
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Gradient methods in mechine learning

Jitkomut Songsiri

Department of Electrical Engineering
Faculty of Engineering

Chulalongkorn University

CUEE

December 29, 2023

Gradient methods in ML Jitkomut Songsiri 1 / 71



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

1 Derivative basics

2 Computation graph

3 Automatic differentiation

4 Mini batch optimization

Gradient methods in ML Jitkomut Songsiri 2 / 71



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
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Tangent plane
a tangent plane of f(x) at x0 is obtained by the first-order Taylor approximation

f(x) ≈ f(x0) +∇f(x0)
T (x− x0)
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f(x) = x21 + (1/4)x22

x0 = (1, 2), ∇f(x0) = (2, 1)

plane:2 + 2(x1 − 1) + (x2 − 2) = 0

the gradient of f is the normal vector of the tangent plane

Gradient methods in ML Jitkomut Songsiri 4 / 71



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Tangent and secant lines
for a scalar-input function

tangent lines

secant lines

first-order Taylor approximation at x0

f(x) ≈ f̃(x) = f(x0) + f ′(x0)(x− x0)

secant line that passes through the two
points (x1, f(x1)) and (x0, f(x0))

f̃(x) = f(x0) +
f(x1)− f(x0)

x1 − x0
· (x− x0)

let x1 = x0 + ϵ, as ϵ → 0 the secant line gets closer to the tangent line
the slope of secant line approaches f ′(x0) (if exists)

f(x1)− f(x0)

x1 − x0
=

f(x0 + ϵ)− f(x0)

ϵ
→ f ′(x0) as ϵ → 0 if the limit exists
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Numerical differentiation
some common derivative rules

function derivative function derivative
σ(x) = 1

1+e−x
e−x

(1+e−x)2
f(x)g(x) f ′(x)g(x) + f(x)g′(x)

tanh(x) sech2(x) f(g(x)) f ′(g(x))g′(x)

max(0, x)

{
0, x < 0

1, x > 0

when f is too complicated to calculate analytically, we can approximate f ′ by setting ϵ
to some small number

a more robust way is to use the average slope of the right and the left secant line

f ′(x0) ≈
f(x0 + ϵ)− f(x0 − ϵ)

2ϵ

however, setting ϵ too small can create round-off errors due to numerical
computations
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Computation graph
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Example: scalar-input function

consider f(x) = tanh(x) cos(x) + log(x)

yellow nodes represents an elementary function or operation
the input node x is parent to nodes a, b, c, while a, b are parents to node d

the computation flows forward through the graph in sets of parent-child nodes
to compute d(1.5) = a(1.5)× b(1.5), we only need access to its evaluated
parents, which already computed
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Vector-input function

consider f(x) = x21 + x22

two inputs x1 and x2 are each represented by a distinct node
first, substitute x1 = 1 and evaluate its child a(1) = 12

next, substitute x2 = 2 and evaluate its child b(2) = 22

finally, the last child node is c = a(1) + b(2) = 5
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Exercises

draw the computation graph of the following functions
1 f(x) = cos2(2x+ 3) + log(|x|)
2 f(x) = max(0, (2,−3, 1)Tx+ 4)

3 f(x) = f(x1, x2, x3) = tanh(wT
1 x+ b1) + σ(wT

2 x+ b2)

4 f(x) = f(x1, x2, x3) =
c1e

tanh(wT
1 x)+b1∑3

k=1 cke
tanh(wT

k
x)+bk
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Automatic differentiation
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Forward mode of automatic differentiation
the computation graph of a function can be used to form its gradient by

sweeping forward through the function’s computation graph from left to right
evaluating the gradient of each node w.r.t. the function’s original input

this is called forward mode of automatic differentiation
performing each child node requires only the values computed at its parents
along with derivative rules for elementary functions and operations
faster and more reliable than performing f ′(x) manually and then hard-coded

f(x) = f1(x)f2(x) + f2
3 (x)
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Example: scalar-input function
example: f(x) = tanh(x) cos(x) + log(x)

1 set the input node x, and d
dxx = 1, and move to the childen node

2 for each child node, form both the node and its derivative w.r.t. to the input
3 form the next child node according to × operation and its derivative

d = a×b,
d

dx
d(a, b) =

∂

∂a
d(a, b)× d

dx
a(x)+

∂

∂b
d(a, b)× d

dx
b(x) = ba′(x)+ab′(x)

4 form the next child node according to + operation and its derivative

e = d+ c,
d

dx
e(d, c) =

∂

∂d
e(d, c)× d

dx
d(x)+

∂

∂c
e(d, c)× d

dx
c(x) = d′(x)+ c′(x)
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Example: vector-input function

f(x) = x21 cos(x2)

1 compute the gradient at each input node: ∇x1 = (1, 0) and ∇x2 = (0, 1)

2 at the next child nodes, a and b, compute the gradient of a w.r.t. both x1 and x2

∂

∂x1
a = 2x1,

∂

∂x2
a = 0,

∂

∂x1
b = 0,

∂

∂x2
b = − sin(x2)

3 compute the gradient at node c, using the chain rule

c = a+ b,

[
∂

∂x1
c

∂
∂x2

c

]
=

[
∂
∂ac

∂
∂x1

a+ ∂
∂bc

∂
∂x1

b
∂
∂ac

∂
∂x2

a+ ∂
∂bc

∂
∂x2

b

]
=

[
b× 2x1 + a× 0

b× 0 + a× (− sin(x2))

]

Gradient methods in ML Jitkomut Songsiri 14 / 71



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercises and notes

draw the computation graph to compute forward-mode diffferentiation
1 f(x) = tanh2(2x1 + 3x2)

2 f(x) = f(x1, x2) = tanh(x21 + cos(x2))

3 f(x) = f(x1, x2, x3) = max(0, tanh(2x1 + 3x2 + 4x3))

after doing the exercises, note that
we compute the complete gradient w.r.t all inputs at every node, but most of
the nodes may only take just a few inputs, e.g., no 3. define child nodes:
a = 2x1, b = 3x2, c = 4x3

the partial derivatives of a w.r.t. x2, x3 are zero, same conclusion for partial
derivatives of b w.r.t. x1, x3

this leads to considerable computation waste since the partial derivative of any
node w.r.t. an original input xi that it does not take in will always be zero
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Reverse mode of automatic differentiation

to avoid computation waste due to many zero partial derivatives when computing the
full gradient in the forward mode of autodiff,

the reverse mode of autodiff or backpropagation algorithm was proposed
1 traverse along the computation graph in forward mode but compute only the

partial derivatives needed at each node (ignore the ones that will always be zero)
– until the forward sweep is complete

2 starting with the final nodes, and move backward through the graph, combining
the previously computed partial derivatives to appropriately construct the gradient
this requires constructing the computation graph explicitly and store it
the reverse mode is more popular choice (as compared to forward mode), and
implemented in autograd (python-based automatic differentiation)
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Example: f(x) = x21 + x22 + x23 + x24

at each node, find the complete gradients w.r.t. x1, . . . , x4

you can see that over half of partial derivatives are zeros
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Example: forward sweeping

compute only the partial derivatives w.r.t. their parents that are non-zero

. write down
∂

∂x1
g =

∂

∂x2
g =

∂

∂x3
g =

∂

∂x4
g =

(more efficient than computing completing gradients)
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Example: backpropagate 1
update the partial derivative of the parents (e, f) by multiplying the partial derivative
of its children w.r.t. e and f

go backward from

∂

∂x1
g =

∂

∂e
g
∂

∂a
e

∂

∂x1
a

∂

∂x1
x1

∂

∂x2
g =

∂

∂e
g
∂

∂b
e

∂

∂x2
b

∂

∂x2
x2

∂

∂x3
g =

∂

∂f
g
∂

∂c
f

∂

∂x3
c

∂

∂x3
x3

∂

∂x4
g =

∂

∂f
g
∂

∂d
f

∂

∂x4
d

∂

∂x4
x4
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Example: backpropagate 2
update the partial derivative of the parent (a) by multiplying the partial derivative of
its children (e) w.r.t. a

go backward from

∂

∂x1
g =

∂

∂e
g
∂

∂a
e

∂

∂x1
a

∂

∂x1
x1

∂

∂x2
g =

∂

∂e
g
∂

∂b
e

∂

∂x2
b

∂

∂x2
x2

∂

∂x3
g =

∂

∂f
g
∂

∂c
f

∂

∂x3
c

∂

∂x3
x3

∂

∂x4
g =

∂

∂f
g
∂

∂d
f

∂

∂x4
d

∂

∂x4
x4

Gradient methods in ML Jitkomut Songsiri 20 / 71



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example: backpropagate 3
update the partial derivative of the parent (x1) by multiplying the partial derivative of
its child (a) w.r.t. x1

go backward from

∂

∂x1
g =

∂

∂e
g
∂

∂a
e

∂

∂x1
a

∂

∂x1
x1

∂

∂x2
g =

∂

∂e
g
∂

∂b
e

∂

∂x2
b

∂

∂x2
x2

∂

∂x3
g =

∂

∂f
g
∂

∂c
f

∂

∂x3
c

∂

∂x3
x3

∂

∂x4
g =

∂

∂f
g
∂

∂d
f

∂

∂x4
d

∂

∂x4
x4
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Exercise

f(x) = σ(2x1 + 3x2 + 4x3 + 5x4) . compute backprop gradient
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Exercise

f(x) = tanh(max(0, 2x1 + 3x2 + 4x3)) . compute backprop gradient

Gradient methods in ML Jitkomut Songsiri 23 / 71



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

References

1 Appendix B in J. Watt, R. Borhani, and A.K. Katsaggelos, Machine Learning
Refined: Foundations, Algorithms, and Applications, 2nd edition, Cambridge
University Press, 2020

2 https://github.com/jermwatt/machine_learning_refined, Google colab:
autograd library and usage

Gradient methods in ML Jitkomut Songsiri 24 / 71

https://github.com/jermwatt/machine_learning_refined
https://colab.research.google.com/github/jermwatt/machine_learning_refined/blob/main/notes/3_First_order_methods/B_10_Automatic.ipynb
https://colab.research.google.com/github/jermwatt/machine_learning_refined/blob/main/notes/3_First_order_methods/B_10_Automatic.ipynb


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Mini batch optimization
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Mini-batch optimization

minimizing f that is a sum of N functions of the same form

minimize
x

f(x) :=

N∑
i=1

fi(x)

such as
∑N

i=1 ∥yi − ŷi(x)∥22 where x is the model parameter (N is typically large)
quadratic loss example: the conventional gradient step is −

∑N
i=1(yi − ŷi(x))

dŷi
dx

mini-batch optimization involves taking a search direction (often gradient step) in
f1, f2, . . . , fN sequentially
the gradient step can be taken w.r.t. a subset of f1, f2, . . . , fN ; the size of the
subsets defines a batch size of mini-batch optimization
a batch size of 1 is referred to as stochastic optimization
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Ilustration of mini-batch optimization

we define x(0,0) an initial point of optimization variable
take a descent direction s(0,1) in f1 alone and form x(0,1) = x(0,0) + ts(0,1)

determine a descent direction s(0,2) in f2 and form x(0,2) = x(0,1) + ts(0,2)

continue this pattern until we sweep through f1, . . . , fN

x(0,1) = x(0,0) + ts(0,1)

x(0,2) = x(0,1) + ts(0,2)

...
x(0,N) = x(0,N−1) + ts(0,N)

and one process of these N updates is referred to an epoch
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Example of mini-batch scheme
in this figure, batch size is 1

continue this pattern on a second epoch of steps and so on
when the batch size is bigger than 1, e.g., a batch contain samples
i = 1, 3, 10, 28, we take a descent step in minimizing

∑
i=1,3,10,28 ∥yi − ŷi(x)∥22

when mini-batch size is k, an epoch will contain ⌈N/k⌉ updates – an epoch
means that every point in the training set has been seen exactly once

Gradient methods in ML Jitkomut Songsiri 28 / 71



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Performance of mini-batch

example: minimize
∑200

i=1 fi(x) where fi(x) = ai + bix+ (1/2)cix
2

0 1 2 3 4 5

Number of epochs

10
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 v
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e

batch optimization

batch size = 1

batch size = 10

batch size = 50

for full batch, 1 epoch is equivalent
to 1 iteration

at 1 epoch, all methods have seen data of length N = 200 once
loss function of mini-batch at each step may not be monotonically decreasing
mini-batch approaches descend significantly faster than full batch version

Gradient methods in ML Jitkomut Songsiri 29 / 71



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Performance of mini-batch

example: minimize
∑200

i=1 fi(x) where fi(x) = eaix+bi
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batch optimization
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batch optimization

batch size = 1

batch size = 10

batch size = 50

two instances of data (different (ai, bi) in left and right figures)
often observe benefits of mini-batch when the stepsize is not too small
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Performance of mini-batch
mini-batch optimization often performs well when N is large

credit: Machine Learning Refined textbook, page 490

an initial point of gradient-descent method can be insignificantly incorrect
using only a small subset of data is sufficient to estimate the descent direction
(but with less computational effort)
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Convergence of mini-batch optimization

a sufficient condition to guarantee convergence is
∑∞

k=1 tk = ∞ and∑∞
k=1 t

2
k < ∞

in practice, the learning rate decays linearly until iteration τ

tk = (1− α)t0 + αtτ , with α = k/τ

and after k > τ , leave tk constant
convergence results: measure the excess error f(x)−minx f(x)

for a convex problem, the excess error is O(1/
√
k) after k iterations

for a strongly convex case, the error is O(1/k)

however, with large data sets, mini-batch can make rapid initial progress and this
outweighs its slow asymptotic convergence
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Issues of gradient methods in ML
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Outlines

zig-zagging behavior
gradient method via a change of coordinate
momentum-accelerated gradient descent
slow-crawing behavior
normalized gradient descent
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Main challenges
in gradient-based optimization

zig-zagging behavior of gradient steps
flat region (updated sequences can stuck)
high curvature of f

factors: steplength choice, search direction
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Convergence of gradient-descent method

assume f is continuously differentiable

the update x+ = x− t∇f(x) gives convergent sequences to a local optimum when t is
from any of the following rules

exact line search
backtracking line search
fixed 0 < t < 2/L where L is a Lipschitz constant of ∇f (require Lipschitz
continuity)

however, in ML applications,
using a line search requires additional computation cost
f is highly nonlinear and not possible to find L

a fixed step length (aka learning rate) is often used and experiment on the choice
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Curvature of f
curvature of a graph provides a measure how sharply a smooth curve turns
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we want to use a large step in the direction of low curvature (to make a rapid
progress) and vice versa
when ∇f has different magnitudes in different direction, choosing t is hard for
gradient steps – in this figure, a large t can make a huge progress in x2 direction
(and could be further diverge) but a small t gives a slow update in x1 direction
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Zig-zagging behavior of gradient descent
minimize f(x) = (1/2)(x21 + γx22) using exact line search and x(0) = (γ, 1)

-2 0 2
-3

-2

-1

0

1

2

3

-10 -5 0 5 10
-5

0

5

for γ > 1, the gradient is more significant in x2 direction, making the contour of
f (which is ellipsoid) elongates in x1 direction
when γ is large, the gradient method can cause a zig-zagging behavior and has a
slow convergence

Gradient methods in ML Jitkomut Songsiri 38 / 71



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Change of coordinates
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Weighted norm and dual norm
a weighted norm (by matrix P ≻ 0) is defined as

∥z∥P = zTPz = ∥P 1/2z∥2

(it satisfies all three properties of a norm)

the dual norm of a norm ∥ · ∥ on Rn is denoted by

∥z∥∗ = sup {zTx | ∥x∥ ≤ 1 }

the dual norm is a norm
the dual norm of the Euclidean norm is the Euclidean norm itself
the dual norm of the ℓ1-norm is the ℓ∞-norm (and vice versa)
the dual norm of ∥z∥P is ∥P−1/2z∥2
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Steepest descent for quadratic norm

for any norm ∥ · ∥, we define two steepest descent directions by considering ∇fT (x)v

∇fT (x)v is the directional derivative of f at x in the direction v

normalized steepest descent: gives the largest decrease in directional derivative

∆xnsd = argmin {∇f(x)T v | ∥v∥ = 1 }

2-norm 1-norm infinity-norm weighted-norm

unnormalized steepest-descent: scaled by the dual norm of gradient

∆xsd = ∥∇f(x)∥∗∆xnsd
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Example

a weighted norm ∥z∥P := ∥P 1/2z∥2 for P ≻ 0

minimize wT v over ∥P 1/2v∥2 = 1 is equivalent to minimize wT (P−1/2y) over
∥y∥2 = 1

the solution is v = − P−1w
∥P−1/2w∥2

from the above result, the normalized steepest descent direction is

∆xnsd = − P−1∇f(x)

∥P−1/2∇f(x)∥2

dual norm is ∥z∥∗ = ∥P−1/2z∥2, so the unnormalized direction is

xsd = −P−1∇f(x)
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Gradient method via a change of coordinate
a change of coordinate via z = P 1/2x where P 1/2 is a square root of P ≻ 0

the objective function and the negative gradient step in the new coordinate are

f(x) = f(P−1/2z) ≜ f̃(z),

∆z = −∇f̃(z) = −P−1/2∇f(P−1/2z) = −P−1/2∇f(x)

the gradient search in z coordinate corresponds to the direction in x variable as

∆x = P−1/2∆z = P−1/2(−P−1/2∇f(x)) = −P−1∇f(x)

this can be interpreted as the steepest-descent direction in quadratic norm ∥ · ∥P

data normalization in neural network (at input layer) can be seen as a change of
coordinate before applying a gradient method
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Example of gradient descent in a new coordinate
minimize f(x) = ex1+ax2−0.1 + ex1−ax2−0.1 + e−x1−0.1 using x+ = x− tP−1∇f(x)
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when a > 1, ∇f(x) has significant magnitude in x2 direction (a = 7 in the figure)
P = I (the traditional steepest-descent for Euclidean norm)
P1 = diag(2, 8) and P2 = diag(8, 2) (steepest-descent for P -norm)
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Example of gradient descent in a new coordinate
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normal gradient step
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scaled gradient step (1)
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scaled gradient step (2)

-10 -5 0 5
-6

-4

-2

0

2

4

6
Contour

-10 -5 0 5
-6

-4

-2

0

2

4

6
New coordinate (1)

-10 -5 0 5
-6

-4

-2

0

2

4

6
New coordinate (2)

the experimental results when
a = 3

the stepsize is obtained via
backtracking
the normal gradient step has
zig-zagging behavior for some
initial points

first row: using P1 gives an improved convergence while P2 yields a slower
convergence
the second row shows the sublevel sets in the new coordinates w.r.t P1 and P2
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when changing the coordinate, the Hessian of f̃ is P−1/2∇f2P−1/2, so we select
P so that the new Hessian has a low condition number

P−1/2∇f2P−1/2 ≈ I

(as the condition number typically appears in the convergence of f(x(k))− p⋆

the sublevel set with P1 shows a lower condition number as compared to P2

(decrease in function value are about the same rate in both x1 and x2 directions)
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Momentum-accelerated algorithms
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Exponential averaging
some common smoothing techniques of sequences y0, y1, . . . , yK

cumulative moving average: take the sample means

zk = (y1+ · · ·+ yk)/k ⇔ zk =

(
k − 1

k

)
zk−1+

1

k
yk (recursive equation)

as k is large, the weight of yk is less
exponential moving average (EMA): autoregressive sequence with yk as input

zk = βzk−1 + (1− β)yk, β ∈ [0, 1]

zk = βkz0 +

k∑
τ=1

βk−τ (1− β)yτ

effect of past zt’s decays; zk depends on the latest zk−1 and the recent yk
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Example: effect of β
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left: sequence zk = βzk−1 + yk
right: EMA sequence zk = βzk−1 + (1− β)yk
both zk can be interpreted as a filtered version of yk but with different gain
as β increases, zk is smoothen out but has a higher bias deviating from yk
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Physical analogy of momentum
a particle with mass m moving through a viscous medium caused by a force F

mẍ(t) + µẋ(t) = F

-µẋ(t) = −µv(t) is the viscous friction (proportional to velocity)
discretizing ẋ(t) = (x(t+ h)− x(t))/h where h is a stepsize

m
(
x(t+h)+x(t−h)−2x(t)

h2

)
+ µ

(
x(t+h)−x(t)

h

)
= F

arranging the term and we obtain a discretized equation of sequence v(k)

x(t+ h)− x(t) =
h2

m+ µh
F +

m

m+ µh
(x(t)− x(t− h))

v(k) ≜ ϵF + βv(k−1)

F will be represented by the negative gradient of objective function
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Negative gradient as force
net force: = negative gradient and viscous friction

momentum algorithm: v(k) = βv(k−1) − ϵ∇f(x(k−1)), x(k) = x(k−1) + v(k)

we can think of −∇f as a force moving a particle with velocity v which then
represents the momentum for unit mass
instead of using −∇f to change the position, use it to change the velocity
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β is referred to a friction/damping/momentum parameter; ϵ is a learning rate
as the particle rolls down and pick up the speed, it can escape from the flat region
or local traps in the bowl (overshooting)
if −∇f is the only force, the particle never comes to rest (the hill is frictionless)
while increasing β helps in avoiding local optima, it might also increase oscillation
at the end (β should be < 1)
as v(k) is EMA of past gradients, zigzagging behavior of gradients can be
smoothed out for v to update x
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Momentum-accelerated gradient descent

to ameliorate some zig-zagging behavior of gradient descent steps
initialize v(0) = −∇f(x(0)) (using the negative gradient direction)
perform exponential averaging the descent direction

v(k) = βv(k−1) + (1− β)(−∇f(x(k−1)))

x(k) = x(k−1) + tv(k)

v(k) captures EMA or momentum of the directions preceding it
we can think of −∇f as a force moving a particle with velocity v which then
represents the momentum for unit mass
typical use of large β ∈ [0.7, 1] means the less v(k−1) uses the actual negative
gradient direction, but the more it summarizes all previous negative gradients
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Example
example: minimize (x21 + 10x22) using gradient methods with t = 0.2
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zig-zagging behavior of gradient descent can be ameliorated using a higher value of β
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Nesterov accelerated gradient (NAG)

classical momentum form

v(k) = βv(k−1) − ϵ∇f(x(k−1)), x(k) = x(k−1) + v(k)

we call β as momentum coefficient and ϵ relates to the learning rate

Sutskever et al. 2013 proposed to combine Nesterov gradient method and momentum

v(k) = βv(k−1) − ϵ∇f(x(k−1) + βv(k−1))

x(k) = x(k−1) + v(k)

the gradient is evaluated at the point as if x(k) was updated from the current velocity

we can initialize the update using v(0) = −ϵ∇f(x(0))
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Example
minimize (x21 + 10x22) using gradient methods
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the less ϵ, the slower the algorithm converges)
in this experiment, no convergence when setting ϵ = t = 0.2, so we show the
results of using smaller ϵ
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Slow-crawling behavior of gradient descent
when the objective function has a flat region near a local minimum
the gradient near stationary points vanishes and the sequence updates slowly
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(left) f(x) = x6 + 0.1 is minimized (0, 0)
(right) f(x) = max2(0, 1 + (3x− 2.3)3) + max2(0, 1 + (−3x+ 0.7)3) has a
minimum at x = 1/2 and saddle points at x = 7/30 and x = 23/30
choice of initial guess, steplength and crawling behavior of standard gradient can
prevent it from finding a local mininum
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Flat region along one direction

when the function contour is flat along one direction (here, x2)

f(x) = max(0, tanh(a(x1 + x2))) + |bx1|+ 1, a = 4, b = 0.4
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the minimum is at x = (0, 0) and p⋆ = 1

the standard gradient sequences halt (making no progress) and stuck in the valley
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Normalized gradient descent
vanishing magnitude of −∇f(x) can cause the method to halt at saddle points
we can control the magnitude of −∇f(x) via a normalization

norm-2 of the negative gradient

x(k) = x(k−1) −
(

t

∥∇f(x(k−1))∥2 + ϵ

)
∇f(x(k−1))

the component-wise magnitude of the gradient

x
(k)
i = x

(k−1)
i − t · ∇f(x(k−1))i

|∇f(x(k−1))i|+ ϵ
, i = 1, 2, . . . , n

x(k) = x(k−1) − t · sign(∇f(x(k−1))), if ϵ = 0

(because y/|y| = sign(y))
normalized and standard gradient descent step only differ by the steplength choice
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Example
result: minimize f(x) = max(0, tanh(a(x1 + x2))) + |bx1|+ 1 using a = 4, b = 0.4
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contour

standard gradient
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normalized by norm
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function surface

standard gradient

normalized by element-wise ABS

if x2 is large enough (so that tanh becomes saturated), ∂f/∂x2 is nearly zero
the standard gradient cannot make a progress along x2 dimension
the normalized gradient by its norm can be problematic (in this case) because it
even makes the gradient w.r.t. x2 smaller
the normalized gradient by component-wise magnitude can make significant
progresses in 20 steps (out of 1000 iterations, using t = 0.1)
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Gradient-based optimizers in ML

many algorithms proposed as extension of gradient descent for ML (aka optimizers)

AdaGrad (Duchi et al. 2011)
Adadelta (extension of AdaGrad to restrict the window of gradient averaging)
RMSProp (Tieleman and Hinton 2012)
Adam (Adaptive moment estimation) (Kingma et al. 2015)
AdaMax (a generalization of Adam to using ℓ∞-norm) (Kingma et al. 2015)
Nadam (Nesterov-Adam) (Dozat 2016)

these algorithms combine averaging of past gradients and component-wise
normalization of gradient

component-wise normalized gradient is often referred to adaptive learning rate
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Gradient descent algorithms in ML
use aggregated information of past gradients to normalize the search direction

AdaGrad (Duchi et al. 2011)
z
(k)
i = z

(k−1)
i +

[
∇f(x(k−1))i

]2
, x

(k)
i = x

(k−1)
i − t ∇f(x(k−1))i√

z
(k)
i

RMSProp (Tieleman and Hinton 2012)
z
(k)
i = βz

(k−1)
i + (1− β)

[
∇f(x(k−1))i

]2
, x

(k)
i = x

(k−1)
i − t ∇f(x(k−1))i√

z
(k)
i

Adam (Kingma et al. 2017)
y
(k)
i = β1y

(k−1)
i + (1− β1)∇f(x(k−1))i

z
(k)
i = β2z

(k−1)
i + (1− β2)

[
∇f(x(k−1))i

]2
x
(k)
i = x

(k−1)
i − t

(√
1−βk

2

1−βk
1

)
y
(k)
i√

z
(k)
i +ϵ

z(k) and y(k) represent histories of the first and second moments of ∇f resp.
the ith component of −∇f(x(k)) is normalized individually
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Interpretation

AdaGrad: z(k) is the cumulative sum of squared gradients up to time k

using the square root of z(k)i as normalization penalizes the ith component of the
gradient that highly fluctuates
as z(k) tends to be eventually large, so the search direction tends to slow down

RMSProp: z(k) is the EMA of squared gradient
the normalization by

√
z(k) is similar to AdaGrad

since z(k) represents EMA of squared gradient, the progress of x(k) is not slowed
prematurely
however, if z(0) is set to 0, this causes undesirable bias in early iterations

Adam: use EMAs of both gradient and its square with β1 = 0.9, β2 = 0.999

the search direction is the momentum of gradients scaled by the EMA of the second
moment of gradient
the initial estimates z(0) and y(0) are zero which are biased in early iterations
improving over RMSProp, Adam has a bias correction term that converges to 1

Gradient methods in ML Jitkomut Songsiri 63 / 71



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Comparison of optimizers: ReLu and tanh functions
the example of f that has a flat region along x2 direction on page 58

f(x) = max(0, tanh(a(x1 + x2))) + |bx1|+ 1, a = 4, b = 0.4

0 10 20 30 40 50 60 70 80 90 100
1
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1.6
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2.8
normalized gradient

Adam

AdaGrad

RMSProp
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2
Iterative sequences

normalized gradient

Adam

AdaGrad

RMSProp

stepsize t = 0.1, initialized at x(0) = (2, 2), β of RMSProp is set as 0.9, all
auxiliary variables (z, y) were initialized at zero
all methods can avoid being stuck the valley; only Adagrad halted at another x2
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Comparison of optimizers: ReLu and tanh functions
same setting but using ϵ = 10−8 in the normalization of all methods
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normalized gradient
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∇f(x)2 is zero when |x2| is large enough
both normalized gradient and RMSProp uses ∇f(x)i as search directions, we see
ripples of x near the optimum since their ∇f(x)2 become zero
the search direction of Adam is yi, which is EMA of gradients; hence, the search
direction becomes small near optimum, but not exact zero in x2 direction – giving
smoother path of x
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Comparison of optimizers: sum of exponential
(a convex) f(x) on page 44 that ∇f(x) is more significant in one direction

f(x) = ex1+7x2−0.1 + ex1−7x2−0.1 + e−x1−0.1
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normalized gradient
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AdaGrad
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stepsize t = 0.2, x(0) = (−3, 1), ϵ = 10−8, βRMSProp = 0.9
both RMSProp and Adam performed better than other methods
AdaGrad is slowest; normalized gradient progressed quickly but oscillated
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Adam’s performance
figures taken from Kingma et al. 2015 (Adam paper)

ℓ2-regularized multi-class logistic regression (convex problem)
MNIST data set: Adam has similar convergence to SGD and both are faster than
AdaGrad
IMDB movie review data set: both Adam and AdaGrad (which can be efficiently
deal with sparse features) have faster convergence than SGD with Nesterov
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figures taken from Kingma et al. 2015 (Adam paper)

multilayer NN with cross-entropy loss and dropout (non-convex problems)
Adam had better convergence than others, and was compared with SFO
(sum-of-functions) which is a quasi-Newton method

Gradient methods in ML Jitkomut Songsiri 68 / 71



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Summary

choosing an algorithm depends on the properties of f and problem scale
differentiable f , medium scale: CG, quasi-Newton
convex and smooth f : interior-point methods, first-order accelerated methods
large-scale, non-convex: normalized momentum-accelerated algorithms
a large sum of fi: incorporate mini-batch optimization

notes: the performance of algorithms depend on
initial guess of x(0): lead to poor local minima, saddle points, flat region
steplength: a larger t makes x(k) have a significant progress; but may lead to
divergence when t is too large
algorithm parameters: different algorithms can have different proper choices (e.g.,
momentum coeffiicent β can be differently chosen for each method)

Gradient methods in ML Jitkomut Songsiri 69 / 71



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Convergence analysis

based on the original documents of described algorithms
Adam and AdaGrad papers have performance analysis based on regret function
(used in a context of online learning)
RMSProp and Nadam are intuitive and empirical work

more recent literature on the analysis of these algorithms exist and should be further
explored
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