

Outline

1 Derivative basics

2 Computation graph

3 Automatic differentiation

4 Mini batch optimization

Derivative basics

Tangent plane

a tangent plane of $f(x)$ at x_{0} is obtained by the first-order Taylor approximation

$$
f(x) \approx f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right)
$$

the gradient of f is the normal vector of the tangent plane

Tangent and secant lines

for a scalar-input function

- first-order Taylor approximation at x_{0}

$$
f(x) \approx \tilde{f}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

- secant line that passes through the two points $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{0}, f\left(x_{0}\right)\right)$

$$
\tilde{f}(x)=f\left(x_{0}\right)+\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} \cdot\left(x-x_{0}\right)
$$

- let $x_{1}=x_{0}+\epsilon$, as $\epsilon \rightarrow 0$ the secant line gets closer to the tangent line
- the slope of secant line approaches $f^{\prime}\left(x_{0}\right)$ (if exists)

$$
\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=\frac{f\left(x_{0}+\epsilon\right)-f\left(x_{0}\right)}{\epsilon} \rightarrow f^{\prime}\left(x_{0}\right) \text { as } \epsilon \rightarrow 0 \quad \text { if the limit exists }
$$

Numerical differentiation

some common derivative rules

function	derivative	function	derivative
$\sigma(x)=\frac{1}{1+e^{-x}}$	$\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}$	$f(x) g(x)$	$f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
$\tanh (x)$	$\operatorname{sech}^{2}(x)$	$f(g(x))$	$f^{\prime}(g(x)) g^{\prime}(x)$
$\max (0, x)$	$\begin{cases}0, & x<0 \\ 1, & x>0\end{cases}$		

when f is too complicated to calculate analytically, we can approximate f^{\prime} by setting ϵ to some small number

- a more robust way is to use the average slope of the right and the left secant line

$$
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+\epsilon\right)-f\left(x_{0}-\epsilon\right)}{2 \epsilon}
$$

- however, setting ϵ too small can create round-off errors due to numerical computations

Computation graph

Example: scalar-input function

$$
\text { consider } f(x)=\tanh (x) \cos (x)+\log (x)
$$

- yellow nodes represents an elementary function or operation
- the input node x is parent to nodes a, b, c, while a, b are parents to node d
- the computation flows forward through the graph in sets of parent-child nodes
- to compute $d(1.5)=a(1.5) \times b(1.5)$, we only need access to its evaluated parents, which already computed

Vector-input function

consider $f(x)=x_{1}^{2}+x_{2}^{2}$

- two inputs x_{1} and x_{2} are each represented by a distinct node
- first, substitute $x_{1}=1$ and evaluate its child $a(1)=1^{2}$
- next, substitute $x_{2}=2$ and evaluate its child $b(2)=2^{2}$
- finally, the last child node is $c=a(1)+b(2)=5$

Exercises

draw the computation graph of the following functions
$1 f(x)=\cos ^{2}(2 x+3)+\log (|x|)$
2 $f(x)=\max \left(0,(2,-3,1)^{T} x+4\right)$
उ $f(x)=f\left(x_{1}, x_{2}, x_{3}\right)=\tanh \left(w_{1}^{T} x+b_{1}\right)+\sigma\left(w_{2}^{T} x+b_{2}\right)$
4 f $f(x)=f\left(x_{1}, x_{2}, x_{3}\right)=\frac{c_{1} e^{\tanh \left(w_{1}^{T} x\right)+b_{1}}}{\sum_{k=1}^{3} c_{k} e^{\tanh \left(w_{k}^{T} x\right)+b_{k}}}$

Automatic differentiation

Forward mode of automatic differentiation

the computation graph of a function can be used to form its gradient by

- sweeping forward through the function's computation graph from left to right
- evaluating the gradient of each node w.r.t. the function's original input this is called forward mode of automatic differentiation
- performing each child node requires only the values computed at its parents along with derivative rules for elementary functions and operations
- faster and more reliable than performing $f^{\prime}(x)$ manually and then hard-coded

Example: scalar-input function

example: $f(x)=\tanh (x) \cos (x)+\log (x)$

11 set the input node x, and $\frac{d}{d x} x=1$, and move to the childen node
2 for each child node, form both the node and its derivative w.r.t. to the input
33 form the next child node according to \times operation and its derivative

$$
d=a \times b, \quad \frac{d}{d x} d(a, b)=\frac{\partial}{\partial a} d(a, b) \times \frac{d}{d x} a(x)+\frac{\partial}{\partial b} d(a, b) \times \frac{d}{d x} b(x)=b a^{\prime}(x)+a b^{\prime}(x)
$$

4 form the next child node according to + operation and its derivative

$$
\underset{\text { Sradient methods in ML }}{e}+\quad \frac{d}{d x} e(d, c)=\frac{\partial}{\partial d} e(d, c) \times \frac{d}{\text { Jithomutsongsiri }} d(x)+\frac{\partial}{\partial c} e(d, c) \times \frac{d}{d x} c(x)=d_{13 / 71}^{\prime}(x)+c^{\prime}(x)
$$

Example: vector-input function

$$
f(x)=x_{1}^{2} \cos \left(x_{2}\right)
$$

$$
x_{1},\left[\frac{d}{d x_{1}} x_{1}, \frac{d}{d x_{2}} x_{1}\right] \quad \text { a, }\left[\frac{d}{d_{1}, a, \frac{d}{d}, a} d\right]
$$

$$
c,\left[\frac{d}{d x_{1}} c, \frac{d}{d x_{2}} c\right]
$$

$$
x_{2},\left[\frac{d}{d x_{1}}, x_{2}, \frac{d}{d x_{2}} x_{2}\right] \quad b,\left[\frac{d}{d d_{1}}, \frac{d}{d x_{2}} b\right]
$$

1 compute the gradient at each input node: $\nabla x_{1}=(1,0)$ and $\nabla x_{2}=(0,1)$
2 at the next child nodes, a and b, compute the gradient of a w.r.t. both x_{1} and x_{2}

$$
\frac{\partial}{\partial x_{1}} a=2 x_{1}, \quad \frac{\partial}{\partial x_{2}} a=0, \quad \frac{\partial}{\partial x_{1}} b=0, \quad \frac{\partial}{\partial x_{2}} b=-\sin \left(x_{2}\right)
$$

33 compute the gradient at node c, using the chain rule

$$
c=a+b,\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}} c \\
\frac{\partial}{\partial x_{2}} c
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial}{\partial a} c \frac{\partial}{\partial x_{1}} a+\frac{\partial}{\partial b} c \frac{\partial}{\partial x_{1}} b \\
\frac{\partial}{\partial a} c \frac{\partial}{\partial x_{2}} a+\frac{\partial}{\partial b} c \frac{\partial}{\partial x_{2}} b
\end{array}\right]=\left[\begin{array}{c}
b \times 2 x_{1}+a \times 0 \\
b \times 0+a \times\left(-\sin \left(x_{2}\right)\right)
\end{array}\right]
$$

Exercises and notes

draw the computation graph to compute forward-mode diffferentiation
11 $f(x)=\tanh ^{2}\left(2 x_{1}+3 x_{2}\right)$
2 $f(x)=f\left(x_{1}, x_{2}\right)=\tanh \left(x_{1}^{2}+\cos \left(x_{2}\right)\right)$
3 $f(x)=f\left(x_{1}, x_{2}, x_{3}\right)=\max \left(0, \tanh \left(2 x_{1}+3 x_{2}+4 x_{3}\right)\right)$
after doing the exercises, note that

- we compute the complete gradient w.r.t all inputs at every node, but most of the nodes may only take just a few inputs, e.g., no 3. define child nodes:
$a=2 x_{1}, b=3 x_{2}, c=4 x_{3}$
- the partial derivatives of a w.r.t. x_{2}, x_{3} are zero, same conclusion for partial derivatives of b w.r.t. x_{1}, x_{3}
- this leads to considerable computation waste since the partial derivative of any node w.r.t. an original input x_{i} that it does not take in will always be zero

Reverse mode of automatic differentiation

to avoid computation waste due to many zero partial derivatives when computing the full gradient in the forward mode of autodiff,
the reverse mode of autodiff or backpropagation algorithm was proposed
1 traverse along the computation graph in forward mode but compute only the partial derivatives needed at each node (ignore the ones that will always be zero) - until the forward sweep is complete

2 starting with the final nodes, and move backward through the graph, combining the previously computed partial derivatives to appropriately construct the gradient

- this requires constructing the computation graph explicitly and store it
- the reverse mode is more popular choice (as compared to forward mode), and implemented in autograd (python-based automatic differentiation)

Example: $f(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$

at each node, find the complete gradients w.r.t. x_{1}, \ldots, x_{4}

you can see that over half of partial derivatives are zeros

Example: forward sweeping

compute only the partial derivatives w.r.t. their parents that are non-zero

* write down

$$
\begin{aligned}
\frac{\partial}{\partial x_{1}} g & = \\
\frac{\partial}{\partial x_{2}} g & = \\
\frac{\partial}{\partial x_{3}} g & = \\
\frac{\partial}{\partial x_{4}} g & =
\end{aligned}
$$

(more efficient than computing completing gradients)

Example: backpropagate 1

update the partial derivative of the parents (e, f) by multiplying the partial derivative of its children w.r.t. e and f

go backward from

$$
\begin{aligned}
\frac{\partial}{\partial x_{1}} g & =\frac{\partial}{\partial e} g \frac{\partial}{\partial a} e \frac{\partial}{\partial x_{1}} a \frac{\partial}{\partial x_{1}} x_{1} \\
\frac{\partial}{\partial x_{2}} g & =\frac{\partial}{\partial e} g \frac{\partial}{\partial b} e \frac{\partial}{\partial x_{2}} b \frac{\partial}{\partial x_{2}} x_{2} \\
\frac{\partial}{\partial x_{3}} g & =\frac{\partial}{\partial f} g \frac{\partial}{\partial c} f \frac{\partial}{\partial x_{3}} c \frac{\partial}{\partial x_{3}} x_{3} \\
\frac{\partial}{\partial x_{4}} g & =\frac{\partial}{\partial f} g \frac{\partial}{\partial d} f \frac{\partial}{\partial x_{4}} d \frac{\partial}{\partial x_{4}} x_{4}
\end{aligned}
$$

Example: backpropagate 2

update the partial derivative of the parent (a) by multiplying the partial derivative of its children (e) w.r.t. a

go backward from

$$
\begin{aligned}
\frac{\partial}{\partial x_{1}} g & =\frac{\partial}{\partial e} g \frac{\partial}{\partial a} e \frac{\partial}{\partial x_{1}} a \frac{\partial}{\partial x_{1}} x_{1} \\
\frac{\partial}{\partial x_{2}} g & =\frac{\partial}{\partial e} g \frac{\partial}{\partial b} e \frac{\partial}{\partial x_{2}} b \frac{\partial}{\partial x_{2}} x_{2} \\
\frac{\partial}{\partial x_{3}} g & =\frac{\partial}{\partial f} g \frac{\partial}{\partial c} f \frac{\partial}{\partial x_{3}} c \frac{\partial}{\partial x_{3}} x_{3} \\
\frac{\partial}{\partial x_{4}} g & =\frac{\partial}{\partial f} g \frac{\partial}{\partial d} f \frac{\partial}{\partial x_{4}} d \frac{\partial}{\partial x_{4}} x_{4}
\end{aligned}
$$

Example: backpropagate 3

update the partial derivative of the parent $\left(x_{1}\right)$ by multiplying the partial derivative of its child (a) w.r.t. x_{1}
$x_{1}, \frac{\partial}{\partial e} g \frac{\partial}{\partial a} e \frac{\partial}{\partial x_{1}} a \times 1 \quad a, \frac{\partial}{\partial e} g \frac{\partial}{\partial a} e \frac{\partial}{\partial x_{1}} a$
x_{1}
$(\cdot)^{2}$
e $, \frac{\partial}{\partial e} g \frac{\partial}{\partial a} e, \frac{\partial}{\partial e} g \frac{\partial}{\partial b} e$
$x_{2}, \frac{\partial}{\partial e} g \frac{\partial}{\partial b} e \frac{\partial}{\partial x_{2}} b \times 1 \quad b, \frac{\partial}{\partial e} g \frac{\partial}{\partial b} e \frac{\partial}{\partial x_{2}} b$
x_{2}
(. $)^{2}$
$x_{3}, \frac{\partial}{\partial f} g \frac{\partial}{\partial c} f \frac{\partial}{\partial x_{3}} c \times 1 \quad c, \frac{\partial}{\partial f} g \frac{\partial}{\partial c} f \frac{\partial}{\partial x_{3}} c$
x_{3}
$(\cdot)^{2}$
$x_{4}, \frac{\partial}{\partial f} g \frac{\partial}{\partial d} f \frac{\partial}{\partial x_{4}} \times 1 \quad d, \frac{\partial}{\partial f} g \frac{\partial}{\partial d} f \frac{\partial}{\partial x_{4}} d \quad+\quad f, \frac{\partial}{\partial f} g \frac{\partial}{\partial c} f, \frac{\partial}{\partial f} g \frac{\partial}{\partial d} f$
go backward from

$$
\begin{aligned}
\frac{\partial}{\partial x_{1}} g & =\frac{\partial}{\partial e} g \frac{\partial}{\partial a} e \frac{\partial}{\partial x_{1}} a \frac{\partial}{\partial x_{1}} x_{1} \\
\frac{\partial}{\partial x_{2}} g & =\frac{\partial}{\partial e} g \frac{\partial}{\partial b} e \frac{\partial}{\partial x_{2}} b \frac{\partial}{\partial x_{2}} x_{2} \\
\frac{\partial}{\partial x_{3}} g & =\frac{\partial}{\partial f} g \frac{\partial}{\partial c} f \frac{\partial}{\partial x_{3}} c \frac{\partial}{\partial x_{3}} x_{3} \\
\frac{\partial}{\partial x_{4}} g & =\frac{\partial}{\partial f} g \frac{\partial}{\partial d} f \frac{\partial}{\partial x_{4}} d \frac{\partial}{\partial x_{4}} x_{4}
\end{aligned}
$$

Exercise

$$
f(x)=\sigma\left(2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}\right) \text { compute backprop gradient }
$$

Exercise

$$
f(x)=\tanh \left(\max \left(0,2 x_{1}+3 x_{2}+4 x_{3}\right)\right) \otimes \text { compute backprop gradient }
$$

References

1 Appendix B in J. Watt, R. Borhani, and A.K. Katsaggelos, Machine Learning Refined: Foundations, Algorithms, and Applications, 2nd edition, Cambridge University Press, 2020

2 https://github.com/jermwatt/machine_learning_refined, Google colab: autograd library and usage

Mini batch optimization

Mini-batch optimization

minimizing f that is a sum of N functions of the same form

$$
\underset{x}{\operatorname{minimize}} f(x):=\sum_{i=1}^{N} f_{i}(x)
$$

such as $\sum_{i=1}^{N}\left\|y_{i}-\hat{y}_{i}(x)\right\|_{2}^{2}$ where x is the model parameter \quad (N is typically large)

- quadratic loss example: the conventional gradient step is $-\sum_{i=1}^{N}\left(y_{i}-\hat{y}_{i}(x)\right) \frac{d \hat{y}_{i}}{d x}$
- mini-batch optimization involves taking a search direction (often gradient step) in $f_{1}, f_{2}, \ldots, f_{N}$ sequentially
- the gradient step can be taken w.r.t. a subset of $f_{1}, f_{2}, \ldots, f_{N}$; the size of the subsets defines a batch size of mini-batch optimization
- a batch size of 1 is referred to as stochastic optimization

Ilustration of mini-batch optimization

we define $x^{(0,0)}$ an initial point of optimization variable

- take a descent direction $s^{(0,1)}$ in f_{1} alone and form $x^{(0,1)}=x^{(0,0)}+t s^{(0,1)}$
- determine a descent direction $s^{(0,2)}$ in f_{2} and form $x^{(0,2)}=x^{(0,1)}+t s^{(0,2)}$ continue this pattern until we sweep through f_{1}, \ldots, f_{N}

$$
\begin{aligned}
x^{(0,1)} & =x^{(0,0)}+t s^{(0,1)} \\
x^{(0,2)} & =x^{(0,1)}+t s^{(0,2)} \\
& \vdots \\
x^{(0, N)} & =x^{(0, N-1)}+t s^{(0, N)}
\end{aligned}
$$

and one process of these N updates is referred to an epoch

Example of mini-batch scheme

in this figure, batch size is 1

- continue this pattern on a second epoch of steps and so on
- when the batch size is bigger than 1, e.g., a batch contain samples $i=1,3,10,28$, we take a descent step in minimizing $\sum_{i=1,3,10,28}\left\|y_{i}-\hat{y}_{i}(x)\right\|_{2}^{2}$
- when mini-batch size is k, an epoch will contain $\lceil N / k\rceil$ updates - an epoch means that every point in the training set has been seen exactly once

Performance of mini-batch

example: $\underset{i n i m i z e}{ } \sum_{i=1}^{200} f_{i}(x)$ where $f_{i}(x)=a_{i}+b_{i} x+(1 / 2) c_{i} x^{2}$

for full batch, 1 epoch is equivalent to 1 iteration

- at 1 epoch, all methods have seen data of length $N=200$ once
- loss function of mini-batch at each step may not be monotonically decreasing
- mini-batch approaches descend significantly faster than full batch version

Performance of mini-batch

example: minimize $\sum_{i=1}^{200} f_{i}(x)$ where $f_{i}(x)=e^{a_{i} x+b_{i}}$

- two instances of data (different (a_{i}, b_{i}) in left and right figures)
- often observe benefits of mini-batch when the stepsize is not too small

Performance of mini-batch

mini-batch optimization often performs well when N is large

credit: Machine Learning Refined textbook, page 490

- an initial point of gradient-descent method can be insignificantly incorrect
- using only a small subset of data is sufficient to estimate the descent direction (but with less computational effort)

Convergence of mini-batch optimization

- a sufficient condition to guarantee convergence is $\sum_{k=1}^{\infty} t_{k}=\infty$ and $\sum_{k=1}^{\infty} t_{k}^{2}<\infty$
- in practice, the learning rate decays linearly until iteration τ

$$
t_{k}=(1-\alpha) t_{0}+\alpha t_{\tau}, \quad \text { with } \alpha=k / \tau
$$

and after $k>\tau$, leave t_{k} constant
convergence results: measure the excess error $f(x)-\min _{x} f(x)$

- for a convex problem, the excess error is $\mathcal{O}(1 / \sqrt{k})$ after k iterations
- for a strongly convex case, the error is $\mathcal{O}(1 / k)$
- however, with large data sets, mini-batch can make rapid initial progress and this outweighs its slow asymptotic convergence

Issues of gradient methods in ML

Outlines

- zig-zagging behavior
- gradient method via a change of coordinate
- momentum-accelerated gradient descent
- slow-crawing behavior
- normalized gradient descent

Main challenges

in gradient-based optimization

- zig-zagging behavior of gradient steps
- flat region (updated sequences can stuck)
- high curvature of f
factors: steplength choice, search direction

Convergence of gradient-descent method

assume f is continuously differentiable
the update $x^{+}=x-t \nabla f(x)$ gives convergent sequences to a local optimum when t is from any of the following rules

- exact line search
- backtracking line search
- fixed $0<t<2 / L$ where L is a Lipschitz constant of ∇f (require Lipschitz continuity)
however, in ML applications,
- using a line search requires additional computation cost
- f is highly nonlinear and not possible to find L
- a fixed step length (aka learning rate) is often used and experiment on the choice

Curvature of f

curvature of a graph provides a measure how sharply a smooth curve turns

- we want to use a large step in the direction of low curvature (to make a rapid progress) and vice versa
- when ∇f has different magnitudes in different direction, choosing t is hard for gradient steps - in this figure, a large t can make a huge progress in x_{2} direction (and could be further diverge) but a small t gives a slow update in x_{1} direction

Zig-zagging behavior of gradient descent

minimize $f(x)=(1 / 2)\left(x_{1}^{2}+\gamma x_{2}^{2}\right)$ using exact line search and $x^{(0)}=(\gamma, 1)$

- for $\gamma>1$, the gradient is more significant in x_{2} direction, making the contour of f (which is ellipsoid) elongates in x_{1} direction
- when γ is large, the gradient method can cause a zig-zagging behavior and has a slow convergence

Change of coordinates

$39 / 71$

Weighted norm and dual norm

a weighted norm (by matrix $P \succ 0$) is defined as

$$
\|z\|_{P}=z^{T} P z=\left\|P^{1 / 2} z\right\|_{2}
$$

(it satisfies all three properties of a norm)
the dual norm of a norm $\|\cdot\|$ on \mathbf{R}^{n} is denoted by

$$
\|z\|_{*}=\sup \left\{z^{T} x \mid\|x\| \leq 1\right\}
$$

- the dual norm is a norm
- the dual norm of the Euclidean norm is the Euclidean norm itself
- the dual norm of the ℓ_{1}-norm is the ℓ_{∞}-norm (and vice versa)
- the dual norm of $\|z\|_{P}$ is $\left\|P^{-1 / 2} z\right\|_{2}$

Steepest descent for quadratic norm

for any norm $\|\cdot\|$, we define two steepest descent directions by considering $\nabla f^{T}(x) v$

- $\nabla f^{T}(x) v$ is the directional derivative of f at x in the direction v
- normalized steepest descent: gives the largest decrease in directional derivative

$$
\Delta x_{\text {nsd }}=\operatorname{argmin}\left\{\nabla f(x)^{T} v \mid\|v\|=1\right\}
$$

- unnormalized steepest-descent: scaled by the dual norm of gradient

$$
\Delta x_{\mathrm{sd}}=\|\nabla f(x)\|_{*} \Delta x_{\mathrm{nsd}}
$$

Example

a weighted norm $\|z\|_{P}:=\left\|P^{1 / 2} z\right\|_{2}$ for $P \succ 0$

- minimize $w^{T} v$ over $\left\|P^{1 / 2} v\right\|_{2}=1$ is equivalent to minimize $w^{T}\left(P^{-1 / 2} y\right)$ over $\|y\|_{2}=1$
- the solution is $v=-\frac{P^{-1} w}{\left\|P^{-1 / 2} w\right\|_{2}}$
- from the above result, the normalized steepest descent direction is

$$
\Delta x_{\mathrm{nsd}}=-\frac{P^{-1} \nabla f(x)}{\left\|P^{-1 / 2} \nabla f(x)\right\|_{2}}
$$

- dual norm is $\|z\|_{*}=\left\|P^{-1 / 2} z\right\|_{2}$, so the unnormalized direction is

$$
x_{\mathrm{sd}}=-P^{-1} \nabla f(x)
$$

Gradient method via a change of coordinate

a change of coordinate via $z=P^{1 / 2} x$ where $P^{1 / 2}$ is a square root of $P \succ 0$
the objective function and the negative gradient step in the new coordinate are

$$
\begin{aligned}
f(x) & =f\left(P^{-1 / 2} z\right) \triangleq \tilde{f}(z) \\
\Delta z & =-\nabla \tilde{f}(z)=-P^{-1 / 2} \nabla f\left(P^{-1 / 2} z\right)=-P^{-1 / 2} \nabla f(x)
\end{aligned}
$$

the gradient search in z coordinate corresponds to the direction in x variable as

$$
\Delta x=P^{-1 / 2} \Delta z=P^{-1 / 2}\left(-P^{-1 / 2} \nabla f(x)\right)=-P^{-1} \nabla f(x)
$$

this can be interpreted as the steepest-descent direction in quadratic norm $\|\cdot\|_{P}$ data normalization in neural network (at input layer) can be seen as a change of coordinate before applying a gradient method

Example of gradient descent in a new coordinate

minimize $f(x)=e^{x_{1}+a x_{2}-0.1}+e^{x_{1}-a x_{2}-0.1}+e^{-x_{1}-0.1}$ using $x^{+}=x-t P^{-1} \nabla f(x)$

- when $a>1, \nabla f(x)$ has significant magnitude in x_{2} direction ($a=7$ in the figure)
- $P=I$ (the traditional steepest-descent for Euclidean norm)
- $P_{1}=\operatorname{diag}(2,8)$ and $P_{2}=\boldsymbol{\operatorname { d i a g }}(8,2)$ (steepest-descent for P-norm)

Example of gradient descent in a new coordinate

- the experimental results when $a=3$
- the stepsize is obtained via backtracking
- the normal gradient step has zig-zagging behavior for some initial points
- first row: using P_{1} gives an improved convergence while P_{2} yields a slower convergence
- the second row shows the sublevel sets in the new coordinates w.r.t P_{1} and P_{2}
- when changing the coordinate, the Hessian of \tilde{f} is $P^{-1 / 2} \nabla f^{2} P^{-1 / 2}$, so we select P so that the new Hessian has a low condition number

$$
P^{-1 / 2} \nabla f^{2} P^{-1 / 2} \approx I
$$

(as the condition number typically appears in the convergence of $f\left(x^{(k)}\right)-p^{\star}$

- the sublevel set with P_{1} shows a lower condition number as compared to P_{2} (decrease in function value are about the same rate in both x_{1} and x_{2} directions)

Momentum-accelerated algorithms

Exponential averaging

some common smoothing techniques of sequences $y_{0}, y_{1}, \ldots, y_{K}$

- cumulative moving average: take the sample means

$$
z_{k}=\left(y_{1}+\cdots+y_{k}\right) / k \quad \Leftrightarrow \quad z_{k}=\left(\frac{k-1}{k}\right) z_{k-1}+\frac{1}{k} y_{k} \quad \text { (recursive equation) }
$$

as k is large, the weight of y_{k} is less

- exponential moving average (EMA): autoregressive sequence with y_{k} as input

$$
\begin{aligned}
& z_{k}=\beta z_{k-1}+(1-\beta) y_{k}, \quad \beta \in[0,1] \\
& z_{k}=\beta^{k} z_{0}+\sum_{\tau=1}^{k} \beta^{k-\tau}(1-\beta) y_{\tau}
\end{aligned}
$$

effect of past z_{t} 's decays; z_{k} depends on the latest z_{k-1} and the recent y_{k}

Example: effect of β

■ left: sequence $z_{k}=\beta z_{k-1}+y_{k}$

- right: EMA sequence $z_{k}=\beta z_{k-1}+(1-\beta) y_{k}$
- both z_{k} can be interpreted as a filtered version of y_{k} but with different gain - as β increases, z_{k} is smoothen out but has a higher bias deviating from y_{k}

Physical analogy of momentum

a particle with mass m moving through a viscous medium caused by a force F

$$
m \ddot{x}(t)+\mu \dot{x}(t)=F
$$

- $-\mu \dot{x}(t)=-\mu v(t)$ is the viscous friction (proportional to velocity)
- discretizing $\dot{x}(t)=(x(t+h)-x(t)) / h$ where h is a stepsize

$$
m\left(\frac{x(t+h)+x(t-h)-2 x(t)}{h^{2}}\right)+\mu\left(\frac{x(t+h)-x(t)}{h}\right)=F
$$

- arranging the term and we obtain a discretized equation of sequence $v^{(k)}$

$$
\begin{aligned}
x(t+h)-x(t) & =\frac{h^{2}}{m+\mu h} F+\frac{m}{m+\mu h}(x(t)-x(t-h)) \\
v^{(k)} & \triangleq \epsilon F+\beta v^{(k-1)}
\end{aligned}
$$

- F will be represented by the negative gradient of objective function

Negative gradient as force

net force: $=$ negative gradient and viscous friction

$$
\text { momentum algorithm: } \quad v^{(k)}=\beta v^{(k-1)}-\epsilon \nabla f\left(x^{(k-1)}\right), \quad x^{(k)}=x^{(k-1)}+v^{(k)}
$$

- we can think of $-\nabla f$ as a force moving a particle with velocity v which then represents the momentum for unit mass
- instead of using $-\nabla f$ to change the position, use it to change the velocity
- β is referred to a friction/damping/momentum parameter; ϵ is a learning rate
- as the particle rolls down and pick up the speed, it can escape from the flat region or local traps in the bowl (overshooting)
- if $-\nabla f$ is the only force, the particle never comes to rest (the hill is frictionless)
- while increasing β helps in avoiding local optima, it might also increase oscillation at the end (β should be <1)
- as $v^{(k)}$ is EMA of past gradients, zigzagging behavior of gradients can be smoothed out for v to update x

Momentum-accelerated gradient descent

to ameliorate some zig-zagging behavior of gradient descent steps

- initialize $v^{(0)}=-\nabla f\left(x^{(0)}\right)$ (using the negative gradient direction)
- perform exponential averaging the descent direction

$$
\begin{aligned}
& v^{(k)}=\beta v^{(k-1)}+(1-\beta)\left(-\nabla f\left(x^{(k-1)}\right)\right) \\
& x^{(k)}=x^{(k-1)}+t v^{(k)}
\end{aligned}
$$

- $v^{(k)}$ captures EMA or momentum of the directions preceding it
- we can think of $-\nabla f$ as a force moving a particle with velocity v which then represents the momentum for unit mass
- typical use of large $\beta \in[0.7,1]$ means the less $v^{(k-1)}$ uses the actual negative gradient direction, but the more it summarizes all previous negative gradients

Example

example: minimize $\left(x_{1}^{2}+10 x_{2}^{2}\right)$ using gradient methods with $t=0.2$

zig-zagging behavior of gradient descent can be ameliorated using a higher value of β

Nesterov accelerated gradient (NAG)

classical momentum form

$$
v^{(k)}=\beta v^{(k-1)}-\epsilon \nabla f\left(x^{(k-1)}\right), \quad x^{(k)}=x^{(k-1)}+v^{(k)}
$$

we call β as momentum coefficient and ϵ relates to the learning rate
Sutskever et al. 2013 proposed to combine Nesterov gradient method and momentum

$$
\begin{aligned}
v^{(k)} & =\beta v^{(k-1)}-\epsilon \nabla f\left(x^{(k-1)}+\beta v^{(k-1)}\right) \\
x^{(k)} & =x^{(k-1)}+v^{(k)}
\end{aligned}
$$

the gradient is evaluated at the point as if $x^{(k)}$ was updated from the current velocity we can initialize the update using $v^{(0)}=-\epsilon \nabla f\left(x^{(0)}\right)$

Example

minimize $\left(x_{1}^{2}+10 x_{2}^{2}\right)$ using gradient methods

- the less ϵ, the slower the algorithm converges)
- in this experiment, no convergence when setting $\epsilon=t=0.2$, so we show the results of using smaller ϵ

Slow-crawling behavior of gradient descent

when the objective function has a flat region near a local minimum the gradient near stationary points vanishes and the sequence updates slowly

- (left) $f(x)=x^{6}+0.1$ is minimized $(0,0)$
- (right) $f(x)=\max ^{2}\left(0,1+(3 x-2.3)^{3}\right)+\max ^{2}\left(0,1+(-3 x+0.7)^{3}\right)$ has a minimum at $x=1 / 2$ and saddle points at $x=7 / 30$ and $x=23 / 30$
- choice of initial guess, steplength and crawling behavior of standard gradient can prevent it from finding a local mininum

Flat region along one direction

when the function contour is flat along one direction (here, x_{2})

$$
f(x)=\max \left(0, \tanh \left(a\left(x_{1}+x_{2}\right)\right)\right)+\left|b x_{1}\right|+1, \quad a=4, b=0.4
$$

- the minimum is at $x=(0,0)$ and $p^{\star}=1$
- the standard gradient sequences halt (making no progress) and stuck in the valley

Normalized gradient descent

vanishing magnitude of $-\nabla f(x)$ can cause the method to halt at saddle points we can control the magnitude of $-\nabla f(x)$ via a normalization

- norm-2 of the negative gradient

$$
x^{(k)}=x^{(k-1)}-\left(\frac{t}{\left\|\nabla f\left(x^{(k-1)}\right)\right\|_{2}+\epsilon}\right) \nabla f\left(x^{(k-1)}\right)
$$

- the component-wise magnitude of the gradient

$$
\begin{aligned}
& x_{i}^{(k)}=x_{i}^{(k-1)}-t \cdot \frac{\nabla f\left(x^{(k-1)}\right)_{i}}{\left|\nabla f\left(x^{(k-1)}\right)_{i}\right|+\epsilon}, \quad i=1,2, \ldots, n \\
& x^{(k)}=x^{(k-1)}-t \cdot \operatorname{sign}\left(\nabla f\left(x^{(k-1)}\right)\right), \quad \text { if } \epsilon=0
\end{aligned}
$$

(because $y /|y|=\operatorname{sign}(y)$)

- normalized and standard gradient descent step only differ by the steplength choice

Example

result: minimize $f(x)=\max \left(0, \tanh \left(a\left(x_{1}+x_{2}\right)\right)\right)+\left|b x_{1}\right|+1$ using $a=4, b=0.4$

- if x_{2} is large enough (so that tanh becomes saturated), $\partial f / \partial x_{2}$ is nearly zero
- the standard gradient cannot make a progress along x_{2} dimension
- the normalized gradient by its norm can be problematic (in this case) because it even makes the gradient w.r.t. x_{2} smaller
- the normalized gradient by component-wise magnitude can make significant progresses in 20 steps (out of 1000 iterations, using $t=0.1$)

Gradient-based optimizers in ML

many algorithms proposed as extension of gradient descent for ML (aka optimizers)

- AdaGrad
(Duchi et al. 2011)
- Adadelta (extension of AdaGrad to restrict the window of gradient averaging)
- RMSProp
(Tieleman and Hinton 2012)
- Adam (Adaptive moment estimation)
(Kingma et al. 2015)
- AdaMax (a generalization of Adam to using ℓ_{∞}-norm) (Kingma et al. 2015)
- Nadam (Nesterov-Adam)
(Dozat 2016)
these algorithms combine averaging of past gradients and component-wise normalization of gradient
component-wise normalized gradient is often referred to adaptive learning rate

Gradient descent algorithms in ML

use aggregated information of past gradients to normalize the search direction

AdaGrad
$z_{i}^{(k)}=z_{i}^{(k-1)}+\left[\nabla f\left(x^{(k-1)}\right)_{i}\right]^{2}$,

RMSProp

$$
z_{i}^{(k)}=\beta z_{i}^{(k-1)}+(1-\beta)\left[\nabla f\left(x^{(k-1)}\right)_{i}\right]^{2}
$$

Adam

$y_{i}^{(k)}=\beta_{1} y_{i}^{(k-1)}+\left(1-\beta_{1}\right) \nabla f\left(x^{(k-1)}\right)_{i}$
$z_{i}^{(k)}=\beta_{2} z_{i}^{(k-1)}+\left(1-\beta_{2}\right)\left[\nabla f\left(x^{(k-1)}\right)_{i}\right]^{2}$
$x_{i}^{(k)}=x_{i}^{(k-1)}-t\left(\frac{\sqrt{1-\beta_{2}^{k}}}{1-\beta_{1}^{k}}\right) \frac{y_{i}^{(k)}}{\sqrt{z_{i}^{(k)}}+\epsilon}$

- $z^{(k)}$ and $y^{(k)}$ represent histories of the first and second moments of ∇f resp.
- the i th component of $-\nabla f\left(x^{(k)}\right)$ is normalized individually
(Duchi et al. 2011)

$$
x_{i}^{(k)}=x_{i}^{(k-1)}-t \frac{\nabla f\left(x^{(k-1)}\right)_{i}}{\sqrt{z_{i}^{(k)}}}
$$

(Tieleman and Hinton 2012)

$$
x_{i}^{(k)}=x_{i}^{(k-1)}-t \frac{\nabla f\left(x^{(k-1)}\right)_{i}}{\sqrt{z_{i}^{(k)}}}
$$

(Kingma et al. 2017)

Interpretation

- AdaGrad: $z^{(k)}$ is the cumulative sum of squared gradients up to time k
- using the square root of $z_{i}^{(k)}$ as normalization penalizes the i th component of the gradient that highly fluctuates
- as $z^{(k)}$ tends to be eventually large, so the search direction tends to slow down
- RMSProp: $z^{(k)}$ is the EMA of squared gradient
- the normalization by $\sqrt{z^{(k)}}$ is similar to AdaGrad
- since $z^{(k)}$ represents EMA of squared gradient, the progress of $x^{(k)}$ is not slowed prematurely
- however, if $z^{(0)}$ is set to 0 , this causes undesirable bias in early iterations
- Adam: use EMAs of both gradient and its square with $\beta_{1}=0.9, \beta_{2}=0.999$
- the search direction is the momentum of gradients scaled by the EMA of the second moment of gradient
- the initial estimates $z^{(0)}$ and $y^{(0)}$ are zero which are biased in early iterations
- improving over RMSProp, Adam has a bias correction term that converges to 1

Comparison of optimizers: ReLu and tanh functions

the example of f that has a flat region along x_{2} direction on page 58

$$
f(x)=\max \left(0, \tanh \left(a\left(x_{1}+x_{2}\right)\right)\right)+\left|b x_{1}\right|+1, \quad a=4, b=0.4
$$

- stepsize $t=0.1$, initialized at $x^{(0)}=(2,2), \beta$ of RMSProp is set as 0.9 , all auxiliary variables (z, y) were initialized at zero
- all methods can avoid being stuck the valley; only Adagrad halted at another x_{2}

Comparison of optimizers: ReLu and tanh functions

same setting but using $\epsilon=10^{-8}$ in the normalization of all methods

- $\nabla f(x)_{2}$ is zero when $\left|x_{2}\right|$ is large enough
- both normalized gradient and RMSProp uses $\nabla f(x)_{i}$ as search directions, we see ripples of x near the optimum since their $\nabla f(x)_{2}$ become zero
- the search direction of Adam is y_{i}, which is EMA of gradients; hence, the search direction becomes small near optimum, but not exact zero in x_{2} direction - giving smoother path of x

Comparison of optimizers: sum of exponential

(a convex) $f(x)$ on page 44 that $\nabla f(x)$ is more significant in one direction

$$
f(x)=e^{x_{1}+7 x_{2}-0.1}+e^{x_{1}-7 x_{2}-0.1}+e^{-x_{1}-0.1}
$$

- stepsize $t=0.2, x^{(0)}=(-3,1), \epsilon=10^{-8}, \beta_{\text {RMSProp }}=0.9$
- both RMSProp and Adam performed better than other methods
- AdaGrad is slowest; normalized gradient progressed quickly but oscillated

Adam's performance

figures taken from Kingma et al. 2015 (Adam paper)

- ℓ_{2}-regularized multi-class logistic regression (convex problem)
- MNIST data set: Adam has similar convergence to SGD and both are faster than AdaGrad
- IMDB movie review data set: both Adam and AdaGrad (which can be efficiently deal with sparse features) have faster convergence than SGD with Nesterov
figures taken from Kingma et al. 2015 (Adam paper)

- multilayer NN with cross-entropy loss and dropout (non-convex problems)
- Adam had better convergence than others, and was compared with SFO (sum-of-functions) which is a quasi-Newton method

Summary

choosing an algorithm depends on the properties of f and problem scale

- differentiable f, medium scale: CG, quasi-Newton
- convex and smooth f : interior-point methods, first-order accelerated methods
- large-scale, non-convex: normalized momentum-accelerated algorithms
- a large sum of f_{i} : incorporate mini-batch optimization
notes: the performance of algorithms depend on
- initial guess of $x^{(0)}$: lead to poor local minima, saddle points, flat region
- steplength: a larger t makes $x^{(k)}$ have a significant progress; but may lead to divergence when t is too large
- algorithm parameters: different algorithms can have different proper choices (e.g., momentum coeffiicent β can be differently chosen for each method)

Convergence analysis

based on the original documents of described algorithms

- Adam and AdaGrad papers have performance analysis based on regret function (used in a context of online learning)
- RMSProp and Nadam are intuitive and empirical work
more recent literature on the analysis of these algorithms exist and should be further explored

References

gradient methods for ML

1 Chapter 3 and Appendix A in J. Watt, R. Borhani, and A.K. Katsaggelos, Machine Learning Refined: Foundations, Algorithms, and Applications, 2nd edition, Cambridge University Press, 2020
2 Chapter 4 and 5 in C.C. Aggarwal, Linear Algebra and Optimization for Machine Learning: A Textbook, Springer 2020
3 Chapter 6 in I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, The MIT Press, 2016
4 J.Duchi, E.Hazan, Y.Singer, Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, Journal of Machine Learning Research, 2011
5 I. Sutskever, J. Martens, G. Dahl and G. Hinton, On the importance of initialization and momentum in deep learning, ICML, 2013
6 G. Hinton, N.Srivastava, and K. Swersky, RMSProp: Divide the gradient by a running average of its recent magnitude, Lecture notes of Neural Networks for Machine Learning, University of Toronto [Slide:]
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf [Video:] https://www.youtube.com/watch?v=XhZahXzEuNo
7 D.P. Kingma, ADAM: A Method for stochastic optimization, ICLR, 2015
8 T. Dozat, Incorporating Nesterov momentum into ADAM, ICLR workshop, 2016

