

Outline

1 Lagrangian multiplier theorem

2 Equality constraint elimination

3 Convex constraints

4 Gradient projection methods

Lagrangian multiplier theorem

Constrained problems

a general contrained optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

inequality constraints can be converted to equality constraints
■ introduce additional variables z_{1}, \ldots, z_{m}

- constraints $f_{i}(x) \leq 0$ for $i=1, \ldots, m$, are equivalent to

$$
f_{1}(x)+z_{1}^{2}=0, \quad \ldots, \quad f_{m}(x)+z_{m}^{2}=0
$$

- a problem with inequality constraints can be regarded as the problem with equality contraints only

Equality-constrained optimization

this lecture consider problems with equality constraints of the form

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

we can consider two approaches of handling the equality constraints

- penalty approach
- elimination approach

Lagrangian function

the Lagrangian function $L: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n+p}$ is defined by

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{p} \lambda_{i} h_{i}(x)
$$

denote x^{\star} a local minimizer of f
the subspace of first-order feasible directions is defined as

$$
S=\left\{y \in \mathbf{R}^{n} \mid \nabla h_{i}\left(x^{\star}\right)^{T} y=0, \quad i=1,2, \ldots, p\right\}
$$

- $y \in S$ if y is orthogonal to all p gradients of constraint functions

Lagrange multiplier theorem

regularity assumption: $\nabla h_{1}\left(x^{\star}\right), \ldots, \nabla h_{p}\left(x^{\star}\right)$ are linearly independent if x^{\star} is a local minimizer of the problem on page 5 then

- first-order condition: there exists a unique $\lambda^{\star} \in \mathbf{R}^{p}$ called a Lagrange multiplier vector such that

$$
\nabla f\left(x^{\star}\right)+\sum_{i=1}^{p} \lambda_{i}^{\star} \nabla h_{i}\left(x^{\star}\right)=0
$$

- at optimum, $\nabla f\left(x^{\star}\right)$ is a linear combination of $\nabla_{i} h_{i}\left(x^{\star}\right)$
- equivalent to the zero gradient of \mathcal{L} forming a total $n+p$ equations in (x, λ)
- second-order necessary condition
moreover, if f and h are twice continuously differentiable, we have

$$
y^{T}\left(\nabla^{2} f\left(x^{\star}\right)+\sum_{i=1}^{p} \lambda_{i}^{\star} \nabla^{2} h_{i}\left(x^{\star}\right)\right) y \geq 0, \quad \forall y \in S
$$

Second-order sufficient condition

assume that f and h are twice continuously differentiable
if x^{\star} and λ^{\star} satisfy the zero-gradient condition of L :

$$
\nabla_{x} L\left(x^{\star}, \lambda^{\star}\right)=0, \quad \nabla_{\lambda} L\left(x^{\star}, \lambda^{\star}\right)=0
$$

and satisfy the second-order condition:

$$
y^{T} \nabla_{x}^{2} L\left(x^{\star}, \lambda^{\star}\right) y>0, \quad \forall y \neq 0 \text { and } y \in S
$$

then x^{\star} is a strict local minimum of f subject to $h_{i}(x)=0$ for $i=1, \ldots, p$
this provides a sufficient condition for local optimality of x

Example

minimize $2 x_{1}-3 x_{2}$ subject to $x_{1}^{2}+x_{2}^{2}=25$
the zero-gradient conditions of L are

$$
\nabla_{x} L=\left[\begin{array}{c}
2 \\
-3
\end{array}\right]+2 \lambda\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0, \quad \nabla_{\lambda} L=x_{1}^{2}+x_{2}^{2}-25=0
$$

solving the first-order condition gives

$$
x^{\star}=\left(-\frac{10}{\sqrt{13}}, \frac{15}{\sqrt{13}}\right), \lambda^{\star}=\frac{\sqrt{13}}{10}
$$

and the second-order condition is

$$
y^{T} \nabla_{x}^{2} L\left(x^{\star}, \lambda^{\star}\right) y=2 \lambda^{\star} y^{T} y>0, \quad \forall y \neq 0
$$

- the necessary condition suggests that at optimum, $\nabla f\left(x^{\star}\right)$ must be a linear combination of $\nabla h\left(x^{\star}\right)$
■ such linear combination exists if λ^{\star} exists
- the sufficient condition guarantees that x^{\star} is locally optimal
- the sufficient condition only requires that $y^{T} \nabla_{x} L\left(x^{\star}, \lambda^{\star}\right) y>0$ for all y that perpendicular to $\nabla h\left(x^{\star}\right)$

$$
y^{T} \nabla h\left(x^{\star}\right)=0 \quad \Rightarrow \quad y \in \operatorname{span}\{(3,2)\}
$$

(but in this example, the positiveness of $\nabla_{x}^{2} L\left(x^{\star}, \lambda^{\star}\right)$ holds for all $y \neq 0$)

No Lagrange multiplier

the Lagrange multiplier might not exist in some problem

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}+2 x_{2} \\
\text { subject to } & \left(x_{1}-1\right)^{2}+x_{2}^{2}=1 \\
& \left(x_{1}-2\right)^{2}+x_{2}^{2}=4
\end{array}
$$

- there is only one feasible point at $x^{\star}=0$
- $\nabla h_{1}\left(x^{\star}\right)$ and $\nabla h_{2}\left(x^{\star}\right)$ are not independent
- there is no λ^{\star} for the necessary condition to hold
- we cannot express $\nabla f\left(x^{\star}\right)$ as a linear combination of $\nabla h_{1}\left(x^{\star}\right)$ and $\nabla h_{2}\left(x^{\star}\right)$
from the necessary first-order condition, in order for a Lagrange multiplier to exist, $\nabla f\left(x^{\star}\right)$ must be orthogonal to S (subspace of first-order feasible variation)

Quadratic program with linear equality constraint

given $A \in \mathbf{R}^{p \times n}$ of rank p, consider

$$
\underset{x}{\operatorname{minimize}}(1 / 2) x^{T} P x-q^{T} x \quad \text { subject to } A x=b
$$

assume that P is positive definite on the nullspace of A results:
11 it can be shown that the KKT matrix $\left[\begin{array}{cc}P & A^{T} \\ A & 0\end{array}\right]$ is non-singular (please verify)
2 the zero-gradient of Lagrangian condition is the system of $n+p$ equations

$$
\left[\begin{array}{cc}
P & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
q \\
b
\end{array}\right]
$$

from 1) and gives a unique x^{\star} as the global minimizer
\Leftrightarrow QP with linear equality constrained is solved from a linear system
to show the result
$1 \nabla h(x)=A$ is full row rank (regularity assumption holds); S is the nullspace of A; and $\nabla_{x}^{2} L=P$ which is positive definite on S (by assumption)
2 from the second-order sufficient condition, a solution x^{\star} to the linear system is a local minimizer

3 from 2), since the linear system has a unique solution, the local minimizer of this problem is also a global minimizer
4 typically, a gloal minimum is obtained when the problem is convex
5 we did not assume that the problem is convex because the positive definiteness of P is not required on \mathbf{R}^{n}

Example: least-squares with linear constraints

given a full rank $A \in \mathbf{R}^{p \times n}$

$$
\text { minimize }(1 / 2)\|F x-g\|_{2}^{2} \quad \text { subject to } A x=b
$$

the zero-gradient of the Lagrangian: $L(x, \lambda)=(1 / 2)\|F x-g\|_{2}^{2}+\lambda^{T}(A x-b)$ is

$$
\left[\begin{array}{cc}
F^{T} F & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
F^{T} g \\
b
\end{array}\right]
$$

a set of $n+p$ linear equations in variables x and λ
at no need to use iterative algorithms

Example: least-norm problem

given a fat and full row rank A

$$
\operatorname{minimize}(1 / 2)\|x\|_{2}^{2} \quad \text { subject to } A x=y
$$

meaning: find x that lies on intersections of hyperplanes and is closest to the origin

Q after applying the Lagrange multiplier theorem,

$$
x=A^{T}\left(A A^{T}\right)^{-1} y
$$

- the least-norm problem has a closed-form solution
- (2) the condition for $A A^{T}$ to be invertible is from the full rank assumption of A

Equality constraint elimination

Parametrization

when the linear constraints are all linear

$$
\text { minimize } f(x) \text { subject to } A x=b
$$

$\left(A \in \mathbf{R}^{m \times n}, \quad m<n\right)$ we parametrize the affine feasible set

$$
\{x \mid A x=b\}=\left\{F z+\hat{x} \mid z \in \mathbf{R}^{n-p}\right\}, \quad F \in \mathbf{R}^{n \times n-p}
$$

where \hat{x} is a particular solution to $A x=b$ and range $(F) \in \mathcal{N}(A)$
we reparametrize and obtain an eliminated optimization problem:

$$
\operatorname{minimize} \tilde{f}(z)=f(F z+\hat{x})
$$

the optimization variable is $z \in \mathbf{R}^{n-p}$ (with lower dimension)

Example: least-norm problem with a simplex constraint

$$
\text { minimize }\|x\|_{2}^{2} \quad \text { subject to } \mathbf{1}^{T} x=1
$$

is equivalent to solving

$$
\operatorname{minimize} x_{1}^{2}+x_{2}^{2}+\cdots+x_{n-1}^{2}+\left(1-x_{1}-\cdots-x_{n-1}\right)^{2}
$$

with $n-1$ variables
example: solve the problem

$$
\begin{array}{ll}
\operatorname{minimize} & -x_{1} x_{2} x_{3} \\
\text { subject to } & \frac{x_{1}}{a_{1}}+\frac{x_{2}}{a_{2}}+\frac{x_{3}}{a_{3}}=1
\end{array}
$$

where $a_{1}, a_{2}, a_{3}>0$

Convex constraints

Optimization over a convex set

we consider a special case of convex-constrained problem

$$
\text { minimize } f(x) \text { subject to } x \in \mathcal{C}
$$

where f is continuously differentiable over a closed-convex set \mathcal{C}

optimality condition: if x^{\star} is a local minimizer of f over \mathcal{C} then

$$
\nabla f\left(x^{\star}\right)^{T}\left(x-x^{\star}\right) \geq 0, \quad \forall x \in \mathcal{C}
$$

Projection onto a convex set

definition: a problem of finding x in \mathcal{C} that is closest to a given vector u

$$
\underset{x}{\operatorname{minimize}}\|u-x\|_{2}^{2} \quad \text { subject to } x \in \mathcal{C}
$$

- the projection of u on \mathcal{C} is denoted by $\Pi_{\mathcal{C}}(u)$
- here, ℓ_{2}-norm is used to measure the distance, but this concept can be re-defined using other norms
- when \mathcal{C} is convex, some theoretical results are available

Projection theorem

let \mathcal{C} be a non-empty closed-convex set

- for every $u \in \mathbf{R}^{n}$, the projection $\Pi_{\mathcal{C}}(u)$ exists and is unique
- the mapping $g: \mathbf{R}^{n} \rightarrow \mathcal{C}$ defined by $g(u)=\Pi_{\mathcal{C}}(u)$ is continuous and nonexpansive

$$
\|g(u)-g(v)\| \leq\|u-v\|, \quad \forall u, v \in \mathbf{R}^{n}
$$

- given $u \in \mathbf{R}^{n}$, a vector $x^{\star} \in \mathcal{C}$ is equal to the projection $\Pi_{\mathcal{C}}(u)$ if and only if

$$
\left(u-x^{\star}\right)^{T}\left(x-x^{\star}\right) \leq 0, \quad \forall x \in \mathcal{C}
$$

- in case where \mathcal{C} is a subspace, x^{\star} is equal to $\Pi_{\mathcal{C}}(u)$ if and only if

$$
\left(u-x^{\star}\right)^{T} x=0, \quad \forall x \in \mathcal{C}
$$

Projection on simple convex sets

a closed-form projection can be obtaind if \mathcal{C} is simple

- non-negative orthant: $\mathcal{C}=\mathbf{R}_{+}^{n}$, we have $\Pi_{\mathcal{C}}(z)=z_{+}:=\max (0, z)$
- box or hyper-rectangle: $\mathcal{C}=\{x \mid l \leq x \leq u\}$

$$
\left(\Pi_{\mathcal{C}}(z)\right)_{k}= \begin{cases}l_{k}, & z_{k} \leq l_{k} \\ z_{k}, & l_{k} \leq z_{k} \leq u_{k} \\ u_{k}, & z_{k} \geq u_{k}\end{cases}
$$

- ℓ_{∞}-norm ball: $\mathcal{C}=\left\{x \mid\|x\|_{\infty} \leq \lambda\right\}$

$$
\left[\Pi_{\mathcal{C}}(z)\right]_{i}= \begin{cases}\lambda, & z_{i}>\lambda \\ z_{i}, & \left|z_{i}\right| \leq \lambda \\ -\lambda, & z_{i}<-\lambda\end{cases}
$$

Projection on simple convex sets

- euclidean unit norm ball: $\mathcal{C}=\left\{x \mid\|x\|_{2} \leq 1\right\}$

$$
\Pi_{\mathcal{C}}(z)= \begin{cases}z /\|z\|_{2}, & \|z\|_{2} \geq 1 \\ z, & \|z\|_{2} \leq 1\end{cases}
$$

- simplex: $\mathcal{C}=\left\{x \mid x \succeq 0, \mathbf{1}^{T} x=1\right\}$

$$
\Pi_{C}(z)=(z-\nu \mathbf{1})_{+} \triangleq \max (0, z-\nu \mathbf{1})
$$

for some $\nu \in \mathbf{R}$ (can find ν using bisection to solve $\mathbf{1}^{T}(z-\nu \mathbf{1})_{+}=1$) more expressions can be found in Parikh et al. 2013

Gradient projection methods

Gradient projection methods

a simple gradient projection method takes the form

$$
x^{(k+1)}=\Pi_{\mathcal{C}}\left[x^{(k)}-t_{k} \nabla f\left(x^{(k)}\right)\right]
$$

- t_{k} can be fixed, by diminishing rule or by line search (see Bertsekas Chapter 2)
- it takes the gradient-descent direction and project it on \mathcal{C}
- the method is practical if the projection is fairly simple
- the convergence properties are essentially the same as those of unconstrained steepest descent method

Step size selection

- fixed step size: $0<t<2 / L$ where L is a Lipschitz constant of ∇f
- diminising step size: $t_{k} \rightarrow 0$ and $\sum_{k=0}^{\infty} t_{k}=\infty$
- Armijo rule along the projection arc: given factors $\beta, \alpha \in(0,1)$, initialize t

11 compute a new projection point with step size t

$$
x^{+}=\Pi_{\mathcal{C}}\left(x^{(k)}-t \nabla f\left(x^{(k)}\right)\right)
$$

2 check if the condition is satisfied

$$
f\left(x^{+}\right) \leq f\left(x^{(k)}\right)-\alpha \nabla f\left(x^{(k)}\right)^{T}\left(x^{(k)}-x^{+}\right)
$$

(3) if the above condition does not hold, decrease $t:=\beta t$ and repeat step 1)

Scaled gradient projection

a basic scaled version of gradient projection is

$$
x^{(k+1)}=\underset{x \in \mathcal{C}}{\operatorname{argmin}}\left\{\nabla f\left(x^{(k)}\right)^{T}\left(x-x^{(k)}\right)+\frac{1}{2 t_{k}}\left(x-x^{(k)}\right)^{T} H_{k}\left(x-x^{(k)}\right)\right\}
$$

where H_{k} is a positive definite matrix (of iteration k) to be chosen by user

- the update step can be regarded as a generalized projection problem

$$
\underset{x \in \mathcal{C}}{\operatorname{minimize}}(x-u)^{T} H_{k}(x-u) \quad \text { where } u=x^{(k)}-t_{k} H_{k}^{-1} \nabla f\left(x^{(k)}\right)
$$

- it is equivalent to the problem in transformed coordinate as

$$
\underset{y}{\operatorname{minimize}} f\left(H_{k}^{-1 / 2} y\right) \quad \text { subject to } y \in\left\{v \mid H_{k}^{-1 / 2} v \in \mathcal{C}\right\}
$$

- the convergence rate is governed by the smallest and largest eigenvalues of $H_{k}^{-1 / 2} \nabla^{2} f\left(x^{(k)}\right) H_{k}^{-1 / 2}$
- this suggests that one should choose $H_{k} \approx \nabla f^{2}\left(x^{(k)}\right)$ but in a diagonal form to maintain simplicity of the generalized projection step
- if $\nabla^{2} f\left(x^{(k)}\right) \succ 0$ for all $x \in \mathcal{C}$, we can use

$$
H_{k}=\nabla^{2} f\left(x^{(k)}\right)
$$

and this is called constrained Newton's method which has a superlinear convergence for $t_{k}=1$ (see more results in Bertsekas ex 2.3.2)

- a non-diagonal scaling can improve the convergence but the projection step may not be longer simple
- for non-negative orthant set, a two-metric projection method uses a non-diagonal scaling matrix while maintaining the simplicity of the projection on the orthant

Example: quadratic over non-negative orthant

minimize $f(x)=(1 / 2)(x-c)^{T} H(x-c)$ over \mathbf{R}_{+}^{2} with $H=\left[\begin{array}{ll}\gamma & 0 \\ 0 & 1\end{array}\right]$ and $\gamma=20$, $c=(-1,50)$

- the gradient projection was implemented with $t=1.9 / \gamma$ (Lipschitz constant is γ)
- the scaled version used $H_{k}=\nabla^{2} f=H$ and $t=1$ (converged faster)
- both methods was initialized with $x^{(0)}=(10,1)$; the optimum must occur at $x^{\star}=\left(0, c_{2}\right)$ (geometrically)

Example: algorithm update details

the scaled gradient projection step is to minimize (over \mathbf{R}_{+}^{2})

$$
\begin{aligned}
& (1 / 2)\left(x-x^{(k)}\right)^{T} H_{k}\left(x-x^{(k)}\right)+t \nabla f\left(x^{(k)}\right)^{T}\left(x-x^{(k)}\right) \\
& =(1 / 2)\left[\left(x-x^{(k)}+t H_{k}^{-1} \nabla f\left(x^{(k)}\right)\right)^{T} H_{k}\left(x-x^{(k)}+t H_{k}^{-1} \nabla f\left(x^{(k)}\right)\right)\right. \\
& \triangleq(1 / 2)(x-u)^{T} H_{k}(x-u), \quad u=x^{(k)}-t H_{k}^{-1} \nabla f\left(x^{(k)}\right)
\end{aligned}
$$

- this is a generalized projection on \mathbf{R}_{+}^{n} using a weighted euclidean norm
- when choosing $H_{k}=H$ (which is diagonal in this example), the projection has the same closed-form as when $H_{k}=I$ (a diagonal choice simplifies projections)
- gradient projection step (to \mathbf{R}_{+}^{n}) for this example is

$$
x^{+}=\Pi(x-t H(x-c))
$$

- the scaled gradient projection step (to \mathbf{R}_{+}^{n}) is

$$
z^{+}=\Pi\left(z-t H_{k}^{-1} H(z-c)\right)=\Pi(z-t(z-c))
$$

General constrained problems

most of the methods required tools in duality theory and approximation methods

- penalty method
- the method of multipliers
- Lagrangian methods
- Newton-like method
- sequential quadratic programming (SQP)
- interior-point methods

Lagrange multiplier theory can be read in Bertsekas Chapter 3.3
connections among these methods are given in Bertsekas Chapter 4

References

1 Chapter 3 and 4 in D.P. Bertsekas, Nonlinear Programming, Athena Scientific, 2nd edition, 2003
2 Chapter 11 in D.G. Luenberger and Y. Ye, Linear and Nonlinear Programming, 4th edition, Springer, 2008
3. Chapter 6 in N. Parikh and S. Boyd, Proximal Algorithms, Foundations and Trends in Optimization, 2013

