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Chapter I

INTRODUCTION

The importance of probabilistic forecast. A rise in global temperatures due to climate
change is a critical issue that demands global attention, prompting many nations to endorse
a net-zero carbon emissions policy (Davis et al., 2018). In accordance with the policy, many
countries worldwide are promoting the generation of renewable energy, including solar and
wind energy, as demonstrated in Solangi et al. (2011); Zhang et al. (2013); Byrnes et al.
(2013); Kitzing et al. (2012). However, higher penetration of renewable energy sources into
the power system can introduce significant uncertainty in power generation, which is highly
dependent on natural factors and potentially impacts system reliability. Reliability refers to
the risk of a blackout occurring when renewable generation suddenly drops below the actual
load, especially given the high uncertainty associated with renewable energy sources. To
tackle reliability challenges, forecasting plays a crucial role today in predicting the future
value of clean energy. This forecast assists in shaping future generation preparation plans
by utilizing the predicted values as inputs for unit commitment and economic dispatch
problems Li and Zhang (2020). The traditional forecast, deterministic forecast, offers only
a single value that does not account for the uncertainty of forecasting, leaving us unaware
of its reliability. This resulted in the development of probabilistic forecasting, which offers
insights into the uncertainties of forecasting to support more effective risk management
planning.

Application of probabilistic forecast. The probabilistic forecast has gained much atten-
tion for its ability to provide the uncertainty information of the forecasted value (Gneit-
ing and Katzfuss, 2014). The probabilistic forecast can help users in decision-making in
various applications, especially in power applications such as solar (van der Meer et al.,
2018; Li and Zhang, 2020), wind (Zhang et al., 2014), electrical load (Hong and Fan,
2016; Zhao et al., 2020), and electricity price (Khosravi et al., 2013; Nowotarski and
Weron, 2018) forecasting. In power system operations, operators typically assess net load
forecasting based on the predicted values of load and renewable generation, defined as
net load = load − renewable generation. Both load and renewable generation forecasts
inherently involve uncertainty. Net load forecasting informs operators about how much
conventional power should be prepared to meet the upcoming load demand. This process
primarily involves reserve power management to address net load forecast uncertainty and
ensure system reliability, typically in unit commitment and economic dispatch problems
(optimization problems). Probabilistic forecasting with accurately predicting uncertainty
leads to better decision-making, effective resource planning, and reduced costs and risks.
For example, Apostolopoulou et al. (2018) addressed the uncertainty arising from the net
load, assuming that all uncertainty originated from solar generation as part of the power
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balance constraint in the hydroelectric power system. The power balance constraint aimed
to ensure that the power generated by the system equaled the net load. The uncertainty
from solar generation was incorporated to calculate an optimal dispatch scheme for a hy-
droelectric system. In Cordova et al. (2018), unit commitment modeling was developed by
combining it with the representation of uncertainty in renewable energy generation. The
information of uncertainty determined the resources required for risk hedging in the unit
commitment process. Probabilistic forecasting is also applied in various domains, such as
landslide displacement prediction for risk management planning (Lian et al., 2016), crop
yield prediction to develop strategies for uncertainty management (Morales and Sheppard,
2023), and construction project management to mitigate financial risks associated with
budgets (Mir et al., 2021).

Uncertainty representation. The probabilistic forecast can represent the uncertainty in
three forms: quantile, distribution function, and prediction interval (PI). Bremnes (2004)
utilized quantiles for probabilistic wind power forecasting through a local quantile regres-
sion technique. In Jeon and Taylor (2012), the uncertainty of wind power due to stochastic
behavior in relation to wind speed and direction is modeled in the form of a probability
distribution function using conditional kernel density estimation. Among all forms of uncer-
tainty representation, a PI is widely used for uncertainty quantification because it effectively
illustrates possible outcomes by displaying the upper and lower bounds associated with the
confidence level (Quan et al., 2020). For example, in Apostolopoulou et al. (2018) and
Cordova et al. (2018), the uncertainty of renewable energy is represented through PI and
incorporated into the optimization problems.

Prediction interval construction approach. There are indirect and direct approaches for
PI construction. The indirect method requires two steps: first, train a point forecast model,
and second, conduct a statistical analysis of the forecast error. For example, the authors of
Lorenz et al. (2009) conducted a point forecast for solar irradiance using a physical model,
and then the error is assumed to follow a normal distribution to determine the PI. In Li
et al. (2022), XGBoost was utilized for point forecasting solar irradiance, followed by kernel
density estimation to model the distribution of forecast errors for constructing PIs. For the
neural network-based approach, methods to provide PI include the delta method, Bayesian
method, and mean-variance estimation (MVE) method, as summarized in Khosravi et al.
(2011). The delta and Bayesian methods can incur high computational costs due to the
need for calculating the Jacobian and Hessian matrices, respectively (Quan et al., 2020).
On the other hand, the MVE method tends to perform poorly when the target variable
does not follow the Gaussian assumption. Thus, for the indirect method, the distribution
of forecast error relates to the model, indicating that the performance of the PI depends
on both the model and the statistical analysis method. Quantifying uncertainty in neural
networks (NN) has been approached through various methodologies. MC dropout (Gal
and Ghahramani, 2016) estimates uncertainty by performing multiple forward passes with
dropout layers active during inference. Similarly, deep ensembles (Lakshminarayanan et al.,
2017) train multiple NNs with different initializations. Both methods, when combined with



3

a loss function predicting mean and variance, yield diverse predictions. Deep ensembles
effectively capture model and data uncertainty, providing predicted means and total variance
for PI calculation. However, these approaches have limitations. Deep ensembles incur
significant computational costs, with training and inference times scaling with the number
of models. MC Dropout significantly increases prediction times, and its uncertainty quality
depends on dropout hyperparameters, often requiring separate tuning. Crucially, neither
MC dropout nor deep ensembles offer guaranteed prediction interval coverage probability
(PICP). This limitation motivated the development of conformalized quantile regression
(CQR) (Romano et al., 2019). CQR combines classical quantile regression with conformal
prediction to produce PIs with guaranteed PICP in finite samples. It constructs PIs by
computing non-conformity scores, which quantify discrepancies between held-out calibration
data and predicted labels, and then using the quantiles of these scores. While CQR ensures
a desired PICP, its trade-offs include PI widths (sharpness), which depends on the quality
of the base regression model and the calibration set. A commonality among these three
frameworks is the post-hoc nature of PI construction. The base regression models are not
inherently optimized to enhance the sharpness of the resulting prediction intervals. On
the other hand, the direct approach offers PI from a model in one step, as the model is
specifically trained to consider the uncertainty characteristics of the target variable (Quan
et al., 2020). Quantile-based techniques, such as quantile regression (QR) (Koenker, 2005)
and quantile regression forest (QRF) (Meinshausen, 2006), can be applied to construct PIs
without requiring distribution assumptions. Among direct methods, the lower upper bound
estimation (LUBE) technique is favorable as it directly outputs the upper and lower bounds
from the NN, originally proposed in Khosravi et al. (2011). The quality of PI is evaluated
based on reliability and sharpness, commonly measured through prediction interval coverage
probability (PICP) and PI width, respectively. A high-quality PI is characterized by a high
PICP and a narrow PI width. However, these two goals conflict, presenting a trade-off
characteristic where enhancing PICP results in a wider PI width. To achieve a high PICP
and a narrow PI width, a common approach is to formulate an optimization problem that
effectively quantifies the quality of PIs in both aspects.

Prediction interval-based optimization problem. Many literature formulate the PI con-
struction problem as an optimization problem in various ways. The PICP and PI width
components can be combined into a scalar-valued objective function, which represents an
unconstrained optimization problem. The LUBE approach introduces a coverage width-
based criterion (CWC) as a loss function for training the NN, utilizing the multiplicative
form for the PICP and PI width functions (Khosravi et al., 2011). Several alternative
versions of CWC loss have been proposed within the LUBE framework, utilizing various
models such as support vector machine (SVM) (Shrivastava et al., 2015), extreme learning
machine (ELM) (Ni et al., 2017), and NN (Quan et al., 2014a; Ye et al., 2016), with NN
being the most widely used. In Quan et al. (2014b), the authors defined the problem as
minimizing the PI width, treating PICP as a constraint to achieve the desired probabil-
ity. However, imposing the PICP as a hard constraint resulted in a larger PI width than
necessary. Consequently, Zhang et al. (2015) introduced a deviation information-based
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criterion (DIC) as a new objective in an additive form that incorporated both PI width and
the pun function, which penalizes the deviation of PI from the target variable. Schemes
that treated the problem as a multi-objective optimization challenge, aiming to minimize
the PI width and maximize the PICP as bi-objectives, were proposed in Li and Jin (2018);
Galván et al. (2017). However, all of these problem formulations utilized heuristic opti-
mization techniques such as simulated annealing and particle swarm optimization to find
the optimal model parameters, which did not guarantee a local minimum of the objective
function. Additionally, the loss function proposed with the NN model is incompatible with
gradient-based algorithms due to its non-differentiability, while gradient-based methods are
the standard for training state-of-the-art NN (Chen et al., 2024).

Power (MW)

Time (h)

Net load forecast

Schedule power

Demand over
generation capacity

Maximum capacity Confidence
intervals

Available
capacity

95 %

90 %

85 %

80 %

Figure 1.1: Concept of using PIs in power operation.

Cost of large PI widths. For grid integration, information about renewable energy fore-
casts is provided as point forecasts, and their uncertainty is represented by PI in the interval
[l, u]. Next, the PI of renewable energy is used to calculate the PI of the net load. The
PI width of the net load calculated by u − l is utilized to prepare operational generation
resources (Etingov et al., 2012), addressing potential uncertainties as shown in Figure 1.1.
The upper bound of this PI with a specified confidence level indicates the reserve power
required to ensure system reliability at the given confidence level, while the lower bound rep-
resents the minimum possible net load, which is used to reduce the risk of over-committing
generation resources. A wider PI indicates greater uncertainty in the forecast, which may
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require a larger reserve margin to ensure reliability, resulting in higher operational costs due
to an increased need for standby power resources. Especially in power system contexts, the
PI of renewable forecasting is generally employed to quantify the uncertainty in renewable
generation, directly assisting in the decision-making process. These intervals help power op-
erators handle uncertainty, allowing them to plan reserve power generation to meet future
electrical demand and increase the stability of the power system. In Zhao et al. (2021),
the authors demonstrated that the deviation of point forecasts from the PIs in wind power
applications was used to determine reserve power, impacting operational costs. Accord-
ing to Zhao et al. (2022), the PI of wind power was utilized to determine the amount of
offered wind power within the PI, where the decision-making regarding the offered wind
power was based on the worst-case cost. However, a large PI width, which may occur in
some instances due to high uncertainty, can drastically affect the worst-case cost, impacting
decision-making. In practice, unit commitment and economic dispatch often rely on robust
optimization problems to address the uncertainty (Quan et al., 2020). The robust approach
requires defining an uncertainty set to account for variability in renewable generation, em-
phasizing preparation for the worst-case scenario under extreme conditions, especially in
cases with extremely large PI widths. As a result, the solution from robust optimization
is generally considered conservative. The PI widths are generally a mix of small and large
values, but a portion of a large PI width that occurs in some instances can increase reserve
power preparation throughout the day in economic dispatch and unit commitment. There-
fore, merely focusing on the average PI width may not be sufficient. It is also essential to
monitor the group of large PI widths because planning under a significant number of large PI
widths can raise operational costs. When the large PI width is reduced, the uncertainty set
in the robust optimization scheme becomes smaller, which can be advantageous in reducing
the conservatism of the unit commitment solution, as the worst-case scenario is less severe.
A smaller uncertainty set can lead to reduced operating costs and enhanced efficiency while
maintaining reliability since the robust optimization approach can focus on more realistic
scenarios without the overallocation of reserve resources.

Research gap. As the large PI width significantly affects the operational cost. Most of the
literature treats the PI width term as the average PI width incorporated in the optimization
problem for generating PIs. However, few studies focus on reducing the large PI widths.
Moreover, most of the proposed methods rely on heuristic optimization, which is heavily
influenced by the randomness of the search direction and is highly sensitive to hyperparame-
ter settings. When optimization problems involve multiple constraints, heuristic algorithms
may struggle to find feasible solutions and may lack mathematical significance. In the case
of NN-based loss functions, which are nonlinear and unconstrained, heuristic approaches
face challenges when dealing with a large number of parameters, whereas gradient-based
methods remain the standard for training NNs.

Research objectives. This thesis presents optimization formulations designed to address
the challenges posed by large prediction interval (PI) widths. The proposed optimization
problems tackle two conflicting objectives: maintaining the desired coverage probability
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(PICP) while minimizing the PI width. The goal is to maintain PICP at the specified level
while striving to reduce the PI width. Furthermore, we aim to apply exact optimization
methods where optimality can be theoretically guaranteed for solving the proposed problem.
To achieve this, we propose three convex optimization formulations and one nonlinear
optimization formulation. The convex formulations are based on the pinball loss with a
width control function, which regulates the PI width in various aspects, including average
PI width, large PI widths, and maximum PI width. These convex formulations employ a
linear additive model, which ensures that the formulation remains convex. The benefit of
convexity is that a global minimum can be guaranteed. While the pinball-based formulation
indirectly addresses both PICP and PI width, the nonlinear formulation directly targets these
two objectives. Additionally, we incorporate the sum of the K largest PI widths into the loss
function, encouraging the reduction in the large PI widths. This formulation is applicable
to employing any nonlinear model to capture the nonlinear characteristics of the data.
Moreover, a smooth approximation technique is applied to the PICP terms, allowing the
use of gradient-based algorithms. The effectiveness of these formulations is demonstrated
in the context of providing PI for solar irradiance forecasting, showcasing their practical
application in real-world scenarios.

Chapters overview. This thesis is organized as follows. Chapter 2 presents the back-
ground knowledge relevant to this work. Chapter 3 introduces the proposed methodology,
comprising two approaches: pinball-based formulation and PICP with width control formu-
lation. Chapter 4 details the experimental design used to evaluate their performance in
synthetic data and real-world data. Chapter 5 reports the experimental results for method-
ology 1, while Chapter 6 presents the results for methodology 2. Chapter 7 demonstrates
the effectiveness of the methodology 2 in engineering system applications, such as lowering
reserve preparation costs and enhancing robust energy management. Finally, Chapter 8
summarizes the contributions and discusses potential directions for future research.

1.1 Objectives

1. We aim to deliver a probabilistic forecast of solar power in the form of a prediction
interval, assisting users in decision making for energy management.

2. We propose new optimization formulations to construct a prediction interval in the
probabilistic forecast that encourages a trade-off characteristic between two objectives:
high coverage and narrower PI width.

1.2 Scope of Work

1. A proposed probabilistic forecasting method is presented in the form of prediction
intervals.

2. The solar data utilized for this research was gathered in Thailand.
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1.3 Expected outcome

1. A methodology that generates quality-based prediction intervals for probabilistic fore-
casts, emphasizing high reliability and sharpness.

2. A software package that returns the prediction intervals corresponding to a given
confidence level, which is provided in https://github.com/energyCUEE/PIestim_
sumk.

https://github.com/energyCUEE/PIestim_sumk
https://github.com/energyCUEE/PIestim_sumk


Chapter II

BACKGROUND

This chapter presents the fundamental knowledge essential for this thesis. It is orga-
nized into five sections. The first section introduces the basic regression model. The second
section covers quantile-based methods, including quantile estimation, quantile regression,
and quantile regression forest. The third section discusses prediction interval (PI) estima-
tion, encompassing fundamental concepts and PI evaluation metrics. The fourth section
focuses on neural networks, detailing the model architecture, loss function, and training
and validation procedures. Finally, the last section provides an overview of the lower-upper
bound estimation (LUBE) method.

2.1 Regression model

Regression analysis is a statistical method used to examine the relationship between a target
variable, y ∈ Rm, and predictor variables x ∈ Rp. The target variable is generated by a
data-generating process (DGP) described as

y = f(x) + e, (2.1)

where f(x) is the ground truth function and e is an additive data noise. A regression task
aims to predict the value of y given the information of predictors x, with ŷ representing the
predicted value of the target variable. A regression model, denoted as f̂(x; θ), estimates
the relationship between y and x, parameterized by the model parameter θ. Then, the
prediction of y can be expressed as ŷ = f̂(x; θ). The simplest form of regression analysis
is linear regression, which assumes a linear relationship between ŷ and θ. To estimate this
relationship, regression analysis aims to minimize a regression loss (ℓ), which quantifies the
difference between the predicted value (ŷ) and the actual value (y) of the target variable as

L(y, ŷ) = 1

N

N∑
i=1

ℓ (yi − ŷi) . (2.2)

The regression loss can be in the form of statistical measures such as mean squared error
(MSE) and mean absolute error (MAE). Minimizing MSE results in an optimal estimator
that represents the conditional mean of the target variable, denoted as E[y|x]. Conversely,
minimizing MAE leads to the best estimator corresponding to the conditional median. The
conditional mean and conditional median can differ depending on the distribution of y|x,
particularly in cases where the distribution is non-symmetric, as illustrated in Figure 2.1.
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Figure 2.1: Conditional probability distribution of a target variable given predictors.

2.2 Quantile-based methods

This section covers the fundamentals of quantile estimation and the statistical techniques
used to estimate conditional quantiles. It provides an overview of the optimization methods
applied to estimate quantiles for one-dimensional data. Next, we detail quantile regression
(QR) and quantile regression forest (QRF) as key statistical approaches for estimating the
conditional quantiles of a target variable based on given predictors.

Quantile estimation

Let Y be a random variable with a probability density function (pdf) fY (y) and a cumulative
distribution function (CDF) given by FY (y) = P (Y ≤ y). The αth quantile of Y , denoted as
qα(Y ), is a statistical measure that partitions the pdf of Y so that a probability of α of the
distribution falls below it, while proportion 1−α falls above it as illustrated in Figure 2.2(a).
The α-quantile of Y can be mathematically defined as

qY (α) = F−1
Y (α) = inf

y
{ y | F (y) ≥ α } (2.3)

where α is the corresponding probability within the interval [0,1].

The α−quantile of Y can be estimated by solving an optimization problem where the
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Figure 2.2: Quantile estimation and pinball loss function.

objective is a pinball loss function (Koenker, 2005) defined as

ρα(r) = max(αr, (α− 1)r) =

{
αr, r ≥ 0

(α− 1)r, r < 0.
(2.4)

The structure of the pinball loss is a piecewise linear function with asymmetric slopes for
positive and negative residue, as illustrated in Figure 2.2(b).

Theorem 2.2.1. The quantile estimation can be obtained by minimizing the expectation
of the pinball loss (Koenker, 2005)

qY (α) = argmin
ŷ

E[ρα(Y − ŷ)], (2.5)

where ŷ is the αth quantile estimation of Y .

Proof. Given that y is drawn from random variable Y . The mean of pinball loss can be
expressed as

E[ρα(Y − ŷ)] = (α− 1)

∫ ŷ

−∞
(y − ŷ)fY (y)dy + α

∫ ∞

ŷ

(y − ŷ)fY (y)dy.

Differentiating E[ρα(Y − ŷ)] = 0 with respect to ŷ by using Leibniz integral rule, we have

(1− α)

∫ ŷ

−∞
fY (y)dy − α

∫ ∞

ŷ

fY (y)dy = 0

(1− α)FY (ŷ)− α[1− FY (ŷ)] = 0

which gives FY (ŷ) = α or equivalently ŷ = F−1
Y (α) by the monotonically uniqueness prop-

erty of CDF. Therefore, minimizing the mean of pinball loss yields ŷ, which is a quantile
estimator where ŷ = F−1

Y (α), represented by qY (α).
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Corollary 2.2.1.1. The pinball loss at the 0.5 quantile can be simplified as an absolute
error. Minimizing this results in the estimation of the median equivalent at 0.5 quantiles.

Suppose y1, y2, ..., yN are the samples of random variable Y . Sample quantile is
traditionally determined by sorting the data and plotting a histogram, then calculating the
sample quantile corresponding with given probability (α) as shown in Figure 2.2(a). In
practice, the sample quantile can be estimated by minimizing the sample version of (2.5)
as

minimize
z

N∑
i=1

ρα(yi − z) (2.6)

with z ∈ R is the estimated sample quantile corresponding to the α probability of the
samples from Y .

To numerically solve (2.6), we can reformulate (2.6) into a linear programming (LP)
problem by using epigraph form (Boyd and Vandenberghe, 2004). Estimating the quantile
corresponding to any α can be achieved by solving a simple linear programming problem
shown as

minimize
z,u,v

α1Tu+ (1− α)1Tv

subject to u ⪰ y − 1z
v ⪰ 1z − y

u, v ⪰ 0,

(2.7)

where z ∈ R, u ∈ RN , v ∈ RN are optimization variables, y ∈ RN is the data, and
1 is a vector where all element is one with a dimension of N , 1 ≜

[
1 1 · · · 1

]T
N×1
.

Linear programming algorithms, such as the simplex method, can be employed to solve this
problem efficiently.

Quantile regression

Given that X =
[
x1 x2 · · · xN

]T is a data matrix in which each xi ∈ Rp for i =

1, 2, . . . , N represents the data of each sample with p predictors, and y ∈ RN is a target
variable. Quantile regression (QR) is a method used to estimate any quantiles of a target
variable (y) given the dataX (Koenker, 2005). This method is distribution-free and does not
require an assumption about the error distribution. Compared with a traditional regression,
in which the solution is obtained from solving the least-squares problem (minimizing MSE
loss), a quantile regression solves the optimization problem defined as:

minimize
θ

N∑
i=1

ρα(yi − ŷi(xi; θ)) (2.8)

where the solution, θ, is the regression parameter used for estimating the αth samples
quantile of the target variable.
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Generally, the αth conditional quantile function can be linear and non-linear in the
parameters θ depending on the mathematical model. The type of optimization problem
in (2.8) also depends on the model’s linearity; therefore, different types of optimization
problems require different numerical methods to solve. For a linear quantile regression
model, the αth sample quantile is modeled linear additive in θ shown as

ŷi = xT
i θ = θ1x1,i + θ2x2,i + · · ·+ θpxp,i (2.9)

where θ ∈ Rp is the model parameter, and i is the sample index. The vectorized rep-
resentation is given by ŷ = Xθ. Since the pinball function is convex, the optimization
problem remains convex when ŷ is linearly structured in the optimization variable θ. This
holds because an affine transformation of a convex function preserves convexity (Boyd and
Vandenberghe, 2004). Additionally, the linear quantile regression optimization problem can
be simplified as an LP problem (Koenker, 2005) by substituting z = Xθ in (2.7) as

minimize
θ,u,v

α1Tu+ (1− α)1Tv

subject to u ⪰ y −Xθ

v ⪰ Xθ − y

u, v ⪰ 0.

(2.10)

For probabilistic forecasts, quantile regression can provide quantile, CDF, or prediction
intervals (PIs). As this thesis focuses on generating PI, quantile regression is utilized to
provide the upper and lower bounds corresponding with a confidence level (1−δ). The upper
and lower bounds are obtained by solving two quantile regression problems that correspond
to the two probabilities α and α, respectively, where

α− α = 1− δ. (2.11)

In the case of symmetric PIs, where the head and tail probabilities are equal, a pair of α
and α corresponding to the confidence level can be defined as follows:

α =
δ

2
, α = 1− δ

2
. (2.12)

The example of two probabilities corresponding with confidence level can be shown in
Table 2.1. Then, we can solve (2.10) separately to obtain the lower and upper bound of the
target variable. For example, when 1 − δ = 0.9, we have two models with parameter θ, θ;
each of which gives an estimation of the 0.95 quantile, and the 0.05 quantile, respectively.

Quantile regression forest

Observations of the data are given as {xi, yi}Ni=1, where xi represents a predictor variable,
and yi represents a target variable. Quantile regression forest (QRF) is an algorithm that
estimates nonparametric conditional CDF proposed by Meinshausen (2006). The QRF
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Table 2.1: Examples of lower and upper bound probabilities for symmetric prediction inter-
vals corresponding to the nominal confidence level.

1− δ 0.95 0.9 0.8 0.7 0.6 0.5
α 0.975 0.95 0.9 0.85 0.8 0.75
α 0.025 0.05 0.1 0.15 0.2 0.25

approach uses a random forest algorithm instead of minimizing the pinball loss function as
in QR.

Random forest (RF) is a machine-learning algorithm that grows multiple decision trees
proposed by Breiman (2001). The data in each tree is obtained through random sampling
with replacement. At each split in the tree, a smaller subset of predictors is randomly
chosen from the full set of predictors to reduce the correlation among all decision trees. In
the regression task, the predicted value for new data is obtained by averaging the targets
of samples in the same leaf as the new data across all trees. Given that θ represents the
random parameter vector that describes the behavior of each tree, the corresponding tree
is denoted as T (θ). For every leaf in the tree denoted as ℓ = 1, 2, . . . , L, we denote the leaf
in which the observation x falls as ℓ(x, θ), and Rℓ(x,θ) represents a rectangular subspace in
the predictor space. The structures of all trees are generated in the training process.

When making a prediction for a new observation x⋆, the weight vector of the tree is
calculated wi(x

⋆, θ) which can be written as

wi(x
⋆, θ) =

1(xi ∈ Rℓ(x⋆,θ))∑
∀j 1(xj ∈ Rℓ(x⋆,θ))

. (2.13)

1(xi ∈ Rℓ(x⋆,θ)) is a count function that equals to one when an observation xi is in the
same leaf as the new observation x⋆, and

∑
∀j 1(xj ∈ Rℓ(x⋆,θ)) represents the number of

observations falling in Rℓ(x⋆,θ). The prediction of a single tree given the new x⋆ is calculated
by the average of target variables yi for observations whose indices fall into the leaf for that
observation written as

ŷ(x⋆, θ) =
N∑
i=1

wi(x
⋆, θ)yi, (2.14)

where ŷ(x⋆, θ) is the prediction from the leaf. An average of the prediction of m single trees
where each constructed with θt, t = 1, 2, . . . ,m is calculated to provide the final prediction.
Given that wi be the average of the weight vector of all trees, which is calculated by

wi(x
⋆) =

1

m

m∑
t=1

wi(x
⋆, θt). (2.15)

The final prediction of random forest, which is the conditional mean of the target variable,
is estimated by
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ŷ(x⋆) =
N∑
i=1

wi(x
⋆)yi =

1

m

m∑
t=1

ŷ(x⋆, θt). (2.16)

Quantile regression forest expands the RF framework to provide the full conditional
CDF instead of the conditional mean. The conditional CDF of Y given X = x is expressed
as F (y|X = x) = P (Y ≤ y|X = x). Using the same approach as the RF, the estimated
CDF is calculated by computing the average of the indicator function that reflects the CDF
instead of the target variable y as

F̂ (y|X = x) =
N∑
i=1

wi(x)1(yi ≤ y), (2.17)

where wi(x) has the same meaning as (2.13) and 1(yi ≤ y) equals one when yi ≤ y and
zero otherwise. Then, the conditional quantile can be estimated from QRF by replacing
F̂ (y|X = x) into (2.3) as q̂Y |X=x(α) = inf

y
{ y | F̂ (y|X = x) ≥ α }.

It seems that QRF provides a complete estimation of the whole conditional distribu-
tion. Regarding software usage, we can specifically select two quantiles representing lower
and upper bound by providing α, α to generate PI. The complexity of the tree structure
can make the PI characteristic highly nonlinear in QRF, which may describe some nonlinear
behavior of the data better than a linear model. However, it is possible that using a single
QRF model may not effectively represent both the upper and lower bounds simultaneously.
To overcome this limitation, we can use different QRF models to estimate the upper and
lower bounds separately. These different models correspond to different hyperparameters
of QRF, where each hyperparameter can be selected by searching for the best configuration
using pinball loss as the evaluation criterion for both α and α. However, this may not en-
sure that the crossing quantile does not occur. This thesis utilizes the QRF implementation
available in scikit-learn-quantile documentation.

2.3 PI estimation

Given a dataset D = {xi, yi}Ni=1 with N samples where x ∈ Rp represented a p-dimensional
predictor vector and y ∈ Rm denoted an m-dimensional target variable. According to the
framework of regression analysis in (2.1), the overall uncertainty of y consists of model
uncertainty and data noise. A prediction interval (PI) is a statistical tool that quantifies
the overall uncertainty of y by providing an upper and lower bound of y at a confidence
level of (1 − δ). In the direct PI construction approach, a model directly estimates the
relationship between the PI and x using the model parameter θ, such that f̂(x; θ) =

(
l̂, û

)
,

where l̂ ≜ l̂(x; θ) and û ≜ û(x; θ) represent the estimated lower and upper bound of the PI
respectively. A PI estimation method seeks to construct an interval such that the probability
of covering y equals 1− δ, shown as

P
(
l̂(x; θ) ≤ y ≤ û(x; θ)

)
= 1− δ. (2.18)

https://sklearn-quantile.readthedocs.io/en/latest/index.html
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As the confidence level 1−δ increases, the PI inherently widens to capture more data points,
ensuring higher coverage probability.

Evaluation metrics for PI

The performance of PI is assessed based on reliability and sharpness that can be quan-
tified from a high prediction interval coverage probability (PICP) and narrow PI width,
respectively. However, these two objectives exhibit a trade-off relationship, necessitating a
complete evaluation of the PI performance considering both PICP and PI width. This sec-
tion outlines the fundamental evaluation metrics for PI. We denote that the sample width
of the PI is given by wi = ûi − l̂i used in the study.

1. Prediction interval coverage probability (PICP) is the measure of reliability cal-
culated by counting the proportion of the observers lying within the PIs. The PICP
can be defined as

PICP =
1

N

N∑
i=1

1(l̂i ≤ yi ≤ ûi), (2.19)

where 1(A) is a count function that returns one if event A occurs and zero otherwise.
The PICP is expected to reach the confidence level that is set for PI estimation.

2. Prediction interval width (PI width) measures the sharpness of the prediction
interval that can be assessed in terms of averaged PI width across all samples called
prediction interval average width expressed as:

PIAW =
1

N

N∑
i=1

wi. (2.20)

Additionally, there is a normalized version of the PIAW called prediction interval
normalized average width (PINAW), which eliminates the scale of the target variable
shown as:

PINAW =
1

NR

N∑
i=1

wi, (2.21)

where R = ymax − ymin indicates the target variable’s range, computed as the differ-
ence between the maximum and minimum values of the target variable, ensuring the
PINAW scale is between 0 and 1.

3. Winkler score is a metric that evaluates the reliability and sharpness of the PIs
corresponding to the (1 − δ) coverage probability invented by Winkler (1972). The
Winkler score is equivalent to a pinball loss when evaluating PIs with equal-tailed
probability. A low Winkler score indicates that the lower and upper bounds of the PI
match well with the quantiles of δ

2
and 1− δ

2
. The Winkler score is commonly found

in the literature related to PI-based methods, while the pinball loss is predominantly
found in quantile-based approaches. The Winkler for each sample is defined as
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Winkleri =


|ûi − l̂i|+ 2

δ
(l̂i − yi), yi < l̂i

|ûi − l̂i|, l̂i ≤ yi ≤ ûi

|ûi − l̂i|+ 2
δ
(yi − ûi), yi > ûi

= |ûi − l̂i|+
2

δ

[
(l̂i − yi)1(yi < l̂i) + (yi − ûi)1(yi > ûi)

]
, (2.22)

where the function can be illustrated in Figure 2.3.
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Figure 2.3: The illustration of the Winkler score evaluated in each sample.

Then, the Winkler score, with a normalization factor, is obtained by averaging the
Winkler values for each sample, expressed as:

Winkler = 1

NR

N∑
i=1

Winkleri, (2.23)

where the normalization factor R is used to eliminate data scaling effects in the
Winkler score. This metric reflects how PI differs from the equal-tailed two quantiles.

Proposition 1. The Winkler score at a confidence level (1 − δ) is equivalent to the
sum of two pinball losses corresponding to α = 1− δ

2
and α = δ

2
, respectively.
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Proof. Given that the pinball loss is written alternatively from (2.4) as

ρα(r) =

{
αr, r ≥ 0

αr − r, r < 0

= αr − r1(r < 0), (2.24)

where 1(r < 0) equals one when r < 0. We utilize the pinball loss in (2.24) to
demonstrate the proof, as it shares the same representation as the Winkler score.

ρ δ
2
(yi − l̂i) + ρ1− δ

2
(yi − ûi)

=

[
δ

2
(yi − l̂i)− (yi − l̂i)1(yi < l̂i)

]
+

[
(1− δ

2
)(yi − ûi)− (yi − ûi)1(yi < ûi)

]
=

δ

2
(ûi − l̂i) + (yi − ûi) +

[
(l̂i − yi)1(yi < l̂i) + (ûi − yi)1(yi < ûi)

]
=

δ

2
(ûi − l̂i) +

[
(l̂i − yi)1(yi < l̂i) + (yi − ûi) [1− 1(yi < ûi)]

]
=

δ

2
(ûi − l̂i) +

[
(l̂i − yi)1(yi < l̂i) + (yi − ûi)1(yi > ûi)

]
=

δ

2

[
(ûi − l̂i) +

2

δ

[
(l̂i − yi)1(yi < l̂i) + (yi − ûi)1(yi > ûi)

]]
=

δ

2
Winkleri.

Therefore, the sum of the pinball losses corresponding to 1− δ
2
and δ

2
probabilities is

equivalent to the Winkler score at a confidence level of 1− δ.

2.4 Neural network

A neural network (NN) is a computational model inspired by the human brain, consisting
of interconnected neurons that process information through a structured network. Mathe-
matically, an NN represents a complex function designed to approximate a target function
for a given task. When the model is sufficiently large, NNs can capture intricate, nonlinear
patterns in data.

The components defined for developing NN consist of three key components: the
model, the loss function, and the training procedure. Given an input x and its corresponding
target y, the model learns a mapping function ŷ = f(x; θ), where θ represents the model
parameters, including weights and biases. These parameters are assigned to each neuron
and are updated during training. The nonlinearity of NNs arises from activation functions,
enabling deep networks with multiple layers to capture complex relationships.

The loss function quantifies how well the model approximates the desired output by
measuring the difference between ŷ and y. The training goal is to optimize θ such that
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the loss function is minimized, ensuring better model performance. This can be considered
an optimization problem where the optimization variable is the model parameter. Different
tasks require different loss functions, which will be discussed in this section.

Finally, the training procedure involves numerical optimization techniques to adjust θ
and minimize the loss. This process iteratively updates parameters using algorithms such
as gradient descent, refining the network to achieve optimal performance for the given task
(Goodfellow et al., 2016).

Model

A NN model is a parametric model where the output ŷ can be expressed as a mathematical
function of the input x parametrized by the model parameters θ as

ŷ = f̂(x; θ). (2.25)

Model parameters determine a model’s ability to learn patterns in data. A greater number
of model parameters corresponds to a higher degree of freedom, indicating a more complex
model with an increased capacity to capture intricate patterns.

For a linear model, the output can be expressed as a linear function of θ where this
model benefits from its simplicity and interpretation of the mapping between ŷ and x.
Moreover, using a simple model can be beneficial for optimization problems, particularly
when leveraging efficient solving algorithms or when the solution’s properties ensure global
optimality, as in the case of convex optimization problems (Boyd and Vandenberghe, 2004).
Examples of very popular machine learning methods utilizing linear models are linear re-
gression, linear logistic regression, and support vector machine. However, linear models are
not complex enough to capture nonlinear and intricate patterns across various applications.
To utilize a linear model for mapping nonlinearity between input and output, some feature
engineering is necessary to transform the original x into a nonlinear feature space. In real-
world applications, these transformations can be challenging since the ground truth function
relating output to input is typically unknown.

An NN is a nonlinear model parameterized nonlinearly in θ. The architecture of an
NN typically refers to a deep NN, as it generally consists of multiple layers. Neural network
parameters, including weights and biases, perform an affine transformation of the input
from the previous layer. Nonlinearity is introduced by applying an activation function,
which is a nonlinear operation, after each affine transformation. This allows the model
to learn complex patterns in the data. The choice of activation function can be selected
based on user preference, as the example shown in Table 2.2. Since deep NNs involve
multiple layers of these operations, they can be described as a composition of numerous
nonlinear functions combined with affine transformations. Neural networks typically have
a large number of parameters with a deep architecture, which allows them to capture
highly complex patterns, making them effective for solving intricate tasks. However, this
complexity comes at a cost of interpretability, making it difficult to directly map inputs to
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outputs in an explainable manner. Additionally, a high number of parameters significantly
raises computational requirements and necessitates large datasets for effective training,
unlike simpler models. Despite these challenges, neural networks have gained significant
attention due to their exceptional performance across various tasks.

Table 2.2: Common activation functions used in neural networks.

Activation Function Mathematical Expression
Linear x

Sigmoid σ(x) = 1
1+e−x

Hyperbolic Tangent (tanh) tanh(x) = ex−e−x

ex+e−x

Gaussian e−x2

Rectified Linear Unit (ReLU) max(0, x)
Leaky ReLU max(0.01x, x)
Softplus log(1 + ex)

Exponential Linear Unit (ELU)
{
α(ex − 1), if x ≤ 0

x, if x > 0

The NNs also come in diverse architectures tailored for different applications. These
include feed-forward neural networks (ANNs), convolutional neural networks (CNNs) for
spatial data, and sequential models such as recurrent neural networks (RNNs), long short-
term memory networks (LSTMs), and transformers, which represent the state-of-the-art in
modern deep learning. A specific NN architecture utilized in this thesis is detailed below.

Feed-forward neural network (ANN) model

1

2

3

1

2

3

1

2

3

Hidden layer 1 Hidden layer 2 Hidden layer LInput layer Output layer

Figure 2.4: A feedforward neural network (ANN) architecture.

An ANN is the simplest neural network architecture, where the input is fed into the
network, and the output is produced in a single direction without any feedback. The
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architecture of ANN is shown in Figure 2.4 where x ∈ Rp is the p-dimensional inputs, and
y ∈ Rm is the m-dimensional outputs. Each circle in Figure 2.4 represents a neuron, and
each connection between neurons indicates a corresponding weight parameter. The ANN
includes an input layer, a hidden layer, and an output layer. The input layer receives x
where the number of input neurons is set according to the number of features, p in this
case. The hidden layer consists of many layers placed between the input and output layers.
Each hidden layer is typically followed by a nonlinear activation function. In model selection,
the number of hidden layers determines the model’s depth, with deeper models exhibiting
greater nonlinearity. The number of neurons in each layer is chosen based on the desired
model capacity, including trainable parameters such as weights and biases. The output layer
generates results, with the number of neurons depending on the specific learning task. For
regression, a single output neuron provides the prediction. In PI estimation, two output
neurons represent the upper and lower bounds. For classification tasks, the number of
output neurons corresponds to the number of classes.

Hidden layer 1Input layer Activation function

Compact version

Next hidden layer

Full version

Hidden layer 1 Activation function

Figure 2.5: The mathematical expression of an ANN passing inputs to the first hidden layer
layer.

The mathematical expression of the ANN is illustrated in Figure 2.5, illustrating the
computation involved in passing inputs to the first hidden layer. Suppose the first hidden
layer consists of n1 neurons. The parameters for each mapping are represented as w1i ∈ Rp,
denoting the weights connecting the input layer to the ith neuron in the first hidden layer,
and b1i ∈ R, representing the corresponding bias. Since each of the p input features is
mapped to all hidden nodes with distinct weights, this structure is referred to as a fully
connected layer.
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At each neuron, an affine transformation is applied: wT
1ix+ b1i, resulting in an output

vector of dimension n1, corresponding to the number of hidden neurons. Following this, a
nonlinear activation function is applied elementwise, producing the hidden output, which
also has a dimension of n1. The hidden output serves as the input for subsequent hidden
layers, where similar affine transformations and activation functions are performed. In
deeper networks, these operations create a sequence of composite functions consisting of
affine transformations followed by nonlinear activations. As the number of hidden layers
increases, the number of parameters grows accordingly, introducing greater nonlinearity.
Consequently, deep neural networks are often regarded as highly nonlinear models, even
without explicitly analyzing their mathematical expressions.

Finally, in the output layer, another affine transformation is performed. The activation
function at this stage is optional and depends on the application. For example, in two-class
classification tasks where outputs represent probabilities, a sigmoid function may be applied
in the final layer to force the output values between 0 and 1.

Long short-term memory (LSTM) model

A Long short-term memory (LSTM) model belongs to the class of recurrent neural networks
(RNNs). RNNs are designed with a feedback mechanism, making them well-suited for cap-
turing dependencies in sequential data, such as time series and natural language processing
tasks. In an RNN, the hidden state h(t) serves as a memory that retains information from
previous time steps. This recurrent nature allows the model to take the hidden state from
the previous time step, h(t − 1), as an input to compute the current hidden state while
sharing the same model parameters across all time steps. This weight-sharing property
enables RNNs to effectively model temporal dependencies in sequential data.

However, during training, the backpropagation process in RNNs relies on Backprop-
agation through time to compute gradients. This involves recursively applying the chain
rule across multiple time steps, leading to repeated multiplication of gradients. As a result,
RNNs often suffer from two major issues (Bengio et al., 1994; Kanai et al., 2017):

1. Vanishing gradient: When gradients decrease exponentially over time and approach
zero, it stops weight updates in the earlier time steps. This limits the model’s ability
to learn long-term dependencies.

2. Exploding gradient: When gradients increase exponentially, they can become ex-
cessively large, which causes instability and leads to diverging weight updates.

To address these gradient issues, Long Short-Term Memory (LSTM) networks were
introduced in Hochreiter and Schmidhuber (1997). LSTMs incorporate a gated mechanism,
including forget f(t), input i(t), and output gates o(t), as shown in Figure 2.6, which control
the flow of information and prevent gradients from vanishing or exploding. Each gate in the
LSTM is equipped with a sigmoid activation function, which outputs values between 0 and
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x

Forget gate Input gate Output gate

Figure 2.6: The long short-term memory (LSTM) cell architecture.

1, acting as a switch. A value of 1 allows the flow of data, while a value of 0 discards it. The
forget gate determines which information from the previous cell state should be retained or
discarded. The input gate decides which information should be incorporated into the current
cell state, considering the previous hidden state. The output gate controls what information
should be passed as the output (the next hidden state) based on the current cell state and
the previous hidden state. This architecture enables LSTMs to effectively learn long-term
dependencies and stabilize training. Additionally, the LSTM model contains hidden units
in each layer, with users determining the number of hidden layers.

Given the input x(t) ∈ Rp where c(t) is the cell state of LSTM, and d is the number
of hidden units, the computations within the LSTM cell can be expressed as follows:

f(t) = σ (Wfx(t) + Ufh(t− 1) + bf )

i(t) = σ (Wix(t) + Uih(t− 1) + bi)

o(t) = σ (Wox(t) + Uoh(t− 1) + bo)

c(t) = f(t)⊙ c(t− 1) + i(t)⊙ tanh (Wcx(t) + Uch(t− 1) + bc)

h(t) = o(t)⊙ tanh (c(t)) ,

where f(t), i(t), o(t), c(t), h(t) ∈ Rd, W ∈ Rp×d, U ∈ Rd×d are the model weights, with
subscripts corresponding to each gate, and b ∈ Rd is the bias vector associated with each
gate (Hochreiter and Schmidhuber, 1997; Gers et al., 1999). These weights and biases for
all gates are treated as trainable parameters for LSTM. These gating mechanisms prevent
the model from suffering from the vanishing gradient problem, while the hyperbolic tangent
(tanh) function scales the values within the range of -1 to 1, helping to stabilize model
training and eliminate the risk of exploding gradients.
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Architecture Building

The NNs include various architectures, such as ANN, CNN, and RNN, each providing ad-
vantages suited for different tasks. In real-world applications, NN architectures are designed
to align with specific problem requirements. Each NN type can be viewed as a building
block for extracting meaningful features from input data. These blocks can be combined
to form larger networks, enabling the model to capture complex patterns more effectively
for specific tasks. The interconnection of these computational blocks can be structured
sequentially or in parallel. An example of the architecture design for multi-step prediction
interval solar forecasting is shown in Figure 6.4 within Section 6.2. Although increasing
network complexity leads to a higher number of parameters and computations, the fun-
damental training procedure remains unchanged. Training involves backpropagation and
gradient-based optimization techniques, where gradients propagate from the output layer
to the input layers, iteratively updating model parameters.

Loss function

A loss function, denoted as L(θ), is a mathematical function that quantifies the discrepancy
between predicted and target values. It is typically designed such that lower values indicate
better performance, making the objective to minimize the loss function. The loss function
defines the learning objective of an NN model. During training, the NN seeks to optimize
its parameters by solving the optimization problem:

minimize
θ

L(θ)

where L(θ) is based on a specific task. The different tasks have distinct objectives and er-
rors characteristics. The choice of loss function directly influences how the model learns and
optimizes its parameters. Even within the same task, different mathematical formulations
can lead to varying solution behaviors. A loss function that imposes stronger penalties on
certain terms will cause the model to prioritize minimizing those terms over others. Further-
more, the selection of the loss function affects the training process, as some loss functions
possess favorable characteristics in gradient calculation, like being smooth functions, which
demonstrate better convergence, whereas more complicated functions may pose challenges
during training. We provide the example of loss function in the regression and classification
task below.

For regression tasks, the model aims to find θ that minimizes the deviation of ŷ(x; θ)
from the continuously valued target variable. The commonly used loss functions include
mean square error (MSE), mean absolute error (MAE), and Huber loss, as shown in Ta-
ble 2.3. These three losses differ in terms of robustness. The MSE has a squares term that
penalizes large errors more heavily, making it more sensitive to outliers, while the others are
more robust to outliers.

For classification tasks, the model aims to estimate the probability distribution over the
possible classes and assign the input to the class with the highest predicted probability. The



24

Table 2.3: Common regression loss functions.

Loss Mathematical Expression

MSE 1
N

∑N
i=1 (yi − ŷi(x; θ))

2

MAE 1
N

∑N
i=1 |yi − ŷi(x; θ)|

Huber 1
N

∑N
i=1 h (yi − ŷi(x; θ)) , h(x, δ) =

{
1
2
x2, |x| ≤ δ

δ|x| − 1
2
δ2, |x| > δ

loss function in classification quantifies the discrepancy between the predicted probabilities
and the true class labels, penalizing incorrect classifications. Commonly used classification
loss functions are presented in Table 2.4.

Table 2.4: Common classification loss functions where ŷi = ŷi(x; θ).

Loss Mathematical Expression

Binary cross-entropy −
∑N

i=1 yi log(ŷi) + (1− yi) log(1− ŷi), yi ∈ {0, 1}, ŷi ∈ [0, 1]

Hinge loss
∑N

i=1max(0, 1− yi · ŷi), yi ∈ {−1, 1}, ŷi ∈ (−1, 1)

K-classes cross-entropy −
∑N

i=1

∑K
j yij log(ŷij), yij ∈ {0, 1}, ŷij ∈ [0, 1]

Training and validation

Once the loss function and model architecture are defined, the model seeks to optimize its
parameters to minimize the loss. This process, known as model training, involves solving
an optimization problem. Since NNs represent highly nonlinear functions, their optimiza-
tion can typically be cast as an unconstrained nonlinear program. In many NN tasks,
the loss function is typically smooth (continuously differentiable), enabling gradient-based
algorithms to be utilized, with gradient computation carried out by backpropagation. Ad-
ditionally, NNs contain a vast number of parameters, treated as optimization variables,
making gradient-based methods well-suited for navigating the high-dimensional loss land-
scape efficiently.

Gradient descent

The simplest gradient-based optimization algorithm is gradient descent. It requires a smooth
loss function that is continuously differentiable as it relies on computing the gradient of
the loss with respect to the model parameters. Algorithm 1 outlines the algorithm for
updating model parameters. The updates are performed iteratively in the direction that
reduces the loss function, particularly along the negative gradient. The algorithm includes
a hyperparameter known as the learning rate (step size), which is typically chosen based on
the properties of the loss function. A larger learning rate can accelerate convergence but
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may also lead to divergence or instability in training, whereas a very small learning rate can
result in slow convergence. The model parameters are updated until the stopping criterion
is satisfied, which will be explained in more detail later.

Algorithm 1 Gradient Descent Algorithm
Require: Learning rate ϵ
Require: Loss function L(θ)
Require: Initial model parameters θ0
1: while stopping criterion not met do
2: Compute gradient: ∇L(θ)
3: Update model parameters: θ ← θ − ϵ∇L(θ)
4: end while
5: return θ

Mini-batch optimization

In NN-based loss functions, the loss is typically computed as a sum over the training samples.
However, for many NN tasks, the dataset can be vast, making the evaluation of the loss
function over the entire training set computationally expensive. Moreover, using only a
smaller random subset of the dataset can often provide sufficient information to determine
the update direction for the model parameters. To address this, mini-batch optimization
is introduced, which computes the gradient step based on a random batch of data. In
mini-batch optimization, the dataset is split into batches of a size determined by the user.
Each batch is used to update the model parameters until all batches have been processed.
Algorithm 2 illustrates the application of mini-batch optimization in the gradient descent
algorithm. In the context of NN training, an epoch refers to one complete pass through
an entire dataset, consisting of many batches, which depends on the batch size and the
number of training samples.

A primary benefit of mini-batch optimization is that it significantly accelerates con-
vergence compared to using the entire dataset (Goodfellow et al., 2016). Additionally, it
reduces computational memory requirements by loading only smaller portions of the dataset
into memory. Furthermore, mini-batch optimization introduces a stochastic element into
the process through randomized sampling, which can help improve generalization. A special
case of mini-batch optimization is when the batch size is set to one, known as stochastic
gradient descent (SGD), where the model parameters are updated after each individual
training sample.

The selection of batch size is crucial. Smaller batch sizes can lead to greater fluc-
tuations in the gradient estimates. While this fluctuation can potentially help the model
generalize better, it may also cause instability (fluctuation) in the loss. On the other hand,
larger batch sizes provide more accurate gradient estimates with less noise, resulting in
more stable convergence. However, they come at the cost of requiring more memory and
computational time per step.
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Algorithm 2 Mini-Batch Gradient Descent
Require: Learning rate ϵ, batch size B, dataset D of size N
Require: Loss function L(θ)
Require: Initial model parameters θ0
1: while stopping criterion not met do
2: Shuffle dataset D
3: Partition D into ⌈N/B⌉ mini-batches
4: for each mini-batch B ⊂ D do
5: Compute mini-batch gradient: ∇LB(θ) =

1
|B|

∑
i∈B∇Li(θ)

6: Update parameters: θ ← θ − ϵ∇LB(θ)
7: end for
8: end while
9: return θ

Momentum-based algorithm

Momentum. Machine learning problems often involve optimizing a large number of pa-
rameters over extensive datasets. In such cases, traditional gradient descent can exhibit
zig-zagging behavior, where the solution oscillates around the optimal point without ef-
ficiently converging. This issue arises due to inconsistent gradient directions, particularly
in regions with high curvature. To accelerate convergence and reduce oscillations, the
momentum-based algorithm is introduced. It smooths updates by incorporating an expo-
nentially weighted moving average of past gradients. This introduces an auxiliary variable
called velocity v, inspired by physics, which accumulates past gradients and acts as a driving
force for parameter updates. The momentum update rule is given by:

v ← βv − ϵ∇L(θ)
θ ← θ + v

where β ∈ [0, 1) is the momentum coefficient, controlling the influence of past gradients.
A higher β leads to smoother updates but may cause overshooting near the optimum.
Momentum-based methods help accelerate convergence, particularly in high-curvature re-
gions, by reducing oscillations and reducing sensitivity to noisy gradients. A commonly
recommended value is β = 0.9, which balances stability and speed. Moreover, momentum
can help escape shallow local minima, as past gradients contribute to continued movement.

Normalized gradient descent. In high-dimensional optimization problems, flat regions
exist in which the loss function remains nearly constant along multiple parameter directions.
In such cases, the gradient magnitude can vanish significantly, leading to a stop in parameter
updates. To mitigate this issue, normalized gradient descent is introduced to control the
step size by normalizing the gradient. There are two approaches to this normalization.
The first method involves normalizing the step size with the gradient magnitude, typically
∥∇L(θ)∥2. This ensures that when the gradient magnitude is small, the step size increases,
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preventing the updating of parameters. However, this approach can be problematic in cases
where gradients vanish along specific directions, leading to the failure of parameter updates
in those dimensions. The second approach involved normalizing the gradient component-
wise for each parameter, a technique commonly referred to as the adaptive learning rate. By
assigning a separate learning rate to each parameter and dynamically adjusting it based on
the gradient, this method improves the solution’s trajectory across a complex loss surface.
Adaptive learning rates change the search direction from a gradient descent, improving
convergence stability and efficiency. Several well-known optimization algorithms, such as
AdaGrad (Duchi et al., 2011a), RMSProp (Tieleman and Hinton, 2012), and Adam (Kingma
and Ba, 2017), incorporate this technique to enhance learning performance, particularly in
high-dimensional spaces.

Adaptive moment estimation (Adam). Adam is one of the most widely used optimiz-
ers in NN tasks due to its computational efficiency and lower memory requirements. Adam
combines the advantages of both momentum and adaptive learning rate techniques. For
momentum, Adam incorporates the exponential moving average of gradients (first-moment
estimate or the mean) and the squared gradients (second-moment estimate or the uncen-
tered variance), where the decay rates are controlled by β1, β2 ∈ [0, 1) respectively. Adam
also applies a bias correction term in both moments, which converges to one, to address the
bias in zero initialization. Additionally, it employs an adaptive learning rate by normalizing
the first-moment estimate with the second-moment estimate, effectively adjusting the step
size for each parameter. The entire procedure of Adam is outlined in Algorithm 3.

Algorithm 3 Adam Optimization Algorithm (Kingma and Ba, 2017), The original paper
suggests setting ϵ = 0.001, β1 = 0.9, β2 = 0.999, and δ = 10−8. All operations are
element-wise. [∇L(θ)]2 refers to elementwise square ∇L(θ)⊙∇L(θ).
Require: Learning rate ϵ, exponential decay rates β1, β2 ∈ [0, 1), small constant δ
Require: Loss function L(θ)
Require: Initial parameters θ0
1: Initialize 1st and 2nd moment vector m0 ← 0, v0 ← 0
2: Initialize time step t← 0
3: while stopping criterion not met do
4: t← t+ 1
5: Compute gradient: ∇L(θ)
6: Update biased first moment estimate: m← β1m+ (1− β1)∇L(θ)
7: Update biased second moment estimate: v ← β2v + (1− β2) [∇L(θ)]2
8: Compute bias-corrected first moment estimate: m̂← m

1−βt
1

9: Compute bias-corrected second moment estimate: v̂ ← vt
1−βt

2

10: Update parameters: θ ← θ − ϵ m̂√
v̂+δ

▷ Operation applied element-wise.
11: end while
12: return θ
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Figure 2.7: The training and validation loss for minimizing loss function in a neural network.

Training NNs differs from traditional optimization due to their complexity, nonlinearity,
and high-dimensional parameter space. The optimization process typically begins with
randomly initializing model parameters using a Gaussian or uniform distribution, which is
automatically assigned when constructing the model architecture. The loss function is
evaluated from the model’s outputs and dataset, and the optimizer updates the parameters
to minimize the training loss. However, this process risks overfitting, meaning the model
may not generalize well to unseen data.

Gradient-based optimization methods theoretically ensure that the training loss de-
creases over time, which could lead to overfitting. To address this, training is typically
controlled using a maximum number of epochs as a stopping criterion. Additionally, early
stopping is commonly used to prevent overfitting by terminating training once the model’s
generalization performance stops improving. Implementing early stopping requires splitting
the dataset into training and validation sets. The training set is used to update model
parameters, while the validation set assesses model generalization after each epoch. Ini-
tially, both training and validation losses tend to decrease. However, after several epochs,
the validation loss may start increasing, indicating reduced generalization as shown in Fig-
ure 2.7. To apply early stopping, training is terminated when the validation loss begins
to rise, ensuring that the model parameters correspond to the lowest validation loss. The
patience parameter is introduced to further refine early stopping, allowing training to
continue for a specified number of epochs without improvement in validation loss before
termination. Algorithm 4 illustrates the training procedure incorporating early stopping,
mini-batch optimization, and gradient descent.
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Algorithm 4 Early stopping during the training of a NN with a mini-batch optimization
Require: Training dataset Dtrain of size N , validation dataset Dvalidate
Require: Learning rate ϵ, batch size B
Require: Loss function L(θ), Initial model parameters θ0
Require: max_epochs, patience
1: Initialize epoch counter t← 0, patience_counter ← 0
2: Initialize best_validation_loss ←∞, θ⋆ ← θ0
3: while t < max_epochs do
4: t← t+ 1
5: Shuffle dataset Dtrain
6: Partition Dtrain into ⌈N/B⌉ mini-batches
7: for each mini-batch B ⊂ Dtrain do
8: Compute mini-batch gradient: ∇LB(θ)
9: Update parameters θ: θ ← θ − ϵ∇LB(θ) ▷ Formulation depends on algorithm.
10: end for
11: Evaluate training and validation loss: LDtrain(θ), LDvalidate(θ) ▷ For loss monitoring.
12: if LDvalidate(θ) < best_validation_loss then
13: best_validation_loss ← LDvalidate(θ)
14: θ⋆ ← θ ▷ Save the best θ.
15: patience_counter ← 0 ▷ Reset the counter.
16: else
17: patience_counter ← patience_counter + 1
18: if patience_counter ≥ patience then
19: break ▷ Early stopping when no improvement in validation loss.
20: end if
21: end if
22: end while
23: return θ⋆

2.5 Lower upper bound estimation (LUBE) method

A lower upper bound estimation (LUBE) is a technique that provides a PI directly from
a model without a distribution assumption for the target variable. The model directly
maps the input features x to the upper and lower bounds to capture an uncertainty of
y. The literature presents various models that establish PIs, including SVM (Shrivastava
et al., 2015), ELM (Zhang et al., 2015; Zhao et al., 2020, 2022), and neural networks
(NN), where the latter has been the most widely used option. Typically, the NN-based
model is implemented with two output neurons representing the upper and lower bounds,
as illustrated in Figure 2.8. The PI with the 1−δ confidence level is obtained by minimizing
the PI-based loss function. The PI-based loss function has two objectives: PICP and PI
width, which can be combined either multiplicatively or additively into a single loss function.
The PI-based loss function was originally introduced as the coverage-width criterion (CWC)



30

Hidden layer

Input layer

Output layer
Upper bound

Lower bound

Target variable

Prediction 
interval

Predictor
vector

Figure 2.8: The NN model with two outputs utilized in the LUBE framework.

loss in Khosravi et al. (2011). The CWC function integrates both objectives using the
following multiplicative form:

CWCori(θ) = PINAW(θ)
(
1 + eγmax(0,(1−δ)−PICP(θ))) , (2.26)

where γ balances the trade-off between the two objectives. The alternative versions of CWC
loss are also represented in the multiplicative form as noted in Quan et al. (2014a); Ye et al.
(2016). However, Shrivastava et al. (2015); Pearce et al. (2018) mention that the global
minimum for (2.26) occurs when the PINAW has a PI width of zero, which is commonly an
undesirable solution. Following this, additive versions of CWC are alternatively suggested
to address the multiplicative drawback identified in the studies by Shrivastava et al. (2015);
Shi et al. (2018).

The PICP term requires computing a count function in (2.19), which results in a non-
differentiable loss. As a result, a population-based algorithm, which is a heuristic approach,
is usually applied to identify the optimal model parameter. Recently, the log-likelihood-
based loss in an additive form called a quality-driven (QD) loss was proposed in Pearce
et al. (2018). The PI width term in the QD loss is calculated by averaging only the samples
with yi captured by the PI as:

PIAWcapt. =
1

Ncapt.

N∑
i=1

wi1(l̂i ≤ yi ≤ ûi) (2.27)
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where Ncapt. =
∑N

i=1 1(l̂i ≤ yi ≤ ûi) is the number of samples captured by the PI. This
guarantees that the model does not gain advantages from the reduced PI width in the
sample that is not covered by the PI. For the PICP term, with i.i.d. assumption for all
samples, a value of the count function 1(l̂i ≤ yi ≤ ûi) can be treated as a Bernoulli random
variable with probability 1 − δ. Consequently, the number of covered samples Ncapt. is
modeled as Binomial(N, (1− δ)) shown as

LPICP =
(

N

Ncapt.

)
(1− δ)Ncapt.δN−Ncapt. (2.28)

where LPICP is the likelihood function of Ncapt..

The central limit theorem allows for approximating the probability mass function of
the binomial distribution as a normal distribution when N is sufficiently large:

Binomial(N, (1− δ)) ≈ N (N(1− δ), Nδ(1− δ))

=
1√

2πNδ(1− α)
exp−(Ncapt. −N(1− α))2

2Nδ(1− δ)
.

Hence, the negative log-likelihood of Ncapt. can be approximated as:

− logLPICP ∝
N

δ(1− δ)
((1− δ)− PICP)2, (2.29)

where PICP = Ncapt.
N
. Finally, the max(0, ·) is equipped to penalize only when PICP < 1− δ,

resulting in the QD loss expressed as:

LossQD(θ) = PIAWcapt.(θ) + γ
N

δ(1− δ)
max(0, (1− δ)− PICP(θ))2, (2.30)

where γ controls a trade-off level between two objectives. Moreover, in Pearce et al. (2018),
a smooth approximation of the count function is introduced in the PICP term to ensure
that the QD loss is differentiable and that gradient-based algorithms can be applied for
optimization.



Chapter III

METHODOLOGY

This section outlines the proposed methodologies for providing prediction intervals
(PI). Better PI is characterized by a higher coverage probability (PICP) and a narrower PI
width, which are conflicting objectives. We aim to formulate optimization problems that
deliver PI with the desired PICP and narrow PI width. This thesis proposes two schemes for
these optimization formulations: a pinball-based formulation and a PICP with width control
formulation. Both approaches comprise two components: one that controls PICP and the
other that manages the PI width. For the pinball-based formulation, which is the first
methodology, we present three optimization formulations that control PI width in different
ways, whereas the PICP with width control formulation, the second methodology, consists
of a single optimization formulation.

For a dataset D = {xi, yi}Ni=1, we define I as the index set for data samples, i ∈ I,
encompassing N samples where x ∈ Rp represent a p-dimensional predictor vector and
y ∈ R denotes a target variable. The estimated PI is represented by the upper and lower
bounds denoted as û(x; θ) and l̂(x; θ), respectively, with a confidence level of (1−δ), where
θ refers to a model parameter.

3.1 Pinball-based formulation

The pinball-based formulation incorporates a pinball loss as part of the objective, which
aims to estimate two quantiles corresponding to a specified confidence level. This method-
ology offers an alternative approach to achieving the desired PICP without using nonlinear
functions in PICP due to the count function. The pinball function is utilized instead of
the PICP function to maintain simplicity in the formulation and facilitate a simple numeri-
cal method for addressing these problems. The pinball loss exhibits favorable optimization
properties because of its convexity. For the PI width term, we introduce three different
width control functions: average width, sum of the K-largest widths, and maximum PI
width, all of which are convex functions. We utilize a linear additive form, which is linearly
parameterized by the model parameters. This facilitates preserving the problem’s convexity
because the composition of a convex function with an affine mapping remains convex. This
enables us to formulate three pinball-based formulations as convex programs.

Methodology

Figure 3.1 shows the methodology of the pinball-based approach. The methodology can be
divided into three parts: model, optimization formulation, and optimization technique. The
model receives x as an input and provides the upper and lower bound as an output. The
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Figure 3.1: The methodology for the PI construction of pinball-based approach.

upper and lower bounds are estimated using different model parameters: θ for an upper
bound and θ for a lower bound. In this approach, the linear additive model is applied, so
the upper and lower bound can be written as:

û(x; θ) = θ0 + θ1g1(x) + θ2g2(x) + · · ·+ θpgp(x)

l̂(x; θ) = θ0 + θ1g1(x) + θ2g2(x) + · · ·+ θpgp(x) (3.1)

where gi(x) for i = 1, . . . , p are basis functions that explains the characteristics of y. Next,
the upper and lower bounds are incorporated into the optimization formulation with y. The
optimization formulation outlines the objective of designing the PI to achieve the desired
characteristics for controlling PI width, where the mathematical detail will be described
later. Then, the optimization technique is a numerical method used to solve the proposed
optimization formulations to obtain the optimal model parameters for the estimated upper
and lower bounds.

Mathematical formulation

The three proposed optimization formulations utilize the same optimization framework de-
scribed in (3.2).

minimize
θ,θ

∑
i∈I

ρα(yi − ûi(θ)) + ρα(yi − l̂i(θ))

subject to l̂i(θ) ≤ ûi(θ), ∀i ∈ I
W(θ, θ) ≤ γ · sample width, ∀i ∈ I,

(3.2)

The objective function is the sum of the pinball loss function corresponding with two quan-
tiles α and α for the upper and lower bound, respectively. Minimizing the objective function
without constraints forces the upper and lower bounds to estimate the conditional quantile
of y given x, corresponding to α and α probabilities. To provide the PI with a 1 − δ con-
fidence level, the α is set to 1 − δ/2 while the α is set to δ/2. This configuration ensures
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a symmetric PI with equal probability in both tails. The first constraint ensures that the
upper bound is greater than or equal to the lower bound, thus preventing any misbehavior
from the PI. Given that W(θ, θ) is a width function, the second constraint regulates the
width function, which is presented in three different formulations, each aimed at address-
ing various aspects of the PI width. Next, the sample width of the target variable (y) is
calculated as

sample width = qy(α)− qy(α), (3.3)
where qy(α) and qy(α) are the sample quantiles of y corresponding to the α and α probabil-
ities. The sample width calculated from the training data serves as the problem parameter.
The proposed formulations aim to reduce the PI width from the sample width using a mul-
tiplicative factor, γ ∈ (0, 1). The γ serves as a predefined formulation hyperparameter that
regulates the level of penalization in the width function. When γ is decreased, the inequality
becomes more stringent, so the PI width function tends to decrease. The stronger inequality
constraint increases the objective function; therefore, an increase in pinball loss indicates
the greater deviation of the upper and lower bounds from the quantiles corresponding to the
probabilities α and α. This leads to reduced PICP from the desired coverage probability.
This scheme involves the trade-off characteristics between PICP and the width function by
varying γ. The expected trade-off characteristics are desired to slightly decrease PI width
while maintaining the PICP as the desired coverage probability. Equivalently, the width
function constraint can also be interpreted as a regularization term within the objective
function. Consequently, this modifies the objective function into a multi-objective prob-
lem that seeks to minimize both the pinball loss and the width function, incorporating a
penalization parameter to regulate the penalization level in the PI width component. The
increase in the penalty for PI width decreases the PI width term and increases the pinball
loss term, causing the upper and lower bounds to mismatch with the quantiles correspond-
ing with α, α probabilities. This also leads to a reduction in PICP from the desired coverage
probability, which is the same result as considering the width function as a constraint. We
propose three formulations with different width functions, referred to as formulations P1,
P2, and P3, described below.

Formulation P1 (pinball loss with controlled average width)

Formulation P1 follows (3.2) where the width function is the average width shown as

minimize
θ,θ

∑
i∈I

ρα(yi − ûi(θ)) + ρα(yi − l̂i(θ))

subject to l̂i(θ) ≤ ûi(θ), ∀i ∈ I
1

N

∑
i∈I

(ûi(θ)− l̂i(θ)) ≤ γ · sample width.

(3.4)

This formulation aims to minimize the pinball loss with a reduction in the average PI width
simultaneously. The formulation includes one predefined formulation hyperparameter, γ, to
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regulate the level of penalization in the average PI width. Due to the first inequality that
forces the upper bound to be greater than the lower bound, the sample PI width ûi(θ)− l̂i(θ)
is always non-negative. So, the summation of the sample PI width can be considered as
an ℓ1-norm on the PI width. As a result, the number of inequality constraints is N + 1,
where N comes from the first constraint, and one comes from the average PI width control
constraint.

Formulation P2 (pinball loss with controlled large widths)

Given that the sample width is written as wi = ûi(θ)− l̂i(θ), we denote w[i] as the ith largest
PI width element where w[1] ≥ w[2] ≥ · · · ≥ w[N ]. Formulation P2 follows (3.2), which aims
to control large PI widths by using the average of the K-largest elements of the PI width
as a width function written as

minimize
θ,θ

∑
i∈I

ρα(yi − ûi(θ)) + ρα(yi − l̂i(θ))

subject to l̂i(θ) ≤ ûi(θ), ∀i ∈ I

1

K

K∑
i=1

w[i] ≤ γ · sample width, ∀i ∈ I.

(3.5)

This formulation involves two predefined formulation hyperparameters, γ and K. The γ
controls the penalization of the large PI width term similarly to P1. Lowering γ typically
results in a reduction of the large PI width because of a stricter inequality. The hyperpa-
rameter K defines the number of samples considered as large PI widths. For example, if
K = ⌊0.1N⌋, the average PI width from the 90th to 100th percentiles must be reduced,
while the other PI widths are not involved in the formulation. As a result, the number of
inequality constraints is N + 1, where N comes from the first constraint, and one comes
from the average PI width control constraint.

Formulation P3 (pinball loss with controlled maximum width)

Formulation P3 follows (3.2) by using the maximum PI width as a function to control the
maximum PI width assessed across all PI width samples, as shown in

minimize
θ,θ

∑
i∈I

ρα(yi − ûi(θ)) + ρα(yi − l̂i(θ))

subject to l̂i(θ) ≤ ûi(θ), ∀i ∈ I
max
i∈I

[ûi(θ)− l̂i(θ))] ≤ γ · sample width.

(3.6)

This formulation aims to minimize the pinball loss while simultaneously reducing the maxi-
mum PI width. The first inequality forces the PI width to be non-negative, so the maximum
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PI width function can also be written as ℓ∞-norm. Controlling the maximum PI width as
the inequality constraint is also equivalent to controlling all PI width samples, shown as

minimize
θ,θ

∑
i∈I

ρα(yi − ûi(θ)) + ρα(yi − l̂i(θ))

subject to l̂i(θ) ≤ ûi(θ), ∀i ∈ I
|ûi(θ)− l̂i(θ))| ≤ γ · sample width, ∀i ∈ I.

(3.7)

This formulation involves one predefined formulation hyperparameter, γ, which prevents all
PI widths from exceeding the sample width multiplied with γ. As a result, one maximum
inequality constraint now transforms into N inequality constraints, resulting in a total of
2N inequality constraints for P3.

Numerical method

The numerical method is the optimization technique employed to solve the three formula-
tions outlined in this approach. The choice of optimization technique depends on the type
of optimization problem. A convex optimization problem is defined by having a convex
objective function, convex inequality constraints, and affine equality constraints (Boyd and
Vandenberghe, 2004, §4.2.1). The objective function, pinball loss, is a convex function
(Koenker, 2005). Considering the convexity of the width functions, formulations P1 and
P3 involve the ℓ1, ℓ∞ norms, which are convex functions due to the properties of norms
(Boyd and Vandenberghe, 2004, §3.1.5). For P2, the sum of K-largest elements is also
a convex function (Boyd and Vandenberghe, 2004, §3.2.3). So, the width functions from
all formulations are convex functions. In this approach, we utilize a linear additive model
(3.1), wherein both the upper and lower bounds can be considered as affine functions of the
optimization variables θ, θ, respectively. From the property in (Boyd and Vandenberghe,
2004, §3.2.2), the composition of a convex function with an affine mapping is also a convex
function. So, the objective function and the width function are convex. Moreover, the first
inequality of (3.2) can be simplified into a linear inequality, which is obviously convex due
to the linear additive model. These characteristics allow all formulations to be categorized
as convex programs, which can be efficiently solved using convex solving algorithms like the
interior-point methods.

Especially for P1 and P3, the width functions in the inequalities in (3.4) and (3.7) can
be expressed linearly in the optimization variables. As mentioned in Section 2.2, minimizing
the pinball loss can be cast as a linear programming (LP). For these reasons, formulations
P1 and P3 can also be simplified as an LP and can be solved by any efficient LP algorithms
such as simplex or interior-point methods.

The convexity of the problem arises from the linear additive form. When the model is
extended to become more complex, it typically involves nonlinear relationships among the
model parameters. The optimization problem now becomes nonlinear programming, where
the problem structure depends on the model’s parameterization.
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Discussion

From the proposed formulations, the advantage of our formulation primarily stems from
the convexity of these formulations. The convex formulations ensure that the solution
represents a global minimum of the problem. Furthermore, they facilitate the application of
efficient and straightforward numerical methods to solve these formulations. The favorable
characteristics in optimization arise from the assumption of a linear additive form, which
excels in simplicity and interpretability. When the data exhibit a nonlinear relationship
between the predictor and target variable, transformation techniques can be used to convert
predictors into nonlinear features, which are then incorporated into a model with a linear
additive form. This process requires feature engineering. However, for complex models that
are nonlinear in their parameters, such as neural networks, solving the proposed formulation
numerically may be significantly more challenging. Additionally, the pinball loss serves as
an indirect measure to represent the PICP term. The lowest pinball loss indicates the best
match to the two quantiles, which is different from achieving the desired PICP. Having
the best match with two quantiles also does not reflect the narrowest PI width with the
desired PICP. Therefore, this indirectly addresses the trade-off between the PICP and PI
width while instead aiming to achieve favorable characteristics in the numerical approach.

3.2 PICP with width control formulation

For PICP and width control formulation, we propose a loss function that directly incorporates
the PICP into the objective function. We also introduce a new width control function by
utilizing the sum of the K-largest function, referring to our proposed formulation as Sum-k
loss. The full details of the proposed formulation will be explained below.

Motivation

According to this thesis, we aim to address two conflicting objectives: a high PICP and
a narrow PI width. While the pinball-based formulation indirectly addresses the PICP to
achieve the desired coverage probability, we seek to design a new approach that directly
incorporates PICP into the objective function while also focusing on reducing the large
PI width. Additionally, we aim to extend the linear model from a pinball-based approach
to a nonlinear model that effectively captures the nonlinear relationships within the data,
including the ANN and LSTM models. Since the PICP function is non-differentiable and
incompatible with gradient-based algorithms, standard techniques for training state-of-the-
art neural networks, we also introduce a new smooth approximation of the count function
in the PICP term, enabling the application of these algorithms.

Literatures of formulation using a gradient-based algorithm

There are many studies that propose the PI-based loss function utilizing a gradient-based
algorithm. Pearce et al. (2018) introduced the quality-based (QD) loss function, which
incorporates the PICP and PI width terms based on statistical principles from the likelihood
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framework. The authors implemented a smooth approximation of the count function in
PICP to ensure differentiability. Additionally, there are several enhanced versions of QD
loss. For example, S. Salem et al. (2020) refined the QD loss by adding a mean squared
error (MSE) term and a penalty function to provide point forecasts and ensure the integrity
of the point forecasts alongside the PI from ensemble NN models. Lai et al. (2022) pro-
posed a hybrid loss function that consists of two terms: point estimation with uncertainty
and PICP loss. The first term includes MSE and PI width, derived from the Gaussian like-
lihood function, while the second term penalizes when the PICP drops below the desired
probability. The point forecast in MSE is represented by the average of the upper and
lower bounds. Saeed et al. (2024) presented an improved QD version by introducing a cal-
ibration function that imposes greater penalties on uncovered PIs to enhance multi-horizon
predictive capabilities. This improved QD approach was utilized with a gated multi-scale
convolutional sequence model. A multi-objective framework was available for the gradient-
based approach, as detailed in Chen et al. (2024), which used the multi-gradient descent
algorithm (MGDA) (Désidéri, 2009) along with the QD loss to identify the optimal descent
direction for two objectives. Therefore, the loss compatible with the gradient-based algo-
rithm leads to further implementation of more complex state-of-the-art NN models such as
LSTM and the Transformers.

Methodology

Predictor
vector

Target
variable

Nonlinear Model Loss function

Optimizer

Model parameters are
optimized

Figure 3.2: The methodology for the training mechanism of the PI construction of PICP
with width control approach.

Figure 3.2 illustrates the training procedures for PI construction in PICP with a width
control approach. There are three key components: a model, a loss function, and an
optimizer. First, the model refers to any nonlinear model that takes x as inputs and
generates the PI as outputs. The model generates both upper and lower bounds using a
single model with a common trainable parameter, denoted as θ, which corresponds to û(x; θ)
and l̂(x; θ) respectively. Second, a loss function represents the quality of the PI, which is
designed to be minimized. The loss function takes the PI (û, l̂) and y to evaluate the loss
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value. A lower loss indicates better PI performance. Various loss functions reflect good PI
in different aspects related to their characteristics. Third, an optimizer refers to a numerical
method that employs a gradient-based algorithm to solve the proposed loss function and
obtain the optimal model parameters. The closed loop in the Figure 3.2 illustrates the
iterative process of minimizing the loss function by updating the model parameters until
the stopping criterion is satisfied. Once the training process is complete, the model with
optimized parameters can generate PIs from an unseen data sample that aligns the PICP
with the confidence level and the narrow PI width. In this approach, we focus on introducing
a novel PI-based loss function, the sum of the K largest component loss, which incorporates
a new aspect of PI width penalization. To illustrate the idea in this approach, we utilize a
feedforward neural network (ANN) model with two output nodes shown as Figure 2.8 as a
nonlinear model component in Figure 3.2.

Mathematical formulation

Large PI widths typically arise when data are corrupted by heteroskedastic noise dependent
on x, resulting in higher uncertainty in certain regions of x. We aim to develop a loss
function in this approach such that minimizing it will lead to a reduction in the large PI
width for PI while ensuring that the PICP meets the desired coverage probability (1 − δ).
To address the issue of large widths, the loss function is specifically designed to impose a
high penalty on large PI widths relative to narrow PI widths. So, the proposed loss function,
Sum-k loss function, consists of two components: the PICP function and the PI width
function, presented in an additive form as

LSum−k(θ) = max(0, (1− δ)− PICP(θ)) + γW(θ), (3.8)
where γ > 0 controls the trade-off between the PICP and the PI width. Increasing γ places
a greater penalty on the PI width function within the loss function, leading to a narrower
PI width while losing the PICP.

The PICP term in the loss function focuses on minimizing the deviation between PICP
and 1 − δ, applying penalties only when PICP is below 1 − δ. So, the max(0, ·) function
in the PICP term is used according to Pearce et al. (2018). Additionally, we adjust the
quadratic function in the PICP term of the QD loss to a linear function, as demonstrated
in (3.8). This adjustment enforces a stronger penalty for PICP deviation compared to QD
loss when the PICP is close to the desired probability. This is because a linear function
penalizes more heavily than a quadratic function within a small range where x > x2 for
x ∈ (0, 1). The PICP can be calculated according to the definition in (2.19).

Considering the PI width term, we propose a new PI width function,W(θ), employing
the sum of the K-largest function to impose a strong penalty on large PI widths, referred to
in our loss function as the Sum-k loss (LSum−k), expressed in (3.8). The PI width function
includes two terms: the average of the K-largest PI widths and the average of the remaining
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PI widths shown as

W(θ) :=W(θ|K,λ) =
1

Rquantile

[
1

K

K∑
i=1

|w(θ)|[i] + λ · 1

N −K

N∑
i=K+1

|w(θ)|[i]

]
, (3.9)

where |w(θ)|[i] is the ith largest width’s absolute value, with |w|[1] ≥ |w|[2] ≥ · · · ≥ |w|[N ].
While the sign of w is neglected in the width function, the negative widths (crossing PI) is
unlikely to occur because it would introduce a penalty in PICP. In (3.9), K is the number
of samples treated as large PI widths, while the others are considered narrow PI widths.
In practice, we introduce a tuned hyperparameter k ∈ (0, 1) representing a portion of the
data treated as large PI widths, where K is set to ⌊kN⌋. When K = 1, W(θ) reduces to
Chebyshev norm (or ℓ∞-norm) of the widths which penalizes the maximum PI width (the
most extreme case). A higher value of k indicates a larger number of PI width samples
classified as large widths during the training process. A hyperparameter, λ > 0, represents
a relative weight of the averaged narrow PI width to the averaged large PI width. When
λ < 1, the average of the narrow widths receives less penalty than the large PI widths,
resulting in the loss function prioritizing the reduction of the large PI widths.

To combine the PI width function into the loss function, the PI width must be nor-
malized to eliminate the effect of the data scale. The normalization factor typically uses
R = ymax− ymin, following the PINAW. However, when the data contain outliers, this range
can be very high, leading to an underestimation of the PI width term in the loss function.
Therefore, we introduce a new normalization factor, the quantile range, to remove the effect
of outliers and the scale of the PI width in (3.9), expressed as

Rquantile = qy(0.95)− qy(0.05), (3.10)

where qy(0.95) and qy(0.05) are the corresponding quantiles of y at 0.95 and 0.05 probability
of y. The proposed PI width function is a special case of the ordered weighted ℓ1 norm,
which is a convex function and classified as a norm in the studies by Bogdan et al. (2013);
Zeng and Figueiredo (2014, 2015); Figueiredo and Nowak (2016). We present the proof
of convexity and the norm properties of the ordered weighted ℓ1 norm as follows Zeng and
Figueiredo (2014).

Let λ =
(
λ1, λ2, . . . , λn

)
be a weight vector with components that form a non-

increasing sequence of nonnegative values,

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, (3.11)

with λ1 > 0 corresponding to the largest magnitude element of x, the ordered weighted ℓ1
norm (OWL1) of a vector x ∈ Rn is defined as

Ωλ(x) = λ1|x|[1] + λ2|x|[2] + · · ·+ λn|x|[n], (3.12)

where |x|[1] ≥ |x|[2] ≥ · · · ≥ |x|[n] represents the components of x arranged in non-increasing
order of magnitude.
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Let x̃ ∈ Rn be the vector obtained by sorting x in non-increasing order of magnitude.
We can express x̃ in terms of of x as

x̃ = P (x)x, (3.13)

where P (x) is a permutation matrix that sorts x into x̃, so we can write (3.12) in a vector
form as

Ωλ(x) =

∥∥∥∥∥∥∥∥∥


λ1x[1]

λ2x[2]
...

λnx[n]


∥∥∥∥∥∥∥∥∥
1

=

∥∥∥∥∥∥∥∥∥


λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 · · · 0 λn



x[1]

x[2]
...

x[n]


∥∥∥∥∥∥∥∥∥
1

= ∥diag(λ)x̃∥1 = ∥diag(λ)P (x)x∥1

(3.14)

Lemma 1. Ωλ : Rn → R is a convex function.

Proof. Let x, y ∈ Rn, θ ∈ [0, 1], and let z = θx+ (1− θ)y be a convex combination of x, y,
then:

Ωλ(z) = ∥diag(λ)P (z)z∥1 = ∥diag(λ)P (z)(θx+ (1− θ)y)∥1
= ∥θ diag(λ)P (z)x+ (1− θ)diag(λ)P (z)y)∥1

From the triangle inequality, and the homogeneity property of ℓ1-norm, we obtain:

Ωλ(z) ≤ θ∥diag(λ)P (z)x∥1 + (1− θ)∥diag(λ)P (z)y)∥1 (3.15)

Since the component of λ form a non-increasing non-negative sequence, it follows that
∥diag(λ)P (z)x∥1 ≤ ∥ diag(λ)P (x)x∥1 for any x, z. This result holds because P (z)x does
not necessarily arrange x in the non-increasing order, causing the larger elements of λ to
not align with the larger magnitude elements of x. The same inequality holds for y as well.
Therefore, we have:

Ωλ(z) ≤ θ∥diag(λ)P (x)x∥1 + (1− θ)∥diag(λ)P (y)y∥1
= θΩλ(x) + (1− θ)Ωλ(y).

Thus, Ωλ is a convex function.

Lemma 2. If λ1 > 0, then Ωλ : Rn → R is a norm.

Proof. The properties of homogeneity and triangle inequality have already been established
in (3.15) using the properties of ℓ1-norm. We now proceed to prove the positive definiteness
property that Ωλ(x) ≥ 0, Ωλ(x) = 0↔ x = 0. From the definition of Ωλ(x) in (3.12), and
given that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 with λ1 > 0 and |x|[1] ≥ |x|[2] ≥ · · · ≥ |x|[n] ≥ 0, it
follows that Ωλ(x) = 0 if and only if x = 0. This is evident because of λ1 > 0, |x|[1] must
be zero to satisfy the positive definiteness property. Since the largest magnitude element
of x is zero, all other elements of x are also forced to be zero.

Thus, Ωλ(x) is a norm.
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The proposed PI width formulation in (3.9) can be viewed as a special case of the
OWL, where λ1 = λ2 = · · · = λK = 1

K
and λK+1 = λK+2 = · · · = λN = λ

N−K
. To satisfy

(3.11), the inequality λ ≤ N
K
− 1 is necessary for it to be classified as a convex function

and norm. However, this approach uses a nonlinear model for the upper and lower bounds,
making the PI width nonlinear in the model parameter and resulting in a nonconvex function.
Nevertheless, due to the favorable properties of the structure of the PI width function, we
can achieve good convergence during the optimization process.
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Figure 3.3: The effect of the hyperparameter in the sum-k formulation: (left) Reducing k
decreases large PI widths. (central) Lowering λ reduces large PI widths while increasing
narrow widths. (right) Increasing γ reduces the overall PI width but loses the PICP.

Therefore, the Sum-k formulation has three hyperparameters that need to be tuned:
k, λ, γ. Figure 3.3 illustrates the effect of modifying each hyperparameter. For k, when it
approaches one, the proportion of PI widths categorized as the large PI widths increases.
Setting lower k highlights the difference penalization between the large and narrow PI width,
causing a heavy reduction in the large PI width. The value of k should be determined by
examining the proportion of high-variance samples in the dataset. As a start, users can
set k = 0.3 in practice. The hyperparameter λ controls the relative penalization level of
narrow PI widths compared to large PI widths. Decreasing λ places greater emphasis on
large PI widths. During the training process, reducing large PI widths results in a more
significant reduction in the loss function than reducing narrow PI widths at the degree of
λ. For instance, λ = 0.1 indicates that for the same 1-unit reduction in both the averaged
large and narrow PI widths, the loss function decreases ten times more from the reduction
in large PI widths. Consequently, the optimizer tends to update the model parameters in
a direction of reducing large PI widths rather than narrow ones. As a result, lowering λ
decreases large PI widths while causing narrow PI widths to become slightly wider. The
value of λ is recommended based on the user’s preferences regarding the level of large PI
width to be reduced while permitting an increase in narrow PI widths. For γ, different PICP
levels are achievable by adjusting γ, where a higher γ reduces the PI width but decreases
PICP. The value of γ consistently remains within the tenth decimal scale, independent of
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sample sizes and data scale, because the loss function is already normalized with N and
Rquantile. To choose an appropriate γ, we recommend tuning γ based on cross-validated
PICP. Start by splitting the data into training and validation sets in the training process.
Then, vary γ and choose the value that achieves the desired PICP at the confidence level
on the validation set. This approach ensures that the model’s performance is evaluated on
an unseen dataset, leading to better generalization. In summary, k and λ are required to
be set according to user preferences, while γ should be adjusted using the validation set.

Smooth approximation

The calculation of PICP as defined in (2.19) in the Sum-k formulation involves a non-
differentiable count function, making it unsuitable for gradient-based algorithms. To address
this issue, in Pearce et al. (2018); Lai et al. (2022); Chen et al. (2023); Saeed et al. (2024), a
smooth approximation of the count function is presented as a product of sigmoid functions.

1sigmoid(l̂i(θ) ≤ yi ≤ ûi(θ)) = σ(s(yi − l̂i(θ))) · σ(s(ûi(θ)− yi)), (3.16)

where σ(x) = 1
1+e−x and s is the softening factor. A larger s results in a steeper sigmoid

function, making it more similar to a step function. In this study, we introduce an alternative
smooth approximation using the sum of the hyperbolic tangent functions, called the tanh-
smooth approximation, which is simpler than (3.16). To show the simplicity of the tanh-
smooth approximation, Firstly, we define a tanh-count function ξ calculated as

ξi =
1

2

(
tanh(s(yi − l̂i(θ))) + tanh(s(ûi(θ)− yi))

)
, (3.17)

where ξi → 1 when yi ∈
(
l̂i, ûi

)
. From σ(x) =

1+tanh(x
2 )

2
, we can show that

σ(s(yi − l̂i(θ))) · σ(s(ûi(θ)− yi)) =
1

4

(
1 + tanh

(s
2
(yi − l̂i(θ))

))(
1 + tanh

(s
2
(ûi(θ)− yi)

))
=

1

4

[
1 + tanh

(s
2
(yi − l̂i(θ))

)
tanh

(s
2
(ûi(θ)− yi)

)
+ 2ξi

]
.

It can be seen that ξ is part of the sigmoid approximation, showing a simpler mathematical
expression of the tanh-smooth approximation. Moreover, to obtain a similar curve from the
two functions, it is recommended to set the softening factor s of the tanh function to be half
that of the sigmoid function. However, ξ can be negative since the tanh function ranges from
(−1, 1). The negative case arises when ûi < yi and l̂i > yi, which is undesirable. To prevent
misbehavior of the negative counting function, the operation max(0, ·) is incorporated into
ξ to set the counting function to zero in this scenario. Therefore, the proposed tanh-smooth
approximation of a count function can be expressed as

1tanh(l̂i(θ) ≤ yi ≤ ûi(θ)) =
1

2
max

(
0, tanh(s(yi − l̂i(θ))) + tanh(s(ûi(θ)− yi))

)
. (3.18)

The tanh-smooth approximation utilizes the max(0, x) function, which is non-smooth due to
its non-differentiability at x = 0. Nevertheless, most NN software implementations provide
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one of the derivatives on either side of zero instead of generating an error (Goodfellow
et al., 2016). Moreover, the max(0, x) function, commonly known as a ReLU function,
is widely used as an activation function in the NN model. This ensures its compatibility
with gradient-based optimization algorithms (Pearce et al., 2018). In the case of the tanh-
smooth approximation, the case that ξ is exactly zero is rarely encountered numerically,
allowing us to consider it as a differentiable function.

Employing any choice of smooth approximations leads to a numerical problem when
ûi, l̂i, yi are exactly equal. As indicated in (3.16) and (3.17), the smooth approximations do
not yield the value of one in such cases, meaning that this sample is not qualified as a PI-
covered sample. To be considered a PI-covered sample, a small margin between ûi, l̂i, yi is
necessary. Suppose ûi = yi+ ϵ and l̂i = yi− ϵ, the sigmoid and tanh-smooth approximation
now can be simplified to σ2(sϵ),max(0, tanh(sϵ)) respectively.

Figure 3.4 shows the differences in the choices of smooth approximation (left) and
the effect of margin (ϵ) on the smooth approximation (right). The left panel in Figure 3.4
shows that the tanh-smooth approximation closely resembles the sigmoid approximation
when the softening factor is set to 50 and 100, respectively. The right panel in Figure 3.4
shows the smooth approximation function varying with margin ϵ, indicating a minimum
margin of approximately 0.1 for a PI-covered sample. The minimum margin decreases
with a higher softening factor, but excessive softening can cause a divergence in the model
training process due to backpropagation. In this study, the PICP within the loss function
employs the tanh-smooth approximation function shown as:

PICP(θ) = 1

N

N∑
i=1

1tanh(l̂i(θ) ≤ yi ≤ ûi(θ)), (3.19)

where s is set to 50, demonstrating good convergence results for the gradient-based algo-
rithm.

Numerical method

A numerical problem in this study is to minimize the proposed loss function to obtain
optimal model parameters. Since the Sum-k loss function consists of a sum of nonlinear
smooth approximations of count functions in the PICP term, the overall loss function is
highly nonlinear. Thus, the optimization problem can be cast as an unconstrained nonlinear
optimization problem. In addition, the Sum-k loss is continuous and differentiable, allowing
the use of a gradient-based algorithm to solve the problem. The benefit of using a gradient-
based optimization algorithm is that it enables the application of various techniques, such
as minibatch optimization, adaptive learning rates for faster convergence, momentum-based
updates to help escape from flat regions, and improved stability overall. For simple linear
models with a low number of model parameters (but the loss function is still nonlinear
in parameters), stochastic gradient descent and AdaGrad (Duchi et al., 2011b) can be
implemented to minimize the Sum-k loss. For large models, often found in NN, the number
of model parameters is usually very high. Several widely used optimization tools are available
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Figure 3.4: The margin effect of the smooth approximation: (left) Comparison of smooth
approximation function values. (right) Impact of the margin on the smooth approximation
displayed on a log scale.

for training NNs, including RMSProp (Tieleman and Hinton, 2012), Adam (Kingma and
Ba, 2017), and Nadam (Dozat, 2016). These optimizers enhance the training of large NN
by using adaptive learning rates and a momentum mechanism, resulting in faster and more
stable convergence on nonlinear and high-dimensional loss surfaces.

Discussion

The advantage of this approach can be divided into three parts, following the diagram in
Figure 3.2. First, the proposed loss function of this approach directly addresses the PICP
term calculated using the definition of PICP with a smooth approximation. Thus, minimiz-
ing the loss function results in the PIs that satisfy the PICP and also reflect the narrowest PI
width function at the operating point, given γ. Moreover, the trade-off characteristics can
also be controlled by adjusting γ, allowing users to select the level of trade-off according to
their specifications. Second, this method utilizes a nonlinear model, allowing it to effectively
capture the nonlinear and complex characteristics of the data compared to a linear model
in the pinball-based approach. Third, since the formulation is differentiable, it is suitable
for gradient-based algorithms. A wide range of optimization tools and frameworks offer
built-in support for these formulations, enhancing both implementation and computational
efficiency. However, the nonlinearity of the loss function, combined with the complexity
of the model, leads to a high-dimensional, non-convex loss surface. As a result, gradient-
based algorithms may struggle with local minima, making optimization more challenging.
Additionally, complex nonlinear models, such as neural networks, often incur high computa-
tional costs and sacrifice interpretability, making it difficult to understand the relationships
between predictors and the target variable.



Chapter IV

EXPERIMENTAL DESIGN

This chapter describes the experimental design utilized to validate our proposed
methodology. It also includes the evaluation metrics used in the experiments, the bench-
marked methods, and details for solar forecasting, along with a description of the solar
dataset. This thesis includes two methodologies: a pinball-based formulation and a PICP
with width control formulation, referred to as methodology 1 and methodology 2, respec-
tively. Figure 4.1 provides an overview of how each experiment is linked to the corresponding
methodology, with full details presented in Section 4.3.

Methodology 1
Pinball-based formulation

Experiment 1 Experiment 2

Dataset
Synthetic data
(Linear DGP)

Dataset
Solar irradiance data 
from solar rooftop in

Pathum Thani, Thailand

Methodology 2
PICP with width control formulation

Experiment 3 Experiment 4

Dataset
Four synthetic datasets

(Nonlinear DGP)

Dataset
Solar irradiance data 
from ten solar sites in

Central Thailand

Benchmarked methods

Evaluation metrics
PICP, PINAW, Maximum PI width

Evaluation metrics
PICP, PINAW, PINALW, Winkler score

Benchmarked methods Benchmarked methods

Figure 4.1: The overview of all experiments performed in this thesis.

4.1 Evaluation metrics used in the experiments

This section outlines the evaluation metrics utilized to assess the performance of PI across
all experiments. The reliability of PI is quantified by the PICP calculated as (2.19). The
sharpness of PI is represented by the average PI width (PINAW) (2.21). Additionally, the
Winkler score (2.23) is evaluated to demonstrate the correspondence of the PI derived from
each method with the equal tail quantile. In this thesis, we introduce a new normalization
factor called the quantile range Rquantile = qy(0.95)− qy(0.05), calculated from the quantiles
of the target variable at 0.05 and 0.95 probabilities. So, the Rquantile is used instead of R
in PINAW (2.21) and Winkler score (2.23) throughout the entire study to eliminate the
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influence of outliers on the target variable. Since this study aims to reduce the large PI
width, we present two new evaluation metrics to assess this large PI width as follows.

• Maximum prediction interval width measures the maximum element of the PI
widths expressed as

Maximum width = max
i=1,2,...,N

wi. (4.1)

Additionally, a normalized version, referred to as the normalized maximum width, will
be used in the experiments, where it is normalized by Rquantile.

• Prediction interval normalized average large width (PINALW) is the average of
normalized large PI width calculated from the samples that have a PI width more
than the p-quantile of PI width shown as:

PINALW(p) =
1

KRquantile

K∑
i=1

w[i], (4.2)

where w[i] represents the ith largest element of the PI width such that w[1] ≥ w[2] ≥
· · · ≥ w[N ], and K = ⌊(1− p)N⌋ is the number of samples classified as having large
PI widths corresponding to the p-quantile. In this study, we select the PINALW with
p = 0.5 to assess the average width of the top half of the PI width, which refers to
the large PI width.

4.2 Benchmarked methods

This section provides an overview of all the benchmarked methods used throughout the
experiments. In the experiments for Methodology 1, we apply our proposed formulations
using a linear additive model and benchmark performance against simpler models, includ-
ing linear quantile regression (QR) and QRF. In the experiments for methodology 2, we
employ a neural network (NN) model and compare its performance with other NN-based
methods, including the tree-based QRF. Most of the selected methods in these experiments
are formulated as loss functions and implemented within an NN model to minimize the loss
during training. We denote θ as the model parameter for both linear and nonlinear models.
Additionally, formulations that combine PICP and PI width follow the same structure as
our approach, where the penalty parameter γ is applied to the PI width penalty function.

1. Quantile regression (QR) is a method that estimates the conditional quantile of
the target variable (y) given the predictor (x) (Koenker, 2005). The quantile value
is determined by minimizing the pinball loss for a specified quantile. To construct a
PI with a confidence level of (1− δ)× 100% from QR, we define the lower and upper
bounds based on the quantiles δ

2
and 1− δ

2
, respectively. So, the aggregated pinball

loss to construct PI is shown as

Loss = 1

N

[
N∑
i=1

ρ δ
2
(yi − l̂) + ρ1− δ

2
(yi − û)

]
, (4.3)
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where ρα(r) = max(αr, (α− 1)r) is a pinball function. For linear QR, the upper and
lower bounds are linearly parameterized by different model parameters, θ and θ, as
follows:

û = û(x; θ) = θ0 + θ1x1 + . . .+ θpxp, l̂ = l̂(x; θ) = θ0 + θ1x1 + . . .+ θpxp

Using different model parameters, the pinball loss function in (4.3) is separable, mean-
ing that the upper and lower quantiles can be estimated independently. This allows
the use of standard quantile regression tools, such as those available in sklearn for
Python, to estimate each quantile separately. For NN-based QR used to benchmark
methodology 2, we implement a single model to release both upper and lower bounds
using an NN with two output nodes representing two quantiles. So, the upper and
lower bound, denoted as û = û(x; θ) and l̂(x; θ), share the same model parameter θ
and are trained using the pinball loss as outlined in (4.3).

2. Quantile regression forest (QRF) is a tree-based method using the random forest
framework to provide the full conditional CDF (Meinshausen, 2006). The estimated
CDF is determined by calculating the average of the indicator function of the target
variable across all decision trees. To determine a PI, two quantiles are chosen to
define the upper and lower bounds at the specified confidence level, similar to QR.

3. Mean-variance estimation (MVE) estimates the mean and variance of the target
variable, relying on the Gaussian assumption (Nix and Weigend, 1994). Our study
applies the MVE to the NN with two output neurons: mean (µ̂(xi; θ)) and variance
(σ̂2(xi; θ)). The loss function of MVE is based on the log-likelihood of the Gaussian
distribution as:

LossMVE(θ) =
1

2

N∑
i=1

(
log(σ̂2(xi; θ)) +

(yi − µ̂(xi; θ))
2

σ̂2(xi; θ)

)
. (4.4)

After estimating µ̂(xi; θ) and σ̂2(xi; θ), the PI is constructed based on the given
confidence level as

û(xi; θ) = µ̂(xi; θ) + z1− δ
2
σ̂(xi, θ), l̂(xi; θ) = µ̂(xi; θ)− z1− δ

2
σ̂(xi, θ) (4.5)

where z1− δ
2
is the z-score corresponding with a (1 − δ) × 100% confidence level.

However, if the NN directly realeases the variance (σ̂2(xi; θ)), it may initially produce
negative values. This can lead to numerical issues, as taking the logarithm of a
negative value in (4.4) results in an error. To address this issue, we modify the model
to produce log(σ̂2(xi; θ)) instead, while the loss function is still implemented based
on the mathematical formulation in (4.4).

4. Coverage-width-based criterion (CWC) is a PI-based loss function that directly
combines the PICP and PI width term as a single loss function. The CWC was first
proposed in Khosravi et al. (2011) as a loss function that combines PINAW and PICP
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for training NN of a lower upper bound estimation (LUBE) method. The LUBE
approaches have many alternative loss functions. In Quan et al. (2014a), the PINAW
in the CWC loss is replaced by PINRW shown as

CWCQuan(θ) = PINRW(1 + 1(PICP < 1− δ) · e−γ(PICP−(1−δ))). (4.6)

The PINRW utilized the ℓ2-norm concept for the PI width term, which penalizes more
on the large width calculated as PINRW = 1

Rquantile

√
1
N

∑N
i=1(û(xi; θ)− l̂(xi; θ))2. In

this study, we adjust (4.6) to its equivalence, (4.7), to ensure continuity, allowing it
to be solved with a gradient-based algorithm as the benchmark method.

CWCQuan-eq(θ) = PINRW(1 + eγmax(0,(1−δ)−PICP)). (4.7)

However, the multiplicative term of PI width in (4.7) can lead to abnormal character-
istics of PI width where the PINRW reaches zero, as derived from the global minimum
of the loss function. Subsequently, the authors of Shrivastava et al. (2015) modified
the CWC loss function to be an additive form as demonstrated in (4.8).

CWCShri(θ) = PINAW+ 1(PICP < 1− δ) · e−γ(PICP−(1−δ)). (4.8)

The version presented in (4.9) is implemented in our experiment to guarantee conti-
nuity and compatibility with gradient-based algorithms.

CWCShri-eq(θ) = PINAW+ eγmax(0,(1−δ)−PICP). (4.9)

In Li et al. (2020), the authors presented a CWC formulation (4.10) to evaluate PI
more efficiently when the PICP is below the desired coverage. They apply an affine
transformation to the PI width term of the CWC function. Because the original CWC
is notably sensitive to the PICP term, the CWCLi is proposed to address the issue
that the original CWC fails to accurately evaluate the variation of the PINAW when
the PICP is less than 1− δ.

CWCLi(θ) =
{
βPINAW, PICP ≥ 1− δ

(α + βPINAW)(1 + e−γ(PICP−(1−δ))), PICP < 1− δ
(4.10)

However, the CWCLi is not continuous in the PICP argument. Therefore, we also
modify it to (4.11) as a continuous version to be applicable to a gradient-based
algorithm.

CWCLi-eq(θ) =
β

2
PINAW+

(
α +

β

2
PINAW

)
eγmax(0,(1−δ)−PICP). (4.11)

Therefore, we utilized CWCQuan,CWCShri, and CWCLi as the benchmarked losses im-
plemented as (4.7), (4.9), and (4.11) respectively.
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5. Deviation information-based criterion (DIC) is proposed in Zhang et al. (2015)
to account for the PIs deviation information in the loss function shown in (4.12).
The exponential term in the CWC is substituted with the function pun, as defined
in (4.13), within the DIC loss framework. This adjustment is made to evaluate the
deviation of the target variable from the PI based on samples lying outside the PI.

DIC(θ) = PINAW+ 1(PICP < 1− δ) · pun (4.12)
where

pun = γ

[
NL∑
i=1

(l̂(xi; θ)− yi) +

NU∑
i=1

(yi − û(xi; θ))

]
, (4.13)

where NL and NU represent the number of observations located below l̂(xi, θ) or
above û(xi, θ), respectively. The penalty parameter γ is set as 1/δ according to
Zhang et al. (2015).

6. Quality driven loss function (QD) is proposed based on the high-quality principle
of obtaining narrow PI with achieving a desired PICP (Pearce et al., 2018). The QD
loss consists of two components: PI width and coverage probability, combined in the
additive form as presented in (2.30).
The PI width term is proposed as the captured PI width measured from only the PI
that captures the data point. The coverage term is derived based on the likelihood
principle. The count function is approximated using a smooth version, and then the
loss function is proposed as applicable to the gradient-based algorithm. In this study,
we modify the original QD loss by adjusting the trade-off parameter γ to focus on
penalizing the PI width term. The influences of N and δ in (2.30) are removed, and
instead, the PINAW is employed to enable γ to manage the trade-off regardless of
the number of samples, the desired probability, and the data range. As a result, the
updated version used in this study, presented in (4.14), is still equivalent to (2.30).

LossQD-eq(θ) = max(0, (1− δ)− PICP)2 + γPINAWcapt.. (4.14)

4.3 Experiment design

The experiments are split into two groups to validate two methodologies based on Fig-
ure 4.1. Each group includes two experiments that demonstrate the performance of each
methodology using synthetic data and real-world data. The first methodology is the pinball-
based formulation, which utilizes a linear additive model. The second methodology is PICP
with width control formulation, which employs an NN (nonlinear model).

The synthetic data experiments for both methodologies mainly focus on analyzing the
properties of PI based on the proposed formulations. This includes examining the trade-off
curve between PICP and PI width, the distribution of PI widths, and the characteristics of
the PIs. The real-world data experiments illustrate the application of the proposed methods
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in solar forecasting, which involves a high level of uncertainty, to demonstrate how the large
PI widths are reduced from each formulation.

Since PI performance is evaluated based on both PICP and PI width, directly deter-
mining the best formulation is challenging. A method with a higher PICP and wider PI
width (Method A) cannot be directly compared to another method (Method B) with a
lower PICP but a narrower PI width. As many methods have formulation hyperparameters
to set the operating point while varying this hyperparameter can cause the PICP and PI
width to vary, there are many schemes to benchmark the performance for each formulation
that can be found in the literature. The complete literature on benchmarked experiments
can be found in the Appendix A. In this thesis, we design a benchmarking scheme for PIs
by adjusting the formulation’s hyperparameter to achieve a consistent PICP at the desired
probability. Once PICP is controlled, we compare the PI width across different methods.
The full details for each experiment are provided below.

Experiments for methodology 1

Two experiments, synthetic and real-world dataset, were designed to test the performance
of formulations P1, P2, and P3. These formulations control various PI width functions,
including the average PI width, the large PI widths, and the maximum PI width. We assess
the performance by analyzing PICP, PINAW, and maximum PI width. As we utilize a linear
additive model, we compare its performance with a linear QR and QRF, which are also simple
models. Experiment 1 carries out all formulations using a synthetic dataset generated from
a linear data-generating process with 100 noise trials. The goal of Experiment 1 is to observe
the trade-off characteristics between PICP and PI width across all methods by varying γ
for each formulation. The PI width in the trade-off curve also assesses both the average PI
width and the maximum PI width. Additionally, this experiment examines the distribution of
PI width and its characteristics for each formulation. Finally, the experiment demonstrates
an example of applying formulations with a quadratic function to the data while the model
remains linear in its parameters.

Experiment 2 applies formulation P3 due to its superior performance from the result
of the first experiment. This experiment aims to provide the PI of the solar irradiance
with a 30-minute lead time at a confidence level of 0.9. Due to the varying characteristics
of solar irradiance throughout the day, different time periods require different predictors.
Therefore, we divide the linear model into three separate models for morning, noon, and
evening, each incorporating distinct features. We then analyze the trade-off curve and PI
characteristics in a time series plot to evaluate performance and compare PI widths while
keeping a controlled PICP.

Experiments for methodology 2

Experiments 3 and 4 demonstrate the effectiveness of reducing the large PI width from the
Sum-k formulation using an NN model with synthetic and real-world datasets, respectively.
The performance is evaluated by PICP, PINAW, PINALW, and Winkler score in both ex-
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periments. Experiment 3 employs four nonlinear synthetic datasets with 100 noise trials
to generalize the results. Experiment 3 investigates the trade-off between PICP and PI
width, including PINAW and PINALW, across various benchmarked methods with formula-
tion hyperparameters, including Sum − k, QD, CWCQuan, CWCShri, and CWCLi. Then, the
characteristics of PIs from each formulation are compared among these methods. Addi-
tionally, this experiment compares the distribution of PI widths and evaluates performance
indices across all methods, adding QR,QRF,MVE, and DIC, while ensuring a controlled
PICP in the validation set.

Experiment 4 demonstrates the performance of the proposed formulations in a solar
forecasting application, as it serves as an appropriate example of data characterized by
heteroskedastic noise and high volatility. This experiment aims to provide a one-hour-
ahead solar irradiance forecast, PI, with a confidence level of 0.9 at a 15-minute resolution,
corresponding to four lead times. We also use the Sum-k formulation with ANN and LSTM
to evaluate performance against a more complex model, which is then benchmarked with
QR,QD, and CWCShri. The results of this experiment are reflected in the comparison of
evaluation metrics, characteristics of PI in the solar irradiance time series plot, and a four-
step real-time PI forecast.

4.4 Real-world data description: Solar irradiance forecasting

In this thesis, we show the application of our methodologies for solar irradiance forecast-
ing. Solar irradiance carries significant uncertainty due to fluctuating weather conditions,
especially in Thailand, which is located in an equatorial region. The techniques and factors
influencing solar forecasting significantly depend on the forecasting horizons. In the litera-
ture, the forecasting horizon is primarily divided into three categories: intra-hour, intra-day,
and day-ahead (Ahmed et al., 2020). The intra-hour forecast encompasses horizons from
a few seconds to one hour, utilized in demand response. The intra-day forecast horizons
extend from 1 to 6 hours, serving economic dispatch purposes. The day-ahead forecast
horizon ranges from 6 to 48 hours, applied in unit commitment. Forecasts longer than 2
days do exist, but they are rarely found in the literature.

Different applications of solar irradiance forecasts require different forecasting specifi-
cations, comprising three key components: forecast time horizon, forecast time resolution,
and forecast lead time. The forecast time horizon indicates the future time frame for which
predictions will be made, usually reported as one hour ahead or one day ahead. The fore-
cast time resolution indicates how often a prediction value is generated, typically reported
in intervals like a 15-minute resolution. The forecast lead time specifies the number of time
steps into the future for which predictions are generated within the forecast horizon. For
example, when the forecast horizon is 1 hour with a resolution of 15 minutes, the forecast
lead time includes 4 time steps, each corresponding to a 15-minute interval. This thesis
focuses on intra-hour solar forecasting, with experiments 2 and 4 conducted 30 minutes
and one hour ahead, respectively. In this context, the uncertainty in solar irradiance arises
mainly from cloud cover, which is influenced by the unpredictable nature of cloud behavior
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(Antonanzas et al., 2016). We provide key predictors for the intra-hour solar irradiance
used in this thesis based on the available data, as follows.

1. Measurement data of solar irradiance is historical data of solar irradiance mea-
sured from sensors or meters. The data resolution depends on the specifications of
the measurement tool, which may be in seconds or minutes. Different forecasting
specifications require different data resolutions; in this thesis, we utilize a 15-minute
resolution of historical data to provide forecasts for solar irradiance 30 minutes and 1
hour ahead. The resampling method is necessary to down-sample the measured data
for use as a predictor aligned with forecasting specifications. To use it as a predictor,
solar measurement data is treated as a lagged regressor, where past observations are
utilized to forecast future values.

2. Cloud data is obtained from the Himawari-8 satellite image that covers Thailand
with a spatial resolution of 2× 2 km2. The cloud images are available from 06:00 to
19:50 at 10-minute intervals and have been resampled to meet specifications. The
cloud images consist of two types: cloud mask (grayscale) and overall RGB (color)
images shown in Figure 4.2. From the preliminary analysis in Figure 4.3, both the
cloud mask and the overall R channel show strong anti-correlations with the clear-sky
index, defined as k(t) = I(t)/Iclr(t). To use cloud images as predictors, we extract
the pixel intensity of cloud images in the pixel closest to the site’s location based on
latitude and longitude. Next, the cloud index (CI) is calculated using the formula
CI = X−LB

UB−LB , where X represents the pixel intensity, and LB and UB denote the lower
and upper bounds set at 0 and 255, respectively. In this thesis, we employ the cloud
mask and the R-channel of the RGB image to compute the cloud index, based on a
strong correlation observed in the pre-analysis. Then, the cloud index is considered a
lagged regressor because it is extracted from the actual measurement of image data.

(a) Cloud mask channel. (b) Overall channel.

Figure 4.2: Cloud images from the Himawari satellite received at Chulalongkorn station.
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Figure 4.3: The scatter plot between cloud index and clear-sky index. (left): Cloud mask.
(right): R-channel.

3. Clear sky irradiance refers to the solar irradiance value under the assumption of
no clouds at a specific time and location. The clear sky irradiance (Iclr) can be cal-
culated using the clear sky model, expressed in the mathematical formulation. The
clear sky model requires two types of inputs: solar geometry inputs, which determine
the sun’s position, and atmospheric parameter inputs, used to estimate the atmo-
spheric attenuation conditions at the specified location (Antonanzas-Torres et al.,
2019). There are various clear-sky models that require different atmospheric parame-
ters (Antonanzas-Torres et al., 2019). In this thesis, we generate clear-sky irradiance
from the Ineichen clear-sky model (Ineichen and Perez, 2002). This model uses date
and time, along with site location, including latitude and longitude, as inputs for solar
geometry. These inputs are utilized to calculate the zenith angles θ, determining the
sun’s position. For the atmospheric parameter, this model requires only Linke turbid-
ity (TL), which is simpler than alternative models. The Ineichen clear-sky model can
be expressed as:

Iclr(t) = a1I0 cos θ(t)ea2AM(t)(fh1+fh2 (TL−1)) (4.15)
where I0 = 1366.1W/m2 is the extraterrestrial irradiance constant, and θ is in degree.
The airmass coefficient (AM) can be calculated following Paulescu et al. (2013):

AM(t) =
1

cos θ(t) + 0.50572(96.07995− θ(t))−1.6364
. (4.16)

The constants in (4.15) can be calculated as:

a1 = 5.09× 10−5h+ 0.868, a2 = 3.92× 10−5h+ 0.0387, fh1 = e−
h

8000 , fh2 = e−
h

1250 ,
(4.17)

where h is the altitude in meters of the site location. Our metadata does not
include the site’s altitude, so we retrieve API data from the open access source
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https://www.opentopodata.org/datasets/srtm/ according to Suwanwimolkul
et al. (2025). The Linke turbidity indicates the amount of solar radiation absorp-
tion and scattering in the atmosphere under clear skies, driven by water vapor and
aerosols (Paulescu et al., 2013). In this thesis, we assess the monthly Linke turbidity
using open-source software PVlib (Anderson et al., 2023) by inputting the site loca-
tion and datetime. As a result, the clear-sky irradiance can be generated for any given
datetime and site location, and it is considered a future regressor in forecasting.

4. Numerical weather prediction (NWP) data is the weather prediction method
that is based on the mathematical model. The mathematical model involves the
partial derivative equation describing the physical process in the atmosphere, such
as thermodynamics and fluid motion. The model uses the current weather condi-
tion as the initial condition in solving the partial derivative equation. These require
massive computational costs and very powerful computers to solve for weather pre-
diction. This thesis utilizes reanalyzed forecast data from the MERRA-2 (Modern-
Era Retrospective Analysis for Research and Applications) model from service in
https://www.soda-pro.com. Users can select the data resolution from 1 minute
to 1 month, and we have chosen 15 minutes for this thesis. The data are available
from January 1980 to one month ago from the current date. The spatial resolution
is 2× 2 km2. The NWP data is considered a future regressor in solar forecasting.

Additionally, we include the hour index, which indicates the hour of the day, as a
future regressor in this study because of the nonstationary and seasonal characteristics of
solar irradiance. In this thesis, we utilize the notation defined in Table 4.1 for real-world
physical variables. As experiments 2 and 4 are performed on solar irradiance forecasting
applications, we utilize different sources of datasets explained below.

Table 4.1: Notation used in solar application

Notation Definition Unit
t Time minute
I Solar irradiance W/m2
CIM Cloud index from the cloud mask image -
CIR Cloud index from R channel of overall RGB image -
Iclr Clear-sky irradiance W/m2
Inwp Forecasted solar irradiance from NWP W/m2
T Temperature K
P Pressure hPa
WS Wind speed m/s
WD Wind direction degree (◦)
RF Rainfall kg/m2

RH Relative humidity %
HI Hour index hour

https://www.opentopodata.org/datasets/srtm/
https://www.soda-pro.com
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Solar data in experiment 2

This section provides the data description used in experiment 2. The measurement data
was collected from a solar rooftop (Site 001) with an installed capacity of 0.98 MW located
in Pathum Thani province in the central region of Thailand. The dataset includes measure-
ments of generated solar power, solar irradiance, ambient temperature, and photovoltaic
module temperature, collected every 15 minutes from April 2022 to July 2023. In this
dataset, we use only the solar irradiance data measured by the SMP 6 pyranometer model,
which complies with the ISO 9060 spectrally flat class B standard. The actual measurement
of solar irradiance was pre-processed to enhance data quality. First, the data was filtered
from 07:00 to 17:00 to capture only the daytime irradiance. Then, the irradiance values
were constrained to the range of 0 to 1400 W/m2 to align with their physical significance.
Next, the average daytime solar irradiance was calculated for each date, and dates with
unusually low values were removed to avoid issues related to insufficient solar radiation or
measurement inaccuracies. To address missing data for some timestamps, if any date has
consecutive missing data periods exceeding six hours, the solar irradiance data for that date
will be discarded. For shorter missing intervals, we employed linear interpolation. For cloud
data, the cloud index was resampled from 10 minutes to 15 minutes to align with actual
solar irradiance data. We generate clear-sky irradiance that corresponds with datetime from
solar irradiance data at a 15-minute resolution. Finally, we combine solar irradiance data,
cloud data, clear-sky irradiance, and NWP forecast data into an aggregated data frame and
drop any missing data. As a result, the dataset contains 15,888 samples with comprehensive
details on selecting significant predictors to be included in the experimental results.

Solar data in experiment 4

This section provides the data description used in experiment 4. Solar irradiance data was
collected from ten solar stations in Central Thailand from January to December 2023, with
a resolution of milliseconds. The measurements were taken using a CMP11 pyranometer,
which complies with the ISO 9060 Class A standard. The solar irradiance data was pre-
processed to enhance data quality. First, we checked the range of possible solar irradiance
values to prevent sensor overflow. Then, we eliminated samples with negative values. Next,
we resampled the raw data to a 1-minute resolution using a rolling mean. Finally, we
downsampled it to a 15-minute resolution.

The cloud index was extracted differently depending on the site location and was re-
sampled to a 15-minute resolution. In this experiment, we utilized only the R-channel cloud
index due to its strong correlation identified in the pre-analysis. The clear-sky irradiance
was generated corresponding to each site location and date time, aligned with the measure-
ment of solar data. For NWP forecast data, we utilize only short-wave irradiance due to a
strong correlation. Finally, the solar irradiance data was merged with the R-channel cloud
index, clear-sky irradiance, and short-wave irradiance from NWP, and any missing data was
dropped. As a result, the dataset spanned from 06:45 to 17:00 with a 15-minute resolution
aligned with the forecasting specifications, totaling 113,793 samples.



Chapter V

EXPERIMENTAL RESULTS OF METHODOLOGY 1

This chapter presents the experimental results of experiments 1 (synthetic data) and
2 (real-world data), which were utilized to validate the concept of the first methodology,
including formulations P1, P2, and P3. This chapter consists of two sections: experiments
1 and 2. Each section includes the experiment’s objective, dataset generation for synthetic
data, feature selection for real-world data, the experimental setting, and the results with
discussion. The code for two experiments in this chapter can be found at https://github.
com/energyCUEE/probforecast.

5.1 Experiment 1 - Simulation of P1, P2, P3 on synthetic data

Objective

This experiment aims to observe the performance of pinball-based formulations P1, P2, and
P3 on the synthetic dataset (linear DGP) compared with QR and QRF. The performance
is shown by how each method constructs PI while reducing the width of PI across various
aspects by observing the trade-off curve between PICP and PI width, the characteristics
of PI, and the distribution of PI widths. The trade-off curve between PICP and PI width
(average PI width and maximum PI width) illustrates the trade-off mechanism between
these two objectives when varying γ for pinball-based formulations or varying confidence
level for QR and QRF. Each point on the trade-off curve corresponds to an operating point
chosen by the user. When comparing the trade-off curves, better results are indicated by
a significant reduction in PI width while maintaining PICP at the desired confidence level.
This outcome highlights the impact of γ and suggests how to choose the operating point
in practical applications. Each formulation controls a different PI width function, so we
also observe PI characteristics (shape of PI) with the same PICP. The histogram of PI
widths is used to verify the change in the distribution of PI widths when varying γ for
each formulation. The histogram illustrates how each formulation attempts to reduce the
amount of PI width in different aspects. Finally, we provide an example demonstrating
the application of the proposed formulation to a nonlinear function, specifically a quadratic
function with heteroskedastic noise.

Dataset

The data-generating process (DGP) was generated as

y = β0 + β1x+ e,

https://github.com/energyCUEE/probforecast
https://github.com/energyCUEE/probforecast
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where x is an independent variable, y is a target variable, and e is a corrupted noise. Ground
truth value of β0 and β1 was one-time generated fromN (0, 1). The variable x was generated
from N (0, 1) with a total of 2,000 samples, and then the values are sorted from low to high.
The noise exhibits non-uniform variance, indicating heteroskedastic characteristics. The
corrupted noise was generated as e ∼ N (0, 4max(0, sign(x− 0.3)) + 1), meaning that for
x > 0.3, the noise was drawn from N (0, 5) (high variance region), whereas for the others,
the noise was generated from N (0, 1) (low variance region). The noise was generated for
100 trials to ensure result generalization, while x, β0, and β1 were one-time generated.

As an example of a quadratic function, we generated DGP in the form of

y = β0 + β1x+ β2x
2 + e,

where β0, β1, β2 were generated from N (0, 1) with values of 1.26, -0.92, 0.44 respectively.
The variable x was generated separately for the training and test sets, each sampled from
N (0, 1) with 2,000 samples, sorted in ascending order. The noise was generated indepen-
dently for both the train and test sets, with two scenarios: high variance and low variance
noise. For high-variance cases, the data was divided into three portions, each with the
same number of samples based on the value of x. The first portion is corrupted with noise
generated from N (0, 5), while the other portion is corrupted with noise from N (0, 1). In a
low variance case, the noise was consistently generated from N (0, 0.2) for all samples.

Experiment setting

We compared the results of our formulations with QR and QRF, where all methods use
only x as a predictor. For our formulations, we set the model to align with the DGP where
û = θ0 + θ1x, l̂ = θ0 + θ1x. The confidence level was set to 0.9, where the range of γ for
P1, P2, and P3 was varied from 0.5 to 1.0 with a spacing of 0.05. For P2, we set K to
⌊0.3N⌋ to consider the top 30% of PI width as large PI widths. Three formulations were
solved for each γ over 100 noise trials. We varied the confidence level from 0.1 to 0.9 with
a spacing of 0.05 for QR and QRF. For QR, we configured the model with a fitted intercept
for both upper and lower bounds. For QRF, we fitted two models corresponding to the
upper and lower bounds using two quantiles for each confidence level. The optimal model
hyperparameters were selected using RandomizedSearchCV based on the lowest pinball
score corresponding with 0.95 and 0.05 quantiles for the upper and lower bound. As a
result, the optimal model hyperparameters are shown in Table 5.1.

Table 5.1: The formulation model hyperparameters for QRF used in experiment 1.

Model specification Upper bound Lower bound
max_depth 20 10

min_samples_leaf 30 4
min_samples_split 30 20

n_estimators 250 100
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Result and discussion

Trade-off characteristics. Figure 5.1 shows trade-off characteristics between PICP and
PI width, including average and maximum PI widths. The trade-off curve is obtained by
averaging the results from all trials for generalization. A better result is indicated by the
curve positioned in the lower right, which exhibits high PICP and a narrow PI width. Both
the average and maximum PI width indicate that reducing γ in our formulations also causes
the PI width to be narrower while also losing the PICP. This result aligns with the proposed
optimization problem, where decreasing γ leads to a more stringent inequality of the PI
width, equivalent to a larger penalization in the PI width term. The results also indicate
that by setting the confidence level to 0.9, the trade-off curve of our formulation can attain
any value of PICP by varying γ. So, we can select any operating point that satisfies the
requirements of PICP while narrowing the PI width to the user’s preference. Therefore, the
trend showing that PI width decreases with a trade-off with PICP is clearly supported by
this result. Additionally, for QR and QRF, lowering the confidence level results in a narrower
PI width, while the PICP remains consistent at the specified confidence level. Based on
the average PI width, all curves are positioned almost identically, indicating that there is no
significant difference in the average PI width. Regarding maximum PI width, the trade-off
curve from QR with varying confidence level overlaps with P1 with varying γ, which is also
shown in the average PI width trade-off curve. So, the trade-off characteristics of QR and
P1 are the same. The QRF exhibits the widest maximum PI width on the trade-off curve.
This maximum PI width occurs in the region of high uncertainty within the data. This
result is due to the structure of the tree-based model, which possesses greater complexity
than the linear model, allowing it to capture the data’s uncertainty more effectively. The
superiority in reducing the maximum PI width is illustrated in P3. The maximum PI width
of P3 is the smallest among all methods. The PI width decreases slightly while the PICP
slowly falls below the confidence level of 0.9, as shown in Table 5.2. This result aligns with
the meaning of formulation P3, which aims to control the maximum PI width, ensuring the
best performance in that aspect. The performance of formulation P2 in the trade-off curve
of maximum PI width lies between that of P1 and P3. This result is due to the formulation
framework, which aims to control the large PI width, including the maximum PI width.

Characteristics of PI. Figure 5.2 compares the PI characteristics of each method using
two operating points of γ with a confidence level of 0.9, based on a DGP selected from
100 trials. When γ is 0.8, the PI from QR and P1 is similar, supporting the trade-off curve
result. The P1 aims to reduce the average PI width, encompassing all PI width samples
and allowing us to observe narrow PI widths in low-variance regions and wide PI widths in
high-variance regions. The slope of PI from P1 indicates a divergence to capture samples
in the high variance zone. For QRF, the PI characteristics confirm the resulting trade-off
characteristics, where the PI from QRF exhibits high nonlinearity in x due to its complex
tree structure. This structure attempts to capture samples in high-variance regions, leading
to a greater maximum PI width in the trade-off curve result. For P3, the slope of PI from
P3 exhibits the lowest divergence level. The PI width is narrowest in the high-variance
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region and widest in the low-variance region. This outcome results from the formulation
of P3, which aims to limit the maximum PI width without regard for other PI widths.
This constraint is more stringent than that of P1 and P2. Furthermore, the slope of P2 is
observed to be between P1 and P3 because the average of the K-largest PI width function
places the penalty level between the average and maximum PI width. When γ is 0.5,
the PI from P1 is narrower than QR while also losing PICP. For P3, the PI width of all
samples is equal, which is the same as P2. This result occurs when the critical value of γ
is reached, and the PI width constraint of P3 becomes active for all samples. This is also
supported by the trade-off curve in Figure 5.1, which shows that when γ is lower than 0.7,
the maximum PI width is consistently reduced refer to reduction of PI width for all samples.
When comparing the feasible sets of constraints for P1 and P3, the optimal value of the
objective function, pinball loss, for P1 tends to be lower. This occurs because the feasible
set obtained from the average PI width constraint is larger than the maximum PI width
constraint due to the equivalence of the ℓ1 norm and the ℓ∞ norm. Thus, the P1 solution
is closer to the QR solution. This result emphasizes the differences between P1 and P3 in
comparison to the QR solution.
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Figure 5.1: Experiment 1 result: Comparison of trade-off characteristics from each method
by varying γ for P1, P2, and P3 and varying confidence level for QR, QRF. (left): Between
PICP and PINAW. (right): Between PICP and normalized maximum PI width.

Distribution of PI width. Figure 5.3 illustrates the comparison of PI width characteristics
aggregated from all trials using two values of γ. The histogram illustrates the comparison
of the PI width distribution aggregated from all trials across all methods. Even though
the average PI width does not show significant differences, there is a clear variation in
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Table 5.2: Average PICP over 100 trials.

Width
factor

1 0.95 0.9 0.85 0.8 0.75 0.7

P1 0.900 0.893 0.877 0.858 0.836 0.812 0.785
P2 0.859 0.850 0.840 0.829 0.817 0.805 0.790
P3 0.871 0.869 0.867 0.856 0.839 0.820 0.796

3 2 1 0 1 2 3 4
x

10

8

6

4

2

0

2

4

y

PI with width reduction factor : 0.8

Data
QR
QRF
P1
P2
P3

3 2 1 0 1 2 3 4
x

10

8

6

4

2

0

2

4

y

PI with width reduction factor : 0.5

Data
QR
QRF
P1
P2
P3

Figure 5.2: Experiment 1 result: Comparison of PI characteristics from each method in the
synthetic dataset (linear DGP) with a confidence level 0.9.

the PI width distribution. The histogram of PI width distribution from QRF shows two
peaks resulting from the DGP, which contain regions of high and low variance. When γ
is 0.9, the histogram shows the lowest variation in the distribution of PI width from P3.
Each sample PI width does not exceed 0.9, corresponding to the constraint in P3. The
maximum PI width from P3 shows the lowest results, indicating that the narrow PI width
has also been widened compared to other methods. When γ is 0.7, all PI widths from P3
are equal because the constraint controls almost all PI widths. This result confirms that
with a critical γ, all PI widths from P3 are equal. Reducing γ below the critical point yields
a constant PI width, which fails to account for the uncertainty of the data and results in a
loss of interpretation of PI. Therefore, selecting γ requires careful consideration to ensure
an appropriate value based on the requirements of each application.
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Figure 5.3: Experiment 1 result: Comparison of the PI width characteristics from each
method. (left): Histogram of PI widths. (right): Boxplot of PI widths, where inside the
box represents 95 % of all samples.
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Simulation with quadratic DGP. The proposed formulation is also demonstrated to
apply with a nonlinear function in x while remaining linear in the model parameter. Fig-
ure 5.4 shows the PI result from all methods in quadratic DGP, including high and low
variance cases. All methods are trained on the training set and validated with the test
set. In a low variance scenario, there is no significant difference in performance among all
methods except QRF, which displays a different PI shape due to its complex model. In a
high variance scenario, formulations P2 and P3 demonstrate improved results in reducing
PI width in high volatility regions, with P3 delivering the best performance. In this case,
QRF exhibits highly fluctuating PI characteristics, failing to accurately capture the behav-
ior of the quadratic function. In conclusion, the proposed formulation, P3, shows superior
performance in reducing PI width when dealing with data containing heteroskedastic noise
involving highly volatile noise. Formulation P3 handles PI width in a more robust way,
ensuring that it does not become excessively wide because of outliers. Furthermore, while
the proposed formulation is limited to linear models, this result demonstrates that incor-
porating feature engineering with nonlinear transformations of predictors can enhance its
applicability.

5.2 Experiment 2 - Performing P3 on solar irradiance forecasting

Objective

This experiment aims to apply P3 for a solar irradiance forecasting application, based on
the superior performance observed in experiment 1 compared to QR and QRF. We aim to
provide a one-step PI 30 minutes ahead of solar irradiance I(t+30), with a confidence level
of 0.9, from 07:00 to 17:00. The data resolution is 15 minutes, based on the measurement
data of solar irradiance. The data is split into training and test sets. We aim to examine
the trade-off characteristics between PICP and PI width, including both the average and
maximum PI width in real-world applications on a training dataset. Next, we compare the
PI characteristics by presenting the time series plot of the PI obtained from each method
on the training dataset, illustrating how each method addresses the uncertainty in solar
irradiance. Finally, we also examine the reliability diagram on a test dataset to assess the
consistency of PICP in our formulation with a specified γ as the confidence level varies,
ensuring the alignment of PICP with the expected confidence level.

Dataset

We used the measurement data collected from Pathum Thani, where a complete description
of the dataset can be found in Section 4.4. We aggregated all predictors, including measured
solar irradiance, cloud index from both the cloud mask and R-channel, clear-sky irradiance,
all variables from NWP data, and hour index as candidate predictors to forecast solar
irradiance. To use as a feature, actual solar irradiance and cloud index must be used as
lag regressors where the past observations are used to predict future value. For I, we
selected two lags as regressors: I(t) and I(t − 15), based on the availability of the data
and correlation analysis. For CI, we use only one lag for both channels: CIM(t) and CIR(t)
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Figure 5.4: Experiment 1 result: Comparison of PI characteristics from each method in the
synthetic dataset (quadratic DGP) at a confidence level 0.9.

as determined by correlation analysis. The clear-sky irradiance, NWP variables, and hour
index are considered as future regressors.



65

Since the characteristics of solar irradiance vary significantly with time, the impact of
each predictor on solar irradiance can differ at different times. For instance, the impact of
clouds can be critical for solar irradiance during the noon period, whereas its effect is minimal
during the morning period. Feature engineering is required as the linear model is utilized
in this experiment. So, we divided the dataset into three time periods, each corresponding
to a distinct model: morning (07:00 - 09:45), noon (10:00 - 15:00), and evening (15:15
- 17:00). Each model utilizes different predictors to describe I as the target variable. To
determine the predictors for each model, we incorporated all predictors mentioned in the first
paragraph and introduced quadratic interaction terms to enhance nonlinearity in the feature
set as candidate predictors. Next, feature selection for each model was performed using
stepwise regression on the candidate predictors, utilizing the Bayesian Information Criterion
(BIC) (James et al., 2023) as the model selection score. As a result, three models consist of
29, 27, and 18 predictors corresponding to morning, noon, and evening, respectively. The
chosen predictors are listed in Table 5.3, arranged by the significance level of the features
from highest to lowest. Finally, the data was split into a training set for 2022 and a test
set for 2023. The summary of sample sizes for each dataset and period is presented in
Table 5.4.

Table 5.3: Selected predictors from stepwise regression for different models used in experi-
ment 2 where blue text refers to quadratic interaction term.

Model Predictors

Morning (07:00 - 09:45)

I(t)2,CIR(t), T (t+ 30) : RH(t+ 30),RH(t+ 30), Iclr(t+ 30) : I(t),
Iclr(t+ 30) : CIM (t), T (t+ 30),RH(t+ 30) : I(t), I(t),RF(t+ 30),
Inwp(t+ 30),WD(t+ 30) : RF(t+ 30), T (t+ 30) :WD(t+ 30),
WD(t+ 30),CIM (t) : CIR(t), T (t+ 30) : Iclr(t+ 30), Iclr(t+ 30),
T (t+ 30) : I(t),WS(t+ 30) : Iclr(t+ 30),RH(t+ 30) : RF(t+ 30),
RH(t+ 30) : Inwp(t+ 30), T (t+ 30) :WS(t+ 30), I(t) : CIM (t),
WS(t+ 30), Inwp(t+ 30) : Iclr(t), P (t+ 30) :WS(t+ 30),
P (t+ 30), and CIM (t)

Noon (10:00 - 15:00)

I(t)2, I(t) : CIM (t),HI,CIM (t) : CIR(t), Iclr(t+ 30) : CIM (t),
I(t) : I(t− 15),WD(t+ 30), T (t+ 30) :WD(t+ 30), I(t− 15),
WD(t+ 30)2,CIR(t),RF(t+ 30) : Iclr(t+ 30),
WS(t+ 30) : RF(t+ 30), Iclr(t+ 30), I(t) : CIR(t), Iclr(t+ 30) : I(t),
RH(t+ 30) : I(t), I(t),RF(t+ 30),RH(t+ 30) :WS(t+ 30),
WD(t+ 30),HI, T (t+ 30) : I(t),WS(t+ 30), T (t+ 30),
RH(t+ 30), and CIM (t)

Evening (15:15 - 17:00)
I(t), I(t)2, Iclr(t+ 30) : I(t), Iclr(t+ 30), I(t− 15)2,CIR(t),
P (t+ 30) : CIR(t), I(t) : CIR(t), I(t) : CIM (t), P (t+ 30),
I(t) : CIM (t), I(t− 15),RF(t+ 30),RF(t+ 30) : Iclr(t+ 30),
RH(t+ 30)2,CIM (t), and RH(t+ 30)

Experiment setting

We compared the results of P3 with QR and QRF, with all methods utilizing the same
predictors based on Table 5.3. For QR, we set up the model with a fitted intercept for
both the upper and lower bounds. For QRF, the two models were fitted based on the upper
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Table 5.4: The number of samples for the training and test sets in the experiment 2.

Period Training set Test set
Morning 2,294 1,476
Noon 5,345 3,417
Evening 2,047 1,309
Total 9,686 6,202

and lower bounds, utilizing two quantiles for each confidence level across three periods,
resulting in six models in total. The optimal model hyperparameters were selected using
RandomizedSearchCV with a pinball score corresponding to the 0.95 and 0.05 quantiles for
the upper and lower bounds, respectively. The optimal QRF model hyperparameters are
shown in Table 5.5. To determine the trade-off curve, we varied the confidence level from
0.1 to 0.9 with a spacing of 0.05 for QR and QRF.

Table 5.5: The model hyperparameters for QRF used in experiment 2.

Period Model specification Upper bound Lower bound

Morning
max_depth 15 10
max_features sqrt sqrt
min_samples_leaf 8 4
min_samples_split 5 20
n_estimators 100 100

Noon
max_depth 25 25
max_features sqrt sqrt
min_samples_leaf 10 10
min_samples_split 10 10
n_estimators 200 200

Evening
max_depth 25 20
max_features sqrt sqrt
min_samples_leaf 10 30
min_samples_split 10 30
n_estimators 200 250

For P3, a linear additive model was used, incorporating a constant term, with the
confidence level set at 0.9. Then, the hyperparameter γ was varied from 0 to 1.0 with a
spacing of 0.02. Since solar irradiance cannot be negative, we modify the formulation P3
by adding a constraint to ensure the lower bound does not become negative, as shown by:
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minimize
θ,θ

∑
i∈I

ρα(yi − ûi(θ)) + ρα(yi − l̂i(θ))

subject to 0 ≤ l̂i(θ) ≤ ûi(θ), ∀i ∈ I
max
i∈I

[ûi(θ)− l̂i(θ))] ≤ γ · sample width.

(5.1)

Result and discussion

Trade-off characteristics. Figure 5.5 illustrates the trade-off characteristics between
PICP and PI width, including the average and maximum PI widths over different time
periods. QRF outperforms QR in reducing both average and maximum PI width. For the
average PI width, the QRF achieves the best results across all time periods because of its
more complex model. There is no significant difference in performance between QR and P3.
Considering the maximum PI width, the trade-off curve from P3 is located in the lowest
right region, which shows the best performance across all time periods. The maximum PI
width of P3 decreased rapidly over each time period, while the PICP slightly decreased.
Especially at noon, the maximum PI width from P3 with γ = 1 decreases by 33% compared
to QR while maintaining the same PICP. Therefore, based on the trade-off curve of P3,
we select γ = 0.5 as the operating point for comparing PI characteristics, as it significantly
reduces the maximum PI width while maintaining an acceptable PICP.

Characteristics of PI. Figure 5.6 presents a time series comparison of PI characteristics
among QR, QRF, and P3 of solar irradiance from the training dataset. The time series plot
displays data for four days, from August 20 to August 23, 2022. The data from August
20 to 22 shows significant fluctuations in solar irradiance due to clouds, while August 23
exhibits a trend similar to clear-sky irradiance, which has low fluctuations. The result of PI
indicates that our formulation has the narrowest PI width to date, with high uncertainty,
particularly from August 20 to 22. This result demonstrates the superior performance of
P3 when the data is corrupted with a high level of noise. However, on August 23, P3
has an unnecessarily wide PI width when the data involves a low level of noise. The QRF
demonstrates the narrowest PI width in a low-noise day. In conclusion, P3 exhibits strong
performance, demonstrating a narrow PI width in the data involves high uncertainty. This
is because it try to reduce the maximum PI width, which typically arises in high uncertainty
data. The result also aligns with the performance observed in synthetic data.

Reliability diagram. Figure 5.7 shows a reliability diagram and PI width performed on the
test set. The reliability diagram is obtained by varying the confidence levels of QR, QRF,
and P3 with γ = 0.5 and calculating PICP. The confidence levels vary from 0.1 to 0.9 with a
spacing of 0.05. The good performance in the diagram should have the line aligned with the
diagonal to demonstrate the ability to achieve the PICP at the specified confidence level.
The QRF displays a line over the diagonal that indicates the PICP in the test set is greater
than the confidence level, but this can lead to an excessively wide PI width. The diagram
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shows that P3 and QR can consistently achieve PICP at the desired confidence level, even
when the confidence level varies. The bar graph compares the average and maximum PI
width selected from the point with a PICP of 0.9 for each method. QRF has the lowest
average PI width, while QR and P3 exhibit similar performance. The maximum PI width
of P3 is significantly lower than that of other methods. Especially at noon, the difference
between P3 and QR is about 700 W/m2. Therefore, the maximum PI width can be greatly
reduced when using P3. This result leads to a significant decrease in the uncertainty of
solar irradiance, which leads to lower solar power uncertainty.

Application in solar power conversion. Solar power is widely recognized to have a linear
proportional relationship with solar irradiance. Figure 5.8 presents an uncertainty analysis
in predicted solar power based on the conversion formula P̂ = âÎ where â is an estimated
plant factor. The estimated plant factor can be calculated using any statistical method,
such as linear regression, which provides a confidence interval for the estimator, denoted
[âlower, âupper], as shown in Figure 5.8. When the PI of solar irradiance decreases from blue
bar to green bar, the PI of solar power also narrows, as illustrated by green bar in Figure 5.8.
For P3 with γ = 0.5, Figure 5.5 illustrates that its maximum PI width is approximately 200
W/m2 lower than that of QRF at noon. This led to a reduction of 0.2 per unit (p.u.) in the
solar power PI width. In conclusion, applying P3 to solar irradiance reduces the PI width
in solar power, lowering uncertainty in estimated solar output. This enhances planning
efficiency and helps reduce operating costs in the power system.
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Figure 5.5: Experiment 2 result: Comparison of trade-off characteristics between PICP and
PI width for QR, QRF, and P3 in solar application across different periods. (top): Between
PICP and average PI width. (bottom): Between PICP and maximum PI width.
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Chapter VI

EXPERIMENTAL RESULTS OF METHODOLOGY 2

This chapter includes the experimental results that validate the concept of the second
methodology, Sum-k loss, in reducing large PI widths. The second methodology involves
the proposed loss function applied to a nonlinear model referred to as NN in this study. The
chapter consists of two sections: experiment 3 conducted on synthetic data and experiment
4 conducted on real-world data. Each section includes the objectives, datasets or feature
selection, model descriptions, experimental settings, and results with discussions. The
code for experiment 3 is available at https://github.com/energyCUEE/PIestim_sumk,
and the code for experiment 4 can be accessed at https://github.com/energyCUEE/
PIestim_solar.

6.1 Experiment 3 - The performance of Sum-k formulation on synthetic data

This experiment aims to observe the performance of the Sum-k formulation on four syn-
thetic datasets. The experiment can be divided into two sub-experiments: experiment 3.1
and experiment 3.2. Experiment 3.1 aims to observe the trade-off characteristics between
PICP and PI width, including PINAW and PINALW, and compare them with methods with
formulation hyperparameters. The trade-off curve is obtained by varying these formulation
hyperparameters. Next, the characteristics of PIs among these methods are also compared
with the selected operating point. Experiment 3.2 aims to compare the distribution of PI
width while controlling for equal PICP as 0.9 in the validation set by utilizing the results
from the previous experiment and incorporating methods without any formulation hyperpa-
rameters. This is to observe how the distribution of PI width changes due to the increased
penalties on large PI widths. Next, we aim to compare the performance metrics of all
methods across all datasets, including PICP, PINAW, PINALW, and the Winkler score,
to provide a comprehensive evaluation of their overall performance. Two sub-experiments
used the same four synthetic datasets, each containing 100 noise trials. These two sub-
experiments also employed the same architecture of the feed-forward NN (ANN) model.
The same optimization process settings are also utilized in both sub-experiments. A de-
scription of synthetic data, the model structure, and the optimization procedures is provided
below.

Dataset

We generated four synthetic datasets using different mathematical functions. Given x as
predictors, y as the target variable, and e as corrupted noise, the DGP of all datasets can
be described as follows.

https://github.com/energyCUEE/PIestim_sumk
https://github.com/energyCUEE/PIestim_solar
https://github.com/energyCUEE/PIestim_solar
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• Sum of Gaussian function: The DGP is shown as:

y = β0 +
4∑

i=1

βi exp−
(x− µi)

2

2
+ e,

where x is generated from uniform distribution (U) in [−4, 4] with 2,000 sorted
samples. β0, . . . , β4 are one-time generated from N (1, 1), and µ0, . . . , µ4 is fixed
as -2.4, -0.8, 0.8, and 2.4. with equal spacing. The noise e is generated from
N

(
0, (

√
2max(0, sign(|x| − 1.5)) + 0.2)2

)
, which means that the standard devia-

tion equal 0.2 when |x| ≤ 1.5, while equal
√
2 + 0.2 otherwise. This noise causes the

DGP to encompass both high and low-volatility noise regions. .

• Polynomial function: The DGP is inspired by the studies in Hernandez-Lobato and
Adams (2015); Lin et al. (2021), which express DGP as follows:

y = x3 + e

where x is drawn from U(−4, 4) with 1,000 sorted samples. We apply heteroskedastic
noise rather than uniform variance noise in the references, so e is generated from
N (0, (2|x|+ exp(x))2).

• Sinusoid function: This DGP is implemented based on Zhou et al. (2021). Given
x is generated from a linearly spaced sequence between -0.5 to 0.5 with sorted 1,000
samples, y is generated from a distribution defined as:

y ∼ N (sin(4πx), (0.5 + 0.3 sin(4πx))2).

• Multivariate function: This DGP is inspired by Papadopoulos et al. (2001) to
demonstrate the case with multiple variables of x. The DGP is defined as:

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + e

where xi for i = 1, . . . , 5 are generated from U(0, 1) with 1,000 samples, sorted based
on x1. Then, each noise sample e is generated from N (0, 9∥x∥22).

In the experiment, we generated 100 noise trials using the same ground truth to generalize
the results. The data was randomly divided into 80% for training and 20% for validation.
The training dataset was utilized to estimate the model parameters, whereas the validation
set was employed to evaluate performance.

Model description and optimization scheme

In this experiment, all methods using the ANN model were controlled to have the same
architecture. The model structure is shown in Table 6.1. We set a fixed random seed to
control the initialization of the model parameters. For the optimizer, we selected Adam
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to solve an optimization problem to obtain optimal model parameters that minimize the
associated loss function. Adam is well known for its high computational efficiency and its
ability to avoid getting stuck in local minima (Kingma and Ba, 2017). The optimizer’s
learning rate was chosen based on the loss characteristics, ensuring fast convergence by
monitoring the loss behavior. We used minibatch optimization to obtain fast convergence,
selecting the batch size based on the number of samples. To terminate the training process,
we set the maximum epochs as 2,000. A patience parameter, defined as the maximum
number of epochs without improvement in loss, was set to 100 and serves as an early
stopping criterion.

Table 6.1: The model architecture of the ANN used in experiment 3.

Model specification Setting
Hidden layers 3
Neurons per layer no. of input features, 100, 100, 100, 2
Activation function ReLU
Batch Normalization Added after hidden layers
Total number of trainable parameters 21,102 + no. of input features × 100

Experiment 3.1 - The trade-off characteristics between PICP and PI width

Objective

This sub-experiment aims to observe the trade-off characteristics between (1−δ)−PICP and
PI width, including PINAW and PINALW. We compare the trade-off curve among CWCQuan,
CWCShri, CWCLi, QD, and Sum-k, all of which involve the formulation hyperparameter γ.
To generate the trade-off curves, γ is varied for each method, and PICP and PI width are
evaluated for each trial on the validation set. Then, the results from all trials for each
dataset are averaged, enabling the trade-off curve to be plotted. This sub-experiment also
compares the characteristics of the PI for each method across all datasets. The operating
point for each method is selected to compare PI with an equal PICP of 0.9 across all
methods. The PI illustrates how our formulation effectively reduces large PI widths.

Experiment setting

The desired coverage probability (1− δ) was set as 0.9 across all methods. For the formula-
tion that includes the PICP term, the tanh smooth approximation with a softening factor of
s = 50 was used. To plot trade-off, we varied γ with linear spacing from γmax to γmin for ten
values to vary PICP from 0.85 to 0.9 for each dataset. For CWCLi, we set the formulation
hyperparameters α = 0.1 and β = 6 according to the original paper. For the Sum-k, we set
k = 0.3 to consider the widest 30 % of PI widths as large PI widths while using λ = 0.1 to
emphasize the different penalties between narrow and large PI widths.
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Result and discussion

Trade-off characteristics. The trade-off characteristics in all datasets are shown in Fig-
ure 6.2. The better trade-off curve is represented by the line located in the lower left
region, indicating high PICP and narrow PI width. All formulations can achieve any level of
PICP by varying γ across all datasets. Considering the sum of a Gaussian and a sinusoidal
function, the trade-off characteristics are similar in PINAW and PINALW. The trade-off
between PINAW and PICP in these datasets indicates that the curves from the CWC family
are aligned and show comparable performance, while the Sum-k has the largest average
PI width, as demonstrated in the trade-off curve. The benchmarked methods perform well
in reducing PINAW because it is part of their loss function. For the trade-off between
PINALW and PICP, the Sum-k formulation performs best in reducing the large PI width,
as its loss function penalizes larger PI widths more heavily. Among benchmarked methods,
the CWCQuan also effectively reduces the large PI width because it utilizes ℓ2-norm in the
PI width term, which heavily penalizes the large PI width. For the polynomial dataset, the
trade-off curve between PINAW and PICP also reveals the same as that of previous datasets.
However, in PINALW, the performance of our formulation does not show significantly better
results than other methods. This result may be due to the polynomial DGP involving a
lower portion of the highly volatile noise shown in Figure 6.1. For multivariate datasets, the
Sum-k formulation yields the best results in both PIANW and PINALW trade-off curves.
We can observe reversal characteristics where the trade-off curve has an abnormal elbow in
CWCShri and CWCLi. These results are from instability in performance, as the performance
on 100 trials is inconsistent, causing the average value to behave improperly. As observed
in all datasets, using linearly spaced γ, the trade-off curve in the CWC family displays many
closely positioned operating points. The reason comes from the mathematical formulation
of the CWC family, where γ is located inside the exponential term, causing a strong penal-
ization for deviation from PICP. Consequently, balancing the two objectives and choosing a
suitable operating point can be challenging. For the formulations with an additive form of
two objectives, including QD and Sum-k, we can see clear trade-off curves where increasing
γ directly decreases the PI width, which is losing the PICP. On the other hand, increasing
γ in the CWC family does not ensure an improvement in PICP. Additionally, the trade-off
curve from CWCQuan exhibits nonsmooth behavior, even after averaging 100 trials, making
its trade-off trend unclear.

Characteristics of PI. The comparison of PI characteristics across all datasets is shown in
Figure 6.1 with equal PICP 0.9. The sum of the Gaussian and sinusoidal datasets contains
both high and low volatile noise. Most methods involve a large PI width in high-volatility
regions, while a narrow PI width is observed in low-volatility regions. In highly volatile
regions, the Sum-k formulation shows the smallest PI width compared to benchmarked
methods, while in low-volatile regions, it displays a wider PI width. The results align with
the objective of the Sum-k loss, which imposes greater penalization on large PI widths that
typically occur in high-variance regions while allowing the PI width in low-volatility regions
to be slightly wider than usual. In the polynomial dataset, the high volatile noise portion



76

is less than in the other datasets, where it shows in x > 2. The Sum-k formulation tries
to reduce the large PI width in highly volatile regions, while the low volatility causes an
unnecessarily wide PI width. For multivariate data, we present the value of y in the first 20
samples in Figure 6.1. The PI of Sum-k in this dataset occurs more narrowly than others,
demonstrating good performance when handling multivariate functions with more than one
predictor. Therefore, the Sum-k formulation alters the distribution of PI width by reducing
larger PI widths while allowing smaller ones to increase. To illustrate the impact of each
formulation on PI width, we compare the distribution of PI width across all methods in the
next sub-experiment.
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Figure 6.1: Experiment 3 result: Comparison of PI characteristics from each formulation in
the sum of Gaussian dataset.
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Figure 6.2: Experiment 3 result: Comparison of the trade-off curve by varying the trade-off
parameter for each formulation in all datasets. (left): Between (1− δ) - PICP and PIANW.
(right): Between (1− δ) - PICP and PIALW.
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Experiment 3.2 - The PI width characteristics and performance metrics with control
PICP in the validation set

Objective

This sub-experiment aims to compare the PI width distribution and performance metrics,
maintaining a PICP control level of 0.9 across all methods, with evaluation conducted on the
validation set. We benchmark our method with QR, QRF, MVE, DIC, CWCQuan, CWCShri,
CWCLi, and QD. The performance metrics are represented by the mean and standard devi-
ation, reflecting the results from 100 trials of noise. The distribution of PI widths for each
method is illustrated using histogram plots, aggregated from 100 data trials, comparing our
formulation against other methods in a one-on-one manner.

Experiment setting

For CWCQuan, CWCShri, CWCLi, QD, and Sum-k, we used the same setting as experiment
3.1. The operating point γ for each method was determined by analyzing the trade-off
curve and selecting the γ that causes PICP to be closest to PICP 0.9. For MVE, QR, QRF,
and DIC, these methods require only the confidence level as a hyperparameter, which we
set to 0.9. For QR and QRF, the upper and lower bound quantiles were set at 0.95 and
0.05, respectively. The optimal hyperparameters for the QRF model were determined using
the same procedure as in experiments 1 and 2. The optimal QRF models for each dataset
are shown in Table 6.2.

Table 6.2: The model hyperparameters for QRF used in experiment 3.

Dataset Model specification Upper bound Lower bound

Sum of
Gaussian

max_depth 20 20
min_samples_leaf 30 30
n_estimators 100 100

Polynomial
max_depth 25 25
min_samples_leaf 20 20
n_estimators 100 100

Sinusoid
max_depth 5 25
min_samples_leaf 10 20
n_estimators 200 100

Multivariate
max_depth 25 40
max_features sqrt sqrt
min_samples_leaf 4 8
n_estimators 50 50

Result and discussion

Distribution of PI width. Figure 6.3 presents a histogram of PI width obtained using
the Sum-k formulation, compared to other methods, using the sum of Gaussian data as
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a representative example. The histogram displays two peaks that correspond to the data
characteristics, which include both high and low volatile noise. The tail of the distribution
from Sum-k is the shortest, demonstrating the effectiveness of our formulation in reducing
the large PI width. On the other hand, the narrow PI width from Sum-k tends to be larger.
Consequently, the PI width distribution from Sum-k shows the least variation with a two-
sided inward shift. This result arises from setting λ = 0.1, which penalizes the mean of large
PI widths relatively more than the mean of narrow PI widths by a factor of ten. Increasing λ
results in a widening of the PI width distribution, aligning with the outcome observed when
using PINAW as part of the loss function, which penalizes PI width equally. Therefore,
the hyperparameter λ should be chosen based on the user’s preference for controlling the
variation in PI width.

Performance metrics. The overall performance, averaged over 100 trials, is reported in
Table 6.3. Most methods can achieve the PICP at the specified confidence level in most case
datasets. However, some methods may not reach a PICP of 0.9 on some datasets such as
CWCQuan in polynomial function. It achieves the lowest PINALW, but the PICP falls below
0.9 while the Sum-k can maintain PICP. For MVE, PICP usually falls below 0.9, especially in
multivariate datasets, because the noise does not follow the Gaussian assumption required
by MVE. As observed in the results, when the number of features rises, the performance
of MVE is affected by the limited sample size in the log-likelihood formulation. The QR
and QRF techniques indicate that the PICP corresponds with the specified confidence level.
However, for the multivariate dataset, the PICP derived from QR decreases to 0.82 because
it fails to align with the particular 0.05 and 0.95 quantiles.

Observing PINAW, PINALW, and Winkler scores demonstrates that the Sum-k for-
mulation achieves the lowest PINALW across most datasets when controlling for PICP.
However, the PINAW from the Sum-k increases. To improve PINAW from the Sum-k, we
can increase λ, although this may lead to a decline in PINALW where selecting this hyper-
parameter depends on the specified requirements of each case. Consider the Winkler score;
QR-based methods have the lowest Winkler score, indicating the best performance. This
is because the Winkler score relates to the pinball loss, which serves as the QR objective.
A lower Winkler score signifies a better alignment with the upper and lower quantiles, 0.95
and 0.05, in this experiment. Comparing QR and QRF, the QR demonstrates a better Win-
kler score due to the model’s complexity. The QR employs a neural network model with
three hidden layers, making it more complex than the QRF, which uses a tree-based model.
However, the lowest Winkler score does not guarantee the lowest PI width, as shown in
Table 6.3. Therefore, this result verifies that PIs from the PI-based loss with the lowest
PINAW do not consistently match a fixed quantile, as discussed in Chen et al. (2024).

Upon examining the training convergence with multivariate data, we found that the
maximum epochs, combined with a patience parameter, pose challenges for the convergence
of CWCQuan, CWCLi, and DIC. If patience parameters are low and maximum epochs are
limited, the PI width from these methods is excessively wide. The convergence of these
methods is particularly slow, requiring thousands of iterations, whereas alternative methods
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can achieve convergence in just a few hundred iterations. In addition, a high learning rate
can lead to divergence in loss and instability. To handle the divergence problem, we increase
the maximum epochs and patience in this experiment to support convergence, with the
performance reported in Table 6.3. A slow convergence from CWCQuan and CWCLi occurs
from the mathematical formulation, where the PICP term and PI width are in multiplicative
form. This leads to zero PI width as a global minimum, which serves an undesired property of
PI (Pearce et al., 2018). Thus, using the additive form of the loss function leads to better
compatibility with gradient-based algorithms, as illustrated by the convergence observed
in CWCShri. However, DIC, also in additive form, encounters challenges in optimization
due to discontinuities. This leads to a significantly high loss value when the PICP falls
from 0.9 and drops to decimal values when the PICP exceeds 0.9. Then, it results in a
longer time to achieve a low PI width that meets PICP requirements due to the function
discontinuity. However, the entire CWC family was presented with heuristic optimization
to determine optimal model parameters due to the original non-differentiable loss from
the count function. In this experiment, we used a smooth approximation of the counting
function in this CWC family to ensure compatibility with gradient-based algorithms, but
it still struggles with poor convergence. Therefore, we have decided to exclude CWCQuan,
CWCLi, and DIC from the benchmark candidates in the real-world dataset.
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Table 6.3: Comparison of PIs performance indices on a validation set of synthesis datasets,
maintaining a controlled PICP of 0.9 (mean±one standard deviation). The bold value
indicates the best performance, with an acceptable PICP that does not fall below 0.89.
Data Method PICP PINAW PINALW Winkler

Sum of
Gaussian
function

QR 0.8990±0.0134 0.7163±0.0282 0.9751±0.0427 0.9051±0.0495
QRF 0.8833±0.0164 0.7192±0.0164 0.9746±0.0254 0.9547±0.0442
MVE 0.8616±0.0229 0.6482±0.0206 0.8671±0.0312 0.9551±0.0695
DIC 0.9028±0.0039 0.7211±0.0296 0.9497±0.0390 0.9361±0.0520
QD 0.8977±0.0054 0.7022±0.0249 0.8917±0.0375 0.9841±0.0600
CWCQuan 0.8994±0.0067 0.6899±0.0296 0.8475±0.0399 0.9830±0.0603
CWCShri 0.8990±0.0054 0.6859±0.0308 0.8845±0.0489 0.9681±0.0604
CWCLi 0.8992±0.0056 0.6861±0.0252 0.8803±0.0380 0.9681±0.0561
Sum-k 0.8995±0.0056 0.7396±0.0269 0.8168±0.0328 1.0359±0.0621

Polynomial
function

QR 0.8967±0.0233 0.4077±0.0274 0.7230±0.0517 0.5016±0.0507
QRF 0.8938±0.0251 0.3516±0.0194 0.6062±0.0361 0.4576±0.0507
MVE 0.8680±0.0591 0.3573±0.0309 0.6131±0.0481 0.5869±0.1685
DIC 0.9037±0.0036 0.3692±0.0289 0.6379±0.0529 0.5497±0.0674
QD 0.8968±0.0061 0.3153±0.0478 0.4827±0.0665 0.7361±0.1126
CWCQuan 0.8705±0.0191 0.3366±0.1229 0.4456±0.1381 1.0408±0.2040
CWCShri 0.9005±0.0048 0.3028±0.0280 0.4625±0.0516 0.7645±0.1090
CWCLi 0.8863±0.0141 0.4094±0.1826 0.5650±0.2087 0.9640±0.2248
Sum-k 0.8990±0.0060 0.3707±0.0344 0.4753±0.0474 0.8813±0.1049

Sinusoid
function

QR 0.9041±0.0201 0.5737±0.0242 0.7806±0.0352 0.7081±0.0443
QRF 0.8832±0.0221 0.6071±0.0198 0.8171±0.0342 0.8220±0.0556
MVE 0.8722±0.0290 0.5263±0.0195 0.7074±0.0290 0.7356±0.0571
DIC 0.9038±0.0054 0.6167±0.0312 0.8080±0.0437 0.7878±0.0518
QD 0.8954±0.0091 0.5827±0.0252 0.7140±0.0335 0.8208±0.0689
CWCQuan 0.9002±0.0079 0.5532±0.0265 0.6526±0.0332 0.7984±0.0653
CWCShri 0.8988±0.0077 0.5463±0.0215 0.6715±0.0285 0.7803±0.0589
CWCLi 0.9001±0.0091 0.5523±0.0237 0.6802±0.0333 0.7873±0.0593
Sum-k 0.8995±0.0096 0.6012±0.0235 0.6226±0.0240 0.8737±0.0674

Multivariate
function

QR 0.8160±0.0295 0.5517±0.0268 0.6722±0.0350 0.8990±0.0746
QRF 0.9123±0.0220 0.7534±0.0184 0.8471±0.0216 0.9350±0.0616
MVE 0.4705±0.0401 0.2981±0.0183 0.3669±0.0264 1.8691±0.1623
DIC 0.9050±0.0056 0.6800±0.0435 0.8249±0.0524 0.8784±0.0629
QD 0.8880±0.0073 0.7066±0.0878 0.8414±0.1156 0.9829±0.1065
CWCQuan 0.8915±0.0111 0.8353±0.1185 1.0006±0.1784 1.1242±0.1415
CWCShri 0.8922±0.0121 0.7751±0.0711 0.9484±0.0982 1.0500±0.0988
CWCLi 0.8674±0.0255 0.7269±0.0555 0.8890±0.0744 1.1013±0.1041
Sum-k 0.9008±0.0055 0.6407±0.0395 0.6792±0.0486 0.8798±0.0656
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Figure 6.3: Experiment 3 result: Comparison of PI width histogram aggregated across 100
trials in the sum of Gaussian dataset.
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6.2 Experiment 4 - Performing Sum-k formulation on solar irradiance forecasting

This experiment shows the application of the Sum-k formulation in estimating PI for the real-
world application of solar irradiance forecasting. Due to weather conditions, solar irradiance
forecasting involves significant uncertainty that is challenging to handle. Furthermore,
it fluctuates significantly due to the randomness of clouds. This application is a good
example of data with heteroskedastic and high volatility noise, especially the solar irradiance
in Thailand, which is located near the equator. Then, we can demonstrate a significant
reduction in large PI widths during the high volatility period in this experiment compared
to other methods. In this experiment, the same ANN architectures are used for the Sum-k
method and benchmark methods, including QR, QD, and CWCShri. We also demonstrate
the compatibility of the Sum-k formulation with a more complex model, LSTM, to compare
performance across different NN architectures.

Objective

This experiment aims to generate a one-hour ahead prediction interval (PI) for solar irra-
diance from 07:00 to 17:00, maintaining a 0.9 confidence level at a 15-minute resolution,
covering four lead times. This forecasting specification is commonly used in the economic
dispatch problem, where the uncertainty in solar irradiance provides valuable information to
system operators, aiding in decision-making for improved reserve preparation and generation
planning. We aim to observe the performance metrics, including PICP, PINAW, PINALW,
and Winkler across all lead times when comparing the performance with QR, QD, CWCShri
and Sum-k using ANN and LSTM. Next, we aim to analyze the characteristics of 15-
minute ahead PIs by comparing QD with Sum-k ANN. Additionally, we evaluate the model
performance differences by comparing the 15-minute ahead PIs between Sum-k ANN and
LSTM. Finally, we demonstrate the application of Sum-k and QD in real-time forecasting
by generating one-hour ahead predictions with a four-step forecast from a specific time.

Dataset

We utilized solar irradiance data aggregated from ten solar stations located in Central
Thailand, spanning January to December 2023, with a 15-minute resolution. The complete
description of the dataset can be found in Section 4.4. In this experiment, we divided all
predictors into two groups: lagged regressors and future regressors.

The lagged regressors utilize past observations and are categorized into auto-lagged and
exogenous-lagged regressors. In this dataset, solar irradiance measurements were treated
as auto-lagged regressors since the target variable is also solar irradiance. Conversely, cloud
data was employed as exogenous lagged regressors, and in this experiment, we utilized
only the R-channel cloud index CIR. This choice was made due to the strong correlation
observed in the pre-analysis. For both lagged regressors, we selected a four-period lag for
solar irradiance and cloud index at t− 45, t− 30, t− 15, t, based on cloud data availability
and forecast specifications.
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The future regressors refers to exogenous variables assumed to be available for future
periods. In this experiment, the future regressors consist of clear-sky irradiance, NWP
forecast variable, and hour index. For NWP forecast data, we only selected short-wave
irradiance Inwp due to strong correlation. The target variables, solar irradiance, were set
as future values corresponding to I(t + 15), I(t + 30), I(t + 45), and I(t + 60) due to the
forecasting specifications. Consequently, the future regressors are aligned with the forecast
times t+ 15, t+ 30, t+ 45, and t+ 60.

The data set covers the period from 06:45 to 17:00. Next, the data was divided into
training, validation, and test sets. The training set was used to update model parameters,
while the validation set was used to monitor validation loss and tune formulation hyper-
parameters to achieve the desired coverage probability. The test set was then used for
performance evaluation and comparison.

Since the solar irradiance data includes both clear-sky and cloudy days, it impacts
model performance differently. Clear skies represent low uncertainty, while cloudy days
show high uncertainty. We aim to partition the daily solar irradiance data to ensure that the
training, validation, and test sets contain a balanced proportion of different sky conditions.
First, we calculated the clear-sky index (k) using the formula k = I/Iclr for each sample,
and we averaged it daily to obtain k. The value of k represents the sky condition for that
day, approaching one for clear-sky conditions and nearing zero for cloudy conditions. Then,
we aim to categorize sky conditions into three groups: clear, partly cloudy, and cloudy.
Clear-sky conditions were characterized by the smooth variation of solar irradiance, as a
consistent downward pattern usually indicates clear skies. Other conditions were classified
by k: cloudy if k < 0.75; otherwise, it was considered partly cloudy. The sky conditions
were further classified based on k: a day is considered cloudy if k < 0.75; otherwise, it
was categorized as partly cloudy. According to the classification results, this dataset shows
clear-sky, partly cloudy, and cloudy conditions in a ratio of 52:11:37. Then, we divided the
dataset into training, validation, and test sets using an 80:10:10 ratio, ensuring an equal
distribution of each sky condition. The number of samples in each set is summarized in
Table 6.4.

Table 6.4: The number of samples for the training, validation, and test sets in experiment
4.

Sky condition Training set Validation set Test set
Clear-sky 10,469 1,254 1,311

Partly-cloudy 45,738 5,819 5,771
Cloudy 34,848 4,382 4,201
Total 91,055 11,455 11,283
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Figure 6.4: The NN architecture used in experiment 4 includes a common modelMc with
received lagged regressors as inputs and a submodel Mi with received future regressors,
where the PI outputs with the target are used to evaluate the loss function.

Model and modified loss function

Model. As our forecasting specification aims to release four-step forecasting, we designed
a model as shown in Figure 6.4. The model provides the upper and lower bounds for
four lead times, resulting in eight output neurons. We also designed a model that can
receive different predictors for each forecasting lead time, allowing the future regressors
to align with the forecasted time. Therefore, the model consists of two components: a
common model and four separate lead-time-specific submodels. The common model (Mc)
is designed to handle lagged regressors including I and CIR. The common model shares its
parameter and input layers across all lead times. In this experiment, we explored two choices
of Mc: ANN and LSTM architecture. We aim to observe the performance of capturing
temporal characteristics in the time series of I and CIR between two choices. For ANN,
Mc has two hidden layers, each containing 100 neurons. For the LSTM, we configured two
layers of LSTM cells, each with a hidden size of 45, ensuring that the number of trainable
parameters matches that of the ANN for performance comparison. Next, the separated
lead time submodels are denoted asMi for i = 1, 2, . . . , H where H is the number of lead
times. Each Mi provides the upper and lower bounds for the ith step-ahead prediction.
The future regressors, including Iclr, Inwp,, and HI, were merged with the corresponding
timestamps of the target variables, as illustrated in Figure 6.4. The reason is that these
corresponding timestamps of future regressors directly explain the target variable at those
timestamps. We configured each submodel to be identical, including two hidden layers of
an ANN, each containing 100 neurons using the ReLU activation function. Additionally,
we added a batch normalization layer before the activation function to improve training
stability. In conclusion, the model includes 95,808 trainable parameters for the ANN and
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99,278 for the LSTM.

Loss function. For each step, the PI and the corresponding target variables are used to
evaluate the loss function at each step (Li), as shown in Figure 6.4. According to the
four-step forecast, the model is trained only once, so the loss function for each step forecast
is aggregated into the overall loss (Ltotal) by summing the individual losses into a single
value as:

Ltotal(θc, θ1, θ2, θ3, θ4) =
4∑

i=1

Li(θc, θi), (6.1)

where θc is the parameters of the common model, and θi for i = 1, 2, 3, 4 corresponds to
the parameters of the submodel for the ith lead time.

Experiment setting

For formulation with hyperparameter including QD, CWCShri, and Sum-k formulation, The
γ was tuned to achieve PICP as 0.9 in the validation set across all forecast lead time.
For certain values of γ, the PICP performance may vary across different forecast steps.
Therefore, we selected the optimal γ where the PICP trend across different forecast steps
closely aligns with 0.9. For Sum-k, we set k to 0.3 and vary λ in the validation set. We chose
λ = 0.9 because the PICP is acceptable, and the large PI width remains sufficiently small.
For QR, the upper and lower quantiles were set at 0.95 and 0.05, respectively, to maintain
a 0.9 confidence level. We utilized ANN as a common model with the same architecture
for benchmarked methods and Sum-k. Moreover, we incorporated Sum-k with LSTM as a
common model to compare performance across more advanced models, while the submodel
architectures remain consistent across all methods. We used the Adam optimizer as a
numerical method to solve for optimal model parameters for all methods with a batch size
of 0.3Ntraining. We set the maximum number of epochs to 2,000 to terminate the training
process, along with a patience of 100 for early stopping. We chose the learning rate by
observing the loss as it converges during training.

Result and discussion

Table 6.5 compares evaluation metrics, including PICP, PINAW, the Winkler score,
PINALW, and the reduction ratio, assessed on the test set for each lead time. For PICP
results, all methods that require tuning of γ can achieve the desired coverage probability
across all steps, while the PICP for QR falls below 0.9 at the 30-minute ahead. This re-
sult indicates that the formulation incorporating the trade-off hyperparameter offers greater
flexibility in selecting the operating point to achieve the desired PICP. However, QR, which
requires only a confidence level to align with the upper and lower quantiles, does not ensure
achieving the desired PICP when losses are aggregated from various lead times. Comparing
PI width among the same ANN architecture, Table 6.5 shows that the Sum-k has the lowest
PINALW for all lead times and also has the lowest PINAW at 15 and 45 minutes ahead.
The lowest PINALW from the Sum-k shows superior performance in reducing the large
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PI width. This reduction in PINALW aligns with our goal of imposing greater penalties
on larger PI widths. Regarding the Winkler score, QR demonstrates the best performance
since the pinball loss used to train QR is equivalent to the Winkler score. This shows that
the PI from QR closely matches quantiles 0.95 and 0.05. However, the Sum-k exhibits
the highest Winkler, indicating that the PI from Sum-k deviates the most from quantiles
0.95 and 0.05. This result aligns with the findings from experiment 3, where the lowest
PI width is typically achieved without aligning the PI to a specific quantile. In many real
applications, such as solar forecasting, it is not necessary for PI to match a fixed quantile,
as the main focus is on the PI width and PICP.

Figure 6.5 illustrates a performance comparison among all methods across all lead
times in the unit of W/m2. It emphasizes that all methods can achieve the desired PICP
with an acceptable value across all lead times except for QR. For the Sum-k, with proper
tuning, we can achieve the lowest PINALW while also demonstrating good performance
in PINAW. As the number of forecast steps increases, PI widths typically expand due to
greater uncertainty in the time series data with longer lead times. Figure 6.5 shows that the
Sum-k exhibits a PI width that aligns with this trend, demonstrating a wider PI width as the
forecast lead time increases. However, this trend is not assured for all methods, particularly
when all lead time losses are combined and trained at the same time. This is evident in the
PINAW within 45 and 60 minutes of lead time in Figure 6.5. In the training process, the
longest lead time usually involves the highest PI width due to its inherent nature, so the
model may prioritize reducing the PI width when minimizing the overall loss.

Figure 6.6 shows a comparison of the time series plot of solar irradiance predicted
15 minutes ahead between QD and Sum-k using the same ANN. The time series plots
are displayed separately under different sky conditions to compare the effectiveness of each
formulation in various scenarios of uncertainty. For each condition, we select the first four
dates where QD provides the widest PINAW, calculated by averaging the PI width for each
day to compare PI characteristics. The Sum-k effectively reduces the PI width on partly
cloudy and cloudy days, which involve high volatile noise from cloud cover while maintaining
a PICP of 0.9. Additionally, with a properly chosen λ in Sum-k, the PI width under clear-
sky conditions remains effective, even with lower volatility in noise compared to QD. As
observed in clear sky conditions, the PI width from Sum-k is narrower at noon, while it is
usually wider in the morning and evening. This result from the Sum-k provides a narrower
PI width in high uncertainty data, which usually occurs at noon, while also a wider PI width
in low uncertainty region, which usually occurs in the morning and noon.

The performance comparison between Sum-k ANN and LSTM is also demonstrated
in Figure 6.7. The LSTM exhibits the lowest PINALW across all lead times, showing some
improvement over PINAW in comparison to ANN. Figure 6.5 also shows better results
in PINALW than ANN for all lead times. When monitoring the validation loss, the final
validation loss at which training terminates is lower for LSTM than for ANN, indicating
its superior ability to minimize loss, corresponding to a lower PINALW. The time series
comparing the 15-minute-ahead PI of ANN and LSTM from Sum-k loss. We select the
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first four dates with the highest PINAW in the ANN model for each sky condition. Next,
we compare the PI characteristics of ANN and LSTM on these dates when ANN performs
poorly. The PI from the two models reveals similar characteristics. When ANN generates
large PI widths, the LSTM can decrease these large PI widths. As the same loss function,
the overall PI’s shape is comparable, although their different performances vary slightly
based on the inherent characteristics of the model. In conclusion, this result indicates
that Sum-k is suitable for training more complex NN architectures using gradient-based
algorithms, allowing the integration of advanced architectures to enhance PI performance.

When PI is applied in a real application, the 4-step ahead PIs are released during a
specified time shown in Figure 6.8. This figure compares the PI in forecast mode between
QD and Sum-k using the same ANN model. Figure 6.8(a) illustrates instances where the
PIs cover the future actual irradiance across all lead times. In this case, Sum-k exhibits
a narrower PI width compared to the QD when the chosen date involves some degree of
uncertainty. However, since our PI is designed to cover the data with a 0.9 confidence
level, there remains a 0.1 probability that the actual future irradiance will fall outside the
PI, as illustrated in Figure 6.8(b). This behavior is typical because the PI estimation can
only ensure reliability at the confidence level specified by the user. As a result, the PI from
Sum-k can successfully achieve PICP at the confidence level with significantly reduction in
the large PI widths.

In overall performance in Table 6.5, we quantify the reduction ratio to illustrate the
extent to which Sum-k LSTM can reduce the large PI widths compared with benchmarked
methods. The reduction of large PI widths of solar irradiance (I) forecasts, ranging from
7.7% to 30.7% across all lead times. Since the generated solar power (P ) is linearly propor-
tional to the irradiance (I), several methods can be used to convert I to P . One common
approach is to estimate the proportionality constant α in the relationship P = αI using
least squares estimation. In Amnuaypongsa et al. (2025), the author proposed a method for
estimating solar panel efficiency that accounts for curtailment effects—situations in which
the output power P does not ideally follow the irradiance I, but is intentionally reduced to
prevent generation from exceeding demand. As a result, reducing the PI width of I leads
to a proportional decrease in the uncertainty of solar power forecasts, which could further
lower operational costs for reserve preparation.
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Table 6.5: Comparison of PI evaluation metrics on the test set of one-hour-ahead solar
irradiance forecasting, with a resolution of 15 minutes and controlled PICP at 0.9 in the
validation set. The bold value indicates the best performance with an acceptable PICP. The
reduction ratio represents a relative decrease in PINALW from the Sum-k LSTM reference,
calculated as (X − Ref.)/X.

15-minute ahead
Method PICP PINAW Winkler PINALW Reduction ratio
QR 0.912 0.395 0.484 0.638 30.7%
QD 0.895 0.345 0.572 0.499 11.3%
CWCShri 0.895 0.342 0.611 0.501 11.8%
Sum-k ANN 0.892 0.335 0.656 0.449 1.6%
Sum-k LSTM 0.892 0.340 0.675 0.442 -

30-minute ahead
Method PICP PINAW Winkler PINALW Reduction ratio
QR 0.859 0.388 0.547 0.614 18.9%
QD 0.902 0.399 0.627 0.560 11.2%
CWCShri 0.902 0.394 0.647 0.556 10.5%
Sum-k ANN 0.893 0.399 0.694 0.523 4.9%
Sum-k LSTM 0.887 0.377 0.666 0.498 -

45-minute ahead
Method PICP PINAW Winkler PINALW Reduction ratio
QR 0.898 0.449 0.569 0.681 20.9%
QD 0.893 0.458 0.644 0.642 16.2%
CWCShri 0.900 0.457 0.643 0.653 17.7%
Sum-k ANN 0.894 0.428 0.716 0.563 4.4%
Sum-k LSTM 0.892 0.412 0.694 0.538 -

60-minute ahead
Method PICP PINAW Winkler PINALW Reduction ratio
QR 0.889 0.446 0.579 0.684 17.9%
QD 0.880 0.425 0.676 0.608 7.7%
CWCShri 0.901 0.442 0.684 0.640 12.2%
Sum-k ANN 0.896 0.454 0.704 0.589 4.7%
Sum-k LSTM 0.892 0.429 0.713 0.561 -
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Figure 6.6: Experiment 4 result: A comparison of the 15-minute-ahead PI forecast of solar
irradiance, with a confidence level of 0.9, between Sum-k ANN and QD.
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Figure 6.7: Experiment 4 result: A comparison of the 15-minute-ahead PI forecast of solar
irradiance, with a confidence level of 0.9, between Sum-k ANN and Sum-k LSTM.
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Figure 6.8: A comparison between the Sum-k and QD formulations of a real-time 4-step
PI forecast for solar irradiance, released at varying times .



Chapter VII

EFFECTIVENESS OF THE PROPOSED METHODS
ON ENGINEERING SYSTEM APPLICATION

This chapter showcases the effectiveness of the methodology 2 in an engineering
system application, divided into two sections. First, we demonstrate the impact of reducing
the large PI width from the Sum-k formulation on reserve cost preparation. Second, we show
the effect of PI width reduction from the Sum-k formulation in a robust energy management
system.

7.1 Cost evaluation in reserve preparation with prediction intervals

As a solar power provider, the point forecast and its associated PI, defined by the upper
(û(t)) and lower (l̂(t)) bounds, are utilized to determine the reserve requirements necessary
to maintain power balance under uncertainty (Zhao et al., 2021). The point forecast ŷ(t)
represents the expected solar power generation and is typically regarded as the committed
or offered power by the provider. The upper and lower bounds indicate the range within
which the actual solar generation (y(t)) is expected to fall, with a specified confidence
level. In the cost evaluation framework, two types of penalties are considered: provision
penalty and deficit penalty, as illustrated in Figure 7.1. The provision penalty accounts for
the reserve capacity that must be scheduled ahead of real-time operation. This includes
both upward reserve (rU(t)) and downward reserve (rD(t)), calculated as in (7.1). The
upward reserve represents the additional power that must be available in case the actual
generation falls below the committed power, potentially down to the lower bound l̂(t). This
reserve ensures system balance by compensating for shortfalls. Conversely, the downward
reserve accounts for scenarios where actual generation may exceed the committed power,
potentially reaching the upper bound û(t). In such cases, mitigation strategies, such as
energy storage or curtailment, must be planned in advance. During real-time operation,
the deficit penalty is imposed when the actual power generation falls outside the PI, as
defined in (7.2). This directly relates to the PICP. When the actual generation lies below
l̂(t), the shortfall is quantified by rU−(t), representing the amount of lost load. If the actual
generation exceeds û(t), the surplus is captured by rD− (t), or lost opportunity because it
corresponds to the amount of solar curtailment during real-time operation.

rU(t) = ŷ(t)− l̂(t), rD(t) = û(t)− ŷ(t) (7.1)
rU−(t) = max(l̂(t)− y(t), 0), rD− (t) = max(y(t)− û(t), 0) (7.2)

Based on the results from chapter 6, we also generated the point forecast of solar
irradiance using the same model architecture in Figure 6.4 but with one output node per
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Figure 7.1: Four types of reserves quantification using prediction intervals.

Table 7.1: Reserve quantities in MWh calculated as r =
∑

∀t r(t)∆t over 4 months in test
set.

1-step ahead 4-step ahead
QD CWCShri Sum-k QD CWCShri Sum-k

rU 50,485.2 46,504.2 44,832.9 57,273.3 59,208.5 63,331.0
rU− 1,302.0 1,863.2 2,262.9 2,117.6 2,146.5 1,886.1
rD 36,475.3 39,787.2 39,560.5 49,851.3 52,196.2 51,057.5
rD− 1,564.8 1,524.9 1,793.6 1,050.6 906.1 1,277.5

submodel, trained with pinball loss at the 0.5 quantile to estimate the conditional median.
Next, we convert the solar irradiance (I) into solar power (P ), corresponding to an installed
capacity of 100 MW, by using P = ηI where

η =
solar panel efficiency (%) · area of a panel (sqm) · desired capacity (W)

100 · rated power of a panel (W)
We evaluate the reserves for each type following (7.1) and (7.2) on the test set and compare
them among all methods of PI generation. QR is excluded in the comparison due to crossing
PI issue.

The reserves evaluated from each PI construction method for the 1-step (15 min)
and 4-step (60 min) ahead are shown in Table 7.1. The results indicate that in the one-
step ahead scenario, the Sum-k method achieves the lowest upward reserve, as well as
the lowest combined total of upward and downward reserves, which directly corresponds
to a narrower PI width. This outcome aligns with the findings in Table 6.5, where Sum-k
yields the lowest PINAW in the one-step ahead setting. However, this narrower PI comes
with a trade-off regarding the cost of coverage: Sum-k has the highest values of lost load
and lost opportunity because its PICP is slightly lower than that of the other methods,
as it focuses on reducing PI width rather than maximizing coverage. In contrast, under
the four-step ahead scenario, characterized by greater uncertainty, the Sum-k achieves the
lowest lost load, demonstrating its ability to effectively capture the actual power output in
high-uncertainty conditions, while the other methods maintain competitive performance of
other reserve quantities.
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To evaluate the total operating reserve cost, each type of reserve is weighted by its
corresponding price. The cost is then computed as:

Total operating reserve cost =
∑
∀t

(
πUrU(t) + πDrD(t) + πU

−r
U
−(t) + πD

−r
D
− (t)

)
∆t, (7.3)

where πU and πD represent the provision payments for upward and downward reserves,
respectively, while πU

− and πD
− denote the value of lost load and the lost opportunity cost due

to curtailment. These pricing parameters are defined according to Table 7.2, based on Zhao
et al. (2021). We adopt a two-tier pricing scheme for the upward (πU) and downward (πD)
reserve penalties to reflect higher costs associated with larger reserve allocations, following
the practical approach proposed in Frew et al. (2021). Specifically, a base rate of $5.5/MWh
for upward and $0.08/MWh for downward reserve is applied when the reserve requirement
is less than 40 MW, with a 50% increase in the rate for reserve amounts exceeding this
threshold. We also examine two settings for the value of lost load, $50/MWh and $500/
MWh, to demonstrate how scaling this parameter impacts the total operating reserve cost.

Table 7.2: The reserve price.

Reserve price penalty πU πD πU
− πD

−
Price ($/MWh) 5.5, 8.25 0.08, 0.12 50, 500 30
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Figure 7.2: The solar power reserve cost estimated using 60-minute ahead forecasts.

We evaluate total operating reserve costs under a 4-step forecasting scenario to as-
sess potential cost implications in a worst-case context, where wider PIs reflect increased
uncertainty. Figure 7.2 presents the total operating reserve cost under two different values
of lost load (VoLL), with each cost component stacked and compared across different PI
estimation methods, i.e., QD, CWCShri, and Sum-k (proposed). In both VoLL scenarios,
the costs of downward reserves and lost opportunities are relatively minor compared to the
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overall costs, even when reserves are large. This is because managing excessive energy is
much cheaper than acquiring extra energy through upward reserves or compensating for lost
load. When the VoLL is set at $50/MWh, the upward reserve cost becomes the dominant
factor, making the total costs across all methods relatively similar. However, in realistic
power system operations, the VoLL could reach up to $9,000/MWh (Group) or even in ten
thousands (Cartuyvels and Papavasiliou, 2023; California ISO), which strongly penalizes the
load that was not served when actual generation falls below the forecasted lower bound.
In this context, effective PI construction methods should achieve good rU and rD values,
resulting in a narrow PI width that accurately reflects the amount of reserve required before
real-time operation. However, during actual operation, the PICP for each method must not
fall below the confidence level, as the VoLL carries a significantly higher penalty compared
to other costs. Maintaining the PICP above the confidence level ensures that the VoLL
does not escalate excessively. The result under the $500/MWh scenario shows that Sum-k
achieves the lowest total cost among all methods. This advantage stems from its lower
bound more effectively capturing actual generation, thereby minimizing lost load penalties.
In summary, this numerical cost evaluation shows that under high-uncertainty scenarios,
the Sum-k effectively captures system reliability, leading to a reduction in total operating
reserve cost compared to other methods.

7.2 Impact of PI width reduction in robust energy management

This section illustrates a benefit of applying our width penalization in reducing conservatism
in robust energy management (EMS). Figure 7.3 shows the elements of a small building
energy management system (BEMS) operated as a microgrid that consists of electrical
load with peak load of 10 kW, a battery storage unit with 25kWh capacity, and a 5-kW
solar rooftop system. The building is connected to the external grid served by the power
utility where the outgoing power line from the building is a point of common coupling
(PCC). Let Pchg(t), Pdchg(t) be the charging and discharging power of batteries at time t
and denote Ppv(t) and Pload the generated solar power and electrical consumption occurred
at the building, respectively. The power balance equation at the PCC between our system
and the outside grid is the total electrical load subtracted by the total generation:

Pnet(t) = Pload(t)− Ppv(t) + Pchg(t)− Pdchg(t). (7.4)

When Pnet(t) > 0, it is required to draw power flowing from the grid to serve the demand,
while for Pnet(t) < 0, excess self generation creates power flowing back to the grid.

Due to uncertain natures of electrical load and solar power, we can develop a prob-
abilistic forecasting model that provides a prediction of net load defined as net load
≜ Pnet load(t) = Pload(t) − Ppv(t). The power balance equation is represented in terms
of net load as

Pnet(t) = Pnet load(t) + Pchg(t)− Pdchg(t). (7.5)
For EMS optimization, Pnet load(t), is derived from a forecasting model constructed according
to the methodology outlined in this paper. That is, it releases a prediction interval as [L,U ]
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Figure 7.3: Energy management system.

associated with a confidence level of 1 − δ = 0.9 where the PI width is penalized to be
small.

The robust EMS optimizes battery charging and discharging to maximize profit from
selling excess power to the grid while meeting demand. Two formulations are implemented
based on distinct constraint sets.

1. Pessimistic case: Pnet(t) = U(t)+Pchg(t)−Pdchg(t). It corresponds to the formulation
(B.9) which is a robust EMS that considers the worst-case objective under a box
uncertainty set.

2. Optimistic case: Pnet(t) = L(t)+Pchg(t)−Pdchg(t). It corresponds to the formulation
(B.11) which is a robust EMS that considers a chance constraint of Pnet(t).

The details of two robust EMS optimizations and implementations over a 10-month period
are explained in Appendix B and Appendix C. Maximized profit corresponds to minimized
net electricity cost, defined as the cost of grid-purchased electricity minus the value of
electricity sold back to the grid. The net electricity cost interval (representing pessimistic
and optimistic scenarios) will be compared against intervals obtained using the benchmarked
forecasting methods.

Figure 7.4(a) shows an example of battery operation over three consecutive days
under rolling robust EMS in two scenarios. For the first two days where the net load are
positive, the battery typically charges in the early morning (because the tariff is cheaper)
to ensure sufficient state of charge (SoC) for later discharge within the four-hour horizon.
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The charging energy is less in the optimistic scenario compared to the pessimistic one. On
the third day with negative net load, the optimistic scenario leaves the battery idle and sells
all excess energy to the grid. Consequently, this scenario yields a lower net energy (Pnet)
and thus a lower net electricity cost compared to the pessimistic scenario.
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Figure 7.4: Robust EMS operation and the net electricity cost

Table 7.4: Deviation of the net electricity cost from the ideal case.

Deviation from ideal QR QD CWCShri Sum-k
Pessimistic (%) 46.2 47.2 54.4 37.9
Optimistic (%) -22.2 -36.0 -14.6 -16.8

Using the actual net load in the power balance equation for optimization defines
an ideal battery operation. Comparing net electricity costs across pessimistic, optimistic,
and ideal scenarios reveals the conservatism of the robust design using PI bounds where
smaller deviations are better. Table 7.4 shows non-negative deviations for the pessimistic
case (net load overestimation) and negative deviations for the optimistic case (net load
underestimation). The Sum-k method demonstrates the smallest sum of absolute deviations,
indicating superior PI quality in the robust EMS. Figure 7.4(b) illustrates the cumulative
net electricity cost for the pessimistic (PI upper bound) and optimistic (PI lower bound)
scenarios. For the upper bound, a PI estimation method that yields a lower net cost indicates
superior performance, whereas a higher net cost is preferable for the lower bound. Notably,
the Sum-k method exhibits the narrowest overall range between the upper and lower bounds
(approximately 48k THB in 10 months) compared to benchmarked methods (60k THB for
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QR, 73k THB for QD, 60k THB for CWCShri), signifying reduced uncertainty in net cost
analysis for EMS.

Integrating PIs into optimal scheduling for renewable energy and EMS can be achieved
through various methodologies. For instance, the study by Dong et al. (2022) employed
robust model predictive control, utilizing min-max optimization with a budget constraint on
renewable energy prediction errors. Their sensitivity analysis revealed a monotonic increase
in operating cost in proportion to an expanded prediction error budget, which directly reflects
the PI widths. In addition, a robust economic dispatch-unit commitment (EDUC) frame-
work for renewable energy (RE) sources within microgrids was investigated in Aguilar et al.
(2024). Their study utilized RE forecasts derived from ensemble Sequence-to-Sequence
(Seq2Seq) models, with PIs calculated at varying confidence levels. The findings demon-
strate a direct correlation between increased operating costs and wider PIs, as the confidence
level increases. These examples showed the influence of PI width on reducing conservatism
within robust strategies for RE sources. Consequently, a reduction in PI widths directly
correlates with a decrease in operating costs in EMS.



Chapter VIII

CONCLUSION

This thesis presents methodologies for generating prediction intervals (PIs) while ad-
dressing two conflicting objectives: reliability (PICP) and sharpness (PI width). A PI con-
sists of upper and lower bounds at a specified confidence level. The goal is to develop
optimization frameworks that ensure PICP achieves the desired probability (high PICP)
while minimizing PI width. To bridge the gap in the literature, this thesis primarily fo-
cuses on reducing excessively large PI widths, which can lower operational costs in various
applications, particularly in reserve power generation planning.

We propose two methodologies: pinball-based formulation (methodology 1: Sec-
tion 3.1) and PICP with width control formulation (methodology 2: Section 3.2). The
first methodology consists of three optimization problems, P1, P2, and P3, sharing the
same pinball objective with different width control constraints: average width, large width,
and maximum width. The first methodology introduces three optimization problems—P1,
P2, and P3—that share a pinball loss objective but impose different width control con-
straints: average width, large width, and maximum width. This approach employs a linear
additive model (3.1), allowing the optimization to be formulated as a convex program, which
guarantees numerical advantages in reaching the global minimum. The second methodol-
ogy leverages the Sum-k loss function, which consists of two components: PICP and large
PI width (3.8). The Sum-k function penalizes large PI widths by summing the K largest
components of the width function (3.9). Additionally, a smooth tanh approximation (3.17)
is introduced for the count function in the PICP term, offering a simpler alternative to
the commonly used sigmoid function, ensuring differentiability. This methodology is im-
plemented within a nonlinear modeling framework. Given the nonlinear nature of both the
loss function and the model, the Sum-k loss is formulated as an unconstrained nonlinear
optimization problem, solvable using gradient-based algorithms. All formulations proposed
in this work include a hyperparameter, γ, which controls the trade-off between PICP and
PI width.

We conduct experiments on both synthetic and real-world solar irradiance forecasting
data to evaluate the effectiveness of our proposed methods. The experiments are divided
into two parts: Chapter 5 covers the first methodology, while Chapter 6 focuses on the
second methodology. For each methodology, we analyze the trade-off between PICP and
PI width by varying γ, examine histograms of PI widths to understand their distribution and
assess the characteristics of the PI generated by each formulation. For the first methodol-
ogy, in synthetic data experiments, the trade-off analysis reveals that P3 outperforms other
approaches in reducing the maximum PI width while maintaining the desired probability,
particularly when the data is highly corrupted by heteroskedastic noise. The histogram of
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PI widths demonstrates that P3 induces a two-sided inward shift in the distribution, with
decreasing γ leading to reduced variation in PI width. When γ reaches a critical point,
all PI widths in P3 become equal due to the activation of the maximum constraint. In
the solar irradiance forecasting application, P3 also shows superior, effectively narrowing PI
widths during periods of high fluctuations and uncertainty while allowing slight widening
in low-uncertainty regions. For the second methodology, in the synthetic data experiment,
the trade-off curve shows that the Sum-k approach successfully achieves the target PICP
probability while significantly reducing large PI widths. The histogram indicates a two-
sided inward shift, where large PI widths are effectively reduced while narrow PIs experience
slight widening. In the solar irradiance forecasting application, Sum-k produces the nar-
rowest PI widths among all benchmarked methods in high-uncertainty conditions, such as
cloudy weather, while maintaining a competitive average PI width compared to other ap-
proaches. Additionally, results demonstrate the compatibility of Sum-k with more complex
models, such as LSTMs. We also demonstrated the effectiveness of Methodology 2 in a
real engineering system application in Chapter 7, including reserve preparation costs and
robust energy management. According to the results, the Sum-k can reduce the reserve
preparation cost compared to other methods by lowering the value of the lost load cost,
which shows that our formulation can effectively cut reserve costs. Additionally, the results
from robust EMS indicated that the Sum-k can estimate a narrower PI of the net load
forecast compared to other methods when performing rolling EMS. The findings revealed
that the Sum-k can estimate the narrowest range of the cumulative net electricity cost
deviation from the ideal, and in the pessimistic case, the Sum-k shows the lowest deviation
of the cost from the ideal.

Methodology 1. The advantage of the first methodology stems from the convexity of
the proposed optimization problems. By utilizing a linear additive form as a model, the
approach offers high interpretability, making it easier to derive insights into the relationships
between features and the target variable. However, this model requires extensive feature
engineering to effectively represent such nonlinearity present in the data. Additionally, since
the methodology addresses two competing objectives—PICP and PI width—the pinball-
based formulation provides only an indirect way of optimizing PICP. Minimizing the pinball
loss results in a solution that best approximates a specific quantile but does not necessarily
ensure the narrowest PI width. Furthermore, the hyperparameter γ must be required to be
carefully tuned to balance these objectives, necessitating multiple solving of the optimization
problem with different γ values to find the most suitable trade-off.

Methodology 2. This methodology provides a direct approach to optimizing both PICP
and PI width by incorporating them into the loss function, ensuring an optimal balance
between the two objectives. Since the loss function is nonlinear, it supports the use of
nonlinear models, such as neural networks, while maintaining the problem as a nonlinear
program. Unlike linear models, nonlinear models can capture complex patterns in the data,
which makes them more suitable for addressing intricate relationships in the task. Addi-
tionally, the smoothness of the loss function allows for the application of gradient-based
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optimization, the standard training method for neural networks, enabling the use of more
complex models. The Sum-k loss effectively reduces large PI widths by penalizing the sum
of the K largest widths while still incorporating the narrow PI widths in the loss. Fur-
thermore, introducing three hyperparameters—γ, k, and λ—enhances the flexibility of the
Sum-k formulation, allowing users to fine-tune the PI to meet specific requirements. How-
ever, tuning these hyperparameters can be challenging and requires prior knowledge of the
data. The parameter γ must be adjusted to achieve the desired PICP probability. Selecting
k is difficult in applications where identifying high-uncertainty regions is not straightfor-
ward. Similarly, λ needs careful tuning to balance large and narrow PI widths, ensuring an
appropriate distribution of PI widths. The presence of multiple hyperparameters increases
the complexity of tuning. Moreover, since neural network models are highly nonlinear, they
require huge computational resources and result in a loss of interpretability, leading to a
lack of understanding of the relationship between predictors and the target variable.

Further implementation. The proposed method addresses conflicting multi-objective op-
timization by introducing the trade-off hyperparameter γ, which controls the balance be-
tween PICP and PI width. However, a key limitation is that selecting the appropriate γ
requires multiple solving optimization problems to reach the desired probability. To enhance
this multi-task learning approach, a more efficient multi-objective optimization framework
could be employed, allowing γ to be dynamically adjusted during training. This adaptive
mechanism would enable the model to efficiently converge to an optimal balance between
the conflicting objectives without requiring repeated retraining. Additionally, the proposed
framework could be extended to integrate point forecasts as an additional model output,
with the loss function modified to incorporate regression loss alongside PICP and PI width
terms. This expansion would introduce additional objectives, increasing the complexity of
the optimization problem. Consequently, more advanced optimization techniques, such as
multi-objective algorithms, may be required to effectively handle the increased number of
objectives. In practical reserve preparation, based on our experimental results demonstrating
the effectiveness of our approach, a one-hour reserve preparation horizon may not provide
sufficient time to respond adequately. Extending the horizon to one day ahead offers a more
realistic representation of actual reserve planning and allows for more effective preparation.
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Appendix A

LITERATURE REVIEW OF BENCHMARKED
EXPERIMENTS

We present the literature review of both the benchmarked method and scheme applied
in this thesis.

Performance evaluation. The evaluation metrics of the prediction interval (PI) can be
categorized into three groups: coverage probability, PI width, and aggregated metrics. The
coverage probability reflects the reliability of the probabilistic forecasting desired to reach
a given confidence level (1 − δ). The popular metrics in this group are PICP and average
coverage error (ACE = PICP − (1 − δ)). Next, The PI width is assessed, referring to the
sharpness of PI. There are various ways to assess the PI width, such as calculating the
average PI width or the root mean square of the PI width. The average PI is equivalent to
the ℓ1 of the PI width, while the root mean square is equivalent to the ℓ2 of PI width, being
more sensitive to larger widths. The aggregated metrics combine both PICP and PI width
evaluations into single-value metrics. Examples of aggregated metrics include the Winkler
score, coverage width-based criterion (CWC), and the proposed loss, which incorporates
both PICP and PI width terms.

Hyperparameters tuning. The methodology for constructing PI involves three groups of
hyperparameters: formulation hyperparameters, model hyperparameters, and optimization
algorithm hyperparameters, which affect the performance of the PI. First, most of the pro-
posed loss functions have the formulation hyperparameters to control the trade-off between
the PICP and PI width. The choice of formulation hyperparameter has a direct impact on
both the PICP and the PI width. This hyperparameter is determined based on the specific
characteristics of the loss function. For example, setting the formulation hyperparameter to
penalize more when the PICP falls below the desired probability can lead to a higher PICP
while also increasing the PI width. Next, the model hyperparameters, the neural network
model also has the model hyperparameters, such as the number of hidden layers, the number
of neurons, or the choices of the activation function. The model hyperparameters have an
impact on the complexity of the model. A more complex model can accurately capture the
nonlinearity characteristics of the dataset, which may result in a high PICP and narrow PI
widths. Then, the algorithm hyperparameters, the optimization algorithm, requires tuning
certain hyperparameters. The optimization hyperparameters have an indirect effect on the
PICP and PI width. When the optimization hyperparameters are appropriately set, the loss
function can converge to the actual minimum point, which reflects the best performance
the model can achieve and the actual characteristics of the designed loss. When address-
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ing a highly nonlinear multi-objective problem, different methods are employed, including
heuristic and gradient-based approaches. The heuristic algorithm involves optimizing nu-
merous hyperparameters based on the algorithm’s definition. On the other hand, in the
gradient-based algorithm, optimization hyperparameters, such as the learning rate, need to
be selected according to the loss function. The performance of PI is influenced by many
hyperparameters, making it challenging to compare it across different methods. To com-
pare our proposed method with others, it’s important to establish a fair comparison scheme
to determine which methods produce better PI. In the following paragraph, we provide a
literature review of how authors compare their methods with the work of others.

Literature reviews. In this part, we provide the literature on benchmark experiments,
including the proposed methods, the evaluation metrics, the benchmarked methods, the
dataset, and the experiment setting. We summarize the related literature in Table A.1 and
Table A.2. We focus on the experiment setting, which describes how they compare the
performance of their proposed methods with other methods. From the literature, there
are two schemes to benchmark the methods for constructing the PI. We refer to the two
schemes as the direct comparison and the controlled PICP comparison as shown in Table A.1
and Table A.2, respectively. Details are provided in the next paragraph.

Direct comparison. The direct comparison approach uses certain hyperparameters fol-
lowing recommendations from the reference work and compares them with the proposed
method. This study presents a comparison of various evaluation metrics across three groups.
Their proposed method demonstrates a significant improvement in reducing the PI width
and performs well in aggregated metrics across multiple datasets, as demonstrated in their
study. In Pearce et al. (2018), the authors proposed the quality-driven loss (LossQD) with
formulation hyperparameter, then the formulation hyperparameter was tunned through trial
and error and used it consistently for every dataset. The formulation hyperparameters in
the benchmarked methods were set based on the reference work. In the studies by Chen
et al. (2024) and Chen et al. (2023), a multi-objective gradient descent (MOGD) is used
to determine the optimal trade-off hyperparameter for each iteration. This results in a
common descent direction for the QD and WL-LUBE losses, respectively. There are two
additional hyperparameters for this method that are set as upper and lower bounds for the
optimal trade-off hyperparameter during the optimization process. These hyperparameters
are obtained through a trial-and-error approach in their study. The formulation hyperpa-
rameter in the benchmarked method is set based on the original work and then fine-tuned
through trial and error for the specific dataset. Meanwhile, the model hyperparameters and
the optimization hyperparameters are kept consistent across all methods. In Li et al. (2020),
the authors introduced an adjusted version of CWCori called CWCLi. They also proposed an
LSTM model and compared it with different NN model architectures. The loss function was
adjusted by adding two new hyperparameters, resulting in a total of four hyperparameters
for CWCLi. The hyperparameters for CWCori were set based on a reference work, while the
two new hyperparameters of CWCLi were chosen through trial and error. The authors then
compared their LSTM model, which had its hyperparameters determined through trial and
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error, with other models whose hyperparameters were based on the reference work. The
pattern that the author introduced as an improved version of the formulation, along with
the proposed model architecture, can be found in Saeed et al. (2024). The author utilized
the formulation hyperparameters and benchmarked model hyperparameters based on the
referenced work, while the hyperparameters of the proposed model were chosen through a
trial and error process. In Lai et al. (2022), the authors introduced a new loss function com-
prising two terms with a formulation hyperparameter (λ) to control the trade-off between
the PI width and PICP. The first term is composed of PI width and point forecast error
derived from the log-likelihood function of the Gaussian distribution. The second term is the
coverage term, which is similar to the coverage loss in the QD loss. To select an appropriate
hyperparameter set of their loss, the authors use fine-tuning in the learning rate, decay rate,
λ, and training epochs to obtain the PICP as the desired probability. They also have the
performance analysis of different values of λ on selected two datasets and also suggest that
the desired PICP can be obtained by varying λ. The formulation hyperparameters of other
benchmarked methods are set based on the reference work. The model architechture is
consistent along the methods. The author criticizes the fact that reaching the desired PICP
is mentioned as being achievable by adjusting the trade-off hyperparameter, which depends
on the dataset. However, only the formulation hyperparameter is varied for their loss, while
the formulation hyperparameter of the benchmarked method is kept as a reference sugges-
tion. This results in an unfair comparison, as they adjust the hyperparameters for only their
method, but not for the others. In conclusion, the first benchmarked approach may be the
unfair approach to comparing different formulations because the suggested hyperparameters
in the reference work may not yield the same performance across different datasets. The
author could have tuned the hyperparameters for their proposed method to claim better
performance through trial and error.

Controlled PICP comparison. The second approach is to adjust the hyperparameters of
both the proposed method and the benchmark methods to achieve the controlled PICP. They
strive to control the PICP, compare the PI width with aggregated metrics across all methods
at this operating point, and present the achievable PICP for each method. The result could
lead to significantly better performance in reducing PI width and the aggregated loss across
many datasets. It is also necessary to report the PICP for each method, which can be
presented as the mean and standard deviation of PICP across various datasets. In the study
by Ye et al. (2016), the CWCYe is proposed with hyperparameters chosen to attain a PICP
closest to 0.9. Throughout the experiment, the model structure remains consistent, and the
optimization algorithm is selected following the reference. Subsequently, a comparison is
made on the performance of reducing the PI width across all methods. This scheme offers a
fair comparison of different loss functions, but it only displays the PI width metric, making
it difficult to illustrate the various distributions of PI width. In Alcántara et al. (2022),
the authors combine model hyperparameters, formulation hyperparameters, and algorithm
hyperparameters into the hyperparameter space. Then, they perform a grid search to choose
the right set of hyperparameters for each method and dataset. This approach involves an
extensive search in the hyperparameter space, which is very computationally expensive.



114

Additionally, the model hyperparameters should be consistent across all methods, and the
optimization hyperparameters should be adjusted based on the loss, not the performance.
In S. Salem et al. (2020), they proposed a new alternative version of QD called QD+ by
adding mean square error (MSE) and constraint penalization terms. The QD+ loss involves
three hyperparameters λ1, λ2, ξ. The hyperparameters λ1 and λ2 are adjusted using random
search to find the best combination. The goal is to achieve a mean PICP equal to the
desired probability with a maximum difference of 0.01. The combination with the lowest
PINAW and MSE is then selected. For the benchmarked methods, the hyperparameter
in QD loss is varied to achieve PICP using the same criterion as their method for a fair
comparison.

Our scheme of benchmarking According to our thesis, we aim to propose new for-
mulations that also have a formulation hyperparameter controlling the trade-off between
the PICP and PI width. We plan to use the second benchmarking approach to select the
formulation hyperparameters that result in the PICP being closest to the desired proba-
bility. Then, we will compare the PI width term to evaluate which methods provide the
narrower PI width. To demonstrate the different characteristics of PI width from various
formulations, we will compare the entire histogram of the PI width that has the same PICP.
The histogram of PI width may clearly highlight advantages over just an average width.
Furthermore, a few studies have analyzed the characteristics of the PI width based on the
formulation. Next, we aim to control the model hyperparameters to be the same across
all benchmarked methods. For the optimization hyperparameter, we aim to select the ap-
propriate optimization hyperparameters based on the characteristic of the loss by observing
the loss to reach the minimization. The full technical details of our scheme are provided in
the experiment setting section.
Table A.1: Summary of literature of direct comparison approach on benchmarked experi-
ments evaluating the performance of the prediction intervals.

Ref. Method/
Loss/Model

Evaluation
metrics

Benchmarked
methods

Hyperparameters tuning Dataset

Pearce
et al.
(2018)

Quality-driven
PI/ QD/ ANN

PICP,
PINAW,
LossQD

MVE-GD,
MVE-PSO,
LUBE-GD,
LUBE-PSO,
QD-GD,
QD-PSO

Formulation: the trade-
off hyperparameter is deter-
mined through trial and er-
ror for each dataset, while
the softening factor re-
mains constant across all
datasets.
Model: the number of neu-
rons depends on the size of
the dataset
Algorithm: learning rate,
decay rate, and number of
training epochs are tuned
using random search

Synthetic data
and ten open-
access datasets
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Ref. Method/
Loss/Model

Evaluation
metrics

Benchmarked
methods

Hyperparameters tuning Dataset

Chen
et al.
(2023)

MOGD WL-
LUBE/ WL-
LUBE/ BiGRU

PICP,
PINAW,
ACE,
Winkler

MVE, QR,
CWC-LUBE,
WL-LUBE

Formulation: based on the
reference work, then fine-
tuning
Model: controlled the
same architecture based on
reference work
Algorithm: not available

Wind power

Chen
et al.
(2024)

MOGD QD/
QD/ BiGRU

PICP,
PINAW,
ACE,
Winkler ,
LossQD

MVE,
DeepAR,
QR, LossHIA,
QD-LUBE

Formulation: based on the
reference work, then fine-
tuning
Model: controlled the
same architecture based on
reference work
Algorithm: batch size =
128, learning rate = 0.001

Wind power

Li et al.
(2020)

CWCLi/CWCLi/
LSTM

PICP,
PINAW,
PINRW,
INAD,
CWC

Compare
among differ-
ent models:
SVM, KELM,
ANN, LSTM

Formulation: µ and η are
determined based on the
reference work, while α and
β are determined through
trial and error.
Model: trial and error
Algorithm: means of trial-
and-error

Wind power

Saeed
et al.
(2024)

improved QD/
improved QD/
GMSCSM

PICP,
PINRW,
INAD,
CWCLi,
Compu-
tational
time

LUBE ANN,
Bootstrap
ELM, QD-
GMSCSM,
QDimp-LSTM

Formulation: based on the
reference work
Model: trial and error
Algorithm: trial and error

Wind power

Quan
et al.
(2014a)

CWCQuan/
CWCQuan/
ANN

PICP,
PINAW,
CWCQuan,
Compu-
tational
time

CWCori, delta
method

Formulation: η is set
based on trial-and-error
Model: selected by us-
ing k-fold cross-validation
method
Algorithm: not available

6 datasets: a
scalar func-
tion with
heterogeneous
noise, a vector
function with
homogeneous
noise, dry blub
temperature
data, plasma
beta-carotene
data, two sets
of real baggage
handling system
dataset

Shrivastava
et al.
(2015)

CWCShri/
CWCShri/ SVM

PICP,
ACE,
PINAW,
Winkler,
CWCShri

Naive, QR,
CART, LR,
Bootstrap,
MVE, LUBE
NN, SVM-
PSO

Formulation: trial-and-
error and set different for
various case studies
Model: grid search
Algorithm: not available

Synthetic: Sinc
function, Real
world data:
electricity price
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Ref. Method/
Loss/Model

Evaluation
metrics

Benchmarked
methods

Hyperparameters tuning Dataset

Lai
et al.
(2022)

Uncertainty-
based PI
(UBPI)/
UBPI/ ANN

PICP,
PINAW

QR, QRGBDT,
IntPred, QD,
QD+

Formulation: Random
search of λ to reach PICP
= 0.95
Model: controlled the
same across all methods
where the number of neu-
rons depends on the size of
the dataset
Algorithm: Adam opti-
mizer with learning rate
= 0.2, decay rate = 0.95,
training epochs = 2000
which obtained by random
search

Synthetic data:
two sinusoidal
functions, and
Real-world
data: 9 open-
access datasets
from UCI

Table A.2: Summary of literature of the controlled PICP comparison approach on bench-
marked experiments evaluating the performance of the prediction intervals.

Ref. Method/
Loss/Model

Evaluation
metrics

Benchmarked
methods

Hyperparameters tuning Dataset

Ye
et al.
(2016)

CWCYe/CWCYe/
ANN

PICP,
PINAW,
PINRW,
PIARW

CWCori,
CWCQuan

Formulation: η1, η2 are
selected to achieve a PICP
of 90%
Model: trial and error
Algorithm: based on the
reference work

Flood forecast

Li and
Jin
(2018)

Multi-
objective/
(1 - PICP, 1
- PINAW)/
LSSVM

PICP,
ACE,
PINAW,
Winkler,
CWCori,
Compu-
tational
time,
Pareto
front

Compare
among dif-
ferent multi-
objectives
optimization
algorithms:
MOALO,
NSGA-II,
PESA-II,
SPEA-II,
MOPSO

Formulation: selected the
operating point in Pareto
from the lowest CWC to be
compared
Model: not available
Algorithm: controlled to
have equal numbers of
hyperparameters and the
same loss function

Wind speed pre-
diction

Alcántara
et al.
(2022)

Hypernetwork
(HN)/
(PINAW, 1
- PICP)/ ANN

PICP,
PINAW,
PICP
PINAW

QR, QD Formulation: Select the
operating point in the
Pareto front that meets the
desired PICP.
Model, algorithm: Both
hyperparameters are aggre-
gated as a set, and a grid
search is performed to find
the best combination.

Solar and wind
energy
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Ref. Method/
Loss/Model

Evaluation
metrics

Benchmarked
methods

Hyperparameters tuning Dataset

S. Salem
et al.
(2020)

QD+ with
new aggrega-
tion method
(SNM)/QD+/
ANN

PICP,
PINAW,
MSE

SNM-QD+,
SEM-QD+,
SEM-QD,
MVE

Model: controlled the
same across all methods
where the number of neu-
rons depends on the size of
the dataset
Formulation, algorithm:
learning rate, decay rate,
number of epochs, λ1, λ2

are selected when mean
PICP is equal to the desired
probability with variation
no more than 0.01, then
select the hyperparameters
with lowest PINAW and
MSE.

ten open-access
datasets from
the UCI dataset



Appendix B

ROBUST EMS FORMULATIONS

This section describes the details of robust EMS used in section 7.2. From the system
description, the system dynamics and constraints are contributed from the power balance
equation and battery conditions as follows.

1. Power balance equation.

Pnet(t) = Pload(t)− Ppv(t) + Pchg(t)− Pdchg(t). (B.1)

2. Battery dynamics. Let SoC(t) be the state-of-charge of the battery at time t that
has the dynamics described by

SoC(t+ 1) = SoC(t) + 100%
BattCapacity

(
ηcPchg(t)−

Pdchg(t)

ηd

)
∆t (B.2)

where 0 < ηc, ηd < 1 are charging and discharging efficiency coefficients, respectively.
The SoC variable obeys a linear state-space equation where Pchg(t) and Pdchg(t) act as
the inputs. Here, we employ separate variables for charging and discharging powers,
Pchg and Pdchg, that is different from using a single variable Pbatt with its sign indicating
charging/discharging status.

3. Charge and discharge limit rate. For t = 1, 2, . . . , T ,

0 ≤ Pchg(t) ≤ max charge rate, 0 ≤ Pdchg(t) ≤ max discharge rate, (B.3)

4. SoC range. To save battery life, we keep the SoC within a desired range.

SoCmin ≤ SoC(t) ≤ SoCmax, t = 1, 2, . . . , T. (B.4)

The optimization variables in our EMS optimization are:

• Pchg(t), Pdchg(t): battery charging/discharging power, for t = 1, 2, . . . , T .

• SoC(t): battery’s state of charge for t = 1, 2, . . . , T .

• Pnet(t): net power between the building and the external grid, for t = 1, 2, . . . , T .
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Objective function The objective function is a weighted sum of economic and battery
objectives: Jcost + wbJbatt where the weight wb > 0 controls the trade-off between the two
objectives.

1. Economic objective: Given utility buy rate b(t) and sell-back rate s(t) (THB/kWh),
the objective is to minimize the negative profit, which is the difference between energy
expense and revenue from selling excess energy.

Jcost = ∆t
T∑
t=1

b(t)max(0, Pnet(t))− s(t)max(0,−Pnet(t)) (B.5)

Note that the revenue is calculated from Pnet(t) < 0 where the power flows back
to the grid, so we employ max(0,−Pnet(t)) to represent the portion of negative net
power to be sold.

2. Battery objective: To avoid abrupt battery charging and discharging, consecutive
changes in Pchg(t) and Pdchg(t) are penalized.

Jbatt = ∆t
T−1∑
t=1

|Pchg(t+ 1)− Pchg(t)|+∆t
T−1∑
t=1

|Pdchg(t+ 1)− Pdchg(t)|. (B.6)

Uncertainty The power balance equation contains Pload and Ppv taken as problem pa-
rameters. Due to uncertain natures of electrical load and solar power, we can develop a
probabilistic forecasting model that provides a prediction of net load defined as net load
≜ Pnet load(t) = Pload(t)− Ppv(t). The power balance equation (B.1) is altered to

Pnet(t) = Pnet load(t) + Pchg(t)− Pdchg(t). (B.7)
To run EMS optimization, Pnet load(t) is from a forecasting model that is constructed ac-
cording to the methodology proposed in this paper. That is, it releases a prediction interval
as [L,U ] associated with a confidence level of 1−δ = 0.9 where the PI width is penalized to
be small. In other words, we can define an uncertainty set of the net load as a rectangular
box set:

U = {Pnet load(t) | L(t) ≤ Pnet load(t) ≤ U(t) }.
The power balance equation (B.7) becomes the inequality:

L(t) + Pchg(t)− Pdchg(t) ≤ Pnet(t) ≤ U(t) + Pchg(t)− Pdchg(t). (B.8)

Robust EMS with uncertainty set The robust EMS considers the worst-case objective
where it can be shown that the maximum of negative profit under uncertainty of net load
occurs when the net load achieves its upper bound. The minimization of worst-case negative
profit can be described as follows.

minimize Jcost + wbJbatt
subject to Pnet(t) = U(t) + Pchg(t)− Pdchg(t),

Battery constraints (B.2),(B.3),(B.4) .
(B.9)
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Robust EMS with chance constraint We consider a probabilistic constraint that guar-
antees the uncertain variable lying within a region. Since we construct a PI of net load asso-
ciated with a confidence level, we can guarantee that prob (Pnet load(t) ∈ [L(t), U(t)]) = 1−δ
and that Pnet(t) is affine in Pnet load(t). It then follows that the probability that Pnet(t) lies
within

L(t) + Pchg(t)− Pdchg(t) ≤ Pnet(t) ≤ U(t) + Pchg(t)− Pdchg(t) (B.10)
is 1 − δ. We can then replace the chance constraint by using (B.10) as a constraint in
the robust EMS formulation which suggests that the net power Pnet lies within an interval.
Since the negative profit (B.5) is monotonically increasing with Pnet(t), its minimum over
(B.10) occurs when Pnet(t) achieves its lower bound, L(t) + Pchg(t)− Pdchg(t). The robust
EMS with a chance constraint can be expressed as

minimize Jcost + wbJbatt
subject to Pnet(t) = L(t) + Pchg(t)− Pdchg(t),

Battery constraints (B.2),(B.3),(B.4) .
(B.11)

Since the objective function and constraints are linear in the optimization variables,
the problems (B.9) and (B.11) are linear programs (LP).



Appendix C

ROLLING EMS OPTIMIZATION

We consider the robust EMS that plans the battery operation over a 4-hour horizon
with a resolution of 15 minutes and this process repeats every 15 minutes over a period
of March-Dec, 2023. The rolling EMS optimization is essentially a robust EMS with MPC
(model predictive control) or receding horizon control Mattingley et al. (2011) that works
as follows. At time t, the battery operations in H step-ahead, t + 1, t + 2, . . . , t + H is
planned (here, H = 16). The MPC is performed according to the following steps.

1. Prediction. A net load forecasting model must provide a PI of H-step ahead. That
is,

[L(t+ 1), U(t+ 1)], [L(t+ 2), U(t+ 2)], . . . , [L(t+H), U(t+H)]

are estimated from the forecasting model and used as problem parameters for the
robust EMS formulations.

2. Optimization. The optimizations (B.9) and (B.11) are solved at time t, by using the
estimated PI in the predictive step, and gives the charging/discharging power of the
battery at time t + 1, t + 2, . . . , t +H, denoted as Pchg,ems(t + k), Pdchg,ems(t + k) for
k = 1, . . . , H.

3. Execute. Profiles of Pchg,ems(t+k), Pdchg,ems(t+k) are taken as the input to update the
system dynamics (SoC and net power) but only the first time step is applied. Since
the EMS is rolled every 15 minute, so when the time index t moves to t := t+1, the
realization of net load is revealed, i.e., the actual measurement of electrical load and
solar power are available at time t+ 1, we can calculate the actual Pnet(t+ 1) that is
obtained from applying the first step of battery action as

Pnet(t+ 1) = net loadforecast(t+ 1) + Pchg,ems(t+ 1)− Pdchg,ems(t+ 1). (C.1)

The battery dynamic is also updated according to the first step of battery operation:

SoC(t+ 2) = SoC(t+ 1) +
100%

BattCapacity

(
ηcPchg,ems(t+ 1)− Pdchg,ems(t+ 1)

ηd

)
∆t

(C.2)

Repeating this process over the specified period yields profiles of Pnet and SoC, enabling
the calculation of the minimized cumulative net electricity cost over the horizon presented
in Section 7.2.
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Table C.1: EMS problem parameters and electricity tariffs.

Parameter Value Unit
Battery
Charging efficiency 0.95 -
Discharging efficiency 0.88 -
Max charge rate 5 kW
Max discharge rate 5 kW
Minimum SoC 20 %
Maximum SoC 80 %

Parameter Value Unit
Tariff
Buy rate (22:00-10:00) 2.7 THB
Buy rate (10:00-14:00) 5.7 THB
Buy rate (14:00-18:00) 7 THB
Buy rate (18:00-22:00) 8 THB
Sell rate (23:00-18:00) 2.2 THB
Sell rate (18:00-23:00) 2.5 THB

The details of system parameters are described in Table C.1. Electricity tariffs are
based on Thailand’s pricing rate, incorporating a future assumption of higher evening buy
rates due to increased electrification demand. The sell rate during on-peak period is slightly
higher than the off-peak period.
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