Recursive Estimation of Solar Forecasting at Chulalongkorn University

> Tony Fang ID : 5730212721 Advisor : Assist. Prof. Jitkomut Songsiri

> > Department of Electrical Engineering Chulalongkorn University

Outline

- Introduction
- Methodology / Preliminary Result
- Future Plan
- Conclusion

Introduction

[Vichaya, 2016] conclude that the other relevant variables is improve solar forecasting insignificantly. Thus, we focus only solar irradiance.

Batch Estimation

Batch estimation is a model estimation which model parameters are not further updated.

Recursive Estimation

Recursive estimation is a model estimation which model parameters are updated using new measurement data.

5

SARIMA model Estimation Flowchart

Seasonal AutoRegressive Integrated Moving Average (SARIMA) model defined by

$$A(L)(1-L)^{d}(1-L^{T})^{D}I(t) = C(L)v(t)$$
(1)

where

$$A(L) = 1 - (A_1L + A_2L^2 + \dots + A_pL^p)$$

$$C(L) = 1 + (C_1L + C_2L^2 + \dots + C_qL^q)$$
(2)

L is a lag operator, T is a seasonal period, d is an integrated non-seasonal order, D is an integrated seasonal order

Stationarization

Seasonal Removing

Finding seasonal period T from power spectral density by using periodogram in MATLAB.

Differencing

Apply Autocorrelation Function (ACF) test finding integrated order d.

Finding seasonal trend

Using Fast Fourier Transform (FFT) to find the power spectral density (PSD). We choose only high-energy frequency and label them ω_i .

The PSD of this data set has 2 peaks at $\omega_1 = 0.0083\pi$ and $\omega_2 = 0.0166\pi$.

Differencing

Autocorrelation test of each data set.

Differencing

Both d=1 and d=2 pass the autocorrelation test. Because of model complexity, we use d=1. Thus, we get the SARIMA(p, 1, q)(0, 1, 1)₂₄₀. After finding order d, these post-processing data are used for find the polynomial in ARMA model.

Estimation of ARMA model and Model selection

Maximum Likelihood Estimation

From [Hamilton,1994] Parameter θ in ARMA model can find from the maximum of the cost function in (3)

$$\log \mathcal{L}(y|\theta) = -\frac{N-p}{2}\log(2\pi) - \frac{N-p}{2}\log(\sigma^2) - \sum_{t=p+1}^{N} \frac{v(t)^2}{2\sigma^2}$$
(3)

Candidate Score

Both AIC and BIC are trade-off between goodness of fit and model complexity.

$$AIC = -2\mathcal{L} + 2d \tag{4}$$

$$BIC = -2\mathcal{L} + d\log(N) \tag{5}$$

where \mathcal{L} is a log-likelihood function, N is a number of data and d is a number of parameter in each models.

Maximum Likelihood Estimation and Model Validation

Finding the AIC score and BIC score after doing ML to find the candidate model.

AIC choose SARIMA $(4, 1, 6)(0, 1, 1)_{240}$ and SARIMA $(5, 1, 6)(0, 1, 1)_{240}$.

BIC choose $SARIMA(5, 1, 2)(0, 1, 1)_{240}$.

After chose the candidate model, we find RMSE and MAE on validation data set of all models which we choose from AIC or BIC graph.

 $\mathsf{SARIMA}(5,1,2)(0,1,1)_{240}$ has less RMSE and MAE than others model.

Recursive Prediction Error Method

The aim of Recursive Prediction Error Method (RPEM) is to minimize the cost function which is defined as

$$V_t(\theta) = \frac{1}{2} \sum_{s=1}^t \varepsilon(s, \theta)^T \varepsilon(s, \theta)$$
(6)

[Young, 2011] assume that

• $\hat{\theta}(t-1)$ minimize $V_t(\theta)$

• minimum point of cost function $V_t(\theta)$ is close to $\hat{\theta}(t-1)$ Finally, the final step of the update formulas are shown in

$$\hat{\theta}(t) = \hat{\theta}(t-1) + P(t)K(t)\varepsilon(t)$$
(7)

$$g(t) = P(t)K(t)[1 + K^T P(t-1)K(t)]^{-1}$$
(8)

$$P(t) = P(t-1) - P(t-1)K^{T}(t)g(t)$$
(9)

where $\varepsilon(t) = y(t) - \hat{y}(t|t-1)$, $K(t) = -\nabla \varepsilon(t)$. This method is used in ARMA model.

Conclusion

Q&A

Back up

Maximum Likelihood Estimation

Maximum Likelihood Estimation is a method to find parameter θ in ARMA model.

$$\hat{\theta}_{ML} = \underset{\theta}{\operatorname{maximize}} f(y(1), y(2), \cdots, y(N)|\theta)$$
(10)

where $\theta = \begin{bmatrix} A_1 & A_2 & \cdots & A_p & C_1 & C_2 & \cdots & C_q & \sigma^2 \end{bmatrix}^T$, $f(y(1), y(2), \cdots, y(N)|\theta)$ is likelihood function. v(t) in ARMA model can write into

$$v(t) = y(t) - (A_1y(t-1) + A_2y(t-2) + \dots + A_py(t-p)) - (C_1v(t-1) + C_2v(t-2) + \dots + C_qv(t-q))$$
(11)

From [1], if y(t) has real value from 1 to p and v(t) = 0 since $t = p, p - 1, \dots, p - q + 1$, so that y(t) also has normal distribution.

$$\mathcal{L}(y|\theta) = f(y(p+1), y(p+2), \cdots, y(N)|y(1), y(2), \cdots, y(p), \theta)$$
(12)

Thus, we start at t = p + 1. At the same time, the conditional likelihood function is change to (12). Problem in (10) subject to root of polynomial

$$A(z^{-1}) = 1 - (A_1 z^{-1} + A_2 z^{-2} + \dots + A_p z^{-p})$$

$$C(z^{-1}) = 1 + (C_1 z^{-1} + C_2 z^{-2} + \dots + C_q z^{-q})$$
(13)

lie inside the unit circle.

Autocorrelation Function

Autocorrelation function is defined by

$$ACF = \frac{R(\tau)}{R(0)}$$
(14)

where the sample autocovariance function is defined by

$$R(\tau) = \frac{1}{N} \sum_{t=\tau}^{N} y(t) y(t-\tau)$$
(15)

In ARMA model, ACF of the ARMA(p,q) is shown in 16 $R(\tau)-(A_1R(\tau-1)+A_2R(\tau-2)+\cdots+A_pR(\tau-p))=0, 0 \ge \max(p,q+1)$ (16)

with initial condition

$$R(\tau) - \sum_{i=1}^{p} A_i R(\tau - i) = \sigma^2 \sum_{i=\tau}^{q} H(i - \tau), 0 \le \tau \le \max(p, q + 1)$$
(17)
where $H(z^{-1}) = \frac{y(z^{-1})}{v(z^{-1})} = \frac{C(z^{-1})}{A(z^{-1})}$

Prediction Error Method

After finding the model, we can find the optimal prediction from the ARMA model by using Prediction Error Method (PEM)

$$\hat{y}(t|t-1) = (1 - C^{-1}(L)A(L))y(t)$$
 (18a)

$$e(t) = C^{-1}(L)A(L)y(t)$$
 (18b)

We can find the estimated ARMA(p,q) model

$$\hat{y}(t|t-1) = (C(L) - 1)e(t) - (A(L) - 1)y(t)$$
$$\hat{y}(t|t-1) = (C_1L + C_2L^2 + \dots + C_qL^q)e(t) + (A_1L + A_2L^2 + \dots + A_pL^p)y(t)$$
(19)

where $e(t) = y(t) - \hat{y}(t|t-1)$

Then we can find the estimate ARIMA model in 20.

$$\hat{z}(t|t-1) = \hat{y}(t|t-1) + \hat{z}(t-1|t-1)$$
$$\hat{z}(t|t-1) = \hat{y}(t|t-1) + \sum_{k=1}^{\infty} \hat{y}(t-k|t-1)$$
(20)

Moreover, we can find the estimated SARIMA model in 21.

$$\hat{I}(t|t-1) = \hat{z}(t|t-1) + \hat{I}(t-T|t-1)$$
$$\hat{I}(t|t-1) = \hat{z}(t|t-1) + \sum_{k=1}^{\infty} \hat{z}(t-kT|t-1)$$
(21)

Forecasting Result

where the yellow line is described in (24)

We can find the forecast model by using Prediction Error Method (PEM) for an ARMA model.

$$\hat{y}(t+h|t) = (1 - 1.84L + 0.843L^2)e(t+h)$$

$$(1 + 1.26L - 0.21L^2 - 0.03L^3 - 0.02L^4 - 0.03L^5)\hat{y}(t+h|t)$$
(22)

We can find the forecast of ARIMA model by summation

$$\hat{z}(t+h|t) = (1 - 1.84L + 0.843L^2)e(t+h)$$

$$(1 + 1.26L - 0.21L^2 - 0.03L^3 - 0.02L^4 - 0.03L^5)\hat{y}(t+h|t) + \sum_{k=0}^{\infty} \hat{y}(t-k+h-1|t) \quad (23)$$

And also find the forecast of SARIMA model by summation

$$\hat{I}(t+h|t) = \hat{z}(t+h|t) + \sum_{k=1}^{\infty} \hat{z}(t-240k+h|t)$$
(24)

Reference

J. D. Hamilton.

Time Series Analysis.

Princeton University Press, 1994.

V. Layanun and J. Songsiri.

Solar irradiance forecasting for chulalongkorn university location using time series models.

http://jitkomut.eng.chula.ac.th/group/vichaya_report.pdf, 2016.

Peter C. Young.

Recursive Estimation and Time Series Analysis.

Springer, 2011.