1\\ -1 & 1\\ 4 & -3 \end{bmatrix} =$$
(4)

$$\begin{bmatrix} -3 & -1 & 4 \\ -1 & 1 & -3 \end{bmatrix} \begin{bmatrix} -2 & 3 & 3 \\ 0 & -2 & 0 \\ 3 & 3 & 2 \end{bmatrix} =$$
 (5)

$$\begin{bmatrix} 1 & 1 & -3 \\ 2 & 1 & 0 \\ -2 & -2 & 3 \end{bmatrix} \begin{bmatrix} 0 & -2 & 0 \\ 0 & 0 & 3 \\ 1 & 0 & 0 \end{bmatrix} =$$
(6)

$$\begin{bmatrix} 0 & 0 & 2 \\ 0 & -1 & 0 \\ 3 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & -3 \\ 2 & 1 & 0 \\ -2 & -2 & 3 \end{bmatrix} =$$
(7)

$$(A_{ij}' \text{s are matrices}) \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{33} \end{bmatrix}^{T} \begin{bmatrix} B & C \\ D & E \\ F & G \end{bmatrix} =$$
(9)

 $\begin{bmatrix} A \\ C \end{bmatrix}$

2.2 Get it right

Write these expressions in terms of matrix/vector components explicitly. For example, when A is partitioned in column blocks,

$$A \operatorname{diag}(x) = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 & & & \\ & x_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & x_n \end{bmatrix} = \begin{bmatrix} x_1 a_1 & x_2 a_2 & \cdots & x_n a_n \end{bmatrix}$$

In this section, we assume A partitioned in columns, while B is partitioned in rows. The vectors x and y have dimensions that agree with the context.

$$xy^T = (10)$$

$$xx^{T}yy^{T} =$$
(11)
$$A^{T} =$$
(12)

$$A^{T}A = (12)$$

$$AA^T =$$
 (14)

$$B^T = (15)$$
$$B^T B = (16)$$

$$BB^{T} = (10)$$

$$\mathbf{e}_1 \mathbf{e}_1^T =$$
 (18)

$$\mathbf{e}_2 \mathbf{e}_5^T = \tag{19}$$

$$\mathbf{e}_{j}^{T} \mathbf{e}_{j} = \tag{20}$$
$$C \mathbf{e}_{k} = \tag{21}$$

$$\mathbf{e}_1^T C \mathbf{e}_1 =$$
(21)

$$\mathbf{e}_i^T C \mathbf{e}_j = \tag{23}$$

$$1^{T}x = (24)$$

$$41 = (25)$$

$$AI = (25)$$
$$ITB = (26)$$

$$\mathbf{1}^T C \mathbf{1} = (27)$$

$$A \operatorname{diag}(x) = \tag{28}$$

$$\operatorname{diag}(x)B = \tag{29}$$

2.3 Common expressions

Expand the following expressions in terms of x_i 's, y_i 's and a_{ij} 's where $x, y \in \mathbf{R}^3$ and $A = [a_{ij}] \in \mathbf{R}^3$ (10 minutes).

$$(x+y)^T(x+y) =$$
 (30)

$$||x - y||_2^2 =$$
(31)
$$x^T A x =$$
(32)

$$\begin{array}{rcl}
x^{T}Ax &= & (32)\\
x^{T}(A+A^{T})x &= & (33)
\end{array}$$

$$x^{T}(A+A^{T})x$$
(33)

$$\frac{1}{2}$$
 = (34)

2.4 Represent vectors in \mathbf{R}^2 plane

Consider

$$x = (0,1), \quad y = (-4,2), \quad z = (2,3), \quad \alpha_1 = 0.5, \quad \alpha_2 = 1$$

Draw the resulting vectors in the diagram (10 minutes).

$$x, \quad -\alpha_1 y, \quad x - \alpha_1 y, \quad -\alpha_2 z, \quad (x - \alpha_1 y) - \alpha_2 z \tag{35}$$

2.5 **Eigenvalues and eigenvectors**

Compute eigenvalues and eigenvectors of the following matrices (by hand).

$$A_1 = \begin{bmatrix} 0 & 2\\ -2 & 0 \end{bmatrix}$$
(36)

$$A_2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
(37)

$$A_3 = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$
(38)

$$A_4 = \begin{bmatrix} A_1 & 0\\ 0 & A_3 \end{bmatrix}$$
(39)

$$A_5 = A_1^2 - 3A_1 + 2I \tag{40}$$

$$A_6 = 3A_2^2 - 3A_3^2 + 4A_3 \tag{41}$$

Review properties of eigenvalues, and relations of det(A), tr(A) to eigenvalues of A.

2.6 Nullspace and range space

Find bases for the nullspace and range space, and their dimensions of the following matrices.

$$A_{1} = \begin{bmatrix} 0 & 0 & -2 & -1 & 1 \\ 1 & 0 & -1 & 0 & -1 \\ -1 & -2 & 1 & -2 & 0 \end{bmatrix}, \quad A_{2} = \begin{bmatrix} 1 & 1 & 1 \\ -2 & -2 & -2 \\ 3 & 1 & -1 \\ -5 & -2 & 1 \\ -3 & -2 & -1 \end{bmatrix}$$

If we express a general solution to Ax = 0 (nullspace of A) as x = Fz where $F \in \mathbf{R}^{n \times r}$ and $z \in \mathbf{R}^r$. Determine what F should be and the dimension r.

3 Calculus

3.1 Derivatives

Review the concept of first and second derivatives of function $f : \mathbf{R}^n \to \mathbf{R}$ (multivariate). Derive the gradient and Hessian of the following functions (30 minutes).

$$f(x) = a(x_2 - x_1^2)^2 + b(1 - x_1)^2, \quad a, b \text{ are fixed}$$
(42)

га

$$f(x) = \sum_{i=1}^{n} x_i \log(x_i) \tag{43}$$

$$f(x) = a^T x, \quad a \in \mathbf{R}^n \text{ is fixed}$$
(44)

$$f(x) = (1/2)x^T P x$$
, P is symmetric and fixed (45)

$$(x) = \frac{1}{1 + e^{-a^T x}} \tag{46}$$

$$f(x) = e^{w^T x} - w^T x \tag{47}$$

3.2 Regions in \mathbb{R}^2

Hand sketch the region of $x \in \mathbf{R}^2$ described by the following expressions. You may verify your results with using computer.

- 1. $2x_1 3x_2 = 6$
- 2. $2x_1 3x_2 \ge 6$
- 3. $x_1, x_2 \ge 0$ and $2x_1 + x_2 \le 6$
- 4. $2x_1 + x_2 \le 6$ and $2x_1 + x_2 \ge 2$

f

- 5. $2x_1^2 + x_2^2 \le 2$
- 6. $2x_1^2 2x_1x_2 + x_2^2 \le 2$
- 7. $2x_1^2 12x_1 x_2 + 19 = 0$
- 8. $2x_1^2 12x_1 x_2 + 19 \le 0$
- 9. $|x_1| + |x_2| = c$, where c > 0. What happen when c is larger ?
- 10. $\max(0, 3x_1 2x_2) = c$, where $c \ge 0$
- 11. $\max(0, 3x_1 2x_2) \le c$, where $c \ge 0$. What happen when c is larger ?
- 12. region that contains all the vectors orthogonal to the plane $\{x \mid x_1 4x_2 = c\}$ where c = 0 and c = 5.

3.3 Regions in R³

Use **computer** to plot the surface and contour of the following functions.

- 1. $f(x) = 2x_1 4x_2$, $x_0 = (1, 1)$
- 2. $f(x) = x_1^2 + x_2^2$, $x_0 = (2,3)$
- 3. $f(x) = 2x_1^2 2x_1x_2 + x_2^2$, $x_0 = (-1, 1)$

For each function, compute the gradient of f and evaluate at x_0 , and you will obtain $\nabla f(x_0)$ as a vector in \mathbf{R}^2 . Create a hyperplane described by equation

$$0 = f(x_0) + \nabla f(x_0)^T (x - x_0) \triangleq 0 = c + a_1 x_1 + a_2 x_2$$

where you notice that $(a_1, a_2) = \nabla f(x_0)$. When you include this hyperplane in the surface plot of f, this plane is supposed to touch the surface of f at x_0 , because the hyperplane equation is just the first-order Taylor approximation of f at x_0 . Notice the direction of $\nabla f(x_0)$ and its relation with the hyperplane.