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How to read this handout
1 readers are assumed to have a background on elementary linear algebra in

undergrad level (see chapter ’Background and notations (not taught)’)
2 the note is used with lecture in EE500 (you cannot master this topic just by

reading this note) – class lectures include
graphical concepts, math derivation of details/steps in between
computer codes to illustrate examples

3 pay attention to the symbol .; you should be able to prove such . result
4 each chapter has a list of references; find more formal details/proofs from in-text

citations
5 almost all results in this note can be Googled; readers are encouraged to

‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first

6 typos and mistakes can be reported to jitkomut@gmail.com
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Sufficient and necessary conditions

consider a (true) conditional statement: P ⇒ Q, we say
P is sufficient for Q
Q is necessary for P
P only if Q

example: if x = −3 then |x| = 3 (a true conditional statement)
‘P is sufficient for Q’ means
the truth of x = −3 is sufficient for concluding the truth of |x| = 3

‘P only if Q’ and ’Q is necessary for P ’ have the same meaning:
x = −3 is true only under the condition that |x| = 3 (because if |x| ̸= 3 then
x = −3 can’t be true)
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however, |x| = 3 is not a sufficient condition for x = −3

(because if |x| = 3 then x can be either 3 or −3)

i.e., the converse of the statement: ‘if x = −3 then |x| = 3’ is false

consider a (true) biconditional statement: P ⇔ Q, we say

P is sufficient and necessary for Q

when P ⇒ Q and Q ⇒ P

example: |x| = 2 if and only if x2 = 4 (a true biconditional statement)
saying |x| = 2 is equivalent to saying x2 = 4
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Vector notation

n-vector x:

x =


x1
x2
...
xn


also written as x = (x1, x2, . . . , xn)

set of n-vectors is denoted Rn (Euclidean space)
xi: ith element or component or entry of x
it is common to denote x as a column vector
xT =

[
x1 x2 · · · xn

]
is then a row vector
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Matrix notation

an m× n matrix A is defined as

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn

 , or A = [aij ]m×n

aij are the elements, or coefficients, or entries of A
set of m× n-matrices is denoted Rm×n

A has m rows and n columns (m,n are the dimensions)
the (i, j) entry of A is also commonly denoted by Aij

A is called a square matrix if m = n

Linear algebra for EE Jitkomut Songsiri 8 / 194



Special matrices
zero matrix: A = 0

A =


0 0 · · · 0
0 0 · · · 0
... ... . . . 0
0 0 · · · 0


aij = 0, for i = 1, . . . ,m, j = 1, . . . , n

identity matrix: A = I

A =


1 0 · · · 0
0 1 · · · 0
... ... . . . 0
0 0 · · · 1


a square matrix with aii = 1, aij = 0 for i ̸= j
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diagonal matrix: a square matrix with aij = 0 for i ̸= j

A =


a1 0 · · · 0
0 a2 · · · 0
... ... . . . ...
0 · · · 0 an


triangular matrix: a square matrix with zero entries in a triangular part

upper triangular lower triangular

A =


a11 a12 · · · a1n
0 a22 · · · a2n
... ... . . .
0 0 · · · ann

 A =


a11 0 · · · 0
a21 a22 · · · 0
... ... . . .

an1 an2 · · · ann


aij = 0 for i ≥ j aij = 0 for i ≤ j
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Block matrix notation
example: 2× 2-block matrix A

A =

[
B C
D E

]
for example, if B,C,D,E are defined as

B =

[
2 1
3 8

]
, C =

[
0 1 7
1 9 1

]
, D =

[
0 1

]
, E =

[
−4 1 −1

]
then A is the matrix

A =

2 1 0 1 7
3 8 1 9 1
0 1 −4 1 −1


note: dimensions of the blocks must be compatible
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Column and Row partitions
write an m× n-matrix A in terms of its columns or its rows

A =
[
a1 a2 · · · an

]
=


bT1
bT2
...
bTm


aj for j = 1, 2, . . . , n are the columns of A
bTi for i = 1, 2, . . . ,m are the rows of A

example: A =

[
1 2 1
4 9 0

]

a1 =

[
1
4

]
, a2 =

[
2
9

]
, a3 =

[
1
0

]
, bT1 =

[
1 2 1

]
, bT2 =

[
4 9 0

]
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Matrix-vector product
product of m× n-matrix A with n-vector x

Ax =


a11x1 + a12x2 + . . .+ a1nxn
a21x1 + a22x2 + . . .+ a2nxn

...
am1x1 + am2x2 + . . .+ amnxn


dimensions must be compatible: # columns in A = # elements in x

if A is partitioned as A =
[
a1 a2 · · · an

]
, then

Ax = a1x1 + a2x2 + · · ·+ anxn

Ax is a linear combination of the column vectors of A
the coefficients are the entries of x
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Product with standard unit vectors
post-multiply with a column vector

Aek =


a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn





0
0
...
1
...
0


=


a1k
a2k
...

amk

 = the kth column of A

pre-multiply with a row vector

eTkA =
[
0 0 · · · 1 · · · 0

]

a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn


=

[
ak1 ak2 · · · akn

]
= the kth row of A
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Trace

definition: trace of a square matrix A is the sum of the diagonal entries in A

tr(A) = a11 + a22 + · · ·+ ann

example:

A =

2 1 4
0 −1 5
3 4 6


trace of A is 2− 1 + 6 = 7

properties .

tr(AT ) = tr(A)

tr(αA+B) = α tr(A) + tr(B)

tr(AB) = tr(BA)
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System of linear equations

a linear system of m equations in n variables

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
... =

...
am1x1 + am2x2 + · · ·+ amnxn = bm

in matrix form: Ax = b

problem statement: given A, b, find a solution x (if exists)
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Three types of linear equations
square if m = n (A is square)[

a11 a12
a21 a22

] [
x1
x2

]
=

[
b1
b2

]
underdetermined if m < n (A is fat)

[
a11 a12 a13
a21 a22 a23

]x1x2
x3

 =

[
b1
b2

]

overdetermined if m > n (A is skinny)a11 a12
a21 a22
a31 a32

[
x1
x2

]
=

b1b2
b3
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Existence and uniqueness of solutions

range space of A ∈ Rm×n is

R(A) = { y ∈ Rm | y = Ax, for x ∈ Rn }
rank(A) ≜ dim(R(A))

nullspace of A is
N (A) = { x ∈ Rn | Ax = 0 }

important properties: .

a linear system y = Ax has a solution if and only if y ∈ R(A)

equivalently, y = Ax has a solution if and only if rank(A) = rank([A | y])
if the linear system has a solution, the solution is unique if and only if N (A) = {0}
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Inverse of matrices

definition: a square matrix A is called invertible or nonsingular if there exists B s.t.

AB = BA = I

B is called an inverse of A
it is also true that B is invertible and A is an inverse of B
if no such B can be found A is said to be singular

assume A is invertible
an inverse of A is unique
the inverse of A is denoted by A−1
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Facts about invertible matrices
assume A,B are invertible

facts .

(αA)−1 = α−1A−1 for nonzero α

AT is also invertible and (AT )−1 = (A−1)T

AB is invertible and (AB)−1 = B−1A−1

(A+B)−1 ̸= A−1 +B−1

, Theorem: for a square matrix A, the following statements are equivalent
1 A is invertible
2 Ax = 0 has only the trivial solution (x = 0)
3 the reduced echelon form of A is I

4 A is invertible if and only if det(A) ̸= 0
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Inverse of diagonal matrix

A =


a1 0 · · · 0
0 a2 · · · 0
... ... . . . ...
0 · · · 0 an


a diagonal matrix is invertible iff the diagonal entries are all nonzero

aii ̸= 0, i = 1, 2, . . . , n

the inverse of A is given by

A−1 =


1/a1 0 · · · 0
0 1/a2 · · · 0
... ... . . . ...
0 · · · 0 1/an


the diagonal entries in A−1 are the inverse of the diagonal entries in A
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Inverse of triangular matrix
upper triangular lower triangular

A =


a11 a12 · · · a1n
0 a22 · · · a2n
... ... . . .
0 0 · · · ann

 A =


a11 0 · · · 0
a21 a22 · · · 0
... ... . . .

an1 an2 · · · ann


aij = 0 for i ≥ j aij = 0 for i ≤ j

a triangular matrix is invertible iff the diagonal entries are all nonzero

aii ̸= 0, ∀i = 1, 2, . . . , n

product of lower (upper) triangular matrices is lower (upper) triangular
the inverse of a lower (upper) triangular matrix is lower (upper) triangular
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Eigenvalues
λ ∈ C is called an eigenvalue of A ∈ Cn×n if

det(λI −A) = 0

equivalent to:
there exists nonzero x ∈ Cn s.t. (λI −A)x = 0, i.e.,

Ax = λx

any such x is called an eigenvector of A (associated with eigenvalue λ)
there exists nonzero w ∈ Cn such that

wTA = λwT

any such w is called a left eigenvector of A

Linear algebra for EE Jitkomut Songsiri 23 / 194



Computing eigenvalues

X (λ) = det(λI −A) is called the characteristic polynomial of A
X (λ) = 0 is called the characteristic equation of A
eigenvalues of A are the root of characteristic polynomial
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Properties

if A is n× n then X (λ) is a polynomial of order n
if A is n× n then there are n eigenvalues of A
even when A is real, eigenvalues and eigenvectors can be complex, e.g.,

A =

[
2 −1
1 2

]
, A =

−2 0 1
−6 −2 0
19 5 −4


if A and λ are real, we can choose the associated eigenvector to be real
if A is real then eigenvalues must occur in complex conjugate pairs
if x is an eigenvector of A, so is αx for any α ∈ C, α ̸= 0

an eigenvector of A associated with λ lies in N (λI −A)

Linear algebra for EE Jitkomut Songsiri 25 / 194



Important facts

denote λ(A) an eigenvalue of A
λ(αA) = αλ(A) for any α ∈ C
tr(A) is the sum of eigenvalues of A
det(A) is the product of eigenvalues of A
A and AT share the same eigenvalues .

λ(AT ) = λ(A) .

λ(Am) = (λ(A))m for any integer m
A is invertible if and only if λ = 0 is not an eigenvalue of A .
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Eigenvalue decomposition

if A is diagonalizable then A admits the decomposition

A = TDT−1

D is diagonal containing the eigenvalues of A
columns of T are the corresponding eigenvectors of A
note that such decomposition is not unique (up to scaling in T )

recall: A is diagonalizable if and only if all eigenvectors of A are independent
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Block matrix and quadratic form
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Leading blocks and determinants
let’s illustrate by an example of square matrices

A =


0 −2 −2 1
0 2 1 2
−3 −1 −2 0
−1 0 1 −3


A has four leading blocks:

A1 = 0, A2 =

[
0 −2
0 2

]
, A3 =

 0 −2 −2
0 2 1
−3 −1 −2

 , A4 = A

that correspond to four leading determinants: (also called principal minors)

det(A1) = 0, det(A2) = 0, det(A3) = −6, det(A4) = det(A) = −7
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Linear function

given w ∈ Rn and let x ∈ Rn be a vector variable

a linear function f : Rn → R is given by

f(x) = wTx = w1x1 + w2x2 + · · ·+ wnxn

(. review its linear properties, i.e., superposition)

an affine function is a linear function plus a constant: f(x) = wTx+ b

∂f
∂xi

= wi gives the rate of change of f in xi direction
the set {x | wTx+ b = constant } is a hyperplane in Rn with the normal vector w
linear functions are used in linear regression model and linear classifier
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Energy form
given a (real) square matrix A, an energy form is a quadratic function of vector x:

f : Rn → R, f(x) = xTAx =
∑
i

∑
j

aijxixj

xTAx is the same as the energy form using (A+AT )/2 as the coefficient because

xTAx = (xTAx)T =
xT (A+AT )x

2

using A = A+AT

2 + A−AT

2 , we can later on assume that an energy form requires
only the symmetric part of A
reverse question: given an energy form, can you determine what A is ?

x21 + 2x22 + 3x23 − x1x2 + 2x2x3 ≜ xTAx
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Energy form and completing the square

recall how to complete the square:

x21 + 3x22 + 14x1x2 = (x1 + 7x2)
2 − 46x22

given these matrices, expand the energy form and complete the square

A =

[
4 6
6 13

]
, B =

[
4 6
6 9

]
, C =

[
4 6
6 −4

]

xTAx =

xTBx =

xTCx =
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Quadratic function

given P ∈ Rn×n, q ∈ Rn, r ∈ R, a quadratic function f : Rn → R is of the form

f(x) = (1/2)xTPx+ qTx+ r

xTPx is aka an energy form (due to the quadratic form that appears in the
energy/power of some physical variables)

electrical power = i2R, kinetic energy = 1

2
mv2, energy stored in spring = 1

2
kx2

the contour shape of f depends on the property of P (positive definite, indefinite,
magnitude of eigenvalues, direction of eigenvectors) – as we will learn shortly
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Surface plot of quadratic function
let f(x) = (1/2)xTPx+ qTx where λ(P ) ≻ 0
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ellipsoid in Rn

when all eigenvalues of P are positive, P is positive definite
direction and width of principal axes are related to eigenvalues/eigenvectors of P
(more on this later)
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Surface plot of quadratic function
let f(x1, x2) = (1/2)(xTPx) + qTx and three cases of P
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case 1: all eigenvalues of P are positive
case 2: all eigenvalues of P are non-negative (one is zero)

case 3: P =

[
2 1
1 −1

]
eigenvalues of P are positive and negative
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Symmetric matrix

definition: a (real) square matrix A is said to be symmetric if A = AT

notation: A ∈ Sn

examples:[
X Y
Y T Z

]
with symmetric X,Z, A = E[XXT ] (correlation matrix)

. basic facts:
for any (rectangular) matrix A, AAT and ATA are always symmetric
if A is symmetric and invertible, then A−1 is symmetric
if A is invertible, then AAT and ATA are also invertible
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Properties of symmetric matrix

spectral theorem: if A is a real symmetric matrix then the following statements hold
1 all eigenvalues of A are real
2 all eigenvectors of A are orthogonal
3 A admits a decomposition

A = UDUT

where UTU = UUT = I (U is unitary) and a diagonal D contains λ(A)

4 for any x, we have

λmin(A)∥x∥22 ≤ xTAx ≤ λmax(A)∥x∥22

the first (and second) inequalities are tight when x is the eigenvector corresponding to λmin

(and λmax respectively)
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Proofs

1 assume Ax = λx and λ, x could be complex, denote x∗ = x̄T

(x∗Ax)∗ = x∗A∗x = x∗Ax = x∗λx = λx∗x

= (x∗λx)∗ = λ̄x∗x

since x∗x ̸= 0, we must have λ = λ̄

2 assume Ax1 = λ1x1 and Ax2 = λ2x2 (now all (λi, xi) are real)

xT2 Ax1 = xT2 λ1x1 = λ1x
T
2 x1

= xT1 Ax2 = xT1 λ2x2 = λ2x
T
1 x2

equating two terms give (λ1 − λ2)x
T
2 x1 = 0

for simple case, we can assume that λi’s are distinct, so xT2 x1 = 0 (x2 ⊥ x1)
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Positive definite matrix
definition: a symmetric matrix A is positive semidefinite, written as A ⪰ 0 if

xTAx ≥ 0, ∀x ∈ Rn

and is said to be positive definite, written as A ≻ 0 if

xTAx > 0, for all nonzero x ∈ Rn

k the curly ⪰ symbol is used with matrices (to differentiate it from ≥ for scalars )

example: A =

[
1 −1
−1 2

]
⪰ 0 because

xTAx =
[
x1 x2

] [ 1 −1
−1 2

] [
x1
x2

]
= x21 + 2x22 − 2x1x2 = (x1 − x2)

2 + x22 ≥ 0

exercise: . check positive semidefiniteness of matrices on page 33
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How to test if A ⪰ 0?

Theorem: A ⪰ 0 if and only if all eigenvalues of A are non-negative
(A ≻ 0 if and only if λ(A) > 0)
Sylvester’s criterion: if every principal minor of A (including detA) is non-negative
then A ⪰ 0 proof in Horn Theorem 7.2.5

example 1: A =

[
1 −1
−1 2

]
≻ 0 because

eigenvalues of A are 0.38 and 2.61 (real and positive)

the principle minors are 1 and
∣∣∣∣ 1 −1
−1 2

∣∣∣∣ = 1 (all positive)

example 2: A =

[
1 1
2 2

]
⪰ 0 because eigenvalues of A are 0 and 3
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Properties of positive definite matrix

1 if A ⪰ 0 then all the diagonal terms of A are nonnegative
2 if A ⪰ 0 then all the leading blocks of A are positive semidefinite
3 if A ⪰ 0 then BABT ⪰ 0 for any B - (exercise)
4 if A ⪰ 0 and B ⪰ 0, then so is A+B

5 a diagonal psdf D = diag(d1, d2, . . . , dn) admits a square root denoted by D1/2

D1/2D1/2 = D where D1/2 := diag(
√

d1,
√
d2, . . . ,

√
dn)

(this choice of D1/2 is also positive semidefinite)
6 if A ⪰ 0 then A has a square root, denoted as a symmetric A1/2 such that

A1/2A1/2 = A
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Square root of positive semidefinite matrix
definition: a square root of A ⪰ 0 is a symmetric matrix denoted by A1/2 such that

A1/2A1/2 = A

example:

D =

[
2 0
0 6

]
, D1/2 =

[√
2 0

0 −
√
6

]
, A =

[
2 −1
−1 2

]
, A1/2 =

1

2

[
1 +

√
3 1−

√
3

1−
√
3 1 +

√
3

]
how to find a square root?: one way is from the eigenvalue decomposition

A = UDUT = UD1/2D1/2UT = UD1/2UTUD1/2UT ⇒ A1/2 := UD1/2UT

A1/2 is not unique but we can choose A1/2 that is positive semidefinite
i A1/2 is NOT the matrix with entries √

aij

different definition exists: if A = BTB then B is called a square root of A
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Positive definite matrices in applications
1 covariance matrix: C = E[(X − µ)(X − µ)T ]

2 Hessian of convex functions: e.g., f(x) =
∑n

i=1 xi log(xi)

3 given Q ≻ 0 there exists a unique P ≻ 0 satisfying the Lyapunov equations

(continuous) ATP + PA+Q = 0, (discrete) ATPA− P +Q = 0

if and only if the autonomous linear system is asymptotically stable
4 a matrix in a form of ATA is called a Gram matrix, e.g., appear in quadratic

term of dual SVM (Gram is pdf when A is full rank)
5 another name of Gram is Gramian matrix (as in control theory)

Wc =

∫ ∞

0
eAτBBT eA

T τdτ, can be solved via AWc +WcA
T = −BBT

controllability: (A,B) is controllable iff Wc ≻ 0
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Gram matrix

for an m× n matrix A with columns a1, . . . , an, the product G = ATA is called the
Gram matrix Gram matrix is positive semidefinite

Jørgen Pedersen Gram

G = ATA =


aT1 a1 aT1 a2 · · · aT1 an
aT2 a1 aT2 a2 · · · aT2 an

... ... . . . ...
aTna1 aTna2 · · · aTnan


xTGx = xTATAx = ∥Ax∥2 ≥ 0, ∀x

if A has zero nullspace then Ax = 0 ↔ x = 0; this implies that ATA ≻ 0

let X be a data matrix, partitioned in N rows as xTk ’s; we typically encounter
G = XXT =

∑N
k=1 xkx

T
k as the sample covariance matrix
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Negative definite and indefinite
more definitions

A is called a negative semidefinite matrix if −A is positive semidefinite

A =

[
−2 1
1 −3

]
⪯ 0 (all eigenvalues of A are non-positive)

(recall the Lyapunov theory in control: ATP + PA ⪯ 0)
if A is neither positive semidefinite matrix nor negative semidefinite matrix, A is
said to be indefinite

A =

[
2 −3
−3 1

]
⪰̸ 0, (eigenvalues of A have mixed signs)

(its energy form xTAx is not monotone – can be increasing or decreasing,
depending on x)
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Exercises on positive definite matrix

1 for which a and c is this matrix pdf ?

A =

a a a
a a+ c a− c
a a− c a+ c


2 let x ∈ Rn, is xxT ⪰ 0? is xxT ≻ 0?
3 if A ⪰ 0, and let α > 0, is A+ αI ≻ 0?
4 prove that if A ⪰ 0 then BABT ⪰ 0 for any B

5 let A ≻ 0, under what condition on B is BABT ≻ 0?

6 let A =

[
2 4
4 9

]
i) check if A ≻ 0, ii) find the smallest α ∈ R such that A+αI ⪰ 0
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Common misunderstanding about pdf matrices

1 A ⪰ 0 does NOT mean all entries of A are positive!
2 if xTAx ≥ 0 for some x, it does NOT imply that A ⪰ 0

3 the converse of some statements on page 42 is NOT true
8 if all diagonal terms of A are nonnegative then A ⪰ 0
8 if all the leading blocks of A are positive semidefinite then A ⪰ 0
8 if A+B ⪰ 0 then A and B are positive semidefinite
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Can we compare two psdf matrices?
let A,B be positive semidenite matrices

definition: we say A ⪰ B (A is greater than B in matrix sense) if

A−B ⪰ 0

example: A =

[
5 1
1 3

]
⪰ 0, B =

[
2 −1
−1 1

]
⪰ 0, A−B =

[
3 2
2 2

]
⪰ 0

however, A and B are not comparable if A−B ⪰̸ 0 (and denoted by A ⪰̸ B)

A =

[
4 −1
−1 2

]
⪰ 0, B =

[
3 1
1 1

]
⪰ 0, A−B =

[
1 −2
−2 1

]
⪰̸ 0

(such relation is called partial ordering)

a necessary condition for A ⪰ B is that diag(A) ⪰ diag(B)
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Congruent transformation
let A be a symmetric matrix and B be any invertible matrix

definition: a transformation f : Sn → Sn given by

f(A) = BTAB

is said to be congruent to A and has the following properties: law of inertia

1 BTAB has the same number of (positive)(negative)(zero) eigenvalues as A
(proof in Strang page 177)

2 for a special case when A ≻ 0, the result is clear, i.e.,

BTAB ≻ 0 ⇐⇒ A ≻ 0, provided that B is invertible

example: let X be a random vector and Y = BX; then cov(Y ) = B cov(X)BT

Linear algebra for EE Jitkomut Songsiri 50 / 194



Positive semidefinite ordering

1 if A ⪰ B then A−1 ⪯ B−1 (provided that A,B are invertible)
2 λmax(A)I ⪰ A ⪰ λmin(A)I

3 if A ⪰ B then STAS ⪰ STBS for any S

proof of [1] involves spectral radius and singular value of matrices (see detail in
Horn, Corollary 7.7.4 page 495)
proof of [2] and [4] are straightforward; just use the definition
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Ellipsoid in Rn

given P ≻ 0, xc ∈ Rn, α > 0, an ellipsoid in Rn is parametrized by

E = { x ∈ Rn | (x− xc)
TP−1(x− xc) ≤ α }

circle ellipsoid rotated ellipsoid

P ≻ 0 has an eigenvalue decomposition: P = UDUT

1 principal axes of ellipsoids are eigenvectors of P : u1, u2, . . . , un

2 the widths of principal axes are
√
αλi where λi’s are eigenvalues of P
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How to sketch an ellipsoid
ingredients:

P = UDUT ⇒ P−1 = UD−1UT where D = diag(λ1, . . . , λn)

U is unitary, i.e., UTU = I and if x = Uy then ∥x∥ = ∥y∥

circle ellipsoid rotated ellipsoid

R to L: xTP−1x = xTUD−1UTx = xTD−1/2D−1/2UTx and make
transformations y = UTx and z = D−1/2y

L to R: plot shape in z (easy), scale/dilate z to get shape in y, and rotate y to
get the shape in x
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Ellipsoid as in Gaussian confidence region
basic facts: suppose X is Gaussian with covariance Σx

if Z = AX + b (affine) then Z is also Gaussian with covariance Σz = AΣxA
T

for X ∼ N (0,Σ) and if Σ = UDUT then Z = D−1/2UTX is a standard Gaussian
sum square of n standard Gaussians is a Chi-square of n degree of freedom

-6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6 x ∼ N (0,Σ) and transform x to z

decompose Σ = UDUT and transform
z = D−1/2UTx to make cov(z) = I

P (xTΣ−1x ≤ α) = P (zT z ≤ α) = P (X 2
n ≤ α)

size of ellipsoid (α) is computed to
guarantee that P (x ∈ E) ≥ a desired value

α = F−1
χ2 (0.9)
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Schur complement
a consider a block matrix X partitioned as

X =

[
A B
C D

]

Schur complement of D in X is defined as

S = A−BD−1C, if detD ̸= 0

we can show that detX = detD detS

Schur complement of A in X is defined as

S = D − CA−1B, if detA ̸= 0

we can show that detX = detA detS

7 1 0 3
1 4 1 5
0 1 2 -2
3 5 -2 9

7 1 0 3
1 4 1 5
0 1 2 -2
3 5 -2 9
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How Schur complement arises in Gaussian elimination

consider a system of linear equations in two-block variables and get rid of x2 first

Ax1 +Bx2 = y1, Cx1 +Dx2 = y2

if D−1 exists, we can eliminate x2 first; x2 = D−1y2 −D−1Cx1

plug x2 in the first equation and solve for x1

Ax1 +B(D−1y2 −D−1Cx1) = y1 ⇒ (A−BD−1C)x1 = y1 −BD−1y2

denote S = A−BD−1C and if it is invertible, . the solution is given by[
x1
x2

]
=

[
S−1y1 − S−1BD−1y2

−D−1CS−1y2 + (D−1 +D−1CS−1BD−1)y2

]
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Inverse of block matrix

express the solution (x1, x2) as a formula for the inverse of a block matrix

X−1 =

[
A B
C D

]−1

=

[
S−1 −S−1BD−1

−D−1CS−1 D−1 +D−1CS−1BD−1

]
k note that the Schur complemnt is the inverse of the (1, 1) block of X−1!

in fact, an LDU decomposition of X is

X =

[
A B
C D

]
=

[
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

]
this proves that the determinant of X is det(A−BD−1C) detD
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Schur complement of positive semidefinite matrix

X =

[
A B
BT D

]
, SD = A−BD−1BT , SA = D −BTA−1B,

facts:
X ≻ 0 if and only if D ≻ 0 and SD ≻ 0

if D ≻ 0 then X ⪰ 0 if and only if SD ⪰ 0

detX = detD detSD = detA detSA

X =

[
I BD−1

0 I

]
︸ ︷︷ ︸

full rank

[
SD 0
0 D

] [
I 0

D−1BT I

]

a form of congrurent transformation

interesting meaning when X ≻ 0: we have SD ≻ 0 and D ≻ 0

A− SD = BD−1BT ⪰ 0 ⇐⇒ A is bigger than SD !

analogous results for SA

X ≻ 0 if and only if A ≻ 0 and SA ≻ 0

if A ≻ 0 then X ⪰ 0 if and only if SA ⪰ 0
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Applications of Schur complement

7 1 0 3
1 4 1 -2
0 1 2 -2
3 -2 -2 9

conditional covariance matrix of X|Y (Gaussian case)

Σ =

[
Σx Σxy

ΣT
xy Σy

]
, Σx|y =

[
7 1
1 4

]
−
[
0 3
1 −2

] [
2 −2
−2 9

]−1 [
0 3
1 −2

]T
(clearly, Σx|y ⪯ Σx – if Σxy ̸= 0, knowing Y helps reduce covariance in X)
elimination of variable in solving a linear system
inverse of block matrix
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Matrix inversion lemmas

Woodbury formula: let A be invertible and let C,U, V be rectangular matrices

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

(useful when k < n or that U is tall and V is fat giving C−1 + V A−1U in smaller size than n)

Sherman-Morrison formula: when U, V reduce to outer product of vectors

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u

(useful when A−1 is simple – the denominator in RHS turns to be scalar)

the inverse of perturbation of A corrected by a low-rank update is obtained by a cheap
perturbation of A−1
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Example of matrix inversion lemma

recall that the inverse of a diagonal matrix D = diag(d) is D−1 = diag(1/d) (simple)2 0 0
0 3 0
0 0 4

+

 1
−1
2

 [
0 −3 1

]−1

=

compare the matrix inversion result with the direct calculation

when the dimension of u, v is large, and if A is diagonal
A−1 is obtained as cheaply as O(n)

calculations of vTA−1u and A−1uvTA−1 are also in O(n)
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Push-through identity

let A ∈ Rm×n, B ∈ Rn×m and assume that I +AB is invertible

facts: .

I +BA is invertible
push-through identity

B(I +AB)−1 = (I +BA)−1B

(B is pushed from the left to right)

hint: start with B(I +AB) = (I +BA)B
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Pseudo-inverse
consider a full rank matrix A ∈ Rm×n in three cases

tall matrix: A is full rank ⇔ columns of A are LI ⇔ ATA is invertible

((ATA)−1AT )A = (ATA)−1(ATA) = I

the pseudo-inverse of A (or left-inverse) is A† = (ATA)−1AT

wide matrix: A is full rank ⇔ row of A are LI ⇔ AAT is invertible

A(AT (AAT )−1) = (AAT )(AAT )−1 = I

the pseudo-inverse of A (or right-inverse) is A† = AT (AAT )−1

square matrix: A is full rank ⇔ A is invertible and both formula of
pseudo-inverses reduce to the ordinary inverse A−1

. the pseudo inverses of the three cases have the same dimension ?
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Symmetry in the complex worldx+iy

let A ∈ Cn×n and denote the operator A∗ as

A∗ = ĀT (complex conjugate transpose)

definition: A is said to be Hermittian or self-adjoint if A∗ = A

example:
[

2 3− 2i
3 + 2i 1

]
clearly see that A∗ = A ⇐⇒ aij = āji

facts: if A is self-adjoint
eigenvalues of self-adjoint matrix are real
eigenvectors are mutually orthogonal
A admits a decomposition: A = UDU∗ where U is unitary, e.g., U∗U = UU∗ = I
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Vector space
a vector space or linear space (over R) consists of

a set V
a vector sum + : V × V → V
a scalar multiplication : R × V → V
a distinguished element 0 ∈ V

V is called a vector space over R, denoted by (V,R) if elements, called vectors of V
satisfy the following main operations:

1 vector addition:
x, y ∈ V ⇒ x+ y ∈ V

2 scalar multiplication:

for any α ∈ R, x ∈ V ⇒ αx ∈ V
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Example of vector spaces

Rn, Rm×n

set of polynomials of degree less than or equal to n

set of continuous functions on (a, b)

M is called a subspace of vector space V if M is a subset of V, and M is a vector
space itself

examples:
{x ∈ Rn | x1 = 0 }
set of diagonal matrices of size n× n

range space and nullspace of a matrix A
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Normed vector space

a normed linear space is a vector space V over a R with a map

∥ · ∥ : V → R

called a norm that satisfies
homogenity

∥αx∥ = |α|∥x∥, ∀x ∈ V , ∀α ∈ R

triangle inequality
∥x+ y∥ ≤ ∥x∥+ ∥y∥, ∀x, y ∈ V

positive definiteness

∥x∥ ≥ 0, ∥x∥ = 0 ⇐⇒ x = 0, ∀x ∈ V
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Example of vector and matrix norms
x ∈ Rn and A ∈ Rm×n

2-norm (Euclidean norm)

∥x∥2 =
√
xTx =

√
x21 + x22 + · · ·+ x2n

∥A∥F =
√
tr(ATA) =

√√√√ m∑
i=1

n∑
j=1

|aij |2

1-norm
∥x∥1 = |x1|+ |x2|+ · · ·+ |xn|, ∥A∥1 =

∑
ij |aij |

∞-norm
∥x∥∞ = max

k
{|x1|, |x2|, . . . , |xn|}, ∥A∥∞ = max

ij
|aij |

clearly, ∥x∥ measures the vector size; ∥x− y∥ measures the distance between y and x
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ℓp-norm

∥x∥p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p

-norm ball-norm ball -norm ball

a unit-norm ball is the set {x ∈ Rn | ∥x∥ ≤ 1}
ℓ0 is defined as ∥x∥0 = card(x) (the number of nonzero elements in x)
ℓ1/2 is NOT a norm due to violation of triangle inequality

x = (1, 0), y = (0, 1), ∥x∥1/2 = ∥y∥1/2 = 1, but ∥x+ y∥1/2 = ∥(1, 1)∥1/2 = 22

ℓ0, ℓ1/2 are not truly a norm; in fact, ℓp is a norm when 1 ≤ p < ∞
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Norm as a distance function

for Rn, we can use different norms to measure the distance between x and y

. mark the distance between red and green dots using

distance function induced by different norms
ℓ1-norm: Manhattan/taxicab distance
ℓ2-norm: Euclidean distance
ℓp-norm: Minkowski distance for p ≥ 1

ℓ∞-norm: Chebyshev distance

a distance value should be non-negative
the distance from x to y should be the same as measuring from y to x

a distance function can be formulated mathematically as the idea of a metric
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Metric space
a metric is a function d : X × X → R+ that gives a distance meaning of two points
a metric (or distance function) must satisfy the three properties for all x, y ∈ X

1 d(x, y) = 0 if and only if x = y (definiteness)
2 d(x, y) = d(y, x) (symmetry)
3 d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

definition: any set X that is equipped with a matric is called a metric space (X , d)

any normed linear space (V, ∥ · ∥) is then a metric space with the distance
function d(x, y) := ∥x− y∥
the triangle inequality is satisfied by following

d(x, z) := ∥x− z∥ = ∥x− y + y − z∥ ≤ ∥x− y∥+ ∥y − z∥ = d(x, y) + d(y, z)
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Further reading about distance
1 let X be a metric space and M ⊂ X and x ∈ X

dist(M, x) = inf
z∈M

d(z, x)

(the distance between a set and a point – taking the minimum distance)
2 let C and D be two subsets of a metric space X – the distance between two sets is

dist(C,D) = inf
x∈C,y∈D

d(x, y)

dist(C,D) = inf
x∈C,y∈D

∥x− y∥ if the distance is induced from a norm

3 measure error between two inputs: given any two vectors x, y or matrices A,B, to
compare if x = y or A = B (mathematically) we should check numerically that

∥x− y∥ ≤ ϵ, ∥A−B∥ ≤ ϵ (choice of norm may affect the computation)
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Applications of vector norms
questions involving norms

find a vector x having the smallest norm (measured by any norm choice) while x
stays in a set (hyperplane, convex sets)

minimize
x

∥x∥ subject to Ax = y

we can choose several choices of distance functions in kNN to measure the
k-nearest neighbors
ℓ2-norm (as MSE) and ℓ1-norm (as MAE) are typical loss functions ρ in regression
problems

minimize
θ

N∑
i=1

ρ(yi − f(xi; θ))

where ρ(r) can be |r|, r2
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Separable property
1 -2 0 3 -5 4x = 1 -2 0 3 -5 4 ≜ x = (x1, x2, x3), xk ∈ R2

let’s verify that
∥x∥22 = ∥x1∥22 + ∥x2∥22 + ∥x3∥22
∥x∥1 = ∥x1∥1 + ∥x2∥1 + ∥x3∥1
∥x∥∞ = maxi=1,2,3 {∥x1∥∞, ∥x2∥∞, ∥x3∥∞}

in fact, ℓp-norm of a stacked vector is .

∥(a, b, c)∥p = ∥(∥a∥p, ∥b∥p, ∥c∥p)∥p

norm of each block

norm of vector 

formed from the norms
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Operator norm

matrix operator norm of A ∈ Rm×n is defined as

∥A∥ = max
∥x∦=0

∥Ax∥
∥x∥

= max
∥x∥=1

∥Ax∥

aka as the induced norm

properties:

1 for any x, ∥Ax∥ ≤ ∥A∥∥x∥ (by the definition)
2 ∥aA∥ = |a|∥A∥ (scaling)
3 ∥A+B∥ ≤ ∥A∥+ ∥B∥ (triangle inequality)
4 ∥A∥ = 0 if and only if A = 0 (positiveness)
5 ∥AB∥ ≤ ∥A∥∥B∥ (submultiplicative)
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Examples of operator norms
2-norm (aka as spectral norm)

∥A∥2 ≜ max
∥x∥2=1

∥Ax∥2 =
√
λmax(ATA) = σmax(A) (max singular value)

1-norm

∥A∥1 ≜ max
∥x∥1=1

∥Ax∥1 = max
j=1,...,n

m∑
i=1

|aij |

∞-norm

∥A∥∞ ≜ max
∥x∥∞=1

∥Ax∥∞ = max
i=1,...,m

n∑
j=1

|aij |

1 -2 0 -3
0 3 1 2
5 0 2 -2
0 7 8 0

. verify that the above operator norms have the given expressions
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More on metric norms
nuclear norm: sum of singular values (no. of nonzero σi determines rank(X))

∥X∥∗ =
min(m,n)∑

i=1

σi(X)

(recall a singular value is σi(X) =
√

λi(XTX))

spectral radius ρ(X): let λ1, . . . , λn be n eigenvalues of X

ρ(X) = max
k

{ |λ1|, |λ2|, . . . , |λn| }

. spectral radius is NOT a norm + check which norm condition is violated

useful relations .: ρ(A) ≤ ∥A∥2 ≤ ∥A∥F ≤ ∥A∥∗
proof hint: definition of operator norm ; max eigenvalue < sum of eigenvalue ;
√
a+ b ≤

√
a+

√
b
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Applications of matrix norms

1 analog of least-squares for matrix parameter: minimizeX ∥Y −HX∥2F
2 deriving norm of output from a matrix-vector multiplication

x(t+ 1) = Ax(t) ⇒ x(t) = Atx(0)

⇒ ∥x(t)∥ ≤ ∥A∥∥At−1x(1)∥ ≤ · · · ≤ ∥A∥t∥x(0)∥

the inquality is obtained by the matrix operator norm

3 let S = ATA, the maximum of R(x) = xTSx
xT x

is called the Rayleigh quotient
which turns out to be the squared spectral norm of A, σ2

max(A)

4 low-rank approximation: minimize ∥A−X∥2F subject to rank(X) ≤ r
(find a low-rank X that best approximates A in Frobenius norm sense)

5 problem: minimize f(X) + λ∥X∥∗ (a regularized regression with parameter X
that has a low-rank prior)
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Equivalence of norms
two norms ∥ · ∥A and ∥ · ∥B on a vector space V are said to be equivalent
if there exists constants α, β such that

α∥x∥A ≤ ∥x∥B ≤ β∥x∥A, ∀x ∈ V

examples: ℓ1, ℓ2, ℓ∞-norms for x ∈ Rn are all equivalent .

∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 ≤
√
n∥x∥2 ≤ n∥x∥∞

(non-trivial: prove ∥x∥∞ ≤ ∥x∥2 using Cauchy-Swarz inequality with y = ej making yTx = ∥x∥∞)

applications: for an error e ∈ RN , MSE = 1
N ∥e∥22, RMSE = 1√

N
∥e∥2, MAE = 1

N ∥e∥1

MAE ≤ RMSE ≤
√
NMAE

which bound is useful ? – meaning that it provides a tight upper/lower bound
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Inner product space
an inner product space is a vector space V over R with a map

⟨·, ·⟩ : V × V → R

for all x, y, z ∈ V and all scalars a ∈ R, an inner product satisfies

1 symmetry: ⟨x, y⟩ = ⟨y, x⟩
2 linearity in the first argument:

⟨ax, y⟩ = a⟨x, y⟩, ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩

3 positive definiteness

⟨x, x⟩ ≥ 0, and ⟨x, x⟩ = 0 ⇔ x = 0
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Examples of inner product spaces

Rn : ⟨x, y⟩ = yTx = x1y1 + x2y2 + · · ·+ xnyn (canonical/vanilla inner product)
Rn : for W ≻ 0, ⟨x, y⟩W = yTWx (weighted inner product)
(W ≻ 0 is a positive definite matrix, i.e., xTWx > 0 for all x ̸= 0)
Rm×n : ⟨X,Y ⟩ = tr(Y TX)

C[a, b]: set of all real-valued continuous functions on [a, b] whose inner product is
defined as

⟨f, g⟩ =
∫ b

a
f(t)g(t)dt
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Applications of inner product in Rn

the inner product xT y has a meaningful interpretation in applications
co-occurrence: let a, b are n-vectors that describe occurrence, i.e., each elements
is either 0 or 1; then aT b gives the total number of indices for which ai and bi are
both one
score/weight/feature: s = wT f where f is a feature vector, w is the weight
vector, and s is the total score
probability/expected value: expected value = fT p where p is a probabability
vector, and fi is the value if outcome i occur
polynomial evaluation: p(x) = c0 + c1x+ · · ·+ cnx

n then we can present
p(t) = cT z where c = (c0, . . . , cn) and z = (1, t, . . . , tn)
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Induced norm
every inner product space induces a norm that is defined by

∥x∥ ≜
√
⟨x, x⟩ (satisfy all properties of norm)

Cauchy-Schwarz inequality: |⟨x, y⟩| ≤ ∥x∥∥y∥

. show that the induced norm satisfies the triangle inequality

∥x+ y∥2 = ⟨x+ y, x+ y⟩ = ⟨x, x⟩+ ⟨y, y⟩+ ⟨x, y⟩+ ⟨y, x⟩
= ∥x∥2 + ∥y∥2 + 2ℜ⟨x, y⟩ ≤ ∥x∥2 + ∥y∥2 + 2|⟨x, y⟩|
≤ ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥ = (∥x∥+ ∥y∥)2

(the last inequality follows from Cauchy-Schwarz inequality)

. if ⟨x, y⟩ = yTWx is used for the inner product, what is the induced norm ?
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Cauchy-Schwarz inequality (CS)
for any x, y in an inner product space (V,R)

|⟨x, y⟩| ≤ ∥x∥∥y∥

moreover, for y ̸= 0,

⟨x, y⟩ = ∥x∥∥y∥ ⇐⇒ x = cy, ∃c ∈ R
proof of non-trivial case (y ̸= 0): for any scalar α

0 ≤ ∥x+ αy∥2 = ∥x∥2 + α2∥y∥2 + 2α⟨x, y⟩

if y ̸= 0, then we can choose α = −
⟨x, y⟩
∥y∥2

and the CS inequality follows

interpretation as cosine similarity: −1 ≤ cos θ ≜ ⟨x,y⟩
∥x∥∥y∥ ≤ 1
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Cosine similarity function
let’s find the similarity between f(x) = sin(x) ∈ C[0, 2π] and each of two polynomials:

g(x) = 0.1x3 − 0.8x2 + 1.2x− 0.1, h(x) = 0.15x3 − x2 + x− 0.5

0 2 4 6

-2

0

2

4

Function

-2

0

2

4

Discretized

0 2 4 6

-2

0

2

4

Discretized

0 2 4 6

similarity between f(x) and g(x):
∫ 2π
0 sin(x)g(x)dx√∫ 2π

0 sin(x)dx·
∫ 2π
0 g(x)dx

after discretizing f(x) to a vector f ∈ Rn, the similarity index is computed using
inner product in Rn: similarity = fT g

∥f∥2∥g∥2
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Orthogonality
let (V,R) be an inner product space

x and y are orthogonal:

x ⊥ y ⇐⇒ ⟨x, y⟩ = 0

orthogonal complement in V of S ⊆ V , denoted by S⊥, is defined by

S⊥ = {x ∈ V | ⟨x, s⟩ = 0, ∀s ∈ S}

fact: . S⊥ is a vector space
for M ⊆ Rn, Rn admits the orthogonal decomposition:

Rn = M⊕M⊥, and dim(Rn) = dim(M) + dim(M⊥)

any y ∈ Rn is uniquedly decomposed as y = m+ m̃ where m ∈ M and m̃ ∈ M⊥
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Examples of orthogonality
these are orthogonal pairs

(1, 0,−1) ⊥ (1, 1, 1),

[
1 0
−2 3

]
⊥

[
1 1
0 −1/3

]
, C[0, 1] : x ⊥ (4x2 − 2)

. please verify
S = { x ∈ Rn | aTx = 0 } and S⊥ = span{a}

S =

{
A ∈ R2×2 | A =

[
0 a12
a21 0

] }
and S⊥ =

{
B ∈ R2×2 | B =

[
b11 0
0 b22

]}
S = span{(1, 0, 0)} and S⊥ = span{(0, 1, 0), (0, 0, 1)}

R3 = span


10
0

⊕ span


01
0

 ,

00
1
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Parallogram law

we start with x, y in an inner product space and ∥ · ∥ is the induced norm

∥x+ y∥2 = ⟨x+ y, x+ y⟩ = ⟨x, x⟩+ ⟨y, y⟩+ ⟨x, y⟩+ ⟨y, x⟩
∥x− y∥2 = ⟨x− y, x− y⟩ = ⟨x, x⟩+ ⟨y, y⟩ − ⟨x, y⟩ − ⟨y, x⟩

Pythagoras’ theorem: when x ⊥ y, squared norm of the sum reduces to

∥x+ y∥2 = ∥x∥2 + ∥y∥2

the parallelogram law: by adding the above two identities

2∥x∥2 + 2∥y∥2 = ∥x+ y∥2 + ∥x− y∥2
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Orthogonal projection

let x, y be vectors in an inner product space V equipped with ⟨·, ⟩ and let M ⊆ V

orthogonal projection of y onto M

definition: find a mapping P : V → M such that

e = y − P (y)

is orthogonal to any vector in M
- concept of orthogonality depends on the inner product
associated with V

orthogonality condition: y − P (y) ⊥ M
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Procedure of finding the orthogonal projection of y onto M

let {ϕ1, ϕ2, . . . , ϕm} be a basis for M
P (y) must be a linear combination of ϕk’s (since R(P ) ⊆ M)

P (y) = a1ϕ1 + · · ·+ a2ϕm

y − P (y) ⊥ M ⇐⇒ ⟨y − P (y), ϕk⟩ = 0 for all k and it gives

orthogonality condition: ⟨y, ϕk⟩ = ⟨P (y), ϕk⟩, k = 1, 2, . . . ,m

= ⟨a1ϕ1 + a2ϕ2 + · · ·+ amϕm, ϕk⟩

this forms a system of m linear equations in ak’s

example: if M has only one basis vector ϕ, we have ⟨y, ϕ⟩ = a1⟨ϕ, ϕ⟩
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Procedure of finding the orthogonal projection of y onto M

solve m linear equations to find coefficients ak
⟨ϕ1, ϕ1⟩ ⟨ϕ2, ϕ1⟩ . . . ⟨ϕm, ϕ1⟩
⟨ϕ1, ϕ2⟩ ⟨ϕ2, ϕ2⟩ . . . ⟨ϕ2, ϕm⟩

... ... . . . ...
⟨ϕm, ϕ1⟩ ⟨ϕm, ϕ2⟩ . . . ⟨ϕm, ϕm⟩



a1
a2
...
am

 =


⟨y, ϕ1⟩
⟨y, ϕ2⟩

...
⟨y, ϕm⟩

 , ≜ Ga = b

G with gij = ⟨ϕi, ϕj⟩ is called a Gram matrix (clearly symmetric and can be
shown to be positive definite)
for this reason, G is invertible and a = G−1b

b is linear in y, it is clear that P (y) = a1ϕ1 + · · ·+ amϕm is then linear in y

Linear algebra for EE Jitkomut Songsiri 93 / 194



Projection onto a vector
if a basis for M is {ϕ} (only one basis vector), then P (y) = aϕ

⟨y, ϕ⟩ = a⟨ϕ, ϕ⟩ ⇒ P (y) =
⟨y, ϕ⟩
⟨ϕ, ϕ⟩

ϕ

1 project y onto x in Rn:

P (y) = αx, P (y) =
⟨x, y⟩
⟨x, x⟩

· x =
(yTx)x

∥x∥2
= ∥y∥ cos θ · x

∥x∥

2 project Y onto X in Rm×n:

Y =

[
1 2 1
2 3 −1

]
, X =

[
1 −1 0
0 1 −1

]
, ⟨X,Y ⟩ = tr(Y TX) = 3, ⟨X,X⟩ = tr(XTX) = 4

P (Y ) =
⟨X,Y ⟩
⟨X,X⟩ ·X =

3

4
X =

3

4

[
1 −1 0
0 1 −1

]
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Try out the formula

find the projection of y = (1, 2) onto the subspace spanned by x

y

x = (1, 1)

y

x = (−1, 1)

y

x = (−2, 1)

y

x = (−2,−1)

. which pair of (y, x) has the highest cosine similarity index?
(review acute/obtuse angles between vectors)
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Projection of a function
example: project g(x) = 2 sin(2x) ∈ C[−π

a ,
π
a ] onto a subspace spanned by {1, x}

Residual versus Projected function

inner product:

⟨f, g⟩ =
∫ π/a

−π/a
f(t)g(t)dt

on C[−π
2 ,

π
2 ], C[−π

4 ,
π
4 ], and

C[− π
100 ,

π
100 ]

three projections: P (g(x)) are different by the support of function (but all of
them are linear in x)
as the support becomes smaller, P (g(x)) tends to be the tangent line of g(x) at 0
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Calculations

the orthogonality condition forms a system of 2 equations[
⟨1, 1⟩ ⟨1, x⟩
⟨1, x⟩ ⟨x, x⟩

] [
a1
a2

]
=

[
⟨g(x), 1⟩
⟨g(x), x⟩

]
⇒

[2π
a 0

0 2π3

3a2

] [
a1
a2

]
=

[
0

sin(2πa )− 2π
a cos(2πa )

]
(as we use the inner product for C[−π/a, π/a])

P (g(x)) = a1 + a2x =
3a3

2π3

[
sin(2π/a)− 2π

a
cos(2π/a)

]
x ≜ 12

c3
[sin(c)− c cos(c)]x

C[−π
2 ,

π
2 ]: the projection is P (g(x)) = 12

π2x

C[−π
4 ,

π
4 ]: the projection is P (g(x)) = 96

π3x

. as a is sufficiently large, P (g(x)) → 4x
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Orthogonal complements of range space and nullspace
let A ∈ Rm×n

. verify that
R(A)⊥ = N (AT ), N (A)⊥ = R(AT )

therefore, we have orthogonal decompositions

Rm = R(A)⊕N (AT ), Rn = N (A)⊕R(AT )

example: A =

 1 0
0 2
−1 1



R3 = span


 1

0
−1

 ,

02
1

⊕ span


 2
−1
2

 , R2 = span
{[

1
0

]
,

[
0
2

]}
⊕ {0}
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Linear independence vs Orthogonality
definition: a set {ϕi}ni=1 ⊆ V can be a basis for n− dimenstional vector space V if

(1) span{ϕ1, . . . , ϕn } = V, (2) {ϕ1, . . . , ϕn } is linearly independent

independent orthogonal orthogonal
+ unit norm

(1, 2,−1), (1, 0,−1), (1,−3, 4) are independent but not orthogonal
(0, 0,−1), (1, 1, 0), (1,−1, 0) are orthogonal and independent

fact: . orthogonal vectors are also independent
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Orthonormal basis
{ϕk}nk=1 ⊂ V is said to be an orthonormal set if

⟨ϕi, ϕj⟩ =

{
1, i = j

0, i ̸= j

and is called an orthonormal basis for an n-dimensional V if
1 {ϕk}k is an orthornomal set
2 span{ϕ1, ϕ2, . . . , ϕn} = V

example for Rn:

ϕ1 = (0, 0,−1), ϕ2 =
1√
2
(1, 1, 0), ϕ3 =

1√
2
(1,−1, 0)

we can construct an orthonormal basis from the Gram-Schmidt orthogonalization
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Gram-Schmidt algorithm (GS)
given vectors a1, a2, . . . , ap, GS algorithm finds orthogonal vectors q1, . . . , qm that

for i = 1, . . . ,m, ai is a linear combination of q1, . . . , qm, and qi is a linear
combination of a1, a2, . . . , ai
if a1, . . . , aj−1 are LI but a1, . . . , aj are dependent, GS detects the first vector aj
that is a linear combination of previous a1, . . . , aj−1

algorithm:
1 project vector ak onto the previous k − 1 orthonormal vectors
2 q̃k is the residual after the projection (hence, must to orthogonal to the previous

a1, . . . , ak−1 vectors
3 normalize q̃k to have a unit norm: qk := q̃k/∥q̃k∥
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Orthogonal expansion

let {ϕi}ni=1 be an orthonormal basis for a vector V of dimension n

for any x ∈ V , we have the orthogonal expansion:

x =

n∑
i=1

⟨x, ϕi⟩ϕi

meaning: we can project x into orthogonal subspaces spanned by each ϕi

the norm of x is given by

∥x∥2 =
n∑

i=1

|⟨x, ϕi⟩|2

can be easily calculated by the sum square of projection coefficients
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Kernel

a kernel K : [a, b]× [a, b] → R is a continuous function with the symmetric property

K(x, y) = K(y, x), ∀x, y ∈ [a, b]

Mercer’s condition: a real-valued K(x, y) is said to satisfy Mercer’s condition if∫ ∫
g(x)K(x, y)g(y)dxdy ≥ 0

positive-definite: K is said to be positive-definite if

∑
i=1

n∑
j=1

K(xi, xj)cicj ≥ 0, ∀xi ∈ [a, b], ∀ci ∈ R
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Further reading

open/closed sets, supremum, infimum
Hölder’s inequality (Strang page 96)
dual norm (see page 637 of Boyd and Vandenberghe 2014)
composite norms: x = (x1, x2, . . . , xK) where each xi ∈ Rp

∥x∥p,1 =
K∑
i=1

∥xi∥p

similarity measure:
cosine similarity
Mahalanobis distance (between a point x and a distribution D)
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Finite/Countable/Bounded sets

a finite set is a set that has a finite number of elements

{(3, 4), (1, 1), (0, 0)},
{[

1 2
3 1

]
,

[
3 −1
10 9

]}
, but Rm×n is not finite

a set is countable if each element in the set is uniquely associated to a unique
natural number (or can be counted at a time)

{1, 2, 3, . . .} is countable (but not finite), set of diagonal matrices is not countable

a subset C of a normed vector space is bounded if there exists M > 0 such that
∥x− v∥ < M for all x, v ∈ C

span{(1, 1)} is not bounded
{x ∈ R2 | x = (1, 1) + t(2, 3) | t ∈ [0, 1]} is bounded (but not finite)
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Open and closed sets
concepts about open and closed sets are generalized to normed vector space1

let C be a subset of a normed space V

x ∈ C is called an interior point of C if there
exists ϵ > 0 for which

{y | ∥y − x∥ ≤ ϵ } ⊆ C

(if all points of ϵ-neighborhood of x are also stay in C)
the set of all interior points of C is denoted by intC

a set C is said to be open if intC = C (every point in C is an interior point)
. what is interior of A? is A open ?
a set C is called closed if its complement V\C is open . is B closed ?

1more general definitions for metric/topological space
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Supremum and infimum
let C ⊆ R

the supremum of the set C, denoted by supC is the least upper bound of C

sup(0, 2) = 2, sup(0, 2] = 2, sup{(2,−1)Tx | ∥x∥2 < 1 } =
√
5

maxC denotes the maximum element in C (that can be explicitly specified)
supC may or may not be in the set C; when supC = C, we say the supremum of
C is attained or achieved
we take sup = −∞ and supC = ∞ when C is unbounded above
the infimum of C, denoted by inf C, is the greatest lower bound of C

inf(0, 2) = 0, sup[0, 2] = 0, sup{(2,−1)Tx | ∥x∥2 < 1 } = −
√
5

we take inf = ∞ and inf C = −∞ when C is unbounded below
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Hölder’s inequality

the ℓp and ℓq norms are dual2 in the sense that 1
p + 1

q = 1

ℓ1 ⇔ ℓ∞, ℓ2 is self-dual

Hölder’s inequality is an extension of Cauchy-Schwarz to all dual pairs:

|⟨x, y⟩| ≤ ∥x∥p∥y∥q, p, q ∈ [1,∞) with 1

p
+

1

q
= 1

(proofs can depend on the inner product space in question)

2there is more formal definition of dual norm/dual space
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Dual norm in Rn

let ∥ · ∥ be a norm on Rn; the dual norm, denoted ∥ · ∥∗ is defined as

∥z∥∗ = sup {zTx | ∥x∥ ≤ 1 }

(. verify that it is a norm )

consider the operator norm of zT with the norm ∥ · ∥ on Rn

sup
∥x∥≤1

∥zTx∥
∥x∥

= sup
∥x∥≤1

|zTx|
∥x∥

=⇒ can be regarded as the dual norm

. it can be shown that the dual norm of ℓ2 is itself and the dual norm of ℓ∞ is ℓ1

the dual of the dual norm is the original norm (∥x∥∗∗ = ∥x∥)
from the definition of dual norm, we always have the inequality

zTx ≤ ∥x∥∥z∥∗ (a special case of Hölder’s inequality for Rn)
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Dual norm in Rm×n

let ∥ · ∥ be a norm in Rm×n

the associated dual norm for this space is defined by generalizing the idea of inner
product for matrices: ⟨X,Z⟩ = tr(ZTX)

∥Z∥∗ = sup {tr(ZTX) | ∥X∥ ≤ 1 }

for example, consider the spectral norm ∥X∥2

∥Z∥2∗ = sup {tr(ZTX) | ∥X∥2 ≤ 1 }
= σ1(Z) + σ2(Z) + · · ·+ σr(Z) = tr(ZTZ)1/2

where r = rank(Z) – the dual norm of spectral norm turns out to be the nuclear norm
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Special matrices
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Common matrices used in applications

symmetric Hermittian skew-symmetric
positive definite Gram nilpotent
unitary orthogonal permutation
idempotent nilpotent companion
Toeplitz Hankel Vandermonde
banded doubly stochastic adjacency
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Unitary matrix

a complex matrix U ∈ Cn×n is called unitary if

U∗U = UU∗ = I, (U∗ ≜ ŪT )

example: let z = e−i2π/3

U =
1√
3

1 1 1
1 z z2

1 z2 z4

 =
1√
3

1 1 1

1 e−i2π/3 e−i4π/3

1 e−i4π/3 e−i8π/3


facts: .

a unitary matrix is always invertible and U−1 = U∗

columns vectors of U are mutually orthogonal
2-norm is preserved under a unitary transformation: ∥Ux∥22 = (Ux)∗(Ux) = ∥x∥22
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Example: Discrete Fourier transform (DFT)
DFT of the length-N time-domain sequence x[n] is defined by

X[k] =
1√
N

N−1∑
n=0

x[n]e−i2πkn/N , 0 ≤ k ≤ N − 1

define z = e−i2π/N , we can write the DFT in a matrix form as
X[0]
X[1]
X[2]

...
X[N − 1]

 =
1√
N


1 1 1 · · · 1
1 z1 z2 · · · zN−1

1 z2 z4 · · · z2(N−1)

... ... ... . . . ...
1 zN−1 z2(N−1) · · · z(N−1)(N−1)




x[0]
x[1]
x[2]

...
x[N − 1]


or X = Dx where D is called the DFT matrix and is unitary (∴ x = D∗X)
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Unitary property of DFT

the columns of DFT matrix are of the form:

ϕk = (1/
√
N)

[
1 e−i2πk/N e−i2πk·2/N · · · e−i2πk(N−1)/N

]T
use ⟨ϕl, ϕk⟩ = ϕ∗

kϕl and apply the sum of geometric series:

⟨ϕl, ϕk⟩ =
1

N

N−1∑
n=0

ei2π(k−l)n/N =
1

N
· 1− ei2π(k−l)

1− ei2π(k−l)/N

the columns of DFT matrix are therefore orthogonal

⟨ϕl, ϕk⟩ =

{
1, for k = l + rN, r = 0, 1, 2, . . .

0, for k ̸= l
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Orthogonal matrix

a real matrix U ∈ Rn×n is called orthogonal if

UUT = UTU = I

properties: .

an orthogonal matrix is special case of unitary for real matrices
an orthogonal matrix is always invertible and U−1 = UT

columns vectors of U are mutually orthogonal
norm is preserved under an orthogonal transformation: ∥Ux∥22 = ∥x∥22

example:
1√
2

[
1 −1
1 1

]
,

[
cos θ − sin θ
sin θ cos θ

]
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Projection matrix

P ∈ Rn×n is said to be a projection matrix if P 2 = P (aka idempotent)
P is a linear transformation from Rn to a subspace of Rn, denoted as S

columns of P are the projections of standard basis vectors and S is the range of P
if P is applied twice on a vector in S, it gives the same vector

examples: identity and[
1 0
0 0

]
,

[
1/2 1/2
1/2 1/2

]
,

[
3 −6
1 −2

]
, I −X(XTX)−1XT (in regression)

properties: .

eigenvalues of P are all equal to 0 or 1
I − P is also idempotent
if P ̸= I, then P is singular
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Orthogonal projection matrix
a matrix P ∈ Rn×n is called an orthogonal projection matrix if

P 2 = P = P T

properties:
P is bounded, i.e., ∥Px∥ ≤ ∥x∥

∥Px∥22 = xTP TPx = xTP 2x = xTPx ≤ ∥Px∥∥x∥

if P is an orthogonal projection onto a line spanned by a unit vector u,

P = uuT

(we see that rank(P ) = 1 as the dimension of a line is 1)
another example: P = X(XTX)−1XT for any matrix X – (in regression)
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Permutation

a permutation matrix P is a square matrix that has exactly one entry of 1 in each row
and each column and has zero elsewhere0 1 0

1 0 0
0 0 1

 ,

0 1 0
0 0 1
1 0 0


facts: .

P is obtained by interchanging any two rows (or columns) of an identity matrix
PA results in permuting rows in A, and AP gives permuting columns in A

P TP = I, so P−1 = P T (simple)
the modulus of all eigenvalues of P is one, i.e., |λi(P )| = 1

a permutation matrix is an example of doubly stochastic matrix

Linear algebra for EE Jitkomut Songsiri 120 / 194



Stochastic matrix
a (real) square matrix A with non-negative entries is called

1 a row/right stochastic if each row sums to 1:
∑

j aij = 1 or 1TA = 1T

2 a column/left stochastic if each column sums to 1:
∑

i aij = 1 or A1 = 1

3 a doubly stochastic if each row and column sums to 1

row/left stochastic:

0.2 0.1 0
0.3 0.9 1
0.5 0 0

 , doubly:

0.1 0.5 0.4
0.2 0.2 0.6
0.7 0.3 0

 ,

0 1 0
0 0 1
1 0 0


a stochastic matrix clearly has 1 as an eigenvalue
. the spectral radius of any stochastic matrix is one
a left stochastic matrix appears in Markov chain as the transition probability
matrix: p(t+ 1) = Ap(t) where Aij is the conditional probability that state j
from time t jumps to state i at time t+ 1
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Vandermonde
appears in polynomial evaluation at multiple points

we are not related !
p(t) = c1 + c2t+ · · ·+ cn−1t

n−2 + cnt
n−1

V =


1 t1 · · · tn−1

1

1 t2 · · · tn−1
2... ... ... ...

1 tn · · · tn−1
n


(with a geometric progression in each row)

. one can show that the determinant of V can be expressed as

det(V ) =
∏

1≤i<j≤n

(tj − ti)

hence, V is invertible as long as ti’s are distinct
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Companion matrix

A =


−a1 a2 · · · −an−1 −an
1 0 · · · 0 0
0 1 · · · 0 0
... . . . ...
0 0 · · · 1 0

 , a1, . . . , an ∈ R

1 appears as the state-space dynamic matrix of autoregressive (AR) process

y(t) = a1y(t− 1) + a2y(t− 2) + · · ·+ any(t− n) + u(t)

2 . the characteristic polynomial of A is given by

λn + a1λ
n−1 + a2λ

n−2 + an−1λ+ an = 0

3 stationarity of AR process is obtained via the root test depending on a1, . . . , an
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Companion matrices in state-space system
controllable canonical form

A =



0 0 · · · 0 −an
1 0 · · · 0 −an−1
0 1 0 −an−2

...
. . .

...
0 0 1 −a1

 , B =



1
0
0

...
0


C =

[
c1 c2 c3 · · · cn

]
C = In and (A,B) is controllable

observable cannonical form

A =



0 1 0 · · · 0
0 0 1 0

...
...

. . .
0 0 0 1

−an −an−1 −an−2 · · · −a1

 , B =



b1
b2
b3
...

bn


C =

[
1 0 0 · · · 0

]
O = In and (A,C) is observable

controller canonical form

A =



−a1 −a2 · · · −an−1 −an
1 0 · · · 0 0
0 1 0 0

...
. . .

...
0 0 1 0

 , B =



1
0
0

...
0


C =

[
c1 c2 c3 · · · cn

]
C is an upper triangular matrix with 1’s on the diagonal and (A,B)
is controllable

observer canonical form

A =



−a1 1 0 · · · 0 0
−a2 0 1 0 0

...
...

. . .
...

−an−1 0 0 1 0
−an 0 0 · · · 0 0

 , B =



b1
b2
b3
...

bn


C =

[
1 0 0 . . . 0

]
O is a lower triangular with 1’s on the diagonal and (A,C) is
observable
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Toeplitz
Toeplitz matrix has constant entries along each descending diagonal from left to right

Tij = constant when i− j is fixed
T needs not be square

the set of n× n Toeplitz matrices forms a subspace for Rn×n

an n× n Toeplitz T has at most 2n− 1 unique values
two Toeplitz matrices can be added in O(n) time
the linear system y = Tx can be solved by the Levinson algorithm in O(n2)

can be found in convolution system, covariance matrix, polynomial multiplication
– See more in Boyd and Vandenberghe page 137 and https://ee.stanford.edu/~gray/toeplitz.pdf
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Convolution: impulse response
consider an input-output relationship in a convolution form

y(t) =

∞∑
k=0

hku(t− k) = h0u(t) + h1u(t− 1) + · · ·+ htu(0)

the input-output response in vector format has a Toeplitz system
y0
y1
...

yN−1

yN

 =


h0
h1 h0
... . . . . . .

hN−1 hN−2
. . . h0

hN hN−1 · · · h1 h0




u0
u1
...

uN−1

uN

 ≜ y = T (h)u

when considering M -order FIR (finite impulse response) where ht = 0 for
t = M + 1,M + 2, . . ., T (h) becomes a banded matrix
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Autocorrelation matrix
for a wide-sense stationary process (WSS), define auto-correlation function:

R(τ) = E[x(t+ τ)x(t)T ], R(−τ) = R(τ)T

which has non-negative property: for any aj , aj ∈ Rn and for 1 ≤ i, j ≤ n∑
i

∑
j

aTi R(i− j)aj ≥ 0

which is equivalent to positivity of a quadratic form with a Toeplitz coefficient matrix:
a1
a2
...

an−1

an


T 

R0 R−1 · · · R−(n−2) R−(n−1)

R1 R0 R−1 · · · R−(n−2)
... . . . . . . . . . ...

Rn−2 · · · R1 R0 R−1

Rn−1 Rn−2 · · · R1 R0




a1
a2
...

an−1

an

 ≥ 0
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Hankel and Circulant matrices
Toeplitz matrix’s siblings

Toeplitz Circulant Hankel

circulant matrix: each row is a cyclic shift of the row above (e.g., covariance
matrix of WSS process)
Hankel matrix: ascending skew-diagonal from left to right is constant (e.g.,
input-output relationship from state-space model)
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Nilpotent matrix
A ∈ Rn×n is nilpotent if

Ak = 0, for some positive integer k

Example: any triangular matrices with 0’s along the main diagonal

[
0 1
0 0

]
,


0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1

 (shift matrix)

also related to deadbeat control for linear discrete-time systems
facts: .

the characteristic equation for A is λn = 0

all eigenvalues are 0
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Graphs
a graph: consists of

1 nodes (or vertices): labeled by {1, 2, . . . , n}
2 edges: set E of (i, j) describing connections between node i and j where

‘connection’ can be defined in many ways
directed graph: the connections are bi-directional
undirected graph: the connections are undirectional (or symmetric)

1 2

3 4
Directed graph

1
2

3

4
5

1

0

0
0
0

0
0

0

0
1

1
1

1-1

-1

-1
-1

node

edge

-1
0

0

incidence matrix

directed edge from node j to i can be
described by a relation set

R = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (4, 2)}

undirected edge between node i and j can
be described by a set of pair (i, j):

{(1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}
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Graph matrix: Adjacency
a relation R on {1, 2, . . . , n} is represented by the n× n matrix A with

Aij =

{
1, (i, j) ∈ R
0, (i, j) /∈ R

1 2

3 4

1 2

3 4
Directed graph Undirected graph

example of how a relation is defined:
directed edge: variable j causes variable i

undirected edge: covariance, partial
covariance

directed undirected
R = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (4, 2)} R = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

A =


0 0 1 1
0 0 1 1
0 0 0 1
0 1 0 0

 A =


0 0 1 1
0 0 1 1
0 0 0 1
0 1 0 0
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Graph matrix: Incidence
a directed graph can be described by its n×m incidence matrix, defind as

Aij =


1, edge j points to node i

−1, edge j points from node i

0, otherwise

1 2

3 4
Directed graph

1
2

3

4
5

1

0

0
0
0

0
0

0

0
1

1
1

1-1

-1

-1
-1

node

edge

-1
0

0

incidence matrix

dimension of incidence matrix: no. of
edges x no. of nodes
each column has only two nonzero entries
(-1 and 1)

the ith row sum gives a total net flow of node i

unlike adjacency matrix, incidence matrix explicitly labels the edges 1, 2, . . . ,m
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Matrix decompositions
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Decompositions

1 SVD (singular value decomposition)
2 QR
3 LU
4 Cholesky
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SVD decomposition
let A ∈ Rm×n be a rectangular matrix; there exists the SVD form of A

squaretall fat

U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices
Σ ∈ Rm×n with Σii = σi ≥ 0 and Σij = 0 for i ̸= j

for a rectangular A, Σ has a diagonal submatrix Σ1 with dimension of min(m,n)

Atall = [ U1 U2 ]
[

Σ1
0

]
V T = U1Σ1V

T , Afat = U [ Σ1 0 ]
[

V T
1

V T
2

]
= UΣ1V

T
1
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Singular vectors and singular value
suppose rank(A) = r, A has r positive singular values in descending order

σ1 ≥ σ2 ≥ · · · ≥ σr > 0

and there exist left singular vector u1, . . . , um that are orthogonal in Rm and right
singular vector v1, . . . , vn that are orthogonal in Rn such that

Av1 = σ1u1, Av2 = σ2u2, . . . , Avr = σrur, Avr+1 = · · · = Avn = 0

or in matrix form: AV = UΣ (where U and V are orthogonal matrices)

A [ v1 · · · vr vr+1 · · · vn ] = [ u1 · · · ur ur+1 · · · um ]


σ1 0

. . . 0
σr 0

0 0 0 0


unlike eigenvalue decomposition: AX = XΛ, SVD needs two sets of singular vectors
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How to find U,Σ, V

for A = UΣV T , we can write

ATA = V ΣTΣV T ≜ QΛQT , AAT = UΣΣTUT ≜ QΛQT

V contains orthonormal eigenvectors of ATA

U contains orthonormal eigenvectors of AAT

σ2
1, . . . , σ

2
r are the nonzero eigenvalues of both ATA and AAT

steps of finding U,Σ, V :
1 choose orthonormal eigenvectors v1, . . . , vr of ATA

2 choose σk =
√
λk(ATA) for k = 1, . . . , r

3 from Av = σu, compute uk = Avk
σk

for k = 1, . . . , r

4 the last vr+1, . . . , vn are in N (A) and the last ur+1, . . . , um are in N (AT ) (just
pick any orthonormal bases for those subspaces)
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Example: Computing SVD

A =

[
1 0 2
−2 1 0

]
, ATA =

 5 −2 2
−2 1 0
2 0 4


find the right singular vector (eigenvectors of ATA)

ATA = QΛQT , Q =


3√
14

− 1√
6

2√
21

− 1√
14

1√
6

4√
21

2√
14

2√
6

− 1√
21

 , D =

7 0 0
0 3 0
0 0 0

 , σ2
1 = 7, σ2

2 = 3

then V = Q and Σ =

[√
7 0 0

0
√
3 0

]
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Example: Computing SVD
find the left singular vector U as the normalized image of right singular vector

u1 =
Av1
σ1

=

[
1 0 2
−2 1 0

] 3
−1
2

 1√
14 · 7

=
1√
2

[
−1
1

]

u2 =
Av2
σ2

=

[
1 0 2
−2 1 0

]−1
1
2

 1√
6 · 3

=
1√
2

[
1
1

]

U =
[
u1 u2

]
=

1√
2

[
−1 1
1 1

]
the SVD form of A is[

1 0 2
−2 1 0

]
=

1√
2

[
−1 1
1 1

] [√
7 0 0

0
√
3 0

] 3√
14

− 1√
6

2√
21

− 1√
14

1√
6

4√
21

2√
14

2√
6

− 1√
21

T
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Reduced vs Truncated SVD form
consider A ∈ Rm×n and ATA has size n× n

the number of nonzero λ(ATA) is less than or equal to n

suppose the number of nonzero σ(A) =
√
λ(ATA) is r < n

the reduced SVD form is to use the diagonal Σ1 ∈ Rn×n as in the red terms

Atall =
[
U1 U2

] [ Σ1

0

]
V T = U1Σ1V

T , Afat = U
[
Σ1 0

] [ V T
1

V T
2

]
= UΣ1V

T
1

and if r < n then Σ1 contains r nonzero diagonal entries
the truncated SVD is to further extract only the non-zero diagonal block of Σ1

tall

full reduced truncated
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SVD application: Low rank approximation
when A has nonzero r singular values: σ1 ≥ σ2 ≥ · · · ≥ σr > 0

truncated form: A = UrΣrV
T
r =

r∑
k=1

σkukv
T
k (r-sum of rank-1 matrices)

original

Eckart-Young theorem: consider A ∈ Rm×n of rank r and X ∈ Rm×n of rank k; for
any k ≤ r with Ak =

∑k
j=1 σjujv

T
j it holds that

Ak = argmin
X:rank(X)=k

∥A−X∥2, with error ∥A−Ak∥2 = σk+1

the best rank−k approximation of A is the first k pieces in SVD decomposition
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SVD application: PCA
data points are clustered along a subspace (here, line) in Rp

-4 -2 0 2 4

-10

-5

0

5

10

question: reduce the variable dimension
but keep most information in the data
setting: find the directions that contain
k-largest variance in data covariance
data matrix X ∈ Rp×N and its covariance
is C = XXT /(N − 1)

total variance in the data: T = tr(C) = tr(XXT )
N−1 = tr(XTX)

N−1 =
∥X∥2F
N−1

SVD of X is UΣV T , so covariance is C = UΣ2UT

N−1

total variance is also expressed as the sum of r non-zero singular values:

T = (σ2
1 + σ2

2 + · · ·+ σ2
r )/(N − 1)
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SVD application: PCA
for data matrix X ∈ Rp×N with X = UΣV T =

∑r
k=1 σkukv

T
k

the first k principal loadings u1, u2, . . . , uk accounts for a fraction of

(σ2
1 + · · ·+ σ2

k)/T

we can transform X to a new data matrix using the first k loadings

Y =

u
T
1
...
uTk

X

example:
X =

[
3 −4 7 1 −4 −3
7 −6 8 −1 −1 7

]
, σ1 = 16.87, σ2 = 3.92

supppose we reduce the data to 1-dimension using the first loading u1

Y = uT1 X = uT1
(
σ1u1v

T
1 + σ2u2v

T
2

)
= σ1v

T
1 = [−7.48 7.21 −10.55 0.27 3.07 7.48]
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Recall Gram-Schmidt (GS)
let A ∈ Rm×n with independent columns a1, a2, . . . , an (hence, A is tall or square)

vectors q1, . . . , qn are orthonormal vectors produced by GS on a1, . . . , an

q̃i is the vector after projecting ai on the previous orthogonal vectors

q̃i = ai − (⟨ai, q1⟩q1 + ⟨ai, q2⟩q2 + · · ·+ ⟨ai, qi−1⟩qi−1) , and qi = q̃i/∥q̃i∥

hence, we can write ai as linear combination of q1, . . . , qi

ai = (qT1 ai)q1 + (qT2 ai)q2 + · · ·+ (qTi−1ai)qi−1 + ∥q̃i∥qi, i = 1, . . . , n

a1 = ∥q̃1∥q1
a2 = (qT1 a2)q1 + ∥q̃2∥q2
a3 = (qT1 a3)q1 + (qT2 a3)q2 + ∥q̃3∥q3

we can form q1, . . . , qn as columns of Q
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QR factorization
we can write A = QR where

A = [a1 a2 a3 · · · an] = [q1 q2 q3 · · · qn]


∥q̃1∥ qT1 a2 qT1 a3 · · · qT1 an

∥q̃2∥ qT2 a3 · · · qT2 an

∥q̃3∥
...

. . . qTn−1an

∥q̃n∥


Q ∈ Rm×n contains columns as orthonormal vectors q1, . . . , qn with QTQ = In

R ∈ Rn×n is an upper triangular matrix with Rii = ∥q̃i∥ and Rij = qTi aj for i < j

if a1, . . . , an are all LI, q̃i’s are not zero, so Rii ̸= 0

if some aj is dependent of others, Rjj = 0

QR factorization can be found in computing orthogonal projection: numerical solution
of least-square estimate, subspace identification
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Full QR factorization
for a full column rank A ∈ Rm×n, we have

q1, q2, . . . , qn that form bases vectors for R(A) and put them as columns in Q1

we can find the remaining (m− n) orthonormal vectors: qn+1, . . . , qm so that
{q1, . . . , qm} form a basis for Rm; put these vectors as columns in Q2

R(A) = R(Q1), R(A)⊥ = R(Q2)

hence, Q̃ =
[
Q1 Q2

]
∈ Rm×m is orthogonal: Q̃T Q̃ = Q̃Q̃T = Im

we also have a full QR factorization: A = Q̃R̃ where R̃ has zero padding

= =

QR factorization:  R is upper triangular,  Q has orthonormal columns
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Factor-solve approach

to solve Ax = b, first write A as a product of ‘simple’ matrices

A = A1A2 · · ·Ak

then solve (A1A2 · · ·Ak)x = b by solving k equations

A1z1 = b, A2z2 = z1, . . . , Ak−1zk−1 = zk−2, Akx = zk−1

complexity of factor-solve method: flops = f + s

f is cost of factoring A as A = A1A2 · · ·Ak (factorization step)
s is cost of solving the k equations for z1, z2, …zk−1, x (solve step)
usually f ≫ s
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Forward substitution
solve Ax = b when A is lower triangular with nonzero diagonal elements

a11 0 · · · 0
a21 a22 · · · 0
... ... . . . ...

an1 an2 · · · ann




x1
x2
...
xn

 =


b1
b2
...
bn


algorithm:

x1 := b1/a11

x2 := (b2 − a21x1)/a22

x3 := (b3 − a31x1 − a32x2)/a33
...

xn := (bn − an1x1 − an2x2 − · · · − an,n−1xn−1)/ann

cost: 1 + 3 + 5 + · · ·+ (2n− 1) = n2 flops
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Back substitution
solve Ax = b when A is upper triangular with nonzero diagonal elements

a11 · · · a1,n−1 a1n
... . . . ... ...
0 · · · an−1,n−1 an−1,n

0 · · · 0 ann




x1
...

xn−1

xn

 =


b1
...

bn−1

bn


algorithm:

xn := bn/ann

xn−1 := (bn−1 − an−1,nxn)/an−1,n−1

xn−2 := (bn−2 − an−2,n−1xn−1 − an−2,nxn)/an−2,n−2

...
x1 := (b1 − a12x2 − a13x3 − · · · − a1nxn)/a11

cost: n2 flops
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LU decomposition

for a nonsingular A, it can be factorized as (with row pivoting)

A = PLU

factorization:
P permutation matrix, L unit lower triangular, U upper triangular
factorization cost: (2/3)n3 if A has order n
not unique; there may be several possible choices for P , L, U
interpretation: permute the rows of A and factor P TA as P TA = LU

also known as Gaussian elimination with partial pivoting (GEPP)
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Not every matrix has an LU factor

without row pivoting, LU factor may not exist even when A is invertible

A =

[
0 1
1 0

]
⇒ LU =

[
l11 0
l21 l22

] [
u11 u12
0 u22

]
from this example,

if A could be factored as LU, it would require that l11u11 = a11 = 0

one of L or U would be singular, contradicting to the fact that A = LU is
nonsingular
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Solving a linear system with LU factor

solving linear system: (PLU)x = b in three steps
permutation: z1 = P T b (0 flops)
forward substitution: solve Lz2 = z1 (n2 flops)
back substitution: solve Ux = z2 (n2 flops)

total cost: (2/3)n3 + 2n2 flops, or roughly (2/3)n3
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Cholesky factorization

every positive definite matrix A can be factored as

A = LLT

where L is lower triangular with positive diagonal elements

cost: (1/3)n3 flops if A is of order n
L is called the Cholesky factor of A
can be interpreted as ‘square root’ of a positive define matrix
L is invertible (its diagonal elements are nonzero)
A is invertible and

A−1 = L−TL−1
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Cholesky factorization algorithm

partition matrices in A = LLT as[
a11 AT

21

A21 A22

]
=

[
l11 0
L21 L22

] [
l11 LT

21

0 LT
22

]
=

[
l211 l11L

T
21

l11L21 L21L
T
21 + L22L

T
22

]
algorithm:

1 determine l11 and L21:

l11 =
√
a11, L21 =

1

l11
A21

2 compute L22 from
A22 − L21L

T
21 = L22L

T
22

this is a Cholesky factorization of order n− 1
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Proof of Cholesky algorithm

proof that the algorithm works for positive definite A of order n
step 1: if A is positive definite then a11 > 0

step 2: if A is positive definite, then

A22 − L21L
T
21 = A22 −

1

a11
A21A

T
21

is positive definite (by Schur complement)
hence the algorithm works for n = m if it works for n = m− 1

it obviously works for n = 1; therefore it works for all n
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Example of Cholesky algorithm

 25 15 −5
15 18 0
−5 0 11

 =

 l11 0 0
l21 l22 0
l31 l32 l33

 l11 l21 l31
0 l22 l32
0 0 l33



first column of L  25 15 −5
15 18 0
−5 0 11

 =

 5 0 0
3 l22 0

−1 l32 l33

 5 3 −1
0 l22 l32
0 0 l33


second column of L [

18 0
0 11

]
−

[
3

−1

] [
3 −1

]
=

[
l22 0
l32 l33

] [
l22 l32
0 l33

]
[

9 3
3 10

]
=

[
3 0
1 l33

] [
3 1
0 l33

]
third column of L: 10 − 1 = l233, i.e., l33 = 3

conclusion:  25 15 −5
15 18 0
−5 0 11

 =

 5 0 0
3 3 0

−1 1 3

 5 3 −1
0 3 1
0 0 3
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Solving equations with positive definite A

Ax = b (A positive definite of order n)

algorithm
factor A as A = LLT

solve LLTx = b

forward substitution Lz = b
back substitution LTx = z

cost: (1/3)n3 flops
factorization: (1/3)n3

forward and backward substitution: 2n2
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Solving linear/nonlinear equations
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Topic

1 problem condition
2 solving large-scale linear systems
3 gradient and Hessian
4 solving nonlinear equations
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Sources of error in numerical computation

example: evaluate a function f : R → R at a given x (e.g., f(x) = sinx)
sources of error in the result:

x is not exactly known
measurement errors
errors in previous computations

−→ how sensitive is f(x) to errors in x?
the algorithm for computing f(x) is not exact

discretization (e.g., the algorithm uses a table to look up f(x))
truncation (e.g., f is computed by truncating a Taylor series)
rounding error during the computation

−→ how large is the error introduced by the algorithm?
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The condition of a problem

sensitivity of the solution with respect to errors in the data
well-conditioned: if small errors in the data produce small errors in the result
ill-conditioned: if small errors in the data may produce large errors in the result

example: function evaluation: y = f(x), y +∆y = f(x+∆x)

absolute error
|∆y| ≈ |f ′(x)||∆x|

ill-conditioned with respect to absolute error if |f ′(x)| is very large
relative error

|∆y|
|y|

≈ |f ′(x)||x|
|f(x)|

|∆x|
|x|

ill-conditioned w.r.t relative error if |f ′(x)||x|/|f(x)| is very large
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Condition of a set of linear equations

assume A is nonsingular and Ax = b

if we change b to b+∆b, the new solution is x+∆x with

A(x+∆x) = b+∆b

the change in x is
∆x = A−1∆b

condition of the equations: a technical term used to describe how sensitive the
solution is to changes in the righthand side

the equations are well-conditioned if small ∆b results in small ∆x

the equations are ill-conditioned if small ∆b can result in large ∆x
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Example of ill-conditioned equations

A =
1

2

[
1 1

1 + 10−10 1− 10−10

]
, A−1 =

[
1− 1010 1010

1 + 1010 −1010

]
solution for b = (1, 1) is x = (1, 1)

change in x if we change b to b+∆b:

∆x = A−1∆b =

[
∆b1 − 1010(∆b1 −∆b2)
∆b1 + 1010(∆b1 −∆b2)

]

small ∆b can lead to extremely large ∆x
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Bound on absolute error

suppose A is nonsingular and ∆x = A−1∆b

upper bound on ∥∆x∥
∥∆x∥ ≤ ∥A−1∥∥∆b∥

(follows from property of operator norm)

small ∥A−1∥ means that ∥∆x∥ is small when ∥∆b∥ is small
large ∥A−1∥ means that ∥∆x∥ can be large, even when ∥∆b∥ is small
for any A, there exists ∆b such that ∥∆x∥ = ∥A−1∥∥∆b∥ .
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Bound on relative error

suppose A is nonsingular, Ax = b with b ̸= 0, and ∆x = A−1∆b

upper bound on ∥∆x∥/∥x∥:

∥∆x∥
∥x∥

≤ ∥A∥∥A−1∥∥∆b∥
∥b∥

(follows from ∥∆x∥ ≤ ∥A−1∥∥∆b∥ and ∥b∥ ≤ ∥A∥∥x∥)

κ(A) = ∥A∥∥A−1∥ is called the condition number of A

small κ(A) means ∥∆x∥/∥x∥ is small when ∥∆b∥/∥b∥ is small
large κ(A) means ∥∆x∥/∥x∥ can be large, even when ∥∆b∥/∥b∥ is small
for any A, there exist b, ∆b such that ∥∆x∥/∥x∥ = κ(A)∥∆b∥/∥b∥
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Condition number

κ(A) = ∥A∥∥A−1∥

defined for nonsingular A
κ(A) ≥ 1 for all A .

A is a well-conditioned matrix if κ(A) is small (close to 1):
the relative error in x is not much larger than the relative error in b

A is badly conditioned or ill-conditioned if κ(A) is large:
the relative error in x can be much larger than the relative error in b
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Large sparse linear systems
consider solving Ax = b when A is sparse and the dimension of A is huge

nz = 107 nz = 135 nz = 135

factorization methods are sometimes not a good technique because
the number of non-zero entries in the factors is increased due to fill-in
storing the factors L and U will require much more storage
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Application on solving PDE
large sparse matrices arise in the numerical solution of PDE/ODE

−u′′(x) = f(x), 0 < x < 1, where u(0) and u(1) are given

discretize the system with step h and obtain Au = b with unknowns u1, . . . , un−1

A =



2 −1
−1 2 −1

−1 2
. . .

. . . . . . −1
1 2 −1

−1 2


, b =



h2f(x1) + u(0)
h2f(x2)
h2f(x3)

...
h2f(xn−2)

h2f(xn−1) + u(1)


by making h small, the solution is more accurate, but # of variables increases
we can show that A is nonsingular (and pdf), hence the solution is unique
A is tri-diagonal (extremely sparse)
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Solving large linear systems
outline of available methods

splitting method: A = M −N (split to easy M)

x(k+1) = M−1Nx(k) +M−1b (until convergence which depends on M−1N)

Jacobi iteration: A = D − (D −A) (split to diagonal + residual)

x(k+1) = (I −D−1A)x(k) +D−1b

Gauss-Seidal iteration: A = L− (L−A) (split to lower triangular)

x(k+1) = (I − L−1A)x(k) + L−1b

convergence of Jacobi and Gauss-Seidal depends on A (diagonally dominant, psdf)

further reading: D. Kincaid and W. Cheney, Numerical analysis, Brooks/Cole, 2022
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Derivative and Gradient

Suppose f : Rn → Rm and x ∈ intdom f

the derivative (or Jacobian) of f at x is the matrix Df(x) ∈ Rm×n:

Df(x)ij =
∂fi(x)

∂xj
, i = 1, . . . ,m, j = 1, . . . , n

when f is scalar-valued (i.e., f : Rn → R), the derivative Df(x) is a row vector
its transpose is called the gradient of the function:

∇f(x) = Df(x)T , ∇f(x)i =
∂f(x)

∂xi
, i = 1, . . . , n

which is a column vector in Rn
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Second Derivative

suppose f is a scalar-valued function (i.e., f : Rn → R)

the second derivative or Hessian matrix of f at x, denoted ∇2f(x) is

∇2f(x)ij =
∂2f(x)

∂xi∂xj
, i = 1, . . . , n, j = 1, . . . , n

example: the quadratic function f : Rn → R

f(x) = (1/2)xTPx+ qTx+ r,

where P ∈ Sn, q ∈ Rn, and r ∈ R
∇f(x) = Px+ q

∇2f(x) = P
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Chain rule
assumptions:

f : Rn → Rm is differentiable at x ∈ intdom f

g : Rm → Rp is differentiable at f(x) ∈ intdom g

define the composition h : Rn → Rp by

h(z) = g(f(z))

then h is differentiable at x, with derivative

Dh(x) = Dg(f(x))Df(x)

special case: f : Rn → R, g : R → R, and h(x) = g(f(x))

∇h(x) = g′(f(x))∇f(x)
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Example of chain rule

1 h(x) = f(Ax+ b)

Dh(x) = Df(Ax+ b)A ⇒ ∇h(x) = AT∇f(Ax+ b)

2 h(x) = (1/2)(Ax− b)TP (Ax− b)

∇h(x) = ATP (Ax− b)

3 h(x) = (max(0, aTx+ b))2

∇h(x) =


2amax(0, aTx+ b), aTx+ b > 0

0, aTx+ b < 0

not defined, aTx+ b = 0
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Exercises

find the gradient of the following functions
1 probit log-likelihood: variable = θ, Φ is Gaussian cdf, (x, y) is data

f(θ) =

N∑
i=1

yi log(Φ(x
T
i θ) + (1− yi) log[1− Φ(xTi θ)])

2 Poisson log-likelihood: variable = β, (x, y) is data

f(β) =

N∑
i=1

−ex
T
i β + yix

T
i β − log yi!
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Function of matrices
we typically encounter some scalar-valued functions of matrix X ∈ Rm×n

f(X) = tr(ATX) (linear in X)
f(X) = tr(XTAX) (quadratic in X)

definition: the derivative of f (scalar-valued function) with respect to X is

∂f

∂X
=


∂f
∂x11

∂f
∂x12

· · · ∂f
∂x1n

∂f
∂x21

∂f
∂x22

· · · ∂f
∂x2n... . . . ...

∂f
∂xm1

∂f
∂xm2

· · · ∂f
∂xmn


note that the differential of f can be generalized to

f(X + dX)− f(X) = ⟨ ∂f
∂X

, dX⟩+ higher order term

see more on the matrix cookbook by Petersen and Pedersen, https://ece.uwaterloo.ca/~ece602/MISC/matrixcookbook.pdf
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Derivative of a trace function

let f(X) = tr(ATX)

f(X) =
∑
i

(ATX)ii =
∑
i

∑
k

(AT )kiXki

=
∑
i

∑
k

AkiXki

then we can read that ∂f
∂X = A (by the definition of derivative)

we can also note that

f(X + dX)− f(X) = tr(AT (X + dX))− tr(ATX) = tr(ATdX) = ⟨dX,A⟩

then we can read that ∂f
∂X = A
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Examples
f(X) = tr(XTAX)

f(X + dX)− f(X) = tr((X + dX)TA(X + dX))− tr(XTAX)

≈ tr(XTAdX) + tr(dXTAX)

= ⟨dX,ATX⟩+ ⟨AX, dX⟩

then we can read that ∂f
∂X = ATX +AX

f(X) = ∥Y −XH∥2F where Y and H are given

f(X + dX) = tr((Y −XH − dXH)T (Y −XH − dXH))

f(X + dX)− f(X) ≈ − tr(HTdXT (Y −XH))− tr((Y −XH)TdXH)

= − tr((Y −XH)HTdXT )− tr(H(Y −XH)TdX)

= −2⟨(Y −XH)HT , dX⟩

then we identifiy that ∂f
∂X = −2(Y −XH)HT
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Derivative of a log det function
let f : Sn → R be defined by f(X) = log det(X)

log det(X + dX) = log det(X1/2(I +X−1/2dXX−1/2)X1/2)

= log detX + log det(I +X−1/2dXX−1/2)

= log detX +

n∑
i=1

log(1 + λi)

where λi is an eigenvalue of X−1/2dXX−1/2

f(X + dX)− f(X) ≈
n∑

i=1

λi (log(1 + x) ≈ x, x → 0)

= tr(X−1/2dXX−1/2)

= tr(X−1dX)

we identify that ∂f
∂X = X−1
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Example: Gaussian log-likelihood

suppose y1, . . . , yN are Gaussian vectors N (µ,Σ)

L(µ,Σ) =
1

2
log detΣ−1 +

1

2N

N∑
k=1

(yk − µ)TΣ−1(yk − µ)

≜ log detΣ−1 − tr(CΣ−1), C =
1

N

N∑
k=1

(yk − µ)(yk − µ)T

≜ log detX − tr(CX)

what is the gradient of L w.r.t. X ?
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Notes on gradients

many machine learning and optimization problems use gradients for
training model parameters
finding solution that satisfies the optimality condition

further reading on the topics
backpropagation algorithm (apply chain rule) in deep NN
automatic differentiation (a numerical technique to find ∇f by working with
intermediate variables)
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Nonlinear equations
root finding problem: find x ∈ R such that f(x) = 0, e.g.,

f(x) = x− e−x2

f(x) = log(x) + x

f(x) = x2 − sin(x)
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Methods of finding roots

example of methods: bisection, Newton, secant, fixed point
methods are iterative

generate a sequence of points x(k), k = 0, 1, 2, . . . that converge to a solution;
x(k) is called the kth iterate; x(0) is the starting point
computing x(k+1) from x(k) is called one iteration of the algorithm
each iteration typically requires one evaluation of f (or f and f ′) at x(k)

algorithms need a stopping criterion, e.g., terminate if

|f(x(k))| ≤ specified tolerance

speed of the algorithm depends on:
the cost of evaluating f(x) (and possibly, f ′(x))
the number of iterations
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Bisection

if f(l)f(u) < 0, then the interval [l, u] contains at least one zero
intermediate value theorem: Let f ∈ C([a, b]) and assume p is a value between
f(a) and f(b), that is

f(a) ≤ p ≤ f(b), or f(b) ≤ p ≤ f(a)

then there exists a point c ∈ [a, b] for which f(c) = p
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Bisection algorithm

given l, u with l < u and f(l)f(u) < 0; a required tolerance δ, ϵ > 0
repeat

1 x := (l + u)/2.
2 Compute f(x).
3 if f(x) = 0, return x.
4 if f(x)f(l) < 0, u := x, else, l := x.

until u− l < ϵ or |f(x)| < δ
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Newton’s method

make affine approximation of f around x using Taylor series expansion:

faff(y) = f(x) + f ′(x)(y − x)

solve the linearized equation faff(y) = 0 and take the solution y as x+:

x+ = x− f(x)/f ′(x)
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Newton’s algorithm
f : R → R, differentiable

given initial x, required tolerance ϵ > 0
repeat

1 Compute f(x) and f ′(x).
2 if |f(x)| ≤ ϵ, return x.
3 x := x− f(x)/f ′(x).

until maximum number of iterations is exceeded

properties:
Newton’s method has quadratic convergence
require f and f ′

it may not work if we start too far from a solution
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Numerical example
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Bisection

f(x) = ex − e−x which
has a unique zero x⋆ = 0

start bisection method
with l = −1, u = 21

start Newton with
x(0) = 10
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Nonlinear systems
let f : Rn → Rm, find x ∈ Rn such that f(x) = 0

example 1:

2x1 − x2 +
1

9
e−x1 = −1

−x1 + 2x2 +
1

9
e−x2 = 1

example 2:

3x1 − cos(x2x3)− 1/2 = 0

x21 − 81(x2 + 0.1)2 + sin(x3) + 1.06 = 0

e−x1x2 + 20x3 +
10π − 3

3
= 0
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Applications
most typical example is to solve uncontrained optimization

minimize
x

g(x) ⇐⇒ find x⋆ such that ∇g(x⋆) = 0

1 zero gradient condition of nonlinear least-squares

curv fitting: minimize
β

N∑
i=1

(yi − β0 sin(β1t+ β2))
2

2 zero gradient condition of maximum likelihood estimate

Poisson likelihood: maximizeβ L(β) =
N∑
i=1

−exp(xTi β) + yix
T
i β − log yi!

where {xi, yi}Ni=1 are data and variable is β ∈ Rn
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Newton’s method for nonlinear systems
consider a function f : Rn → Rn

let x⋆ = x+ h and use the affine approximation of f about x

0 = f(x⋆) = f(x+ h) ≈ f(x) +Df(x)h

where Df(x) is the Jacobian matrix of f , i.e., Df(x)ij =
∂fi(x)
∂xj

then, solve h from
h = −Df(x)−1f(x)

provided that the Jacobian matrix is nonsingular
Newton’s method is summarized by

x(k+1) = x(k) − [Df(x(k))]−1f(x(k))

which follows the same treatment for single equation
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Softwares

MATLAB: fsolve
algorithm: trust-region, Levenberg-Marquardt
input = function, initial point x0

python: scipy.optimize.fsolve
many other available methods for large scale problems
Broyden’s method: approximate Jacobian matrix
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