Constrained Optimization

Jitkomut Songsir

Department of Electrical Engineering Faculty of Engineering Chulalongkom University

• •

DAG

December 30, 2023

Jitkomut

Constrained problems

1 Lagrangian multiplier theorem

- 2 Equality constraint elimination
- 3 Convex constraints
- 4 Gradient projection methods

Constrained problems

Lagrangian multiplier theorem

Constrained problems

Jitkomut Songsiri Lagrangian multiplier theorem

Constrained problems

a general contrained optimization problem

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

inequality constraints can be converted to equality constraints

- introduce additional variables z_1, \ldots, z_m
- constraints $f_i(x) \leq 0$ for $i = 1, \ldots, m$, are equivalent to

$$f_1(x) + z_1^2 = 0, \quad \dots, \quad f_m(x) + z_m^2 = 0$$

a problem with inequality constraints can be regarded as the problem with equality contraints only

Constrained problems

Equality-constrained optimization

this lecture consider problems with equality constraints of the form

minimize f(x)subject to $h_i(x) = 0$, $i = 1, \dots, p$

we can consider two approaches of handling the equality constraints

- penalty approach
- elimination approach

Lagrangian function

the Lagrangian function $L: \mathbb{R}^n \to \mathbb{R}^{n+p}$ is defined by

$$L(x,\lambda) = f(x) + \sum_{i=1}^{p} \lambda_i h_i(x)$$

denote x^{\star} a local minimizer of f

the subspace of first-order feasible directions is defined as

$$S = \{ y \in \mathbf{R}^n \mid \nabla h_i(x^*)^T y = 0, \quad i = 1, 2, \dots, p \}$$

• $y \in S$ if y is orthogonal to all p gradients of constraint functions

Constrained problems

Lagrange multiplier theorem

regularity assumption: $\nabla h_1(x^*), \ldots, \nabla h_p(x^*)$ are linearly independent if x^* is a local minimizer of the problem on page 5 then

first-order condition: there exists a unique $\lambda^* \in \mathbf{R}^p$ called a Lagrange multiplier vector such that

$$\nabla f(x^{\star}) + \sum_{i=1}^{p} \lambda_i^{\star} \nabla h_i(x^{\star}) = 0$$

- \blacksquare at optimum, $\nabla f(x^{\star})$ is a linear combination of $\nabla_i h_i(x^{\star})$
- equivalent to the zero gradient of $\mathcal L$ forming a total n+p equations in (x,λ)
- second-order necessary condition

moreover, if $f \mbox{ and } h$ are twice continuously differentiable, we have

$$y^T \left(\nabla^2 f(x^\star) + \sum_{i=1}^p \lambda_i^\star \nabla^2 h_i(x^\star) \right) y \ge 0, \quad \forall y \in S$$

Constrained problems

Second-order sufficient condition

assume that $f \mbox{ and } h$ are twice continuously differentiable

if x^* and λ^* satisfy the zero-gradient condition of L:

$$\nabla_x L(x^\star, \lambda^\star) = 0, \quad \nabla_\lambda L(x^\star, \lambda^\star) = 0$$

and satisfy the second-order condition:

$$y^T \nabla^2_x L(x^\star,\lambda^\star) y > 0, \quad \forall y \neq 0 \text{ and } y \in S$$

then x^{\star} is a strict local minimum of f subject to $h_i(x) = 0$ for $i = 1, \ldots, p$

this provides a sufficient condition for local optimality of x

Constrained problems

Example

minimize
$$2x_1 - 3x_2$$
 subject to $x_1^2 + x_2^2 = 25$

the zero-gradient conditions of \boldsymbol{L} are

$$\nabla_x L = \begin{bmatrix} 2 \\ -3 \end{bmatrix} + 2\lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0, \quad \nabla_\lambda L = x_1^2 + x_2^2 - 25 = 0$$

solving the first-order condition gives

$$x^{\star} = \left(-\frac{10}{\sqrt{13}}, \frac{15}{\sqrt{13}}\right), \ \lambda^{\star} = \frac{\sqrt{13}}{10}$$

and the second-order condition is

$$y^T \nabla_x^2 L(x^\star, \lambda^\star) y = 2\lambda^\star y^T y > 0, \quad \forall y \neq 0$$

- the necessary condition suggests that at optimum, $\nabla f(x^\star)$ must be a linear combination of $\nabla h(x^\star)$
- such linear combination exists if λ^* exists
- the sufficient condition guarantees that x^{\star} is locally optimal
- the sufficient condition only requires that $y^T \nabla_x L(x^*, \lambda^*) y > 0$ for all y that perpendicular to $\nabla h(x^*)$

$$y^T \nabla h(x^\star) = 0 \quad \Rightarrow \quad y \in \operatorname{span}\{(3,2)\}$$

(but in this example, the positiveness of $\nabla_x^2 L(x^\star, \lambda^\star)$ holds for all $y \neq 0$)

No Lagrange multiplier

the Lagrange multiplier might not exist in some problem

minimize
$$x_1 + 2x_2$$

subject to $(x_1 - 1)^2 + x_2^2 = 1$
 $(x_1 - 2)^2 + x_2^2 = 4$

- there is only one feasible point at $x^{\star} = 0$
- $\nabla h_1(x^{\star})$ and $\nabla h_2(x^{\star})$ are not independent
- there is no λ^{\star} for the necessary condition to hold
- we cannot express $\nabla f(x^*)$ as a linear combination of $\nabla h_1(x^*)$ and $\nabla h_2(x^*)$

from the necessary first-order condition, in order for a Lagrange multiplier to exist, $\nabla f(x^*)$ must be orthogonal to S (subspace of first-order feasible variation)

Constrained problems

Quadratic program with linear equality constraint

given $A \in \mathbf{R}^{p \times n}$ of rank p, consider

$$\underset{x}{\text{minimize}} \quad (1/2)x^T P x - q^T x \quad \text{subject to} \quad Ax = b$$

assume that P is positive definite on the nullspace of A (more relaxed) results:

1 it can be shown that the KKT matrix $\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix}$ is non-singular (please verify) 2 the zero-gradient of Lagrangian condition is the system of n + p equations

$$\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} q \\ b \end{bmatrix}$$

from 1) and gives a unique x^{\star} as the global minimizer

▶ QP with linear equality constrained is solved from a linear system

Constrained problems

to show the result

- I $\nabla h(x) = A$ is full row rank (regularity assumption holds); S is the nullspace of A; and $\nabla_x^2 L = P$ which is positive definite on S (by assumption)
- **2** from the second-order sufficient condition, a solution x^* to the linear system is a local minimizer
- **I** from 2), since the linear system has a unique solution, the local minimizer of this problem is also a global minimizer
- 4 typically, a gloal minimum is obtained when the problem is convex
- 5 we did not assume that the problem is convex because the positive definiteness of P is not required on \mathbf{R}^n

Example: least-squares with linear constraints

given a full rank $A \in \mathbf{R}^{p \times n}$

minimize
$$(1/2) ||Fx - g||_2^2$$
 subject to $Ax = b$

the zero-gradient of the Lagrangian: $L(x,\lambda) = (1/2) \|Fx - g\|_2^2 + \lambda^T (Ax - b)$ is

$$\begin{bmatrix} F^T F & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} F^T g \\ b \end{bmatrix}$$

a set of n+p linear equations in variables x and λ

➡ no need to use iterative algorithms

Constrained problems

Example: least-norm problem

given a fat and full row rank \boldsymbol{A}

minimize
$$(1/2) ||x||_2^2$$
 subject to $Ax = y$

meaning: find x that lies on intersections of hyperplanes and is closest to the origin

S after applying the Lagrange multiplier theorem,

 $x = A^T (AA^T)^{-1} y$

- the least-norm problem has a closed-form solution
- \blacksquare \circledast the condition for AA^T to be invertible is from the full rank assumption of A

Constrained problems

Equality constraint elimination

Constrained problems

Jitkomut Songsiri Equality constraint elimination

Parametrization

when the linear constraints are all linear

minimize f(x) subject to Ax = b

 $(A \in \mathbf{R}^{m \times n}, m < n)$ we parametrize the affine feasible set

$$\{x \mid Ax = b\} = \{Fz + \hat{x} \mid z \in \mathbf{R}^{n-p}\}, F \in \mathbf{R}^{n \times n-p}$$

where \hat{x} is a particular solution to Ax = b and $\mathbf{range}(F) \in \mathcal{N}(A)$

we reparametrize and obtain an eliminated optimization problem:

minimize $\tilde{f}(z) = f(Fz + \hat{x})$

the optimization variable is $z \in \mathbf{R}^{n-p}$ (with lower dimension)

Constrained problems

Example: least-norm problem with a simplex constraint

minimize $||x||_2^2$ subject to $\mathbf{1}^T x = 1$

is equivalent to solving

minimize
$$x_1^2 + x_2^2 + \dots + x_{n-1}^2 + (1 - x_1 - \dots - x_{n-1})^2$$

with n-1 variables

example: solve the problem

minimize
$$-x_1 x_2 x_3$$

subject to $\frac{x_1}{a_1} + \frac{x_2}{a_2} + \frac{x_3}{a_3} = 1$

where $a_1, a_2, a_3 > 0$

Constrained problems

Convex constraints

Constrained problems

Jitkomut Songsiri Convex constraints

↓▶ ◀ 큔 ▶ ◀ 흔 ▶ ◀ 흔 → ○ < (19 / 33

Optimization over a convex set

we consider a special case of convex-constrained problem

minimize f(x) subject to $x \in C$

where f is continuously differentiable over a closed-convex set $\ensuremath{\mathcal{C}}$

optimality condition: if x^* is a local minimizer of f over \mathcal{C} then

$$\nabla f(x^{\star})^T(x-x^{\star}) \ge 0, \quad \forall x \in \mathcal{C}$$

Constrained problems

Projection onto a convex set

definition: a problem of finding x in ${\mathcal C}$ that is closest to a given vector u

- the projection of u on \mathcal{C} is denoted by $\Pi_{\mathcal{C}}(u)$
- \blacksquare here, $\ell_2\text{-norm}$ is used to measure the distance, but this concept can be re-defined using other norms
- \blacksquare when ${\mathcal C}$ is convex, some theoretical results are available

Constrained problems

Projection theorem

let $\ensuremath{\mathcal{C}}$ be a non-empty closed-convex set

- for every $u \in \mathbf{R}^n$, the projection $\Pi_{\mathcal{C}}(u)$ exists and is unique
- the mapping $g: \mathbf{R}^n \to \mathcal{C}$ defined by $g(u) = \Pi_{\mathcal{C}}(u)$ is continuous and nonexpansive

$$\|g(u) - g(v)\| \le \|u - v\|, \quad \forall u, v \in \mathbf{R}^n$$

siven $u \in \mathbf{R}^n$, a vector $x^* \in \mathcal{C}$ is equal to the projection $\Pi_{\mathcal{C}}(u)$ if and only if

$$(u - x^{\star})^T (x - x^{\star}) \le 0, \quad \forall x \in \mathcal{C}$$

• in case where C is a subspace, x^* is equal to $\Pi_{\mathcal{C}}(u)$ if and only if

$$(u - x^{\star})^T x = 0, \quad \forall x \in \mathcal{C}$$

Constrained problems

Projection on simple convex sets

a closed-form projection can be obtaind if $\ensuremath{\mathcal{C}}$ is simple

non-negative orthant: $C = \mathbf{R}^n_+$, we have $\Pi_{\mathcal{C}}(z) = z_+ := \max(0, z)$

box or hyper-rectangle: $C = \{x \mid l \le x \le u \}$

$$(\Pi_{\mathcal{C}}(z))_k = \begin{cases} l_k, & z_k \le l_k \\ z_k, & l_k \le z_k \le u_k \\ u_k, & z_k \ge u_k \end{cases}$$

• ℓ_{∞} -norm ball: $\mathcal{C} = \{x \mid ||x||_{\infty} \leq \lambda \}$

$$[\Pi_{\mathcal{C}}(z)]_i = \begin{cases} \lambda, & z_i > \lambda, \\ z_i, & |z_i| \le \lambda, \\ -\lambda, & z_i < -\lambda \end{cases}$$

Constrained problems

Jitkomut Songsiri

23 / 33

Projection on simple convex sets

• euclidean unit norm ball: $C = \{x \mid ||x||_2 \le 1\}$

$$\Pi_{\mathcal{C}}(z) = \begin{cases} z/\|z\|_2, & \|z\|_2 \ge 1, \\ z, & \|z\|_2 \le 1 \end{cases}$$

• simplex: $C = \{x \mid x \succeq 0, \mathbf{1}^T x = 1\}$

$$\Pi_{\mathcal{C}}(z) = (z - \nu \mathbf{1})_+ \triangleq \max(0, z - \nu \mathbf{1})$$

for some $\nu \in \mathbf{R}$ (can find ν using bisection to solve $\mathbf{1}^T(z - \nu \mathbf{1})_+ = 1$) more expressions can be found in Parikh et al. 2013

Constrained problems

Gradient projection methods

Constrained problems

Jitkomut Songsiri Gradient projection methods

Gradient projection methods

a simple gradient projection method takes the form

$$x^{(k+1)} = \prod_{\mathcal{C}} [x^{(k)} - t_k \nabla f(x^{(k)})]$$

- t_k can be fixed, by diminishing rule or by line search (see Bertsekas Chapter 2)
- it takes the gradient-descent direction and project it on C
- the method is practical if the projection is fairly simple
- the convergence properties are essentially the same as those of unconstrained steepest descent method

Constrained problems

Jitkomut Songsiri

26 / 33

Step size selection

- fixed step size: 0 < t < 2/L where L is a Lipschitz constant of ∇f
- diminising step size: $t_k \to 0$ and $\sum_{k=0}^{\infty} t_k = \infty$
- Armijo rule along the projection arc: given factors $\beta, \alpha \in (0, 1)$, initialize t

1 compute a new projection point with step size t

$$x^+ = \Pi_{\mathcal{C}}(x^{(k)} - t\nabla f(x^{(k)}))$$

2 check if the condition is satisfied

$$f(x^+) \le f(x^{(k)}) - \alpha \nabla f(x^{(k)})^T (x^{(k)} - x^+)$$

3 if the above condition does not hold, decrease $t := \beta t$ and repeat step 1)

Constrained problems

Scaled gradient projection

a basic scaled version of gradient projection is

$$x^{(k+1)} = \underset{x \in \mathcal{C}}{\operatorname{argmin}} \left\{ \nabla f(x^{(k)})^T (x - x^{(k)}) + \frac{1}{2t_k} (x - x^{(k)})^T H_k (x - x^{(k)}) \right\}$$

where H_k is a positive definite matrix (of iteration k) to be chosen by user the update step can be regarded as a *generalized* projection problem

$$\underset{x \in \mathcal{C}}{\text{minimize }} (x - u)^T H_k(x - u) \quad \text{where } u = x^{(k)} - t_k H_k^{-1} \nabla f(x^{(k)})$$

it is equivalent to the problem in transformed coordinate as

$$\underset{y}{\text{minimize}} \quad f(H_k^{-1/2}y) \quad \text{subject to} \ y \in \ \{v \mid H_k^{-1/2}v \in \mathcal{C} \ \}$$

Constrained problems

Jitkomut Songsiri

28 / 33

- the convergence rate is governed by the smallest and largest eigenvalues of $H_k^{-1/2} \nabla^2 f(x^{(k)}) H_k^{-1/2}$
- this suggests that one should choose $H_k \approx \nabla f^2(x^{(k)})$ but in a diagonal form to maintain simplicity of the generalized projection step
- if $\nabla^2 f(x^{(k)}) \succ 0$ for all $x \in \mathcal{C}$, we can use

$$H_k = \nabla^2 f(x^{(k)})$$

and this is called **constrained Newton's method** which has a superlinear convergence for $t_k = 1$ (see more results in Bertsekas ex 2.3.2)

- a non-diagonal scaling can improve the convergence but the projection step may not be longer simple
- for non-negative orthant set, a two-metric projection method uses a non-diagonal scaling matrix while maintaining the simplicity of the projection on the orthant

Example: quadratic over non-negative orthant

minimize
$$f(x) = (1/2)(x-c)^T H(x-c)$$
 over \mathbf{R}^2_+ with $H = \begin{bmatrix} \gamma & 0 \\ 0 & 1 \end{bmatrix}$ and $\gamma = 20$, $c = (-1, 50)$

- the gradient projection was implemented with $t = 1.9/\gamma$ (Lipschitz constant is γ)
- the scaled version used $H_k = \nabla^2 f = H$ and t = 1 (converged faster)
- both methods was initialized with $x^{(0)} = (10, 1)$; the optimum must occur at $x^* = (0, c_2)$ (geometrically)

Constrained problems

Example: algorithm update details

the scaled gradient projection step is to minimize (over \mathbf{R}_{+}^{2})

$$(1/2)(x - x^{(k)})^T H_k(x - x^{(k)}) + t\nabla f(x^{(k)})^T (x - x^{(k)})$$

= $(1/2)[(x - x^{(k)} + tH_k^{-1}\nabla f(x^{(k)}))^T H_k(x - x^{(k)} + tH_k^{-1}\nabla f(x^{(k)}))$
 $\triangleq (1/2)(x - u)^T H_k(x - u), \quad u = x^{(k)} - tH_k^{-1}\nabla f(x^{(k)})$

- this is a generalized projection on \mathbf{R}^n_+ using a **weighted** euclidean norm
- when choosing $H_k = H$ (which is diagonal in this example), the projection has the same closed-form as when $H_k = I$ (a diagonal choice simplifies projections)
- **g** gradient projection step (to \mathbf{R}^n_+) for this example is

$$x^+ = \Pi(x - tH(x - c))$$

• the scaled gradient projection step (to \mathbf{R}^n_+) is

$$z^{+} = \Pi(z - tH_{k}^{-1}H(z - c)) = \Pi(z - t(z - c))$$

Constrained problems

General constrained problems

most of the methods required tools in duality theory and approximation methods

- penalty method
- the method of multipliers
- Lagrangian methods
- Newton-like method
- sequential quadratic programming (SQP)
- interior-point methods

Lagrange multiplier theory can be read in Bertsekas Chapter 3.3

connections among these methods are given in Bertsekas Chapter 4

Constrained problems

- Chapter 3 and 4 in D.P. Bertsekas, Nonlinear Programming, Athena Scientific, 2nd edition, 2003
- Chapter 11 in D.G. Luenberger and Y. Ye, *Linear and Nonlinear Programming*, 4th edition, Springer, 2008
- Chapter 6 in N. Parikh and S. Boyd, *Proximal Algorithms*, Foundations and Trends in Optimization, 2013