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Introduction: Probabilistic forecast

Probabilistic forecast: Determine uncertainty
information of y and provide statistical information of y

Uncertainty representation: Prediction interval (PI)
shows possible outcomes with upper and lower bounds
at a specified confidence level.
*The quality of PI is assessed by reliability (PICP) and

sharpness (PI width), which have trade-off behavior.*

Application of probabilistic forecast

• Solar [MWM18; LZ20]

• Wind [ZWW14]

• Electrical load [HF16; Zha+20]

• Electricity price [KNC13; NW18]

Example of decision making application

• Reserve power preparation [ZWS21]

• Unit commitment [Cor+18]

• Economic dispatch [AGM18]

• Robust energy management system [Don+24]
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Introduction: The PI construction approach

Indirect approach
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- Quantile regression forest (QRF)
- Gaussian processes regression
- Lower bound upper bound estimation (LUBE)
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Motivation: Cost of large PI widths in power system application

Power (MW)

Time (h)

Net load forecast

Schedule power

Demand over
generation capacity

Maximum capacity Confidence
intervals

Available
capacity

95 %

90 %

85 %

80 %

Using PIs in power operation

• A wider PI requires a larger reserve margin,
resulting in higher costs

• Some instances of larger PI widths can result in
increased reserve power preparation throughout
the day in unit commitment or economic dispatch

• The scheme emphasizes the worst-case scenario,
particularly with large PI width. Reducing this
width can lessen the conservatism of the
optimized solution

• The reduction in large PI width leads to lower
operating costs while maintaining reliability,
preventing over-allocation of reserve resources
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Previous works on formulating PI construction as optimization problem

PI contruction optimization
loss function

(Scalarized objective)

Heuristic algorithmGradient-based
algorithm

PICP & PI width
formulation

Evaluate PI width by
PINAW

Evaluate PI width by
PINRW

Quantile-based Require distribution
assumption

Pinball loss MVE • Scalarized objectives usually have two
terms: PICP and PI width control, which
can be in multiplication or additive form

• The PI width component is commonly
evaluated using metrics such as PINAW or
PINRW

• This thesis mainly proposes a new PI
width function that reduces the large PI
width
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Thesis overview

Objectives:

1 provides a probabilistic forecast of solar power in the form of PI, assisting users in
decision-making for energy management.

2 proposes optimization formulations to construct a PI that encourages a trade-off
characteristic between two objectives: high coverage and narrower PI width.

Scope of work:

1 Probabilistic forecasts are provided in terms of PI

2 The concept is illustrated in solar data collected in Thailand

Expected outcome:

1 A methodology that generates quality-based PI for probabilistic forecasts, emphasizing
high reliability and sharpness.

2 A software package that returns the PIs corresponding to a given confidence level
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Background: QR, QRF, PI estimation

Setting: given a dataset {(xi , yi )}Ni=1 where xi , yi represent a predictor and a target variable, and θ is model
parameters

Quantile regression (QR) - Indirect PI

QR estimates the αth conditional quantile of the target
variable by minimizing the pinball loss as

minimize
θ

N∑
i=1

ρα(yi − ŷi (xi ; θ))

where ρα(r) = max(αr , (α− 1)r)

Quantile regression forest (QRF) - Indirect PI

QRF is a tree-based method that provides the full
conditional CDF F̂ (y |x) of the target variable

Two quantiles can be defined as the lower and upper bounds

PI estimation - Direct PI

PI estimation is a statistical tool that quantifies the

overall uncertainty of y by providing the interval
(
l̂ , û

)
directly with a confidence level of (1− δ)× 100% as

prob(l̂(x ; θ) ≤ y ≤ û(x ; θ)) = 1− δ

Hidden layer

Input layer

Output layer
Upper bound

Lower bound

Target variable

Prediction 
interval

Predictor
vector

In the direct PI approach,
models with parameters θ
learn to directly map the
input to the PI
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Background: Evaluation metrics for PI

Reliability → PICP, Sharpness → width

• Prediction interval coverage probability (PICP):

PICP = 1
N

∑N
i=1 1(l̂i ≤ yi ≤ ûi )

• Prediction interval average width (PINAW):

PINAW = 1
NR

∑N
i=1(ûi − l̂i ) where R = ymax − ymin

• Winkler score: with confidence level (1− δ)× 100%

Winkleri =


|ûi − l̂i |+ 2

δ
(l̂i − yi ), yi < l̂i

|ûi − l̂i |, l̂i ≤ yi ≤ ûi
|ûi − l̂i |+ 2

δ
(yi − ûi ), yi > ûi

Winkler = 1
NR

∑N
i=1 Winkleri
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Methodology: Training mechanism

Predictor
vector

Target
variable

Nonlinear Model Loss function

Optimizer

Model parameters are
optimized

The methodology for the training mechanism of the PI construction.

• Nonlinear model: NN model with two
outputs

• Loss function: Define the objective of
learning

• Optimizer: Numerical method used to
minimize the proposed loss (Adam)
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Methodology: Mathematical formulation

Given the sample width of PI is wi = ûi − l̂i , the i th largest PI width is w[i ], with w[1] ≥ w[2] ≥ . . . ≥ w[N]

The proposed Sum-k loss: stronger penalize on the large PI widths

LSum−k(θ|γ,K , λ) = max(0, (1 − δ) − PICP(θ)) + γ
1

RQ

[
1

K

K∑
i=1

w[i ](θ) +
λ

N − K

N∑
K+1

w[i ](θ)

]

Coverage term

Given a smooth approximation of the count function:

1tanh(l̂ ≤ y ≤ û) =
1

2
max

[
0, tanh(s(y − l̂)) + tanh(s(û − y))

]
The smooth version of PICP is calculated as

PICP(θ) =
1

N

N∑
i=1

1tanh(l̂i ≤ yi ≤ ûi ), s = 50

PI width control term

• γ controls the trade-off between coverage and PI width

• K is the fraction of data categorized as large PI widths
set as ⌊kN⌋where k ∈ (0, 1)

• λ > 0 is a relative weight of the averaged narrow PI
widths

• RQ = qy (0.95)− qy (0.05) is the normalization factor to

scale the PI width term and eliminate the effect of outliers
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Methodology: Effect of each hyperparameters
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The effect of formulation hyperparameters.

• k: setting lower k highlights the
different penalization between large
and narrow PI widths.

• λ: decreasing λ places relatively
greater emphasis on large PI widths.

• γ: increasing γ reduces the PI width
while decreasing PICP. Suggest a
tuning on the validation set
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Overview of the experiments

Methodology 1
Pinball-based formulation

Experiment 1 Experiment 2

Dataset
Synthetic data
(Linear DGP)

Dataset
Solar irradiance data 
from solar rooftop in

Pathum Thani, Thailand

Methodology 2
PICP with width control formulation

Experiment 3 Experiment 4

Dataset
Four synthetic datasets

(Nonlinear DGP)

Dataset
Solar irradiance data 
from ten solar sites in

Central Thailand

Benchmarked methods

Evaluation metrics
PICP, PINAW, Maximum PI width

Evaluation metrics
PICP, PINAW, PINALW, Winkler score

Benchmarked methods Benchmarked methods

The overall of the experiment.

• Methodology 1 includes
formulation P1, P2, and P3

• Methodology 2 includes
Sum-k loss

• Metric to measure the
large PI width
PINALW = 1

KRQ

∑K
i=1 w[i ],

where K = ⌊(1 − p)N⌋
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Benchmarked loss

All methods are formulated as the loss to be minimized, equipped with the NN model, except QRF.

Quantile-based methods
QR =
1
N

[∑N
i=1 ρδ/2(yi − l̂(xi ; θ)) + ρ1−δ/2(yi − û(xi ; θ))

]
QRF (tree-based)

Assume Gaussian distribution

MVE = 1
2

∑N
i=1

(
log(σ̂2(xi ; θ)) + (yi−µ̂(xi ;θ)))

2

σ̂2(xi ;θ)

)

PI width-based loss function

CWCQuan = PINRW(1 + eγ max(0,(1−δ)−PICP))

CWCShri = PINAW + eγ max(0,(1−δ)−PICP)

CWCLi = β
2 PINAW +

(
α + β

2

)
eγ max(0,(1−δ)−PICP)

DIC = PINAW + 1(PICP < 1 − δ) · pun
where pun = γ

[∑NL

i=1(l̂i − yi ) +
∑NU

i=1(yi − ûi )
]

QD = max(0, (1 − δ) − PICP)2 + γPINAWcapt.
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Experiment 3: Experiment setting
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Sum-k: PICP = 0.9
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CWCQuan: PICP = 0.9
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CWCLi: PICP = 0.9

The synthetic datasets and the PI characteristics.

• Dataset Four datasets with each 100 trials of noise

• Model architechture ANN

Model specification Setting

Hidden layers 3

Neurons per layer no. of input features, 100, 100, 100, 2

Activation function ReLU

Batch Normalization Added after hidden layers

Total number of trainable parameters 21,102 + no. of input features × 100

• Setting
Confidence level: (1− δ) = 0.9
Sum-k: set k = 0.3, λ = 0.1
Operating point: Vary γ and select the operating point with
0.9 PICP
Algorithm parameter: lr depends on the loss,
max epochs = 2000, patience = 100
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Experiment 3: Results
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Comparison of the PI width histogram aggregated across 100 trials in the sum of the Gaussian dataset.

Sum-k benefits

• Maintain 0.9 PICP

• Least variation of PI widths

• Effectively reduces the large
PI widths

Drawbacks from benchmarked
methods (found in the
multivariate dataset)

• Slow convergence in
CWCQuan, CWCLi, DIC

• MVE fails to reach 0.9
PICP
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Experiment 4: Solar forecasting application

Objective: Demonstrate the effectiveness of the proposed method for reducing the large PI widths in solar
irradiance forecasting, which involves a high level of uncertainty due to fluctuating weather conditions

Forecasting Specification: Generate one-hour-ahead PIs for solar irradiance from 07:00 to 17:00, with a

15-minute resolution and a 0.9 confidence level

Dataset: The target variable is I (t +15), I (t +30), I (t +45), I (t +60).

Lagged regressor: four lags: t − 45, t − 30, t − 15, t

Measurement data (I ): collected from ten solar sites in Central Thailand during
January - December 2023, provided by DeDe.

Cloud index (CIR ): extracted from R-channel of cloud images sourced from the

Himawari-8 satellite with a spatial resolution of 2 × 2km2. Then, the cloud index

is calculated as CI = X−LB
UB−LB

.

Future regressor: four steps: t + 15, t +30, t + 45, t + 60

Clear-sky irradiance (Iclr): obtained from Ineichen clear-sky model
Forecasted NWP irradiance (Inwp): obtained from the reanalyzed MERRA-2

Hour index (HI): represent hour of the day
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Total: 113,793 samples
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Experiment 4: Model architechture

x

Auto-lagged
regressors

Exogeneous-lagged
regressors

Future regressors

Loss function

Loss function

Loss function

ANN

LSTM

Loss function

The NN model architecture used in the solar data experiment includes a common. model MC and a submodel
Mi , where the PI outputs with the target are used to evaluate the loss function.

• MC handles lagged
regressors, and shares
input layer across all lead
times

• Mi handles the input
aligning with the specific
lead time

• Total model parameters:
95,808 for ANN, and
99,278 for LSTM
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Experimet 4: Results
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PI evaluation on the test set in the unit of W/m2.

• The method that has γ can
achieve PICP at 0.9 across
all lead times

• QR does not guarantee
achieving the desired PICP

• The proposed loss has the
lowest PINALW across all
lead times
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Experiment 4: Results
Comparison of evaluation metrics on the test set of one-hour-ahead solar
irradiance forecasting with a controlled PICP at 0.9.

15-minute ahead
Method PINAW Winkler PINALW Reduction ratio
QR 0.395 0.484 0.638 30.7%
QD 0.345 0.572 0.499 11.3%
CWCShri 0.342 0.611 0.501 11.8%
Sum-k ANN 0.335 0.656 0.449 1.6%
Sum-k LSTM 0.340 0.675 0.442 -

30-minute ahead
Method PINAW Winkler PINALW Reduction ratio
QR 0.388 0.547 0.614 18.9%
QD 0.399 0.627 0.560 11.2%
CWCShri 0.394 0.647 0.556 10.5%
Sum-k ANN 0.399 0.694 0.523 4.9%
Sum-k LSTM 0.377 0.666 0.498 -

45-minute ahead
Method PINAW Winkler PINALW Reduction ratio
QR 0.449 0.569 0.681 20.9%
QD 0.458 0.644 0.642 16.2%
CWCShri 0.457 0.643 0.653 17.7%
Sum-k ANN 0.428 0.716 0.563 4.4%
Sum-k LSTM 0.412 0.694 0.538 -

60-minute ahead
Method PINAW Winkler PINALW Reduction ratio
QR 0.446 0.579 0.684 17.9%
QD 0.425 0.676 0.608 7.7%
CWCShri 0.442 0.684 0.640 12.2%
Sum-k ANN 0.454 0.704 0.589 4.7%
Sum-k LSTM 0.429 0.713 0.561 -

• QR achieves the best Winkler score

• The Sum-k with LSTM can reduce the
large PI width in a ratio varying from
7.7% to 30.7%

• The reduction PI width in I can be
convert to P

Worachit Amnuaypongsa May 5, 2025 20 / 41



Introduction Thesis overview Background Methodology Experimental results System applications Conclusion

Experiment 4: Results
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Partly Cloudy Condition

Actual I QR QD CWCShri Sum-k ANN Sum-k LSTM

PI of 15-minute ahead PI solar forecast in partly cloudy condition.

Worachit Amnuaypongsa May 5, 2025 21 / 41



Introduction Thesis overview Background Methodology Experimental results System applications Conclusion

Experiment 4: Results
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Cloudy Condition

Actual I QR QD CWCShri Sum-k ANN Sum-k LSTM

PI of 15-minute ahead PI solar forecast in cloudy condition.

• The Sum-k can effectively reduce the PI
width in high uncertainty data found in
partly cloudy and cloudy conditions

• With an appropriate λ, the PI width from
Sum-k performs comparably to
benchmark methods

• The Sum-k with LSTM has lower
validation loss than ANN

• For Sum-k , LSTM reduces the large PI
widths more effectively
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Experiment 4: Results on real operation
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Actual future irradiance is not covered by PIs.

• At time t, the 4-step ahead PIs are
released

• Sum-k exhibits a narrower PI width
compared to QD in a high uncertainty
situation

• With a confidence level of 0.9, there is a
possibility that the actual I may fall
outside the PI
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Effectiveness of the proposed methods
on engineering system applications
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Cost evaluation in reserve preparation

actual

forecast

provision penalty deficit penalty

lost load

lost opportunity

upward reserve

downward reserve

Four types of reserves quantification using PIs.

Reserve
price
penalty

Price ($/MWh)

πU 5.5, 8.25
πD 0.08, 0.12
πU
− 50, 500

πD
− 30

The reserve price.

Objective: A solar power provider uses the point forecast
ŷ and PI [l̂ , û] information to plan the reserve amount
necessary to maintain power balance under uncertainty

Planning operation

Upward reserve: Additional generation capacity that
must be scheduled in advance
Downward reserve: Mitigation strategies that must be
planned to reduce generation if necessary

Real-time operation

Lost load: Failure to deliver the committed generation,
resulting in unserved demand
Lost opportunity: Excess generation that must be
curtailed due to operational constraints

Total operating reserve cost ($)∑
∀t
(
πU rU(t) + πDrD(t) + πU

−r
U
−(t) + πD

−r
D
−(t)

)
∆t
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Cost Evaluation in Reserve Preparation: Experiment Setting

Setting:
Point forecast: Trained with pinball loss at 0.5 quantile using the PI model architecture

PI: Resulted from solar experiment (*Excluding QR due to crossing PI*)

Point forecast with PI in 4-step ahead forecast.

Cost evaluation dataset:
Test set with 15-minute resolution,
spanning 4 months,
evaluate each step-ahead cost separately

Power conversion:
Convert irradiance (W/m2) to solar power (W)
assuming 100 MW installed capacity.

Worachit Amnuaypongsa May 5, 2025 26 / 41



Cost evaluation in reserve preparation: Results
Reserve quantities in MWh calculated as r =

∑
∀t r(t)∆t.

1-step ahead 4-step ahead

QD CWCShri Sum-k QD CWCShri Sum-k

rU 50,485.2 46,504.2 44,832.9 57,273.3 59,208.5 63,331.0

rU− 1,302.0 1,863.2 2,262.9 2,117.6 2,146.5 1,886.1

rD 36,475.3 39,787.2 39,560.5 49,851.3 52,196.2 51,057.5

rD− 1,564.8 1,524.9 1,793.6 1,050.6 906.1 1,277.5

• The Sum-k in the first step has the lowest PI width, leading to the lowest rU + rD

• Effective PI construction methods should achieve good rU , rD (from narrow PI width),
reflecting the amount of reserve required before real-time operation
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Cost evaluation in reserve preparation: Results

QD CWCShri Sum-k
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The solar power reserve cost estimated using 60-minute ahead forecasts.

• When VoLL = $50/MWh, the reserve
price is comparable to the PINAW result,
the upward reserve cost is dominant

• When VoLL = $500/MWh, the Sum-k
has the lowest total cost because the
lower bound effectively captures actual
generation

• In practice, the VoLL could reach up to
$9,000/MWh; thus, the Sum-k would
significantly save costs compared to others
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Impact of PI width in robust energy management: EMS components

EMS can be implemented in a small building equipped with PV and a battery storage system to control battery
charging and discharging, thereby optimizing energy usage and reducing net electricity costs.

Energy Management
System

Battery Unit

Solar panel

Grid electricity

Electrical load

The element of a small building energy management system (BEMS).

• Electrical load: consumes power (requires
forecasting)

• Solar panel: generates power (requires forecasting)

• Battery unit: stores energy from the grid or PV
(controlled by EMS)

• External grid: connected to EMS for energy
import/export

Net load: Pnet load = Pload(t)− Ppv(t)

Power balance: Pnet(t) = Pnet load(t)+Pchg(t)−Pdchg(t)

Pnet(t) > 0 power is drawn from the grid

Pnet(t) < 0 excess PV power is fed back to the grid
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Impact of PI width in robust energy management: EMS optimization
formulation

EMS optimization formulation can be written as:

The optimization formulation of EMS

minimize Jcost + wbJbatt

subject to Pnet(t) = Pnet load(t) + Pchg(t) − Pdchg(t)

SoC(t + 1) = SoC(t) +
100%

BattCapacity

(
ηcPchg(t) −

Pdchg(t)

ηd

)
∆t

0 ≤ Pchg(t) ≤ max charge rate, 0 ≤ Pdchg(t) ≤ max discharge rate

SoCmin ≤ SoC(t) ≤ SoCmax, t = 1, 2, . . . ,T

Objective functions

Jcost = ∆t
T∑
t=1

b(t) max(0, Pnet(t)) − s(t) max(0,−Pnet(t))

Jbatt = ∆t

T−1∑
i=1

|Pchg(t + 1) − Pchg(t)| + ∆t

T−1∑
i=1

|Pdchg(t + 1) − Pdchg(t)|

Problem parameter: Ppv(t),Pload(t),Pnet load(t) = Pload(t) − Ppv(t)

Optimization variables: Pchg(t),Pdchg(t)
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EMS: Integrate the uncertainty to EMS

Setting: Ppv,Pload involve uncertainty due to their nature. We can utilize the PI construction method for

Pnet load to capture the uncertainty represented in [L,U] with a confidence level of 1− δ.

The uncertainty set of the net load can be defined as

U = {Pnet load(t)|L(t) ≤ Pnet load(t) ≤ U(t)}

Pnet(t) = Pnet load(t) + Pchg(t)− Pdchg(t) becomes:

L(t)+Pchg(t)−Pdchg(t) ≤ Pnet(t) ≤ U(t)+Pchg(t)−Pdchg(t)

U(t) - Pessimistic: Robust EMS with uncertainty set

The robust EMS that minimizes the worst-case cost
(occurs when the net load achieves its upper bound)
can be formulated as

minimize Jcost + wbJbatt

subject to Pnet(t) = U(t) + Pchg(t)− Pdchg(t),

Battery constraints.

L(t) - Optimistic: Robust EMS with chance constraint

The interval of Pnet(t) is equivalent to chance
constraint prob(Pnet load(t) ∈ [L(t),U(t)]) = 1− δ.
Minimizing costs under the chance constraint results in
Pnet(t) reaching its lower bound, as costs increase
monotonically with Pnet(t). So, it can be formulated as

minimize Jcost + wbJbatt

subject to Pnet(t) = L(t) + Pchg(t)− Pdchg(t),

Battery constraints.
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EMS: Rolling EMS optimization

Prediction horizonCurrent time

Solve
 for

Store the solution as the action for

Calculate initial

Store the solution as the action for

Calculate initial

Solve
 for

Rolling EMS optimization.

• At time t1, the PI forecast of net load
with H-steps ahead serves as problem
parameters

• Solve the optimization variable at time t1
to obtain Pchg(t1 + 1), . . . ,Pchg(t1 + H),
and Pdchg(t1 + 1), . . . ,Pdchg(t1 +H) which
provides a cost optimal battery profiles

• Apply the first time step Pchg(t1 + 1),
Pdchg(t1 + 1) as the action for t2

• Roll every 1 step, move from t1 to t2
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EMS: Experiment setting
Objective: We aim to show the effectiveness of Sum-k in reducing large PI widths compared with QR, QD, and

CWCShri, leading to lower uncertainty in estimating costs in robust EMS. Then, compare with the ideal case.

Specification: Require a four-hour horizon of (16 steps)
net load forecast PI with a resolution of 15 minutes

Building system specification.

Specification Value

Peak load 10 kW

PV capacity 5 kW

Battery capacity 25 kWh

Setting: Confidence level = 0.9, LSTM model,
Sum-k - k = 0.3, λ = 0.5

EMS problem parameters and electricity tariffs.

Parameter Value

Battery

Charging efficiency 0.95

Discharging efficiency 0.88

Max charge rate 5 kW

Max discharge rate 5 kW

Minimum SoC 20 %

Maximum SoC 80 %

Parameter Value (THB)

Tariff

Buy rate (22:00-10:00) 2.7

Buy rate (10:00-14:00) 5.7

Buy rate (14:00-18:00) 7

Buy rate (18:00-22:00) 8

Sell rate (23:00-18:00) 2.2

Sell rate (18:00-23:00) 2.5

Dataset: spanned March - December
Lagged regressors (8 lags): Pload, PPV, Pnet load, CIR
from t − 15, . . . , t − 120
Future regressors (16 steps): Iclr, Inwp,Tnwp,HI,Holiday
Target variable (16 steps): Pnet load

from t + 15, . . . , t + 240

Net load characteristics.

Worachit Amnuaypongsa May 5, 2025 33 / 41



EMS: Results
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Battery operation.

• Positive net load, the battery typically charges
in the early morning

• The charging energy in the optimistic scenario
is less than in the pessimistic scenario

• Negative net load, the optimistic sells all
excess energy to the grid
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EMS: Results
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Cumulative Net Electricity Cost: Ideal vs Methods

The cumulative cost over 10 months.

• The Sum-k demonstrates the smallest
deviation, showing better PI quality in the
robust EMS

• For the cumulative net electricity cost, the
Sum-k has the lowest worst-case cost
(upper bound) while also having the
narrowest range of upper and lower
bounds

Deviation of the net electricity cost from the ideal case.

Deviation
from ideal

Pessimistic (%) Optimistic (%)

QR 46.2 -22.2

QD 47.2 -36.0

CWCShri 54.4 -14.6

Sum-k 37.9 -16.8
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Conclusion and limitation

Conclusion

• We proposed the Sum-k loss function to specially reduce the large PI width

• The Sum-k loss is compatible with gradient-based methods, allowing for the application
of state-of-the-art NN

• The reduction in the large PI widths significantly reduces the operational cost in decision
making

• The effectiveness of our method in reducing costs through the use of Sum-k is
demonstrated in reserve preparation and robust EMS

Limitation

• The PI width from the Sum-k for low-volatile data could be broader than other methods

• Tuning γ requires multiple NN training

• A multi-task learning algorithm can be applied to automatically adjust γ
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