Multi-Objective Estimation of Prediction Intervals for Probabilistic Forecasting: Application to Solar Power Forecasting

Worachit Amnuaypongsa Advisor: Prof. Dr. Jitkomut Songsiri

Department of Electrical Engineering Faculty of Engineering Chulalongkorn University

6670220021@student.chula.ac.th

1/41

Outline

- Introduction
- Thesis overview
- 8 Background
- Methodology
- **6** Experimental results
- **6** System applications
- Conclusion

Thesis overview Background Methodology Experimental results System applications Conclusion

Introduction: Probabilistic forecast

Probabilistic forecast: Determine uncertainty information of *y* and provide statistical information of *y*

Uncertainty representation: Prediction interval (PI) shows possible outcomes with upper and lower bounds at a specified confidence level.

The quality of PI is assessed by reliability (PICP) and sharpness (PI width), which have trade-off behavior.

Application of probabilistic forecast

- Solar [MWM18; LZ20]
- Wind [ZWW14]

Introduction

- Electrical load [HF16; Zha+20]
- Electricity price [KNC13; NW18]

Example of decision making application

- Reserve power preparation [ZWS21]
- Unit commitment [Cor+18]
- Economic dispatch [AGM18]
- Robust energy management system [Don+24]

3/41

Thesis overview Background Methodology Experimental results System applications Conclusion on one opposition on opposition on opposition on opposition on opposition on opposition opposition on opposition opposition on opposition op

Introduction: The PI construction approach

Indirect approach

Introduction

Direct approach

4/41

Motivation: Cost of large PI widths in power system application

Introduction

- A wider PI requires a larger reserve margin, resulting in higher costs
- Some instances of larger PI widths can result in increased reserve power preparation throughout the day in unit commitment or economic dispatch
- The scheme emphasizes the worst-case scenario, particularly with large PI width. Reducing this width can lessen the conservatism of the optimized solution
- The reduction in large PI width leads to lower operating costs while maintaining reliability, preventing over-allocation of reserve resources

5/41

Previous works on formulating PI construction as optimization problem

Introduction

- Scalarized objectives usually have two terms: PICP and PI width control, which can be in multiplication or additive form
- The PI width component is commonly evaluated using metrics such as PINAW or PINRW
- This thesis mainly proposes a new PI width function that reduces the large PI width

Thesis overview

Objectives:

- provides a probabilistic forecast of solar power in the form of PI, assisting users in decision-making for energy management.
- 2 proposes optimization formulations to construct a PI that encourages a trade-off characteristic between two objectives: high coverage and narrower PI width.

Scope of work:

- Probabilistic forecasts are provided in terms of PI
- The concept is illustrated in solar data collected in Thailand

Expected outcome:

- 1 A methodology that generates quality-based PI for probabilistic forecasts, emphasizing high reliability and sharpness.
- A software package that returns the PIs corresponding to a given confidence level

Worachit Amnuaypongsa May 5, 2025 7/

Background: QR, QRF, PI estimation

Setting: given a dataset $\{(x_i, y_i)\}_{i=1}^N$ where x_i, y_i represent a predictor and a target variable, and θ is model parameters

Quantile regression (QR) - Indirect PI

QR estimates the $\alpha^{\rm th}$ conditional quantile of the target variable by minimizing the pinball loss as

$$\underset{\theta}{\mathsf{minimize}} \quad \sum_{i=1}^{N} \rho_{\alpha} \big(y_{i} - \hat{y}_{i} \big(\mathsf{x}_{i}; \theta \big) \big)$$

where $\rho_{\alpha}(r) = \max(\alpha r, (\alpha - 1)r)$

Quantile regression forest (QRF) - Indirect PI

QRF is a tree-based method that provides the full conditional CDF $\hat{F}(y|x)$ of the target variable

Two quantiles can be defined as the lower and upper bounds

PI estimation - Direct PI

PI estimation is a statistical tool that quantifies the overall uncertainty of y by providing the interval $\left(\hat{l},\hat{u}\right)$ directly with a confidence level of $(1-\delta) \times 100\%$ as

$$\operatorname{prob}(\hat{l}(x;\theta) \leq y \leq \hat{u}(x;\theta)) = 1 - \delta$$

In the direct PI approach, models with parameters θ learn to directly map the input to the PI

4 D > 4 P > 4 E > 4 E > E | E | 9 Q Q

Background: Evaluation metrics for PI

Reliability \rightarrow PICP, Sharpness \rightarrow width

- Prediction interval coverage probability (PICP): PICP = $\frac{1}{N} \sum_{i=1}^{N} \mathbf{1}(\hat{i}_i \leq y_i \leq \hat{u}_i)$
- Prediction interval average width (PINAW): PINAW = $\frac{1}{NR} \sum_{i=1}^{N} (\hat{u}_i - \hat{l}_i)$ where $R = y_{\text{max}} - y_{\text{min}}$
- Winkler score: with confidence level $(1 \delta) \times 100\%$

Winkler_i =
$$\begin{cases} |\hat{u}_{i} - \hat{l}_{i}| + \frac{2}{\delta}(\hat{l}_{i} - y_{i}), & y_{i} < \hat{l}_{i} \\ |\hat{u}_{i} - \hat{l}_{i}|, & \hat{l}_{i} \leq y_{i} \leq \hat{u}_{i} \\ |\hat{u}_{i} - \hat{l}_{i}| + \frac{2}{\delta}(y_{i} - \hat{u}_{i}), & y_{i} > \hat{u}_{i} \end{cases}$$

Winkler =
$$\frac{1}{NR} \sum_{i=1}^{N} \text{Winkler}_i$$

Prediction interval

Winkler score

4 D > 4 A > 4 E > 4 E > 4 B > 4 D > 4 D >

Methodology: Training mechanism

The methodology for the training mechanism of the PI construction.

- Nonlinear model: NN model with two outputs
- Loss function: Define the objective of learning
- Optimizer: Numerical method used to minimize the proposed loss (Adam)

Methodology: Mathematical formulation

Given the sample width of PI is $w_i = \hat{u}_i - \hat{l}_i$, the i^{th} largest PI width is $w_{[i]}$, with $w_{[1]} \geq w_{[2]} \geq \ldots \geq w_{[N]}$

The proposed Sum-k loss: stronger penalize on the large PI widths

$$\mathcal{L}_{\mathsf{Sum}-k}(\theta|\boldsymbol{\gamma},\boldsymbol{\mathsf{K}},\lambda) = \mathsf{max}(0,(1-\delta) - \mathsf{PICP}(\theta)) + \gamma \frac{1}{R_Q} \left[\frac{1}{\mathsf{K}} \sum_{i=1}^{\mathsf{K}} w_{[i]}(\theta) + \frac{\lambda}{\mathsf{N}-\mathsf{K}} \sum_{\mathsf{K}+1}^{\mathsf{N}} w_{[i]}(\theta) \right]$$

Coverage term

Given a smooth approximation of the count function:

$$\mathbf{1}_{\mathsf{tanh}}(\hat{l} \leq y \leq \hat{u}) = \frac{1}{2} \max \left[0, \mathsf{tanh}(s(y-\hat{l})) + \mathsf{tanh}(s(\hat{u}-y)) \right]$$

The smooth version of PICP is calculated as

$$\mathsf{PICP}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}_{\mathsf{tanh}} (\hat{l}_i \leq y_i \leq \hat{u}_i), \quad s = 50$$

PI width control term

- ullet γ controls the trade-off between coverage and PI width
- K is the fraction of data categorized as large PI widths set as $\lfloor kN \rfloor$ where $k \in (0,1)$
- \bullet $\lambda>0$ is a relative weight of the averaged narrow PI widths
- $R_Q = q_y(0.95) q_y(0.05)$ is the normalization factor to scale the PI width term and eliminate the effect of outliers

Methodology: Effect of each hyperparameters

The effect of formulation hyperparameters.

- k: setting lower k highlights the different penalization between large and narrow PI widths.
- λ : decreasing λ places relatively greater emphasis on large PI widths.
- γ : increasing γ reduces the PI width while decreasing PICP. Suggest a tuning on the validation set

12 / 41

Overview of the experiments

Methodology 1 Pinball-based formulation

Experiment 1

Dataset
Synthetic data
(Linear DGP)

Experiment 2

Dataset Solar irradiance data from solar rooftop in Pathum Thani, Thailand

Benchmarked methods

QR, QRF

Evaluation metrics

PICP, PINAW, Maximum PI width

Methodology 2 PICP with width control formulation

Experiment 3

(Nonlinear DGP)

OR ORE MATE DIG OR

 $\begin{aligned} & QR, QRF, MVE, DIC, QD, \\ & CWC_{Quan}, CWC_{Shri}, CWC_{Li} \end{aligned}$

Experiment 4

Dataset Solar irradiance data from ten solar sites in Central Thailand

Benchmarked methods OR, OD, CWC_{Shri}

Evaluation metrics

PICP, PINAW, PINALW, Winkler score

- Methodology 1 includes formulation P1, P2, and P3
- Methodology 2 includes
 Sum-k loss
- Metric to measure the large PI width PINALW = $\frac{1}{KR_Q} \sum_{i=1}^{K} w_{[i]}$, where $K = \lfloor (1-p)N \rfloor$

The overall of the experiment.

14 / 41

Benchmarked loss

All methods are formulated as the loss to be minimized, equipped with the NN model, except QRF.

Quantile-based methods

$$QR =$$

$$\frac{1}{N} \left[\sum_{i=1}^{N} \rho_{\delta/2}(y_i - \hat{l}(x_i; \theta)) + \rho_{1-\delta/2}(y_i - \hat{u}(x_i; \theta)) \right]$$

QRF (tree-based)

Assume Gaussian distribution

$$\mathsf{MVE} = \frac{1}{2} \sum_{i=1}^{N} \left(\log(\hat{\sigma}^2(x_i; \theta)) + \frac{(y_i - \hat{\mu}(x_i; \theta)))^2}{\hat{\sigma}^2(x_i; \theta)} \right)$$

PI width-based loss function

$$\mathsf{CWC}_{\mathsf{Quan}} = \mathsf{PINRW}(1 + e^{\gamma \max(0,(1-\delta) - \mathsf{PICP})})$$

$$\mathsf{CWC}_{\mathsf{Shri}} = \mathsf{PINAW} + e^{\gamma \max(0,(1-\delta) - \mathsf{PICP})}$$

$$\mathsf{CWC}_{\mathsf{Li}} = rac{\beta}{2}\mathsf{PINAW} + \left(\alpha + rac{\beta}{2}\right)e^{\gamma\max(0,(1-\delta)-\mathsf{PICP})}$$

DIC = PINAW +
$$\mathbf{1}(\text{PICP} < 1 - \delta) \cdot \text{pun}$$

where $\text{pun} = \gamma \left[\sum_{i=1}^{N_L} (\hat{l}_i - y_i) + \sum_{i=1}^{N_U} (y_i - \hat{u}_i) \right]$

$$QD = \max(0, (1 - \delta) - PICP)^2 + \gamma PINAW_{capt.}$$

Experiment 3: Experiment setting

The synthetic datasets and the PI characteristics.

- Dataset Four datasets with each 100 trials of noise
- Model architechture ANN

Model specification	Setting
Hidden layers	3
Neurons per layer	no. of input features, 100, 100, 100, 2
Activation function	ReLU
Batch Normalization	Added after hidden layers
Total number of trainable parameters	21,102+ no. of input features $ imes$ 100

Setting

Confidence level: $(1 - \delta) = 0.9$

Sum-k: set $k = 0.3, \lambda = 0.1$

Operating point: Vary γ and select the operating point with

0.9 PICP

Algorithm parameter: 1r depends on the loss,

 $max_epochs = 2000, patience = 100$

16 / 41

Experiment 3: Results

Comparison of the PI width histogram aggregated across 100 trials in the sum of the Gaussian dataset.

Sum-k benefits

- Maintain 0.9 PICP
- Least variation of PI widths
- Effectively reduces the large PI widths

Drawbacks from benchmarked methods (found in the multivariate dataset)

- Slow convergence in CWC_{Quan}, CWC_{Li}, DIC
- MVE fails to reach 0.9 PICP

4 D > 4 D > 4 E > 4 E > E E = 900

Experiment 4: Solar forecasting application

Objective: Demonstrate the effectiveness of the proposed method for reducing the large PI widths in solar irradiance forecasting, which involves a high level of uncertainty due to fluctuating weather conditions Forecasting Specification: Generate one-hour-ahead PIs for solar irradiance from 07:00 to 17:00, with a 15-minute resolution and a 0.9 confidence level

Dataset:

The target variable is I(t+15), I(t+30), I(t+45), I(t+60).

Lagged regressor: four lags: t - 45, t - 30, t - 15, t

Measurement data (1): collected from ten solar sites in Central Thailand during January - December 2023, provided by DeDe.

Cloud index (CIR): extracted from R-channel of cloud images sourced from the

Himawari-8 satellite with a spatial resolution of $2 \times 2 \text{km}^2$. Then, the cloud index

is calculated as $CI = \frac{X - LB}{LB - LB}$

Future regressor: four steps: t + 15, t + 30, t + 45, t + 60

Clear-sky irradiance (Iclr): obtained from Ineichen clear-sky model Forecasted NWP irradiance (I_{nwp}): obtained from the reanalyzed MERRA-2

Hour index (HI): represent hour of the day

Time series plot of I, I_{clr} and I_{nwn} 1000 AND CONTROL OF THE POST OF — Actual / — Inve

Total: 113,793 samples

イロト イ団ト イヨト イヨト 三日 りのひ

Experiment 4: Model architechture

The NN model architecture used in the solar data experiment includes a common. model $\mathcal{M}_{\mathcal{C}}$ and a submodel $\mathcal{M}_{\mathcal{C}}$, where the PI outputs with the target are used to evaluate the loss function.

- M_C handles lagged regressors, and shares input layer across all lead times
- \mathcal{M}_i handles the input aligning with the specific lead time
- Total model parameters: 95,808 for ANN, and 99.278 for LSTM

4 D D A 同 D A E D A E D A D D A C D D

Experimet 4: Results

- The method that has γ can achieve PICP at 0.9 across all lead times
 - QR does not guarantee achieving the desired PICP
- The proposed loss has the lowest PINALW across all lead times

←□▶←□▶←壹▶←壹▶ 壹□ 夕♀

Experiment 4: Results

Comparison of evaluation metrics on the test set of one-hour-ahead solar irradiance forecasting with a controlled PICP at 0.9.

15-minute ahead				
Method	PINAW	Winkler	PINALW	Reduction ratio
QR	0.395	0.484	0.638	30.7%
QD	0.345	0.572	0.499	11.3%
CWCShri	0.342	0.611	0.501	11.8%
Sum-K ANN	0.335	0.656	0.449	1.6%
Sum-k LSTM	0.340	0.675	0.442	-

30-minute ahead				
Method	PINAW	Winkler	PINALW	Reduction ratio
QR	0.388	0.547	0.614	18.9%
QD	0.399	0.627	0.560	11.2%
CWCShri	0.394	0.647	0.556	10.5%
Sum-k ANN	0.399	0.694	0.523	4.9%
Sum-k LSTM	0.377	0.666	0.498	-

45-minute ahead				
Method	PINAW	Winkler	PINALW	Reduction ratio
QR	0.449	0.569	0.681	20.9%
QD	0.458	0.644	0.642	16.2%
CWCShri	0.457	0.643	0.653	17.7%
Sum-k ANN	0.428	0.716	0.563	4.4%
Sum-k LSTM	0.412	0.694	0.538	-

60-minute ahead				
Method	PINAW	Winkler	PINALW	Reduction ratio
QR	0.446	0.579	0.684	17.9%
QD	0.425	0.676	0.608	7.7%
CWCShri	0.442	0.684	0.640	12.2%
Sum-k ANN	0.454	0.704	0.589	4.7%
Sum k I STM	0.420	0.712	0.561	

- QR achieves the best Winkler score
- The Sum-k with LSTM can reduce the large PI width in a ratio varying from 7.7% to 30.7%
- The reduction PI width in I can be convert to P

Thesis overviev

Background

ethodology 00

Experiment 4: Results

PI of 15-minute ahead PI solar forecast in clear-sky condition.

PI of 15-minute ahead PI solar forecast in partly cloudy condition.

ペロトイラトモミト 生き 少Qで Worachit Amnuaypongsa May 5, 2025 21/41

Experiment 4: Results

PI of 15-minute ahead PI solar forecast in cloudy condition.

- The Sum-k can effectively reduce the PI width in high uncertainty data found in partly cloudy and cloudy conditions
- With an appropriate λ, the PI width from Sum-k performs comparably to benchmark methods
- The Sum-k with LSTM has lower validation loss than ANN
- For Sum-k, LSTM reduces the large PI widths more effectively

22 / 41

released

Experiment 4: Results on real operation

Actual future irradiance is covered by Pls. PI forecast at 09:00 Pl forecast at 11:00 PI forecast at 13:00

Actual future irradiance is not covered by Pls.

situation

Sum-k exhibits a narrower PI width

compared to QD in a high uncertainty

• At time t, the 4-step ahead PIs are

 With a confidence level of 0.9, there is a possibility that the actual I may fall outside the PI

23 / 41

May 5, 2025 Worachit Amnuaypongsa

Effectiveness of the proposed methods on engineering system applications

24 / 41

Cost evaluation in reserve preparation

provision penalty

deficit penalty

Four types of reserves quantification using Pls.

Reserve price penalty	Price (\$/MWh)
π^U	5.5, 8.25
π^D	0.08, 0.12
π^U	50, 500
π^D	30

The reserve price.

Objective: A solar power provider uses the point forecast \hat{y} and PI $[\hat{l}, \hat{u}]$ information to plan the reserve amount necessary to maintain power balance under uncertainty

Planning operation

Upward reserve: Additional generation capacity that must be scheduled in advance

Downward reserve: Mitigation strategies that must be planned to reduce generation if necessary

Real-time operation

Lost load: Failure to deliver the committed generation, resulting in unserved demand

Lost opportunity: Excess generation that must be curtailed due to operational constraints

Total operating reserve cost (\$)

$$\sum_{\forall t} \left(\pi^U r^U(t) + \pi^D r^D(t) + \pi_-^U r_-^U(t) + \pi_-^D r_-^D(t)\right) \Delta t$$

Cost Evaluation in Reserve Preparation: Experiment Setting

Setting:

Point forecast: Trained with *pinball loss* at 0.5 quantile using the PI model architecture **PI:** Resulted from solar experiment (*Excluding QR due to crossing PI*)

Cost evaluation dataset:

forecast Test set with 15-minute resolution, spanning 4 months, evaluate each step-ahead cost separately

Power conversion:

Convert irradiance (W/m^2) to solar power assuming 100 MW installed capacity.

Point forecast with PI in 4-step ahead forecast.

Worachit Amnuaypongsa May 5, 2025 26 / 41

Cost evaluation in reserve preparation: Results

Reserve quantities in MWh calculated as $r = \sum_{\forall t} r(t) \Delta t$.

	1-step ahead			4	1-step ahead	ł
	QD	CWC_{Shri}	Sum-k	QD	CWC_{Shri}	Sum-k
r^U	50,485.2	46,504.2	44,832.9	57,273.3	59,208.5	63,331.0
r_U	1,302.0	1,863.2	2,262.9	2,117.6	2,146.5	1,886.1
r^D	36,475.3	39,787.2	39,560.5	49,851.3	52,196.2	51,057.5
r_{-}^{D}	1,564.8	1,524.9	1,793.6	1,050.6	906.1	1,277.5

- The Sum-k in the first step has the lowest PI width, leading to the lowest $r^U + r^D$
- Effective PI construction methods should achieve good r^U , r^D (from narrow PI width), reflecting the amount of reserve required before real-time operation

Cost evaluation in reserve preparation: Results

The solar power reserve cost estimated using 60-minute ahead forecasts.

- When VoLL = \$50/MWh, the reserve price is comparable to the PINAW result, the upward reserve cost is dominant
- When VoLL = \$500/MWh, the Sum-k has the lowest total cost because the lower bound effectively captures actual generation
- In practice, the VoLL could reach up to \$9,000/MWh; thus, the Sum-k would significantly save costs compared to others

28 / 41

Impact of PI width in robust energy management: EMS components

EMS can be implemented in a small building equipped with PV and a battery storage system to control battery charging and discharging, thereby optimizing energy usage and reducing net electricity costs.

The element of a small building energy management system (BEMS).

- Electrical load: consumes power (requires forecasting)
- Solar panel: generates power (requires forecasting)
- Battery unit: stores energy from the grid or PV (controlled by EMS)
- External grid: connected to EMS for energy import/export

Net load:
$$P_{\text{net load}} = P_{\text{load}}(t) - P_{\text{pv}}(t)$$

Power balance:
$$P_{\text{net}}(t) = P_{\text{net load}}(t) + P_{\text{chg}}(t) - P_{\text{dchg}}(t)$$

 $P_{\text{net}}(t) > 0$ power is drawn from the grid

 $P_{\text{net}}(t) < 0$ excess PV power is fed back to the grid

40 4 40 4 2 4 2 4 2 4 2 4 2 4 0 0 0

Impact of PI width in robust energy management: EMS optimization formulation

EMS optimization formulation can be written as:

The optimization formulation of EMS

minimize $J_{cost} + w_h J_{hatt}$ subject to $P_{\text{net}}(t) = P_{\text{net load}}(t) + P_{\text{chg}}(t) - P_{\text{dchg}}(t)$ $SoC_{min} \leq SoC(t) \leq SoC_{max}, t = 1, 2, ..., T$

$$J_{\text{cost}} + w_b J_{\text{batt}}$$

$$P_{\text{net}}(t) = P_{\text{net} | \text{load}}(t) + P_{\text{chg}}(t) - P_{\text{dchg}}(t)$$

$$SoC(t+1) = SoC(t) + \frac{100\%}{\text{BattCapacity}} \left(\eta_c P_{\text{chg}}(t) - \frac{P_{\text{dchg}}(t)}{\eta_d} \right) \Delta t$$

$$0 \le P_{\text{chg}}(t) \le \text{max charge rate}, \quad 0 \le P_{\text{dchg}}(t) \le \text{max discharge rate}$$

$$J_{\text{batt}} = \Delta t \sum_{t=1}^{T} b(t) \max(0, P_{\text{net}}(t)) - s(t) \max(0, -P_{\text{net}}(t))$$

$$J_{\text{batt}} = \Delta t \sum_{t=1}^{T-1} |P_{\text{chg}}(t+1) - P_{\text{chg}}(t)| + \Delta t \sum_{t=1}^{T-1} |P_{\text{dchg}}(t+1) - P_{\text{dchg}}(t)|$$

Problem parameter: $P_{pv}(t)$, $P_{load}(t)$, $P_{net load}(t) = P_{load}(t) - P_{pv}(t)$

Optimization variables: $P_{chg}(t)$, $P_{dchg}(t)$

30 / 41

EMS: Integrate the uncertainty to EMS

Setting: P_{pv} , P_{load} involve uncertainty due to their nature. We can utilize the PI construction method for $P_{net\ load}$ to capture the uncertainty represented in [L,U] with a confidence level of $1-\delta$.

The uncertainty set of the net load can be defined as

$$\mathcal{U} = \{P_{\mathsf{net\ load}}(t) | L(t) \leq P_{\mathsf{net\ load}}(t) \leq U(t)\}$$

$$P_{\rm net}(t) = P_{
m net\ load}(t) + P_{
m chg}(t) - P_{
m dchg}(t)$$
 becomes:

$$L(t) + P_{\text{chg}}(t) - P_{\text{dchg}}(t) \le P_{\text{net}}(t) \le U(t) + P_{\text{chg}}(t) - P_{\text{dchg}}(t)$$

U(t) - Pessimistic: Robust EMS with uncertainty set

The robust EMS that minimizes the worst-case cost (occurs when the net load achieves its upper bound) can be formulated as

minimize
$$J_{\rm cost} + w_b J_{\rm batt}$$
 subject to $P_{\rm net}(t) = U(t) + P_{\rm chg}(t) - P_{\rm dchg}(t),$ Battery constraints.

L(t) - Optimistic: Robust EMS with chance constraint

The interval of $P_{\rm net}(t)$ is equivalent to chance constraint $\operatorname{prob}(P_{\rm net\ load}(t) \in [L(t), U(t)]) = 1 - \delta.$ Minimizing costs under the chance constraint results in $P_{\rm net}(t)$ reaching its lower bound, as costs increase monotonically with $P_{\rm net}(t)$. So, it can be formulated as

minimize
$$J_{\rm cost} + w_b J_{\rm batt}$$
 subject to $P_{\rm net}(t) = L(t) + P_{\rm chg}(t) - P_{\rm dchg}(t),$ Battery constraints.

Worachit Amnuaypongsa May 5, 2025

31 / 41

EMS: Rolling EMS optimization

Rolling EMS optimization.

- At time t₁, the PI forecast of net load with H-steps ahead serves as problem parameters
- Solve the optimization variable at time t_1 to obtain $P_{\text{chg}}(t_1+1), \ldots, P_{\text{chg}}(t_1+H)$, and $P_{\text{dchg}}(t_1+1), \ldots, P_{\text{dchg}}(t_1+H)$ which provides a cost optimal battery profiles
- Apply the first time step $P_{\sf chg}(t_1+1)$, $P_{\sf dchg}(t_1+1)$ as the action for t_2
- Roll every 1 step, move from t_1 to t_2

< ロ > < 個 > < 重 > < 重 > を を を を を を の へ で 。

32 / 41

EMS: Experiment setting

Objective: We aim to show the effectiveness of Sum-k in reducing large PI widths compared with QR, QD, and CWC_{Shri}, leading to lower uncertainty in estimating costs in robust EMS. Then, compare with the ideal case.

Specification: Require a four-hour horizon of (16 steps) net load forecast PI with a resolution of 15 minutes

Building system specification.

Specification	Value
Peak load	10 kW
PV capacity	5 kW
Battery capacity	25 kWh

Setting: Confidence level = 0.9, LSTM model, Sum-k - k = 0.3, λ = 0.5

EMS problem parameters and electricity tariffs.

Parameter	Value	Parameter	Value (THB)
Battery		Tariff	
Charging efficiency	0.95	Buy rate (22:00-10:00)	2.7
Discharging efficiency	0.88	Buy rate (10:00-14:00)	5.7
Max charge rate	5 kW	Buy rate (14:00-18:00)	7
Max discharge rate	5 kW	Buy rate (18:00-22:00)	8
Minimum SoC	20 %	Sell rate (23:00-18:00)	2.2
Maximum SoC	80 %	Sell rate (18:00-23:00)	2.5

Dataset: spanned March - December

Lagged regressors (8 lags): P_{load} , P_{PV} , $P_{\text{net load}}$, CI_R from $t-15,\ldots,t-120$

Future regressors (16 steps): $I_{\rm clr}, I_{\rm nwp}, T_{\rm nwp}, {\sf HI}, {\sf Holiday}$

Target variable (16 steps): $P_{\text{net load}}$

from
$$t+15,\ldots,t+240$$

33 / 41

EMS: Results

20

12:00

:00 06:00 12:00 18:00 Time Battery operation

- Positive net load, the battery typically charges in the early morning
- The charging energy in the optimistic scenario is less than in the pessimistic scenario
- Negative net load, the optimistic sells all excess energy to the grid

34 / 41

EMS: Results

The cumulative cost over 10 months.

- The Sum-k demonstrates the smallest deviation, showing better PI quality in the robust EMS
- For the cumulative net electricity cost, the Sum-k has the lowest worst-case cost (upper bound) while also having the narrowest range of upper and lower bounds

Deviation of the net electricity cost from the ideal case.

Deviation from ideal	Pessimistic (%)	Optimistic (%)
QR	46.2	-22.2
QD	47.2	-36.0
CWC_{Shri}	54.4	-14.6
Sum-k	37.9	-16.8

35 / 41

Conclusion and limitation

Conclusion

- We proposed the Sum-k loss function to specially reduce the large PI width
- The Sum-k loss is compatible with gradient-based methods, allowing for the application of state-of-the-art NN
- The reduction in the large PI widths significantly reduces the operational cost in decision making
- The effectiveness of our method in reducing costs through the use of Sum-k is demonstrated in reserve preparation and robust EMS

Limitation

- The PI width from the Sum-k for low-volatile data could be broader than other methods
- ullet Tuning γ requires multiple NN training
- ullet A multi-task learning algorithm can be applied to automatically adjust γ

Worachit Amnuaypongsa May 5, 2025 36 /41

Publications

- W. Amnuaypongsa, W. Wangdee and J. Songsiri, "Probabilistic Solar Power Forecasting Using Multi-Objective Quantile Regression," 2024 18th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), 2024, pp. 26-31, doi: 10.1109/PMAPS61648.2024.10667174.
- W. Amnuaypongsa, Yotsapat Suparanonrat, Natanon Tongamrak, and J. Songsiri, "Estimation of Solar Panel Efficiency in the Presence of Curtailment," The 22nd International Conference on Electrical Engineering/Electronics, Computer, Telecommunication, and Information Technology (ECTI-CON 2025) (Accepted)
- (3) W. Amnuaypongsa, W. Wangdee and J. Songsiri, "Neural Network-Based Prediction Interval Estimation with Large Width Penalization for Renewable Energy Forecasting and System Applications," arXiv:2411.19181 [cs.LG] (Submitted to Energy conversion and management: X, under review).

Worachit Amnuaypongsa May 5, 2025 37/41

Q&A

4□ > 4圖 > 4 를 > 4 를 > 夏目 9000

- [AGM18] Dimitra Apostolopoulou, Zacharie De Grève, and Malcolm McCulloch. "Robust Optimization for Hydroelectric System Operation Under Uncertainty". In: IEEE Transactions on Power Systems 33 (3 May 2018), pp. 3337–3348. ISSN: 08858950. DOI: 10.1109/TPWRS.2018.2807794.
- [Cor+18] Samuel Cordova et al. "An Efficient Forecasting-Optimization Scheme for the Intraday Unit Commitment Process under Significant Wind and Solar Power". In: IEEE Transactions on Sustainable Energy 9 (4 Oct. 2018), pp. 1899–1909. ISSN: 19493029. DOI: 10.1109/TSTE.2018.2818979.
- [Don+24] Fuxiang Dong et al. "A robust real-time energy scheduling strategy of integrated energy system based on multi-step interval prediction of uncertainties". In: Energy 300 (2024), p. 131639. ISSN: 0360-5442. DOI: https://doi.org/10.1016/j.energy.2024.131639. URL: https://doi.org/10.1016/j.energy.2024.131639.

//www.sciencedirect.com/science/article/pii/S0360544224014129.

Worachit Amnuaypongsa May 5, 2025 39 / 41

- [HF16] Tao Hong and Shu Fan. "Probabilistic electric load forecasting: A tutorial review". In: International Journal of Forecasting 32 (3 July 2016), pp. 914–938. ISSN: 01692070. DOI: 10.1016/j.ijforecast.2015.11.011.
- [KNC13] Abbas Khosravi, Saeid Nahavandi, and Doug Creighton. "Quantifying uncertainties of neural network-based electricity price forecasts". In: Applied Energy 112 (Dec. 2013), pp. 120–129. ISSN: 03062619. DOI: 10.1016/j.apenergy.2013.05.075.
- [LZ20] Binghui Li and Jie Zhang. "A review on the integration of probabilistic solar forecasting in power systems". In: Solar Energy 210 (Nov. 2020), pp. 68–86. ISSN: 0038092X. DOI: 10.1016/j.solener.2020.07.066.
- D.W. van der Meer, J. Widén, and J. Munkhammar, "Review on probabilistic [MWM18] forecasting of photovoltaic power production and electricity consumption". In: Renewable and Sustainable Energy Reviews 81 (Jan. 2018), pp. 1484–1512. ISSN: 13640321. DOI: 10.1016/j.rser.2017.05.212.

4周トイミトイミト ヨコ の90 40 / 41

May 5, 2025 Worachit Amnuaypongsa

- [NW18] Jakub Nowotarski and Rafał Weron. "Recent advances in electricity price forecasting: A review of probabilistic forecasting". In: Renewable and Sustainable Energy Reviews 81 (Jan. 2018), pp. 1548–1568. ISSN: 13640321. DOI: 10.1016/j.rser.2017.05.234.
- [Zha+20] Changfei Zhao et al. "Optimal Nonparametric Prediction Intervals of Electricity Load". In: IEEE Transactions on Power Systems 35 (3 May 2020), pp. 2467–2470. ISSN: 0885-8950. DOI: 10.1109/TPWRS.2020.2965799.
- [ZWS21] Changfei Zhao, Can Wan, and Yonghua Song. "Operating Reserve Quantification Using Prediction Intervals of Wind Power: An Integrated Probabilistic Forecasting and Decision Methodology". In: *IEEE Transactions on Power Systems* 36 (4 July 2021), pp. 3701–3714. ISSN: 0885-8950. DOI: 10.1109/TPWRS.2021.3053847.
- [ZWW14] Yao Zhang, Jianxue Wang, and Xifan Wang. "Review on probabilistic forecasting of wind power generation". In: Renewable and Sustainable Energy Reviews 32 (Apr. 2014), pp. 255–270. ISSN: 1364-0321. DOI: 10.1016/J.RSER.2014.01.033.

<ロト <個ト < 重ト < 重ト を目 の < C