

Outline

1 Lagrangian and dual function

2 Dual problem
3 Slater's condition
4 Karush-Kuhn-Tucker (KKT) conditions
5 Projection onto probability simplex
6 Soft-margin SVM
7 Conjugate function
8 Importance of KKT conditions
9 Exercises

Lagrangian and dual function

General setting

(mathematical) optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

■ $x=\left(x_{1}, \ldots, x_{n}\right)$: optimization variable

- $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$: objective function (generally, nonlinear)
$\square f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}, i=1, \ldots, m$: inequality constraint functions
$\square h_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}, i=1, \ldots, p$: equality constraint functions domain of the problem: $\mathcal{D}=\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i}$

Lagrangian

Lagriangian $L: \mathbf{R}^{n} \times \mathbf{R}^{m} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$ with dom $L=\mathcal{D} \times \mathbf{R}^{n} \times \mathbf{R}^{p}$

$$
L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

- L is a weigthed sum of objective and constraint functions

■ $\lambda \in \mathbf{R}_{+}^{m}$ is the Lagrange multiplier corresponding to inequality constraints
■ $\nu \in \mathbf{R}^{p}$ is the Lagrange multiplier corresponding to equality constraints

Lagrange dual function

Lagrange dual function: $g: \mathbf{R}^{m} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$,

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) \\
& =\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right)
\end{aligned}
$$

g is concave and can be $-\infty$ for some λ, ν
lower bound property: if $\lambda \succeq 0$ then $g(\lambda, \nu) \leq p^{\star}$

- if \tilde{x} is feasible and $\lambda \succeq 0$ then

$$
f_{0}(\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf _{x \in \mathcal{D}} L(x, \lambda, \nu)=g(\lambda, \nu)
$$

- minimizing over all feasible \tilde{x} gives $p^{\star} \geq g(\lambda, \nu)$

Least-norm solution of linear equations

problem: minimize $(1 / 2) x^{T} x$ subject to $A x=b$

dual function

- Lagrangian is $L(x, \nu)=(1 / 2) x^{T} x+\nu^{T}(A x-b)$
- to minimize L over x, set gradient equal to zero:

$$
\nabla_{x} L(x, \nu)=x+A^{T} \nu=0 \quad \Rightarrow \quad x=-A^{T} \nu
$$

- substitute x in L to obtain g

$$
g(\nu)=L\left(-A^{T} \nu, \nu\right)=-(1 / 2) \nu^{T} A A^{T} \nu-b^{T} \nu
$$

which is concave in ν
lower bound property: $p^{\star} \geq-(1 / 2) \nu^{T} A A^{T} \nu-b^{T} \nu$ for all ν

Standard form LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \quad x \succeq 0
\end{array}
$$

- Lagrangian is

$$
\begin{aligned}
L(x, \lambda, \nu) & =c^{T} x+\nu^{T}(A x-b)-\lambda^{T} x \\
& =-b^{T} \nu+\left(c+A^{T} \nu-\lambda\right)^{T} x
\end{aligned}
$$

- since L is affine in x

$$
g(\lambda, \nu)=\inf _{x} L(x, \lambda, \nu)= \begin{cases}-b^{T} \nu, & \text { if } A^{T} \nu-\lambda+c=0 \\ -\infty, & \text { otherwise }\end{cases}
$$

g is linear on affine domain $\left\{(\lambda, \nu) \mid A^{T} \nu-\lambda+c=0\right\}$, hence concave lower bound property: $p^{\star} \geq-b^{T} \nu$ if $A^{T} \nu+c \succeq 0$

Dual problem

The dual problem

Lagrange dual problem

$$
\begin{array}{ll}
\text { maximize } & g(\lambda, \nu) \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

- we find the best lower bound on p^{\star} obtained from Lagrange dual function
- a convex problem (even if the primal is non-convex); optimal value denoted d^{\star}

■ λ, ν are dual feasible if $\lambda \succeq 0$ for $(\lambda, \nu) \in \operatorname{dom} g$
■ often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit example: standard form LP and its dual

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \succeq 0
\end{array}
$$

$$
\begin{array}{ll}
\text { maximize } & -b^{T} \nu \\
\text { subject to } & A^{T} v+c \succeq 0
\end{array}
$$

(dual of LP is an LP)

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star}$ (always holds for convex and non-convex problems)

- can be used to find non-trivial lower bounds for difficult problems
- if the primal in unbounded below ($p^{\star}=-\infty$), then $d^{\star}=-\infty$ (the dual is infeasible)
- if the dual is unbounded above $\left(d^{\star}=\infty\right)$, we have $p^{\star}=\infty$ (the primal is infeasible)
- $p^{\star}-d^{\star}$ is called the duality gap and always non-negative
strong duality: $d^{\star}=p^{\star}$
- strong duality does not hold in general but usually holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's condition

Slater's constraint qualification

strong duality holds for a convex problem

$$
\begin{array}{ll}
\operatorname{minmize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1,2, \ldots, m \\
& A x=b
\end{array}
$$

if it is strictly feasible, i.e.,

$$
\exists x \in \operatorname{int} \mathcal{D}: \quad f_{i}(x)<0, \quad i=1,2, \ldots, m, \quad A x=b
$$

- strong duality also guarantees that the dual optimum is attained (if $p^{\star}>-\infty$)

$$
\exists \text { a dual feasible }\left(\lambda^{\star}, \nu^{\star}\right) \text { with } g\left(\lambda^{\star}, \nu^{\star}\right)=d^{\star}=p^{\star}
$$

- weak form of Slater's condition: strong duality holds when some of f_{i} 's are affine

$$
f_{i}(x) \leq 0, \quad i=1,2, \ldots, k, \quad f_{i}(x)<0, \quad i=k+1, \ldots, m, \quad A x=b
$$

Inequality form LP

primal problem (P)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq b
\end{array}
$$

dual function

$$
g(\lambda)=\inf _{x}\left[\left(c+A^{T} \lambda\right)^{T} x-b^{T} \lambda\right]= \begin{cases}-b^{T} \lambda, & \text { if } A^{T} \lambda+c=0 \\ -\infty, & \text { otherwise }\end{cases}
$$

dual problem (D)

$$
\begin{array}{ll}
\text { maximize } & -b^{T} \lambda \\
\text { subject to } & A^{T} \lambda+c=0, \quad \lambda \succeq 0
\end{array}
$$

- from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{x} \prec b$ for some \tilde{x} (primal is feasible)
- in fact, $p^{\star}=d^{\star}$ except when primal and dual are infeasible
- we can verify that the Lagrange dual of problem D is equivalent to the primal P

Quadratic program

primal problem (assume $P \in \mathbf{S}_{++}^{n}$)

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} P x \\
\text { subject to } & A x \preceq b
\end{array}
$$

dual function

$$
g(\lambda)=\inf _{x}\left(x^{T} P x+\lambda^{T}(A x-b)\right)=-\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda
$$

dual problem

$$
\begin{array}{ll}
\text { maximize } & -(1 / 4) \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

- from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{x} \prec b$ for some \tilde{x}

Complementary slackness

assume strong duality holds, x^{\star} is primal optimal, $\left(\lambda^{\star}, \nu^{\star}\right)$ is dual optimal

$$
\begin{aligned}
f_{0}\left(x^{\star}\right)=g\left(\lambda^{\star}, \nu^{\star}\right) & =\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x)+\sum_{i=1}^{p} \nu_{i}^{\star} h_{i}(x)\right) \\
& \leq f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)+\sum_{i=1}^{p} \nu_{i}^{\star} h_{i}\left(x^{\star}\right) \\
& \leq f_{0}\left(x^{\star}\right) \quad\left(\text { because } h_{i}(x)=0 \text { and } \lambda_{i} f_{i}\left(x^{\star}\right) \leq 0\right)
\end{aligned}
$$

hence, the two inequalities hold with equality and we must have

- x^{\star} minimizes $L\left(x, \lambda^{\star}, \nu^{\star}\right)$
- $\lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0$ for $i=1,2, \ldots, m$ (known as complementary slackness)

$$
\lambda_{i}^{\star}>0 \Longrightarrow f_{i}\left(x^{\star}\right)=0, \quad f_{i}\left(x^{\star}\right)<0 \Longrightarrow \lambda_{i}^{\star}=0
$$

Karush-Kuhn-Tucker (KKT) conditions

Karush-Kuhn-Tucker (KKT) conditions

for a problem with differentiable f_{i}, h_{i}, the four conditions are called KKT
1 primal feasibility: $f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}=0, i=1, \ldots, p$
dual feasiblity: $\lambda \succeq 0$
3 complementary slackness: $\lambda_{i} f_{i}(x)=0, i=1,2, \ldots, m$
4
zero gradient of Lagrangian with respect to x

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+\sum_{i=1}^{p} \nu_{i} \nabla h_{i}(x)=0
$$

KKT as necessary conditions: if strong duality holds and ($x^{\star}, \lambda^{\star}, \nu^{\star}$) are optimal, then they must satisfy the KKT conditions (follow from page 16)

KKT conditions for convex problems

if $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from the 1st KKT: \tilde{x} is primal feasible
- from the 2nd KKT ($\lambda_{i} \geq 0$) and convexity: $L(x, \tilde{\lambda}, \tilde{\nu})$ is convex in x
- from the 4th KKT: \tilde{x} minimizes $L(x, \tilde{\lambda}, \tilde{\nu})$ over $x \Rightarrow g(\tilde{\lambda}, \tilde{\nu})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from the 3rd KKT (complementary slackness) and $h_{i}(\tilde{x})=0$

$$
g(\tilde{\lambda}, \tilde{\nu})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})=f_{0}(\tilde{x})+\sum_{i=1}^{m} \tilde{\lambda}_{i} f_{i}(\tilde{x})+\sum_{i=1}^{p} \tilde{\nu}_{i} h_{i}(\tilde{x})=f_{0}(\tilde{x})
$$

conclusion: \tilde{x} and $(\tilde{\lambda}, \tilde{\nu})$ have zero duality gap and are primal and dual optimal
for convex problems, KKT conditions are sufficient for optimality
if Slater's condition is satisfied for convex problems

- from page 13, it implies duality gap is zero and the dual optimum is attained
- so, x is optimal if and only if there are (λ, ν), together with x, satisfy the KKT conditions

Projection onto probability simplex

Dual of projection onto the probability simplex

consider the problem of projecting a onto the probability simplex:

$$
\underset{x}{\operatorname{minimize}}(1 / 2)\|x-a\|_{2}^{2} \quad \text { subject to } x \succeq 0, \quad \mathbf{1}^{T} x=1
$$

- Lagrangian: $L(x, \lambda, \nu)=(1 / 2)\|x-a\|_{2}^{2}-(\lambda-\nu \mathbf{1})^{T} x-\nu$
- use the fact that $(1 / 2)\|x-a\|_{2}^{2}-y^{T} x$ is minimized over x when $x=y+a$ and the minimum is $-(1 / 2)\|y\|_{2}^{2}-y^{T} a$
- the dual problem is QCQP

$$
\underset{\lambda}{\operatorname{maximize}} g(\lambda, \nu):=-(1 / 2)\|\lambda-\nu \mathbf{1}\|_{2}^{2}-(\lambda-\nu \mathbf{1})^{T} a-\nu \quad \text { subject to } \lambda \succeq 0
$$

■ KKT conditions:

$$
\begin{gathered}
\text { primal feasibility: } x^{\star} \succeq 0, \quad \mathbf{1}^{T} x^{\star}=1 \text {, dual feasibility: } \lambda^{\star} \succeq 0, \\
\text { zero-gradient: } x^{\star}=\lambda^{\star}-\nu^{\star} \mathbf{1}+a, \text { complimentary slackness: } \lambda_{i}^{\star} x_{i}=0, \quad \forall i
\end{gathered}
$$

the dual probelm can be further simplified

$$
-g(\lambda, \nu)=(1 / 2)\|\lambda-(\nu \mathbf{1}-a)\|_{2}^{2}+\nu-(1 / 2)\|a\|_{2}^{2} \triangleq \tilde{g}(\lambda, \nu)
$$

(completing square in λ) - which can be minimized over λ first

$$
\lambda^{\star}=\left\{\begin{array}{ll}
\nu \mathbf{1}-a, & \nu \mathbf{1}-a \geq 0, \\
0, & \text { otherwise }
\end{array} \triangleq \quad \max (0, \nu \mathbf{1}-a) \triangleq \quad(\nu \mathbf{1}-a)^{+}\right.
$$

the dual problem becomes the minimization of $\tilde{g}\left(\lambda^{\star}, \nu\right)$ given by

$$
\begin{aligned}
\tilde{g}\left(\lambda^{\star}, \nu\right) & =(1 / 2)\left\|(\nu \mathbf{1}-a)^{+}-(\nu \mathbf{1}-a)\right\|_{2}^{2}+\nu-(1 / 2)\|a\|_{2}^{2} \\
& =(1 / 2)\left\|(a-\nu \mathbf{1})^{+}\right\|_{2}^{2}+\nu-(1 / 2)\|a\|_{2}^{2}
\end{aligned}
$$

(we have used $z=z^{+}-z^{-}$and $z^{-}=-\min (0, z)=\max (0,-z)=(-z)^{+}$)
there is an efficient way to find ν^{\star}; one of them is to find the subgradient

$$
\partial \tilde{g}=\left[(a-\nu \mathbf{1})^{+}\right]^{T} g+1=
$$

where $g=\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ and $g_{k}=-1$ if $a_{k}-\nu>0$ and $g_{k}=0$ otherwise
then zero is one of the subgradients (optimality condition) - find ν such that

$$
\partial \tilde{g}=1-\operatorname{sum}(a-\nu \mathbf{1})^{+}=0
$$

once we obtain ν^{\star}, we solve x^{\star} from KKT

$$
x^{\star}=\lambda^{\star}-\nu^{\star} \mathbf{1}+a=\left(\nu^{\star}-a\right)^{+}-\left(\nu^{\star} \mathbf{1}-a\right)=\left(a-\nu^{\star} \mathbf{1}\right)^{+}
$$

Soft-margin SVM

Soft-margin SVM

problem parameters: $x_{i} \in \mathbf{R}^{n}$ and $y_{i} \in\{1,-1\}$ for $i=1, \ldots, N, C>0$
optimization variables: $w \in \mathbf{R}^{n}, b \in \mathbf{R}, z \in \mathbf{R}^{N}$

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2)\|w\|_{2}^{2}+C \mathbf{1}^{T} z \\
\text { subject to } & y_{i}\left(x_{i}^{T} w+b\right) \geq 1-z_{i}, \quad i=1, \ldots, N \\
& z \succeq 0
\end{array}
$$

- z_{i} is called a slack variable, allowing some of the hard constraints to be relaxed
- if $z_{i}^{\star}>0$, the i th data point is relaxed to lie on the wrong side of its margin
- $\sum_{i} z^{\star}$ is the total distance of points on the wrong side of their margin (called margin errors)
- the penalty parameter C controls the trade-off between maximizing the margin and the margin errors

Dual of soft-margin SVM

dual problem of soft-margin SVM: with variable $\alpha \in \mathbf{R}^{N}$

$$
\begin{array}{lc}
\operatorname{maximize}_{\alpha} & \mathbf{1}^{T} \alpha-(1 / 2) \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \\
\text { subject to } & \sum_{i=1}^{N} \alpha_{i} y_{i}=0, \quad 0 \leq \alpha_{i} \leq C, \quad i=1,2, \ldots, N
\end{array}
$$

let α and λ be Lagrange multipliers (w.r.t. 1st and 2 nd inequalities on page 26)

$$
L(w, b, z, \alpha, \lambda)=\frac{1}{2}\|w\|_{2}^{2}-\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}^{T} w-b \sum_{i=1}^{N} \alpha_{i} y_{i}+(C \mathbf{1}-\alpha-\lambda)^{T} z+\mathbf{1}^{T} \alpha
$$

note that L is quadratic in $w: \frac{1}{2}\|w\|_{2}^{2}-d^{T} w$ and L is linear in b and z

- $\inf _{w} L$ occurs when $w=d=\sum_{i} \alpha_{i} y_{i} x_{i}$ and the infimum is

$$
-(1 / 2)\|d\|_{2}^{2}=-(1 / 2) d^{T} d=-(1 / 2) \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}
$$

- since L is linear in $z, b, \inf _{z} L$ and $\inf _{b} L$ exist (and are zero) only when

$$
\sum_{i} \alpha_{i} y_{i}=0, \quad C \mathbf{1}-\alpha-\lambda=0
$$

■ dual function: $g(\alpha)=-(1 / 2) \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}+\mathbf{1}^{T} \alpha$

- KKT conditions of SVM primal problem are

$$
\begin{array}{ll}
\text { primal feasiblity: } & y_{i}\left(x_{i}^{T} w+b\right) \geq 1-z_{i}, \quad i=1,2, \ldots, N, \\
& z \succeq 0 \\
\text { dual feasiblity: } & \sum_{i=1}^{N} \alpha_{i} y_{i}=0, \\
& 0 \leq \alpha_{i} \leq C, \quad i=1,2, \ldots, N \\
& \text { or equivalently, } \lambda \succeq 0, \quad \alpha=C \mathbf{1}-\lambda \\
\text { zero-gradient of } L: & w=\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} \\
\text { complementary slackness: } & \alpha_{i}\left[y_{i}\left(x_{i}^{T} w+b\right)-\left(1-z_{i}\right)\right]=0 \\
& \lambda_{i} z_{i}=0, i=1,2, \ldots, N
\end{array}
$$

Implications of SVM's KKT

dual feasibility and complementary slackness characterize three groups of points

$$
\alpha_{i}=C-\lambda_{i}, \quad \lambda_{i} z_{i}=0, \quad \alpha_{i}\left[y_{i}\left(x_{i}^{T} w+b\right)-\left(1-z_{i}\right)\right]=0
$$

correct side of the margin

$$
\alpha_{i}=0, \quad \lambda_{i}=C, \quad z_{i}=0, \quad y_{i}\left(x_{i}^{T} w+b\right) \geq 1
$$

edge of the margin

$$
0<\alpha_{i}<C, \quad \lambda_{i}>0, \quad z_{i}=0, \quad y_{i}\left(x_{i}^{T} w+b\right)=1
$$

wrong side of the margin

$$
\alpha_{i}=C, \quad \lambda_{i}=0, \quad y_{i}\left(x_{i}^{T} w+b\right)=1-z_{i}, \quad z_{i}>0
$$

- the observations i for which $\alpha_{i}>0$ are called support vectors because w is a linear combination of only those terms: $w=\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}$
- margin points: $y_{i}\left(x_{i}^{T} w+b\right)=1 \Leftrightarrow b=-x_{i}^{T} w+y_{i}$ (averaging all solutions)
a compact form of SVM dual

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) \alpha^{T} G \alpha-\mathbf{1}^{T} \alpha \\
\text { subject to } & \alpha^{T} y=0, \quad 0 \preceq \alpha \preceq C \mathbf{1}
\end{array}
$$

where $G \in \mathbf{R}^{N \times N}, \quad G_{i j}=\left\langle y_{i} x_{i}, y_{j} x_{j}\right\rangle$ (called a Gram matrix); clearly, $G \succeq 0$
■ it is a QP with a linear constraint and a box constraint

- this formulation is called C-SVC (C-support vector classification)
- available algorithms:
- quadratic programming solvers (active-set, interior-point) on the dual
- sequential minimal optimization (SMO) on the dual (used in fitcsvm by MATLAB and libsvm library, which supports nonlinear classifiers)
- coordinate descent on the dual (large-scale linear SVM, used in liblinear)

Conjugate function

Conjugate function and Lagrange dual

conjugate function: $f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & A x \preceq b, \quad C x=d
\end{array}
$$

dual function

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \operatorname{dom} f_{0}}\left[f_{0}(x)+\left(A^{T} \lambda+C^{T} \nu\right)^{T} x\right]-b^{T} \lambda-d^{T} \nu \\
& =-f_{0}^{*}\left(-A^{T} \lambda-C^{T} \nu\right)-b^{T} \lambda-d^{T} \nu
\end{aligned}
$$

if conjugate of f_{0} is known, it can simplify the derivation of dual

examples:

- entropy: $f_{0}(x)=\sum_{i=1}^{n} x_{i} \log x_{i}, \quad f_{0}^{*}(y)=\sum_{i=1}^{n} e^{y_{i}-1}$
- quadratic: $f_{0}(x)=(1 / 2)\|x-a\|_{2}^{2}, \quad f_{0}^{*}(y)=(1 / 2)\|y\|_{2}^{2}+y^{T} a$

Importance of KKT conditions

Importance of KKT conditions

many important roles of KKT conditions

- it is possible to solve KKT analytically in some problems

$$
\text { minimize: }(1 / 2) x^{T} P x+q^{T} x+r \quad \text { subject to } A x=b \quad \text { (where } P \in \mathbf{S}_{+}^{n} \text {) }
$$

KKT conditions are system of linear equations: $A x^{\star}=b$ and $P x^{\star}+q+A^{T} \nu^{\star}=0$

- many algorithms for convex optimization can be interpreted as methods for solving KKT conditions
- the dual problem can be easier to solve than the primal - once $\left(\lambda^{\star}, \nu^{\star}\right)$ is obtained, it is possible to compute a primal optimal from a dual optimal solution
- ($\lambda^{\star}, \nu^{\star}$) provide information for perturbation and sensitivity analysis - how the primal objective changes under a problem parameter perturbation

Solving the primal solution via the dual

suppose we have strong duality and a dual optimal $\left(\lambda^{\star}, \nu^{\star}\right)$ is known

- any primal optimal point is also a minimizer of $L\left(x, \lambda^{\star}, \nu^{\star}\right)$
- suppose that the solution of

$$
\begin{equation*}
\operatorname{minimize} L\left(x, \lambda^{\star}, \nu^{\star}\right):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x)+\sum_{i=1}^{p} \nu_{i}^{\star} h_{i}(x) \tag{1}
\end{equation*}
$$

is unique (for example, when $L\left(x, \lambda^{\star}, \nu^{\star}\right)$ is strictly convex in x)

- if the solution of (1) is primal feasible, it must be primal optimal
- if the solution of (1) is not primal feasible, then no primal optimal point can exist - that is, the primal optimum is not attained

Entropy maximization

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x):=\sum_{i=1}^{n} x_{i} \log x_{i} \\
\text { subject to } & A x \preceq b \\
& \mathbf{1}^{T} x=1
\end{array}
$$

dual problem:

$$
\begin{array}{ll}
\text { maximize }_{\lambda, \nu} & -b^{T} \lambda-\nu-e^{-\nu-1} \sum_{i=1}^{n} e^{-a_{i}^{T} \lambda} \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

- assume (weak) Slater's condition holds; hence, strong duality holds
- suppose we have solved the dual and obtain $\left(\lambda^{\star}, \nu^{\star}\right)$ to form

$$
L\left(x, \lambda^{\star}, \nu^{\star}\right)=\sum_{i=1}^{n} x_{i} \log x_{i}+\lambda^{\star T}(A x-b)+\nu^{\star}\left(\mathbf{1}^{T} x-1\right)
$$

which is strictly convex on \mathcal{D} and bounded below

Entropy maximization

- minimization of $L\left(x, \lambda^{\star}, \nu^{\star}\right)$ has a unique solution x^{\star} given by

$$
x^{\star}=1 / \exp \left(a_{i}^{T} \lambda^{\star}+\nu^{\star}+1\right), \quad i=1,2, \ldots, n
$$

(a_{i} are the columns of A)

- if x^{\star} is primal feasible, it must be the optimal solution of the primal problem
- if x^{\star} is not primal feasible, then the primal optimum is not attained

Sensitivity analysis

a perturbed optimization problem:

$$
\begin{array}{cl}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq u_{i}, \quad i=1,2, \ldots, m \\
& h_{i}(x)=v_{i}, \quad i=1,2, \ldots, p
\end{array}
$$

$p^{\star}(u, v)=\inf \left\{f_{0}(x) \mid \exists x \in \mathcal{D}, f_{i}(x) \leq u_{i}, i=1,2, \ldots, m, h_{i}(x)=v_{i}, i=1,2, \ldots, p\right\}$

- when $u_{i} \geq 0$, we relax the i th inequality constraint
- when $v_{i} \neq 0$, we change the equality constraint
- $p^{\star}(u, v)$ is defined the optimal value of the perturbed problem
- we have $p^{\star}(0,0)=p^{\star}$ (optimal value of unperturbed system)
- fact: when the original problem is convex, p^{\star} is a convex function of u and v

Global inequality

for all u and v, it can be shown that

$$
p^{\star}(u, v) \geq p^{\star}(0,0)-\lambda^{\star T} u-\nu^{\star T} v
$$

- if λ_{i}^{\star} is large and $u_{i}<0$ (tighten the i th inequality), then $p^{\star}(u, v)$ is guaranteed to increase greatly
- if λ_{i}^{\star} is small and $u_{i}>0$ (loosen the i th inequality), then $p^{\star}(u, v)$ will not decrease much
- if ν_{i}^{\star} is large and positive and $\left.v_{i}<0\right)$, then $p^{\star}(u, v)$ is guaranteed to increase greatly
- if ν_{i}^{\star} is small and positive and $v_{i}>0$, or if ν_{i}^{\star} is small and negative and $v_{i}<0$, then $p^{\star}(u, v)$ will not decrease much

Local sensitivity analysis

suppose $p^{\star}(u, v)$ is differentiable at $u=0, v=0$
if strong duality holds, the optimal dual $\lambda^{\star}, \nu^{\star}$ are related to

$$
\lambda_{i}^{\star}=-\frac{\partial p^{\star}(0,0)}{\partial u_{i}}, \quad \nu_{i}^{\star}=-\frac{\partial p^{\star}(0,0)}{\partial v_{i}}
$$

- tightening the i th inequality ($u_{i} \leq 0$ and small) yields an increase in p^{\star} of approximately $-\lambda_{i}^{\star} u_{i}$
- loosening the i th inequality ($u_{i} \geq 0$ and small) yields an decrease in p^{\star} of approximately $\lambda_{i}^{\star} u_{i}$

Exercises

Exercises

derive the dual problem and KKT conditions; some of them has x^{\star} in closed-form
1 minimize $(1 / 2)\|x-v\|_{2}^{2}$ subject to $x_{1}=x_{2}=\cdots=x_{N}$
2 minimize $(1 / 2)\|x-v\|_{2}^{2}$ subject to $a^{T} x \leq b$ (given that $a^{T} v \geq b$)
3 minimize $(1 / 2)\|A x-b\|_{2}^{2}$ subject to $x \succeq 0$

References

duality theory

1 S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Press, 2004
2 L. Vandenberghe, Lecture notes of EE236B - Convex Optimization, UCLA

algorithms for SVM

1 Chih-Chung Chang and Chih-Jen Lin, libsvm: a Library for support vector machines, https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
2 Rong-En Fan et.al., liblinear: a Library for large linear classifiers, https://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf
3 Cho-Jui Hsieh et.al, Dual coordinate descent method for large-scale linear SVM, https://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf
4 fitcsvm by MATLAB, https://www.mathworks.com/help/stats/fitcsvm.html

