Math review exercises

Jitkomut Songsiri
Department of Electrical Engineering
Chulalongkorn University

July 23, 2023

Notes to readers. These exercises are in undergrad-level (year 1-2) and meant to be a review before students taking any upper-undergrad or graduate classes in control systems, and optimization. You are expected to solve these exercises by yourself (and by hand).

Contents

1 Notation 1
2 Matrix and vector 2
2.1 Multiplications 2
2.2 Get it right 2
2.3 Common expressions 3
2.4 Represent vectors in \mathbf{R}^{2} plane 3
2.5 Eigenvalues and eigenvectors 4
2.6 Nullspace and range space 4
3 Calculus 4
3.1 Derivatives 4
3.2 Regions in \mathbf{R}^{2} 4
3.3 Regions in \mathbf{R}^{3} 6

1 Notation

notation	description
\mathbf{R}	set of real numbers
\mathbf{R}^{n}	set of real vectors of length n
$\mathbf{R}^{m \times n}$	set of real matrices of size $m \times n$
\mathbf{C}	set of complex numbers
\mathbf{C}^{n}	set of complex vectors of length n
$\mathbf{C}^{m \times n}$	set of complex matrices of size $m \times n$
\mathbf{S}^{n}	set of symmetric matrices of size $n \times n$
$\mathcal{N}(T)$	nullspace of linear transformation T
$\mathcal{R}(T)$	range space of linear transformation T
$\operatorname{cov}(X)$	covariance matrix of X
$\nabla f, \nabla^{2} f$	gradient and Hessian of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$

A column vector is denoted by $x \in \mathbf{R}^{n}$ where x_{i} is the i th element of x. A regtangular matrix $A \in \mathbf{R}^{m \times n}$ is denoted by a capital letter where $a_{i j}$ is the (i, j) entry of A. The matrix A^{T} is the transpose of A. We can partition A and B into
column blocks and row blocks, respectively.

$$
A=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right], \quad B=\left[\begin{array}{c}
b_{1}^{T} \\
\vdots \\
b_{m}^{T}
\end{array}\right] .
$$

We denote \mathbf{e}_{k} a standard unit vector in \mathbf{R}^{n}, e.g., $\mathbf{e}_{1}=(1,0, \ldots, 0), \mathbf{e}_{2}=(0,1,0, \ldots, 0)$. An all-one vector is denoted as $\mathbf{1}=\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right]^{T}$. We can construct a diagonal matrix from a vector using a notation of $\operatorname{diag}(x)=\left[\begin{array}{lll}x_{1} & & \\ & \ddots & \\ & & x_{n}\end{array}\right]$.

The 2-norm of a vector x is denoted by $\|x\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}$ and it should be clear that $\|x\|_{2}^{2}=x^{T} x$.

2 Matrix and vector

2.1 Multiplications

Perform the following multiplications in 1 minute each.

$$
\begin{align*}
& {\left[\begin{array}{ccc}
-2 & 3 & 3 \\
0 & -2 & 0 \\
3 & 3 & 2
\end{array}\right]\left[\begin{array}{c}
-3 \\
-1 \\
4
\end{array}\right] }= \tag{1}\\
& {\left[\begin{array}{lll}
-3 & -1 & 4
\end{array}\right]\left[\begin{array}{ccc}
-2 & 3 & 3 \\
0 & -2 & 0 \\
3 & 3 & 2
\end{array}\right] }= \tag{2}\\
& {\left[\begin{array}{lll}
-3 & -1 & 4
\end{array}\right]\left[\begin{array}{ccc}
-2 & 3 & 3 \\
0 & -2 & 0 \\
3 & 3 & 2
\end{array}\right]\left[\begin{array}{c}
-3 \\
-1 \\
4
\end{array}\right] }= \tag{3}\\
& {\left[\begin{array}{ccc}
-2 & 3 & 3 \\
0 & -2 & 0 \\
3 & 3 & 2
\end{array}\right]\left[\begin{array}{cc}
-3 & -1 \\
-1 & 1 \\
4 & -3
\end{array}\right] }= \tag{4}\\
& {\left[\begin{array}{ccc}
-3 & -1 & 4 \\
-1 & 1 & -3
\end{array}\right]\left[\begin{array}{ccc}
-2 & 3 & 3 \\
0 & -2 & 0 \\
3 & 3 & 2
\end{array}\right] }= \tag{5}\\
& {\left[\begin{array}{ccc}
1 & 1 & -3 \\
2 & 1 & 0 \\
-2 & -2 & 3
\end{array}\right]\left[\begin{array}{ccc}
0 & -2 & 0 \\
0 & 0 & 3 \\
1 & 0 & 0
\end{array}\right] }= \tag{6}\\
& {\left[\begin{array}{lll}
0 & 0 & 2 \\
0 & -1 & 0 \\
3 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & -3 \\
2 & 1 & 0 \\
-2 & -2 & 3
\end{array}\right] }= \tag{7}\\
& {\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
E \\
F
\end{array}\right] }= \tag{8}\\
&\left(A_{i j} \text { 's are matrices) }\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
A_{31} & A_{33}
\end{array}\right]\left[\begin{array}{ll}
B & C \\
D & E \\
F & G
\end{array}\right]\right.= \tag{9}\\
&= \\
& \hline
\end{align*}
$$

2.2 Get it right

Write these expressions in terms of matrix/vector components explicitly. For example, when A is partitioned in column blocks,

$$
A \operatorname{diag}(x)=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right]\left[\begin{array}{llll}
x_{1} & & & \\
& x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right]=\left[\begin{array}{llll}
x_{1} a_{1} & x_{2} a_{2} & \cdots & x_{n} a_{n}
\end{array}\right]
$$

In this section, we assume A partitioned in columns, while B is partitioned in rows. The vectors x and y have dimensions that agree with the context.

$$
\begin{align*}
x y^{T} & = \tag{10}\\
x x^{T} y y^{T} & = \tag{11}\\
A^{T} & = \tag{12}\\
A^{T} A & = \tag{13}\\
A A^{T} & = \tag{14}\\
B^{T} & = \tag{15}\\
B^{T} B & = \tag{16}\\
B B^{T} & = \tag{17}\\
\mathbf{e}_{1} \mathbf{e}_{1}^{T} & = \tag{18}\\
\mathbf{e}_{2} \mathbf{e}_{5}^{T} & = \tag{19}\\
\mathbf{e}_{j}^{T} \mathbf{e}_{j} & = \tag{20}\\
C \mathbf{e}_{k} & = \tag{21}\\
\mathbf{e}_{1}^{T} C \mathbf{e}_{1} & = \tag{22}\\
\mathbf{e}_{i}^{T} C \mathbf{e}_{j} & = \tag{23}\\
\mathbf{1}^{T} x & = \tag{24}\\
A \mathbf{1} & = \tag{25}\\
\mathbf{1}^{T} B & = \tag{26}\\
\mathbf{1}^{T} C \mathbf{1} & = \\
A \operatorname{diag}(x) & = \tag{28}\\
\operatorname{diag}(x) B & = \tag{29}
\end{align*}
$$

2.3 Common expressions

Expand the following expressions in terms of x_{i} 's, y_{i} 's and $a_{i j}$'s where $x, y \in \mathbf{R}^{3}$ and $A=\left[a_{i j}\right] \in \mathbf{R}^{3}$ (10 minutes).

$$
\begin{align*}
(x+y)^{T}(x+y) & = \tag{30}\\
\|x-y\|_{2}^{2} & = \tag{31}\\
x^{T} A x & = \tag{32}\\
x^{T}\left(A+A^{T}\right) x & = \tag{33}\\
\frac{x^{T}\left(A+A^{T}\right) x}{2} & = \tag{34}
\end{align*}
$$

2.4 Represent vectors in \mathbf{R}^{2} plane

Consider

$$
x=(0,1), \quad y=(-4,2), \quad z=(2,3), \quad \alpha_{1}=0.5, \quad \alpha_{2}=1
$$

Draw the resulting vectors in the diagram (10 minutes).

$$
\begin{equation*}
x, \quad-\alpha_{1} y, \quad x-\alpha_{1} y, \quad-\alpha_{2} z, \quad\left(x-\alpha_{1} y\right)-\alpha_{2} z \tag{35}
\end{equation*}
$$

2.5 Eigenvalues and eigenvectors

Compute eigenvalues and eigenvectors of the following matrices (by hand).

$$
\begin{align*}
A_{1} & =\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right] \tag{36}\\
A_{2} & =\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \tag{37}\\
A_{3} & =\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 3
\end{array}\right] \tag{38}\\
A_{4} & =\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{3}
\end{array}\right] \tag{39}\\
A_{5} & =A_{1}^{2}-3 A_{1}+2 I \tag{40}\\
A_{6} & =3 A_{2}^{2}-3 A_{3}^{2}+4 A_{3} \tag{41}
\end{align*}
$$

Review properties of eigenvalues, and relations of $\operatorname{det}(A), \operatorname{tr}(A)$ to eigenvalues of A.

2.6 Nullspace and range space

Find bases for the nullspace and range space, and their dimensions of the following matrices.

$$
A_{1}=\left[\begin{array}{ccccc}
0 & 0 & -2 & -1 & 1 \\
1 & 0 & -1 & 0 & -1 \\
-1 & -2 & 1 & -2 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-2 & -2 & -2 \\
3 & 1 & -1 \\
-5 & -2 & 1 \\
-3 & -2 & -1
\end{array}\right]
$$

If we express a general solution to $A x=0$ (nullspace of A) as $x=F z$ where $F \in \mathbf{R}^{n \times r}$ and $z \in \mathbf{R}^{r}$. Determine what F should be and the dimension r.

3 Calculus

3.1 Derivatives

Review the concept of first and second derivatives of function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ (multivariate). Derive the gradient and Hessian of the following functions (30 minutes).

$$
\begin{align*}
f(x) & =a\left(x_{2}-x_{1}^{2}\right)^{2}+b\left(1-x_{1}\right)^{2}, \quad a, b \text { are fixed } \tag{42}\\
f(x) & =\sum_{i=1}^{n} x_{i} \log \left(x_{i}\right) \tag{43}\\
f(x) & =a^{T} x, \quad a \in \mathbf{R}^{n} \text { is fixed } \tag{44}\\
f(x) & =(1 / 2) x^{T} P x, \quad P \text { is symmetric and fixed } \tag{45}\\
f(x) & =\frac{1}{1+e^{-a^{T} x}} \tag{46}\\
f(x) & =e^{w^{T} x}-w^{T} x \tag{47}
\end{align*}
$$

3.2 Regions in \mathbf{R}^{2}

Hand sketch the region of $x \in \mathbf{R}^{2}$ described by the following expressions. You may verify your results with using computer.

1. $2 x_{1}-3 x_{2}=6$
2. $2 x_{1}-3 x_{2} \geq 6$
3. $x_{1}, x_{2} \geq 0$ and $2 x_{1}+x_{2} \leq 6$
4. $2 x_{1}+x_{2} \leq 6$ and $2 x_{1}+x_{2} \geq 2$
5. $2 x_{1}^{2}+x_{2}^{2} \leq 2$
6. $2 x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2} \leq 2$
7. $2 x_{1}^{2}-12 x_{1}-x_{2}+19=0$
8. $2 x_{1}^{2}-12 x_{1}-x_{2}+19 \leq 0$
9. $\left|x_{1}\right|+\left|x_{2}\right|=c$, where $c>0$. What happen when c is larger ?
10. $\max \left(0,3 x_{1}-2 x_{2}\right)=c$, where $c \geq 0$
11. $\max \left(0,3 x_{1}-2 x_{2}\right) \leq c$, where $c \geq 0$. What happen when c is larger ?
12. region that contains all the vectors orthogonal to the plane $\left\{x \mid x_{1}-4 x_{2}=c\right\}$ where $c=0$ and $c=5$.

3.3 Regions in \mathbf{R}^{3}

Use computer to plot the surface and contour of the following functions.

1. $f(x)=2 x_{1}-4 x_{2}, x_{0}=(1,1)$
2. $f(x)=x_{1}^{2}+x_{2}^{2}, x_{0}=(2,3)$
3. $f(x)=2 x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}, x_{0}=(-1,1)$

For each function, compute the gradient of f and evaluate at x_{0}, and you will obtain $\nabla f\left(x_{0}\right)$ as a vector in \mathbf{R}^{2}. Create a hyperplane described by equation

$$
0=f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right) \triangleq 0=c+a_{1} x_{1}+a_{2} x_{2}
$$

where you notice that $\left(a_{1}, a_{2}\right)=\nabla f\left(x_{0}\right)$. When you include this hyperplane in the surface plot of f, this plane is supposed to touch the surface of f at x_{0}, because the hyperplane equation is just the first-order Taylor approximation of f at x_{0}. Notice the direction of $\nabla f\left(x_{0}\right)$ and its relation with the hyperplane.

