

Outline

1. Standard form

2 Properties and simple LPs

3 Applications

4 Algorithms

5 Sentivity analysis

Standard form

Standard form

a general linear program has the form

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

where $G \in \mathbf{R}^{m \times n}$ and $A \in \mathbf{R}^{p \times n}$

- n optimization variables: $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$
- the objective function: $c^{T} x=\sum_{i=1}^{n} c_{i} x_{i}$
- the inequality constraint: $\sum_{j=1}^{n} g_{i j} x_{j} \leq h_{i}$ for $i=1,2, \ldots, m$
- the equality constraint: $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$ for $i=1,2, \ldots, p$
- the objective function and constraint functions are linear in x called linear program (LP) or linear optimization problem

Another standard form

LP can also be represented in another form

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \succeq 0
\end{array}
$$

using the facts that

- any $x \in \mathbf{R}$ can be written $x=x^{+}-x^{-}$
- $a^{T} x \leq b \Longleftrightarrow a^{T} x+s=b, \quad s \succeq 0$
note: we assume A is fat and has full row rank
exercise: transform into the two general forms

$$
\begin{array}{ll}
\operatorname{minimize} & 2 x_{1}-x_{2}+x_{3} \\
\text { subject to } & -3 x_{1}+x_{2}-5 x_{3} \leq 3 \\
& 2 x_{2}+7 x_{3} \geq 10 \\
& 3 x_{2}+4 x_{3}=2
\end{array}
$$

Mixed integer programming

if $x \in \mathbf{Z}^{n}$ (integers) the problem on page 4 is called an integer linear programming (ILP)
if some components of x are integers and some are real numbers, the problem is called a mixed integer linear programming
examples of integer programing:

- x represents quantities, countable units (pieces)
- number of sale products
- number of persons assigned on a work schedule
- $x \in\{0,1\}$: binary integer programming
- x is status of a functioning unit in factory, ' 1 ' is on, ' 0 ' is off

Geometrical interpretation

- hyperplane: solution set of a linear equation with coefficient vector $a \neq 0$

$$
\left\{x \mid a^{T} x=b\right\}
$$

- halfspace: solution set of a linear inequality with coefficient vector $a \neq 0$

$$
\left\{x \mid a^{T} x \leq b\right\}
$$

we say a is the normal vector

- polyhedron: solution set of a finite number of linear inequalities

$$
\left\{x \mid a_{1}^{T} x \leq b_{1}, a_{2}^{T} x \leq b_{2}, \ldots, a_{m}^{T} x \leq b_{m}\right\}=\{x \mid A x \leq b\}
$$

intersection of a finite number of halfspaces

extreme point of \mathcal{C}
a vector $x \in \mathcal{C}$ is an extreme point (or a vertex) if we cannot find $y, z \in \mathcal{C}$ both different from x and a scalar $\alpha \in[0,1]$ such that $x=\alpha y+(1-\alpha) z$

Solving LPs graphically

LP 1 (left) and LP 2 (right, with non-negative constraints)

minimize	$c^{T} x$	minimize	$c^{T} x$
subject to	$x_{1}+x_{2} \leq 6$	subject to	$x_{1}+x_{2} \leq 6$
	$x_{1}-x_{2} \leq 3$		$x_{1}-x_{2} \leq 3$
	$x_{1}+3 x_{2} \geq 6$		$x_{1}+3 x_{2} \geq 6$
		$x_{1}, x_{2} \geq 0$	

- LP 1: feasible set is unbounded but the problem is bounded below for some c

$$
c=(0,1), x^{\star}=c=(-1,0), x^{\star}=c=(-1,1), x^{\star}=c=(1,3), x^{\star}=
$$

- LP 2: feasible set is a bounded polyhedron
- $x^{\star}=x$ if

$$
\begin{aligned}
& x^{\star}=x \text { if } \\
& x^{\star}=x \text { if }
\end{aligned}
$$

- $x^{\star}=x$ if
- x^{\star} is not unique if
the directions of c that lead LP 1 to have x^{\star} at vertices x or x

- for other directions of c than the two cases above, the problem is unbounded below
- for 2-dimensional problems, solutions can be sketched graphically
- LP properties depend on both the objective direction and the feasible set

Properties and simple LPs

Properties

refer to the standard form on page 5

- an LP may not have a solution (constraints are inconsistent or the feasible set is unbounded)
- we assume A is full row rank; if not, considering $A x=b$
- depending on A, the system could be inconsistent (hence, no extreme points), or
- $A x=b$ contains redundant equations, which can be removed
- if a standard LP has a finite optimal solution then
a solution can always be chosen from among the vertices of the feasible set
(called basic feasible solutions)
- the dual of an LP is also an LP
- solutions of some simple LPs can be analytically inspected

Simple linear programs

minimize $c^{T} x$ over each of these simple sets
we can derive an explicit solution of these LPs
■ box constraint: $l \preceq x \preceq u$

- probability simplex (or budget allocation): $\mathbf{1}^{T} x=1, x \succeq 0$
- not all budget is used: $\mathbf{1}^{T} x \leq 1, x \succeq 0$
- halfspace: $a^{T} x \leq b$
draw the constraint set and inspect the solution for a given c

Some problems may not look like an LP

example 1: functions that involve ℓ_{1} and ℓ_{∞} norms

$$
\text { minimize }\|F x-g\|_{1} \text { subject to }\|x\|_{\infty} \leq 1
$$

(minimize a cost measured by 1-norm having a worst-case budget constraint) by introducing u; imposing the constraint: $-u \preceq F x-g \preceq u$; and noting that

$$
\|F x-g\|_{1}=\sum_{i=1}^{m}\left|f_{i}^{T} x-g_{i}\right| \leq \mathbf{1}^{T} u
$$

the problem is equivalent to the LP

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} u \\
\text { subject to } & -u \preceq F x-g \preceq u, \\
& -\mathbf{1} \preceq x \preceq \mathbf{1}
\end{array}
$$

Example

finding a probability mass function (pmf) of a discrete random variable y

- y takes n possible values as a_{i} for $i=1,2, \ldots, n$ with $0<a_{1}<a_{2}<\cdots<a_{n}$
- $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is a pmf of $y: \operatorname{prob}\left(y=a_{i}\right)=p_{i}$ for $i=1,2, \ldots, n$ given scalar parameters, $a \in \mathbf{R}^{n}, \alpha>0$ and b, find $p \in \mathbf{R}^{n}$ from the optimization

$$
\begin{array}{ll}
\text { maximize } & \operatorname{prob}(y \geq \alpha) \\
\text { subject to } & \mathbf{E}[y]=b
\end{array}
$$

(find the pmf of y that maximizes the probability and satisfies a given mean)
express the problem as LP with variable p
(recognize that the objective and constraint are linear in p)

Applications

Linear programs in applications

- piecewise-linear minimization
- ℓ_{1}-norm and ℓ_{∞}-norm approximation
- sparse recovery
- separating two sets using hyperplane

Piecewise-linear minimization

a problem of minimizing a piecewise-linear function is in the form:
minimize $f(x):=\max _{i=1,2, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)$
$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is called a piecewise-linear function

- f is obtained by taking a point-wise maximum of m affine functions (convex)
- it is equivalent to LP (with variables x and auxiliary scalar variable t)

```
minimize t
subject to }\mp@subsup{a}{i}{T}x+\mp@subsup{b}{i}{}\leqt,\quadi=1,2,\ldots,
```


Piecewise-linear minimization

$$
\text { minimize } c^{T} z \text { subject to } G z \preceq h
$$

where

$$
z=\left[\begin{array}{l}
x \\
t
\end{array}\right], c=\left[\begin{array}{l}
0 \\
1
\end{array}\right], G=\left[\begin{array}{cc}
a_{1}^{T} & -1 \\
a_{2}^{T} & -1 \\
\vdots & \vdots \\
a_{m}^{T} & -1
\end{array}\right], h=\left[\begin{array}{c}
-b_{1} \\
-b_{2} \\
\vdots \\
-b_{m}
\end{array}\right]
$$

example: minimize $\sum_{i=1}^{m} \max \left\{0, a_{i}^{T} x+b_{i}\right\}$
(related to ReLU function) can be cast as an LP

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} t \\
\text { subject to } & 0 \preceq t \\
& a_{i}^{T} x+b_{i} \leq t_{i}, \quad i=1,2, \ldots, m
\end{array}
$$

with variable $t \in \mathbf{R}^{m}$

ℓ_{1}-norm and ℓ_{∞}-norm approximations

given $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^{m}$

- ℓ_{1}-norm approximation: minimize $\|A x-b\|_{1}$
equivalent LP:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} u \\
\text { subject to } & -u \preceq A x-b \preceq u
\end{array}
$$

with variable x and auxiliary variable u

- ℓ_{∞}-norm (or Chebyshev) approximation: minimize $\|A x-b\|_{\infty}$ equivalent LP:

```
minimize t
subjec to -t1 \preceqAx-b\preceqt\mathbf{1}
```

with variable x and auxiliary variable t

ℓ_{1} - and ℓ_{∞}-norm approximation results

compare histograms of residuals $A x-b$ for

$$
x_{\mathrm{ls}}=\operatorname{argmin}\|A x-b\|_{2}, \quad x_{1}=\operatorname{argmin}\|A x-b\|_{1}, \quad x_{\infty}=\operatorname{argmin}\|A x-b\|_{\infty}
$$

example of $A \in \mathbf{R}^{200 \times 100}$: residuals of 1-norm approximation is concentrated at zero

Estimation with outliers

fitting $f(t)=\alpha+\beta t$ to data containing 10% outliers

- ℓ_{2}-norm approximation tends to reduce large residuals occurred from outliers
- ℓ_{1}-norm has less penalty than ℓ_{2} when residuals are large; it is more robust to outliers

Sparse recovery

given $A \in \mathbf{R}^{m \times n}$ (sensor matrix) with $m<n$ and $y \in \mathbf{R}^{m}$ (measurements)

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1} \\
\text { subject to } & A x=y
\end{array}
$$

- estimate a sparse signal x that gives the model output matched with measurements
- the constraint makes sense when A is fat (many feasible points)
- equivalent LP (with variables $x, u \in \mathbf{R}^{n}$)

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} u \\
\text { subject to } & -u \preceq x \preceq u \\
& A x=y
\end{array}
$$

Example of sparse signal estimation

given $A \in \mathbf{R}^{100 \times 200}, y \in \mathbf{R}^{100}$ with $y=A x+$ noise

- the ground-truth signal x has 30 nonzero components
- ℓ_{1}-norm estimate is sparse while ℓ_{2}-norm estimate is generally dense
- estimated sparsity is close to the true zero locations

ℓ_{1}-norm estimate is generally sparser than ℓ_{2}-norm estimate
Histogram of solutions

x

Seperating two sets using hyperplane

given: a set of points $\left\{x_{1}, \ldots, x_{N}\right\}$ with binary labels $y_{i} \in\{-1,1\}$
problem: find a hyperplane that strictly separates the two data classes

$$
\begin{aligned}
& w^{T} x_{i}+b>0, \quad \text { if } y_{i}=1 \\
& w^{T} x_{i}+b<0, \quad \text { if } y_{i}=-1
\end{aligned}
$$

$y_{i}\left(\omega^{\top} x_{i}+b\right) \geqslant 1$
the two sets of inequalities can be merged into a single set of N inequalities

$$
y_{i}\left(w^{T} x_{i}+b\right) \geq 1, \quad i=1,2, \ldots, N
$$

since the inequality is homogenous in w and b
many feasible solutions can be found (if the two sets are separable)

Linear separation of non-separable sets

when two sets cannot be strictly separable

$$
\underset{w, b}{\operatorname{minimize}} \sum_{i=1}^{N} \max \left\{0,1-y_{i}\left(w^{T} x_{i}+b\right)\right\}
$$

equivalent LP: with variables $w \in \mathbf{R}^{n}, b \in \mathbf{R}, z \in \mathbf{R}^{N}$

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} z \\
\text { subject to } & 1-y_{i}\left(x_{i}^{T} w+b\right) \leq z_{i}, \quad i=1,2, \ldots, N \\
& z_{i} \geq 0, \quad i=1,2, \ldots, N
\end{array}
$$

- no penalization when $y_{i}\left(w^{T} x_{i}+b\right) \geq 1$
- it is a heuristic method for minimizing \# of misclassified points
- a piecewise-linear minimization problem with variables w, b
- related to a soft-margin SVM (but no cost on the hyperplane margin)

Algorithms

Modeling softwares

- accept linear programs in standard notation
- recognize problems that can be converted to LPs
- express the problem in the format required by LP solvers
- examples of modeling packages
- CVX, YALMIP (on MATLAB)
- CVXPY, CVXOPT (on Python)
- AMPL

Numerical methods

- simplex (by Dantzig): move along the vertices of polyhedron when the objective is decreasing
- interior-point: move through the interior points of the feasible region
- many libraries/solvers (both commercial and open-source) on the market
- linprog in MATLAB
- Pulp or scipy.optimize.linprog in Python
- Gurobi

Sentivity analysis

Perturbed problem

perturbed version of the standard LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & G x \preceq h+u \\
& A x=b+v
\end{array}
$$

question: we aim to get information about the sensitivity of the solution with respect to changes in problem data

- how does $p^{\star}(u, v)$ of the perturbed problem change upon the values of u_{i} and v_{i} ?
- if $u_{i}>0$, the inequality is loosen, but if $u_{i}<0$, the inequality is tighten

Global and local sensitivity analysis

the analysis requires the duality result of LP
λ, ν are Lagrange mulipliers corresponding to inequality and equality, respective

- global analysis: we can derive a lower bound of the perturbed optimal value

$$
p^{\star}(u, v) \geq p^{\star}(0,0)-\lambda^{\star T} u-\nu^{\star T} v
$$

- local analysis: Lagrange multipliers give the rate of change in $p^{\star}(u, v)$ at $(0,0)$

$$
\frac{\partial p^{\star}(0,0)}{\partial u_{i}}=-\lambda_{i}^{\star}, \quad \frac{\partial p^{\star}(0,0)}{\partial v_{i}}=-\nu_{i}^{\star}
$$

References

1 L. Vandenberghe, Linear programming, Lecture notes of EE236A, UCLA
2 D. Bertsimas and J.N. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific, 1997
3 I. Griva, S.G. Nash, and A. Sofer, Linear and Nonlinear Optimization, 2nd edition, SIAM, 2009
4 S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, 2004

