Convex Optimization

Jitkomut Songsiri Department of Electrical Engineering Faculty of Engineering Chulalongkorn University CUEE August 2, 2023

Outline

1 General setting

- 2 Convex optimization
- **3** Problem Transformation
- 4 Structured convex problems
- 5 Optimality conditions
- 6 Numerical methods

General setting

Convex Optimization

Jitkomut Songsiri General setting

□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3 / 68

Problem setting

(mathematical) optimization problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

• $x = (x_1, \dots, x_n)$: optimization variable • $f_0 : \mathbf{R}^n \to \mathbf{R}$: objective function • $f_i : \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$: inequality constraint functions • $h_i : \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, p$: equality constraint functions

constraint set: $C = \{x \in \mathbf{R}^n \mid f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p\}$

domain of the problem: $\mathcal{D} = \bigcap_{i=0}^m \operatorname{dom} f_i \cap \bigcap_{i=1}^p \operatorname{dom} h_i$

Convex Optimization

Jitkomut Songsiri

(P1)

Optimal value

$$p^{\star} = \inf \{ f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ , i = 1, \dots, p \}$$

- we say x is **feasible** if $x \in \operatorname{dom} f_0(x)$ and $x \in \mathcal{C}$
- $p^{\star} = \infty$ if the problem is **infeasible**
- $p^{\star} = -\infty$ if the problem is unbounded below
- a feasible x is called **optimal** if $f_0(x) = p^*$; there can be many
- x is **locally optimal** if $\exists \epsilon > 0$ such that x is optimal for

minimize
$$f_0(z)$$

subject to $z \in C$, $||z - x||_2 \le \epsilon$

in other words, a locally optimal point is the best solution in a neighborhood

Convex Optimization

Terminology

some equivalent definition/setting

setting: another way of representing (P1)

```
minimize f_0(x) subject to x \in \mathcal{C} (P2)
```

• optimal point: we can also say x^{\star} is a **global minimizer** of f_0 over \mathcal{C}

$$f_0(x) \ge f_0(x^*) \quad \forall x \in \mathcal{C}$$

local optimal point: we can also say x^* is a **local minimizer** of f_0 over \mathcal{C}

 $\exists \epsilon > 0$ such that $f_0(x) \ge f_0(x^\star) \quad \forall x \in \mathcal{C} \cap ||x - x^\star|| < \epsilon$

- the standard form has an **implicit constraint**: $x \in \mathcal{D}$
- the constraint set C contains **explicit constraints**
- the problem is called **unconstrained** if it has no explicit constraints

Convex Optimization

a feasibility problem

find x subject to $x \in \mathcal{C}$

can be considered as a special case of the general problem with $f_0(x) = 0$

minimize 0 subject to $x \in \mathcal{C}$

• $p^{\star} = 0$ if constraints are feasible; any feasible x is optimal • $p^{\star} = \infty$ if constraints are infeasible

examples: C_1 has two-, C_2 has infinitely many feasible points, while C_3 is infeasible

$$\begin{array}{rcl} \mathcal{C}_1 &=& \{x \in \mathbf{R}^2 \mid (x_1 - 1)^2 + x_2^2 = 1, x_1 + x_2 = 1 \ \} \\ \mathcal{C}_2 &=& \{x \in \mathbf{R}^2 \mid (x_1 - 1)^2 + x_2^2 \leq 1, x_1 + x_2 = 1 \ \} \\ \mathcal{C}_3 &=& \{x \in \mathbf{R}^2 \mid (x_1 - 1)^2 + x_2^2 \leq 1, x_1 + x_2 = -3 \ \} \end{array}$$

Convex Optimization

Problem types

we can categorize optimization problems by

constraints

- unconstrained problem
- constrained problems
- variable types
 - continuous optimization
 - discrete optimization
- linearity of objective and constraints
 - linear program
 - nonlinear program

convexity of objective and constraint set

- convex problem
- non-convex problem

smoothness of the objective

- smooth problem
- non-smooth problem
- parameter randomness
 - stochastic optimization
 - deterministic optimization

this course focuses on continuous and deterministic optimization

other specific problem types are integer programming, vector optimization.

Convex Optimization

Optimality of unconstrained problems

assumption: f is twice continuously differentiable (smooth objective)1st-order necessary condition:

if x^{\star} is a local minimizer of f then $\nabla f(x^{\star}) = 0$

- **2nd-order necessary condition:** if x^* is a local minimizer of f then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succeq 0$ (positive semidefinite)
- **2nd-order sufficient condition:** if $\nabla f(x^{\star}) = 0$ and $\nabla^2 f(x^{\star}) \succ 0$ (pdf)

then x^{\star} is a strict local minimizer of f

local minimizers can be distinguished from other stationary points by examining positive definiteness of $\nabla^2 f$

example: $f(x) = x^4$ has $x^* = 0$ as a local minimizer; $\nabla^2 f(x^*) = 0$ (hence, 2nd-order sufficient condition fails)

Convex Optimization

Convex optimization

Convex Optimization

Jitkomut Songsiri Convex optimization

Convex sets

a set ${\mathcal C}$ is said to be convex if for any $x,y\in {\mathcal C}$ we have

 $\theta x + (1 - \theta)y \in \mathcal{C}, \quad \text{for all } 0 \le \theta \le 1$

which of the following sets are convex ?

fact: an intersection of convex sets is convex (even infinitely many number of intersections)

Convex Optimization

Convex functions

convex function: $f:\mathbf{R}^n\to\mathbf{R}$ is convex if

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all x,y in the domain of f and $0 \leq \theta \leq 1$

loosely speaking, f is convex if it has an upward shape

examples on **R**:

- affine: ax + b for any $a, b \in \mathbf{R}$
- exponential: e^{ax} for any $a \in \mathbf{R}$
- powers of absolute value: $|x|^p$ for $p \ge 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

Examples of convex functions on \mathbf{R}^n

- affine: $a^T x + b$
- **norm functions:** ||x||
- norms of affine: $||a^Tx + b||$
- quadratic: $x^T P x + q^T x$ when $P \succeq 0$
- negative entropy: $\sum_{i=1}^{n} x_i \log x_i$ on \mathbf{R}_{++}^n

fact: a set of inequality constraints described by convex functions is convex

$$C = \{x \in \mathbf{R}^n \mid f_i(x) \le 0, \ i = 1, 2, \dots, m\}$$

is a convex set if all f_i 's are convex functions

Convex Optimization

First- and second-order conditions of convex functions

suppose f is differentiable; then f is convex if and only if

 $\operatorname{\mathbf{dom}} f \ \text{ is convex and } \ f(y) \geq f(x) + \nabla f(x)^T(y-x), \quad \forall x,y \in \operatorname{\mathbf{dom}} f$

- the first-order Taylor approximation of f is a global underestimator of f if and only if f is convex
- if $\nabla f(x) = 0$ then for all $y \in \operatorname{dom} f, f(y) \ge f(x)$, *i.e.*, x is a global minimizer of f

assume that $\nabla^2 f$ exists at each point in dom f; then f is convex if and only if

$$\operatorname{\mathbf{dom}} f$$
 is convex and $\nabla^2 f(x) \succeq 0, \ \forall x \in \operatorname{\mathbf{dom}} f$

f is convex if and only if its Hessian matrix is positive semidefinite

Convex Optimization

Convex programs

convex optimization problem is one of the form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & a_i^T x = b_i, \quad i = 1, \dots, p \end{array}$$

where

- objective and constraint functions are convex
- equality constraint functions $h_i(x) = a_i^T x b_i$ must be affine

result: an optimal solution of a convex program is a global minimizer

Convex Optimization

Properties of convex problems

convex problems are of interest due to some desirable properties

- many operations preserve convexity of a convex set
 - intersection
 - image (and inverse image) of affine mapping
 - image (and inverse image) of perspective mapping
- many operations preserve convexity of a convex function
 - non-negative weighted sum
 - composition with affine mapping, composition rules
 - pointwise maximum and supremum, minimization over one variable
 - perspective of a function
 - conjugate function (important role in duality theory)
- KKT conditions are *sufficient* and *necessary* for optimality

many optimization problems in engineering are convex programs

Convex Optimization

Linear program (LP)

a general linear program has the form

minimize
$$c^T x$$

subject to $Gx \leq h$
 $Ax = b$

where
$$G \in \mathbf{R}^{m \times n}$$
 and $A \in \mathbf{R}^{p \times n}$

example: minimize the cheapest diet that satisfies the nutritional requiremenets

- $x = (x_1, \ldots, x_n)$ is nonnegative quantity of n different foods
- each food has a cost of c_j ; cost objective is $c^T x$
- one unit quantity of food j contains d_{ij} amount of nutrients i
- \blacksquare constraints are $Dx \succeq h$ and $x \succeq 0$

Geometrical interpretation

 \blacksquare hyperplane: solution set of a linear equation with coefficient vector $a \neq 0$

$$\{x \mid a^T x = b\}$$

• halfspace: solution set of a linear inequality with coefficient vector $a \neq 0$

$$\{x \mid a^T x \le b \}$$

we say a is the **normal vector**

polyhedron: solution set of a finite number of linear inequalities

$$\{x \mid a_1^T x \le b_1, \ a_2^T x \le b_2, \ \dots, \ a_m^T x \le b_m \} = \{x \mid Ax \le b \}$$

intersection of a finite number of halfspaces

Convex Optimization

extreme point of \mathcal{C}

a vector $x \in C$ is an extreme point (or a vertex) if we cannot find $y, z \in C$ both different from x and a scalar $\alpha \in [0, 1]$ such that $x = \alpha y + (1 - \alpha)z$

Convex Optimization

Properties of LP

- another standard form: minimize $c^T x$ subject to Ax = b, $x \succeq 0$
- an LP may not have a solution (constraints are inconsistent or the feasible set is unbounded)
- we assume A is full row rank; if not, considering Ax = b
 - depending on A, the system could be inconsistent (hence, no extreme points), or
 - Ax = b contains redundant equations, which can be removed
- if a standard LP has a finite optimal solution then

a solution can always be chosen from among the vertices of the feasible set

(called **basic feasible solutions**)

- the dual of an LP is also an LP
- solutions of some simple LPs can be analytically inspected

Convex Optimization

Quadratic program (QP)

a quadratic program (QP) is in the form

 $\begin{array}{ll} \mbox{minimize} & (1/2)x^T P x + q^T x \\ \mbox{subject to} & Gx \preceq h \\ & Ax = b, \end{array}$

where $P \in \mathbf{S}^n, G \in \mathbf{R}^{m \times n}$ and $A \in \mathbf{R}^{p \times n}$

example: constrained least-squares

minimize
$$\|Ax - b\|_2^2$$

subject to $l \leq x \leq u$

QP has linear constraints

Convex Optimization

Properties of QP

- an unconstrained QP is unbounded below if P is not positive definite
- an unconstrained QP has a unique solution: $x = -P^{-1}q$ when $P \succ 0$
- \blacksquare a QP is a convex problem if P is positive semidifinite definite
 - if $P \succeq 0$ then a local minimizer x^* is a global minimizer (by convexity)
 - if $P \succ 0$ then x^* is a *unique* global solution (by strictly convexity)
- the feasible set (polyhedron) may be empty (hence, the problem is infeasible)
- the feasible set can be unbounded (but if $P \succ 0$ it implies boundedness)
- solution of a QP may not be at a vertex
- the dual of a QP is also a QP

Contour of quadratic objective

consider three cases of \boldsymbol{P} and different feasible sets

verify the location of the optimal solution for each constraint set

- left: a bounded set, a line, an unbounded feasible set
- \blacksquare middle: bounded and unbouded feasible sets, while f is unbounded below
- right: a bounded feasible set, while f is unbounded below and above

a quadratically constrained quadratic program (QCQP) is in the form

minimize
$$(1/x)x^T P_0 x + q_0^T x$$

subject to $(1/2)x^T P_i x + q_i^T x + r_i \le 0, \quad i = 1, \dots, m$
 $Ax = b,$

where $P_i{'}{\rm s}$ are positive semidefinite, $G\in {\bf R}^{m\times n}$ and $A\in {\bf R}^{p\times n}$

QCQP has both linear and quadratic constraints

Convex Optimization

consider a convex optimization problem: f is convex and $\ensuremath{\mathcal{C}}$ is a convex set

$$\min_{x} f(x) \quad \text{subject to} \quad x \in \mathcal{C} \tag{1}$$

Theorem: (Ghaoui book, section 8.3.1)

- any locally optimal solution is also globally optimal
- \blacksquare the set \mathcal{X}_{opt} of optimal points is convex

Proof

$$f_0(x) = \inf\{f_0(z) \mid z \text{ is feasible}, \|z - x\|_2 \le R\}$$
 for some $R > 0$

Proof of global minimum

proof: let x^{\star} be a local minimizer and $p^{\star}=f(x^{\star})$

• for any $y \in \mathcal{C}$ then we can write $z \in \mathcal{C}$ as a convex sum: $z = \theta y + (1 - \theta) x^{\star}$

• by the convexity of f

$$f(z) \le \theta f(y) + (1 - \theta) f(x^*) \quad \Rightarrow \quad f(z) - f(x^*) \le \theta (f(y) - f(x^*))$$

- since x^* is a local minimizer, LHS is non-negative if θ is small enough, then RHS is also non-negative
- we obtain $f(z) f(x^{\star}) \ge 0$ for any $z \in \mathcal{C} x^{\star}$ is also global optimal

• the optimal set can be written as the p^* -sublevel set

$$\mathcal{X}_{\text{opt}} = \{ x \in \mathcal{C} \mid f(x) \le p^{\star} \}$$

since a sublevel set of a convex function is convex, and f is convex, we have $\mathcal{X}_{\rm opt}$ is convex as claimed

Convex Optimization

Existence of solutions

Weierstrass extreme value theorem:

every continuous function $f : \mathbf{R}^n \to \mathbf{R}$ on a non-empty compact (closed and bounded) set attains its extreme values on that set

Theorem: sufficient condition for the existence

if $C \subseteq \text{dom } f$ is nonempty and compact and f is continuous on C then the problem (1) attains an optimal solution x^*

note that this theorem is not applicable to an unconstrained convex problem (because $C = \mathbf{R}^n$ which is not compact)

Convex Optimization

Coercive function

Definition: coercive functions

a function $f : \mathbf{R}^n \to \mathbf{R}$ is said to be **coercive** if for any sequence $\{x_k\} \subset \int \mathbf{dom} f$ tending to the boundary of $\mathbf{dom} f$, it holds that the function value sequence $\{f(x_k)\}$ tends to $+\infty^{-1}$

Lemma:

a continuous function with open domain is coercive *if and only if* all its sublevel sets $S_{\alpha} = \{x \mid f(x) \leq \alpha\}, \alpha \in \mathbf{R} \text{ are } \mathbf{compact}$

¹Ghaoui book, section 8.3.2

Existence of solutions (Coercive function)

Lemma: unconstrained optimization

if $C = \mathbf{R}^n$ and f is continuous and **coercive**, then the convex optimization (1) attains an optimal solution x^*

proof: take α that S_{α} is non-empty and follows the Weierstrass theorem

Lemma: constrained optimization

if $C \subseteq \operatorname{dom} f$ is non-empty and closed, and f is continuous on C and coercive, then the convex problem (1) attains an optimal solution x^*

Strictly convex function

a function f is said to be **strictly convex** if

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for all $x \neq y$ in the domain of f and $0 \leq \theta \leq 1$

- a strictly convex f satisfies the convexity condition with strict inequality
- $f(x) = a^T x + b$ is convex but not strictly convex
- intuitively, a convex function that has a 'flat' area is not strictly convex
- what about ϵ -insensitive loss function in SVR ?

Strongly convex

a function $f : \mathbf{R}^n \to \mathbf{R}$ is said to be strongly convex on S if

$$\exists m>0$$
 such that $f(x)-rac{m}{2}\|x\|_2^2$

is **convex** on S

related definition: if f is twice differentiable and

$$\nabla^2 f(x) \succeq mI$$
, for all $x \in S$

then f is said to be **strongly convex**

• example:
$$f(x) = x^T P x$$
 with $P \succ 0$

• a linear function $f(x) = a^T x + b$ is not strongly convex

■ fact: 🗞 a sum of convex and strongly convex functions is strongly convex

Strong convexity implies strict convexity

by convexity of $f(x) - \frac{m}{2} ||x||^2$, that is

$$f(\theta x + (1 - \theta)y) - \frac{m}{2} \|\theta x + (1 - \theta)y\|_2^2$$

\$\le \theta f(x) + (1 - \theta)f(y) - \frac{\theta m \|x\|^2}{2} - \frac{(1 - \theta)m \|y\|^2}{2}\$

move the squared norm to the RHS and simplify

$$\begin{split} f(\theta x + (1-\theta)y) &\leq \theta f(x) + (1-\theta)f(y) - \frac{m}{2}\theta(1-\theta)[\|x\|^2 - 2x^Ty + \|y\|^2] \\ &\leq \theta f(x) + (1-\theta)f(y) - \underbrace{\frac{m}{2}\theta(1-\theta)\|x - y\|_2^2}_{>0 \text{ for all } x \neq y} \end{split}$$

clearly, strong convexity implies strict convexity

Convex Optimization

Jitkomut Songsiri

34 / 68

Uniqueness of the optimal solution

Theorem:

if f is strictly convex in the problem (1), and x^* is an optimal solution, then x^* is the **unique** optimal solution

proof: let's prove by contradiction; let x^\star be an optimal point and there exists another $y^\star\neq x^\star$ that is also optimal

- \blacksquare both x^{\star} and y^{\star} are feasible and $f(x^{\star}) = f(y^{\star}) = p^{\star}$
- \blacksquare let $\theta \in (0,1)$ and let $z = \theta x^\star + (1-\theta)y^\star$
- \blacksquare by convexity of $\mathcal C$, z must be also feasible
- by strict convexity of f,

 $f(z) < \theta f(x^\star) + (1-\theta) f(y^\star) = p^\star \ \Rightarrow \ z \text{ achieves a lower function value}$

 \blacksquare this contradicts to the assumption that x^{\star} is globally optimal

Convex Optimization

Strict convexity by regularization

let's add a quadratic term to a convex objective function

$$\tilde{f}(x) = f(x) + \gamma ||x - c||_2^2$$

• clearly, $||x - c||_2^2$ is strongly convex

- a sum of convex and strongly convex is strongly convex
- hence, \tilde{f} is strongly convex and also strictly convex
- minimizing \tilde{f} over a convex set attains a unique optimal solution

Implications of strong convexity

obtain a quadratic lower bound on f (which is better)

$$f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(z) (y - x), \quad \text{for } z \in [x, y]$$

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} \|y - x\|_2^2, \quad \text{for } x, y \in S$$

- when m = 0, it reduces to the first-order condition for convexity
- strong convexity provides a higher lower bound than from convexity alone

Convex Optimization

Implications of strong convexity

obtain a quadratic upper bound for f on ${\cal S}$

to see this, let $x \in \operatorname{\mathbf{dom}} f$ and $y \in S = \{y | f(y) \le f(x)\}$ (x is a fixed point)

$$y \in S \Rightarrow 0 \ge f(y) - f(x) \ge \underbrace{\nabla f(x)^T (y - x) + \frac{m}{2} \|y - x\|_2^2}_{A}$$

 \blacksquare a set of y such that $A \leq 0$ is the region inside a bounded ellipsoid

then, the sublevel set S is contained in a bounded ellipsoid, so S is bounded
when ∇²f is assumed to be continuous, it is bounded on a bounded set
there exists M > 0 such that ∇²f(y) ≤ MI for all y ∈ S

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{M}{2} ||y - x||_2^2, \quad \forall x, y \in S$$

Convex Optimization

Jitkomut Songsiri

38 / 68

Bounds on the optimality gap

for a strongly convex \boldsymbol{f} and twice differentiable, it holds that

$$mI \preceq \nabla^2 f(x) \preceq MI, \quad \forall x \in S$$

and two inequalities for any points $x,y\in S$

$$f(y) \geq f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} \|y - x\|_2^2$$

$$f(y) \leq f(x) + \nabla f(x)^T (y - x) + \frac{M}{2} \|y - x\|_2^2$$

Convex Optimization

Problem transformation

Convex Optimization

Jitkomut Songsiri Problem transformation

<□ ▶ < □ ▶ < 壹 ▶ < 壹 ▶ < 壹 ▶ Ξ ∽) Q (~ 40 / 68

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one can be obtained from the solution of the other, and vice versa

examples: P1 and P2 are equivalent (but they are not the same)

minimize $||Ax - y||_2$ (P1) minimize $||Ax - y||_2^2$ (P2)

maximize $\frac{1}{\|Ax-y\|_2}$ (P1) minimize $\|Ax-y\|_2^2$ (P2)

maximize |f(x)| (P1) maximize $\log |f(x)|$ (P2)

using monotonically increasing property of squared and log functions

Convex Optimization

Transformation that yield equivalent problems

some transformations are useful for problem re-formulation

- eliminating equality constraints
- introducing slack variables
- epigraph form
- minimizing over some variables
- using indicator function to represent constraints

Eliminating equality constraints

the problem

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax=b \end{array}$$

is equivalent to

minimize
$$f_0(Fz + x_0)$$

subject to $f_i(Fz + x_0) \le 0$, $i = 1, ..., m$

where F and x_0 are such that

$$Ax = b \iff x = Fz + x_0$$
 for some x_0

Convex Optimization

Example: eliminating equality constraints

equality constraint in the form of Ax = b (non-trivial when A is fat)

minimize
$$||Hx - y||_2$$
 (P1) minimize $||\tilde{H}x - y||_2$ (P2)
subject to $x_1 + x_2 = 0$ where $\tilde{H} = \begin{bmatrix} h_1 - h_2 & h_3 & \cdots & h_n \end{bmatrix}$

• find the nullspace of A and its basis vectors $\frac{1}{2} = A(A) = \frac{1}{2} = \frac{1}{2}$

 $\dim \mathcal{N}(A) = r \quad \Leftrightarrow \quad \exists F \in \mathbf{R}^{n \times r} \text{ such that } AF = 0 \text{ and } F \text{ is full column rank}$

find a particular solution of Ax = b, says x₀
a general solutions to Ax = b is expressed as x = Fz + x₀ for any z

Introducing slack variables

the problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, \dots, m$

is equivalent to

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) + s_i = 0, \quad i = 1, \dots, m \\ & s_i \geq 0, \quad i = 1, 2, \dots, m \end{array}$$

Epigraph form

the epigraph of a function f_0 is the area above the graph f_0

the standard problem is equivalent to

minimize (over
$$x, t$$
) t
subject to
 $f_0(x) - t \le 0,$
 $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$

we minimize t over the epigraph of f_0 (objective is now linear of (x_2, t))

Convex Optimization

Example: epigraph form

example 1: $||z||_{\infty} \leq t$ if and only if $|z_i| \leq t$ for all iminimize_x $||Ax - y||_{\infty}$ (P1) minimize_(x,t) t (P2) subject to $-t \leq a_i^T x - y_i \leq t$, i = 1, ..., m

example 2: for a symmetric F, $||F||_2 \leq t$ if and only if $-tI \leq F \leq tI$

given symmetric matrices F_i for $i = 0, 1, \ldots, n$

$$\begin{aligned} \mininimize_x & \|F_0 + x_1F_1 + x_2F_2 + \dots + x_nF_n\|_2 \quad (\mathsf{P1})\\ \mininimize_{(x,t)} & t & (\mathsf{P2})\\ \text{subject to} & -tI \preceq F_0 + \sum_{i=1}^n x_iF_i \preceq tI \end{aligned}$$

Convex Optimization

Minimizing over some variables

the problem

$$\begin{array}{ll} \mbox{minimize} & f_0(x_1,x_2) \\ \mbox{subject to} & f_i(x_1) \leq 0, \quad i=1,\ldots,m \end{array}$$

is equivalent to

$$\begin{array}{ll} \mbox{minimize} & \tilde{f}_0(x_1) \\ \mbox{subject to} & f_i(x_1) \leq 0, \quad i=1,\ldots,m \end{array}$$

where $\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$

if the objective can be minimized over one variable easily, we can reduce the problem dimension

Convex Optimization

Example: minimizing over one variable

given $g_i : \mathbf{R}^n \to \mathbf{R}, y_i \in \mathbf{R}$ for $i = 1, \dots, N$, consider the problem

minimize
$$-N \log \left[\frac{1}{d}\right] + \frac{1}{d} \sum_{i=1}^{N} (g_i(x) - y_i)^2$$

first, we can minimize over d by setting the gradient w.r.t. 1/d to zero

$$d = \frac{1}{N} \sum_{i=1}^{N} (g_i(x) - y_i)^2$$

the reduced problem is

$$\underset{x}{\text{minimize}} \log \left[\frac{1}{N} \sum_{i=1}^{N} (g_i(x) - y_i)^2 \right] \quad \Longleftrightarrow \quad \underset{x}{\text{minimize}} \quad \sum_{i=1}^{N} (g_i(x) - y_i)^2$$

Convex Optimization

Jitkomut Songsiri

● 目 のへで

Constraints expressed as indicator functions

introduce the indicator function associated with a set $\ensuremath{\mathcal{C}}$

$$I_{\mathcal{C}}(x) = \begin{cases} 0, & x \in \mathcal{C} \\ +\infty, & x \notin \mathcal{C} \end{cases}$$

the minimization of $f_0(x)$ subject to $x \in \mathcal{C}$ is equivalent to

 $\underset{x}{\mathsf{minimize}} \quad f_0(x) + I_{\mathcal{C}}(x)$

note that $I_{\mathcal{C}}: \mathbf{R}^n \to \mathbf{R} \cup \{+\infty\}$ is extended-value function

we express the original constrained problem as an unconstrained problem usign $I_{\mathcal{C}}$

Convex Optimization

Structured convex problems

some structures that are amenable for parallel and distributed algorithms

separable sum

$$\underset{x_1,\ldots,x_m}{\text{minimize}} \quad f(x) := \sum_{i=1}^m f_i(x_i)$$

it is obvious that we can minimize over \boldsymbol{x}_i independently

global consensus

minimize
$$f(x) := \sum_{i=1}^{m} f_i(x)$$

000

 f_i is a local objective; x is the global variable

consensus form: add a consensus constraint that makes all local x_i 's agree

$$\underset{x_1,\ldots,x_m}{\text{minimize}} \quad \sum_{i=1}^m f_i(x) \quad \text{subject to} \quad x_1 = x_2 = \cdots = x_m$$

Convex Optimization

Jitkomut Songsiri

51 / 68

Structured convex problems

Convex Optimization

Jitkomut Songsiri Structured convex problems

↓ □ ▶ ↓ □ ▶ ↓ Ξ ▶ ↓ Ξ ▶ ↓ Ξ ♪ ○ Q ○ 52 / 68

Structured convex problems

global exchange

minimize
$$\sum_{i=1}^{m} f_i(x_i)$$
 subject to $\sum_{i=1}^{m} x_i = 0$

interpretation: x_i 's are quantities of commodities exchanged among m agents goal: minimize total social cost subject to the market clearing **allocation**

minimize
$$\sum_{i=1}^m f_i(x_i)$$
 subject to $x_i \ge 0, \ \sum_{i=1}^m x_i = b$

interpretation: x_i 's are non-negative resources allocated to m activities

goal: minimize each activity cost while the total resource is limited to a budget

Convex Optimization

Distributed model fitting

a problem of fitting \boldsymbol{y} using a linear model $A\boldsymbol{x}$ using a loss function l

$$\underset{x}{\mathsf{minimize}} \quad l(Ax - y) + r(x)$$

 $l(Ax - y) = \sum_{i=1}^{N} l_i (a_i^T x - y_i)$ represents the model cost due to error Ax - y

r is a separable function representing regularization, e.g., $\|\cdot\|_1, \|\cdot\|_2^2$

this is an example of global consensus

a common model parameter x that makes the model fits with *all* data samples

Convex Optimization

Nonsmooth optimization

a function is smooth if it is differentiable and the derivatives are continuous

• example:
$$f(x) = |x|$$
 is not smooth at $x = 0$

• example: f(x) = ||x|| is not smooth at x = 0

a problem is called **nonsmooth** if the objective or constraints are nonsmooth functions

example: lasso problems

minimize
$$||Ax - b||_2 + \gamma ||x||_1$$

then the methods relying on the gradient should be carefully revisited

Convex Optimization

Scalarized multi-objective optimization

a common form of multi-objective problem: for a given $\gamma > 0$,

minimize $f(x) + \gamma g(x)$

- we desire both f and g to be small but they are weighed in by a given weight, γ (or often called penalty parameter)
- \blacksquare as γ is higher, we penalize more on g, then the minimized g is smaller; in this case, we care less about f
- appear in model performance evaluation where two diffferent metrics are desired to be small
- example 1: minimize model error + model complexity
- example 2: minimize system tracking error + input power

Multi-objective optimization

setting: minimizing $f_0: \mathbf{R}^n \to \mathbf{R}^m$ (vector-valued function) over a feasible set

 $\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & x \in \mathcal{C} \end{array}$

a vector optimization has a vector-valued objective function

- \blacksquare example: $f_0(x) = ({\rm fuel}, {\rm time})$ the energy used and time spent of a vehicle parameter x
- require a generalized inequality definition for comparing any two vectors of $f_0(x)$

$$\begin{bmatrix} 5\\2 \end{bmatrix} \preceq \begin{bmatrix} 10\\3 \end{bmatrix} \quad \mathsf{but} \quad \begin{bmatrix} 5\\2 \end{bmatrix} \not \preceq \begin{bmatrix} 2\\4 \end{bmatrix}$$

here, for $f_0(x) \in \mathbf{R}^n$, we typically use the **non-negative orthant** to define \preceq

Convex Optimization

Achievable objective values

define $\mathcal{O} = \{f_0(x) \mid x \in \mathcal{C}\}$ the set of objective values of feasible points

• u is said to be the **minimum** element of \mathcal{O} if $u \leq v$, for every $v \in \mathcal{O}$ • u is said to be a **minimal** element of \mathcal{O} if $v \in \mathcal{O}$, $v \leq u$ only if v = u• if \mathcal{O} has a minimum point (then it is unique) and

 \exists feasible x such that $f_0(x) \preceq f_0(y)$, for all feasible y

then we say x is **optimal**

Convex Optimization

Pareto optimal points

consider when $\ensuremath{\mathcal{O}}$ does not have a minimum element

• x is called **Pareto optimal** (or efficient) if $f_0(x)$ is a minimal element of \mathcal{O} • a technique to extract pareto optimal points: scalarization (more on this later)

Convex Optimization

Optimality conditions

Convex Optimization

Jitkomut Songsiri Optimality conditions

<□ ▶ < 酉 ▶ < 壹 ▶ < 壹 ▶ Ξ ∽ Q () 60 / 68

Unconstrained optimality

assumption: f is twice continuously differentiable (smooth objective)

- **necessary condition:** if x^* is a local minimizer of f then
 - $1 \nabla f(x^{\star}) = 0$
 - **2** $\nabla^2 f(x^{\star}) \succeq 0$ (positive semidefinite)
- **sufficient condition:** if $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succ 0$ (positive definite), then x^* is a strict local minimizer of f
- \blacksquare when f is convex and differentiable, any stationary point x^{\star} is a global minimizer of f

example: the Rosenbrock function:

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

verify that $x^{\star} = (1,1)$ is the only local minimizer of f

Convex Optimization

Constrained optimality

first, define the Lagrangian function

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

where λ, ν are called the Lagrange multipliers for inequality and equality constraints

the KKT conditions are necessary conditions for optimality

- **1** zero-gradient condition of L: $\nabla_x L(x^\star, \lambda^\star, \nu^\star) = 0$
- primal and dual feasibility

$$f_i(x^*) \le 0, i = 1, \dots, m, \quad h_i(x^*) = 0, i = 1, \dots, p, \quad \lambda^* \succeq 0$$

3 complementary slackness condition: $\lambda_i f_i(x) = 0$ for i = 1, 2, ..., m

fact: for convex problems, KKT conditions are sufficient and necessary for optimality

Convex Optimization

Optimality of contrained LS

derive KKT conditions for

$$\underset{x}{\text{minimize}} \ (1/2) \|Ax - y\|_2^2 \ \text{subject to} \ l \preceq x \preceq u$$

the Lagrangian is $L(x,\lambda_1,\lambda_2)=(1/2)\|Ax-y\|_2^2+\lambda_1^T(l-x)+\lambda_2^Tx-u)$

KKT conditions are

- **1** zero-gradient of L: $A^T(Ax y) \lambda_1 + \lambda_2 = 0$
- **2** primal feasibility: $l \preceq x \preceq u$
- **3** dual feasibility: $\lambda_1, \lambda_2 \succeq 0$
- 4 complementary slackness condition:

$$\lambda_{1i}(l_i - x_i) = 0, \quad \lambda_{2i}(x_i - u_i) = 0, \quad i = 1, 2, \dots, n$$

Convex Optimization

Jitkomut Songsiri

63 / 68

Intro to duality theory

some quick facts

define the dual function as the infimum of the Lagrangian over primal variables

$$g(\lambda, \nu) = \inf_{x \in \operatorname{dom} \mathcal{D}} L(x, \lambda, \nu)$$

for any $\lambda \succeq 0$, the dual function provides a lower bound for p^* , *i.e.*, $g(\lambda, \nu) \le p^*$ any optimization problem (called a primal problem) has its dual problem

 $\underset{\lambda,\nu}{\operatorname{maximize}} \ g(\lambda,\nu) \ \text{subject to} \ \lambda\succeq 0$

which is the problem of finding the best lower bound, denoted as $d^{\star}\text{, for }p^{\star}$

- more theoretical results about relations between primal and dual problems when $d^* = p^*$, we say we have strong duality
- solving the dual can be more beneficial in some cases

Convex Optimization

Numerical methods

Convex Optimization

Jitkomut Songsiri Numerical methods

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ▶ ○ Q (~ 65 / 68

- unconstrained problems: gradient descent, Newton, quasi Newton, trust-region
- convex programs: interior point, gradient projection, ellipsoid method
- convex programs of certain structures: proximal methods
- linear programming: simplex, interior point
- quadratic programming: interior point, active set, conjugate gradient, augmented Lagrangian

Softwares

MATLAB: cvx

- CVX is a MATLAB-based modeling system for convex optimization
- http://cvxr.com/cvx/

Python

- CVXPY: Python-embedded modeling language for convex optimization problems available at https://www.cvxpy.org/ by Stephen Boyd group
- CVXOPT: Python-based package for convex optimization available at http://cvxopt.org/ by M. Andersen, J. Dahl and L. Vandenberghe

References

- **I** S. Boyd and L. Vandenberghe, *Convex Optimization*, Cambridge, 2004
- G. Calafiore and L. El Ghaoui, Optimization Models, Cambridge University Press, 2014
- **3** Y. Nesterov, *Introductory lectures on convex optimization: A basic course*, KAP, 2004
- 4 R.T. Rockfellar, *Convex Analysis*, Princeton University Press, 1970
- S.Boyd, N. Parikh, E. Chu, B.Peleato, and J. Eckstein, *Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers*, Foundations and Trends in Machine Learning, 2011