Simulation of near-real-time energy management system in **Gewertz Square environment**

Pornpipat Keowkhew ID 6430255221 Puwadon Dumnil ID 6432136621

Advisor: Prof. Jitkomut Songsiri

Department of Electrical Engineering, Faculty of Engineering **Chulalongkorn University**

INTRODUCTION

MOTIVATION

- batteries.
- is required.
- system performance.

photo credit: http://www.sustainability.chula.ac.th/th/report/3594/

INTRODUCTION

BACKGROUND

DATA PREPARATION

• The Gewertz Square building, under the Department of Electrical Engineering at Chulalongkorn University, plans to install a 50 kW rooftop solar system and two 215 kWh

The goal is to increase the share of renewable energy used within the building.

Due to the intermittent nature of solar energy, an Energy Management System (EMS)

The EMS will manage energy production, consumption, and storage to ensure optimal

FORECASTING MODEL

OBJECTIVE

 To develop and enhance the Energy Management System (EMS) for the Gewertz Square building using real-world simulation, in order to evaluate the performance of the improved EMS from the 2023 project.

BACKGROUND

METHODOLOGY

BACKGROUND

Energy Management System (EMS)

INTRODUCTION

BACKGROUND

METHODOLOGY

DATA PREPARATION

EMS COMPONENTS

INTRODUCTION

BACKGROUND

METHODOLOGY

DATA PREPARATION

EMS

INTRODUCTION

BACKGROUND

METHODOLOGY

EMS

INTRODUCTION

BACKGROUND

METHODOLOGY

EMS DIAGRAM

INTRODUCTION

BACKGROUND

METHODOLOGY

The results show that implementing the EMS leads to greater electricity cost savings and higher profit compared to the scenario without EMS.

INTRODUCTION

BACKGROUND

METHODOLOGY

BATTERY

THE DYNAMIC EQUATION CONSTRAINT OF BATTERY

$$SoC_{i}(t+1) = SoC_{i}(t) + \frac{100}{BattCapacity} \left(\eta_{c} P_{chg}^{(i)}(t) \Delta t - \frac{P_{dchg}^{(i)}(t)}{\eta_{d}} \right)$$

100 where : $SoC_i(t)$: The state of charge (SoC) of battery i 80 $P_{chg}^{(i)}(t)$: charge power of battery i 60 SoC (%) $P_{dchg}^{(i)}(t)$: discharge power of battery i 40 BattCapacity : battery Capacity 20 : time resolution Λt Oct 26, 00:00 Oct 27, 00:00 $\eta_{\rm d}, \eta_{\rm c} < 1$: Charging/discharging efficiency

INTRODUCTION BACKGROUND

METHODOLOGY

SoC 100 % Δt (1) % 0 State of charge (SoC) 18 Soc Pchg 16 Pdchg 14 12 8 Dower (kW) Oct 28, 00:00 Oct 29, 00:00 Oct 30, 00:00 Time

BATTERY CONSTRAINT

The limitation of charging and discharging the battery constraints

 $P_{chg}^{(i)}(t) \le MAX$ CHARGE RATE, t = 1, 2, ..., T

 $i=1,2,\ldots,N_{\mathsf{Batt}}$

 $P_{\rm dchg}^{(i)}(t) \le \text{MAX DISCHARGE RATE}, \quad t = 1, 2, \dots, T$ (3)

 $i=1,2,\ldots,N_{\text{Batt}}$

The limitation of maximum state of charge and minimum SoC constraint

$$SoC_{\min,i} \le SoC_i(t) \le SoC_{\max,i}$$
 (4)

Battery terminal SoC constraint

$$SoC_i(T) \ge 40$$
 (5)

METHODOLOGY

INTRODUCTION

BACKGROUND

(2)

BATTERY

Batteries

INTRODUCTION

• The CEPT research team plans to purchase 2 battery units.

Jinko battery with a capacity of 215 kWh

https://jinkosolarenergystorage.com.au/product/jks-215klaa-100plaa/

BACKGROUND

METHODOLOGY

ELECTRICAL LOAD

The electricity load at Gewertz Square building from March 2023 to December 2024 peaked at approximately 35 kW.

Professor's Rooms	Common Room	Graduate student office	student Power electronics Lab				
Student Club		Machine Lab		Storage Room			

INTRODUCTION

BACKGROUND

METHODOLOGY

ELECTRICAL LOAD

Power Consumption

INTRODUCTION

BACKGROUND

METHODOLOGY

SOLAR ROOFTOP

- The solar panel system connected to the **Boonrawd building** with a total capacity of 8 kW.
- The solar panels to be installed at Gewertz Square building have a maximum generation capacity of 50 kW.
- The power generation data from the Boonrawd building's solar panels were scaled up to match a maximum capacity of 50 kW

INTRODUCTION

BACKGROUND

METHODOLOGY

SOLAR ROOFTOP

INTRODUCTION

BACKGROUND

METHODOLOGY

METHODOLOGY

METHODOLOGY

INTRODUCTION

BACKGROUND

METHODOLOGY

EMS OPTIMIZATION

INTRODUCTION

BACKGROUND

METHODOLOGY

DATA PREPARATION

EMS OPTIMIZATION

EMS DECISION VARIABLES

Variable	Description
$P_{net}(t)$	Consumption power - Gei
$P_{\rm chg}^{(i)}(t)$	Power charged from the i
$P_{\rm dchg}^{(i)}(t)$	Power discharged from th
$SoC_i(t)$	State of charge of <i>i</i> th batt

INTRODUCTION

BACKGROUND

METHODOLOGY

*i*th battery ne *ith* battery ery

EMS CONSTRAINTS

POWER BALANCE CONSTRAINTS

$$P_{\text{net}}(t) = P_{\text{load}}(t) - P_{\text{pv}}(t) + \sum_{i=1}^{n} \left(P_{\text{chg}}^{(i)}(t) - P_{\text{dchg}}^{(i)}(t) \right), \quad t = 1, 2,$$

• $P_{\text{net}} > 0$: The system needs to draw electricity from the grid

INTRODUCTION

BACKGROUND

METHODOLOGY

• $P_{\rm net}$ < 0 : The system does not need to draw electricity from the grid and can sell electricity back to it.

EMS CONSTRAINTS

Power balance constraints (1)

Battery charge/discharge constraints (2)-(3)

Battery's SoC constraints (4)

Battery's terminal SoC (5)

Constraints (1)–(5) are linear in the variables Pnet, Pchg, Pdchg and SoC ,which allows the problem to be formulated and solved as a linear program

INTRODUCTION BACKGROUND METHODOLOGY

EMS Objective

Economic **Battery Objective** minimize $J_{\text{cost}} + w_m J_{\text{multibatt}} + w_s J_{\text{smooth charge}} + w_c J_{\text{charge batt}}$ subject to Power balance constraints (6) Battery dynamic (1) Battery charge/discharge constraints (2)-(3) Battery's terminal SOC (5) Battery's SOC constraint (4)

INTRODUCTION

BACKGROUND

METHODOLOGY

METHODOLOGY

INTRODUCTION

BACKGROUND

• Energy Cost

$$J_{\text{cost}} = \text{Energy cost} = \sum_{t=1}^{T} b(t) \max(0, P_{\text{net}}(t)) \Delta t \quad (12)$$

METHODOLOGY

INTRODUCTION

BACKGROUND

• Profit

INTRODUCTION

BACKGROUND

METHODOLOGY

DATA PREPARATION

Smooth charging

INTRODUCTION

BACKGROUND

METHODOLOGY

• Managing multiple batteries

INTRODUCTION

BACKGROUND

METHODOLOGY

Encouragement to charge battery

INTRODUCTION

BACKGROUND

METHODOLOGY

DAY-AHEAD TRACKING FUNCTION (TRACK DA)

• Short-sighted focus: Since the Hour-Ahead plan focuses on short-term decision-making, it often overlooks long-term impacts.

INTRODUCTION

BACKGROUND

METHODOLOGY

DA Solution Reference

Track-to-DA Reference

TRACK DA

• Solution through TrackDA: This is achieved by integrating the TrackDA function to align Hour-Ahead decisions with Day-Ahead plans.

$$J_{\text{trackDA}} = \sum_{t=1}^{T} \left\{ w_{\text{chg}} \sum_{i=1}^{2} \frac{\left| P_{\text{chg,HA}}^{(i)}(t) - P_{\text{chg,ref}}^{(i)}(t) \right|}{R_{\text{chg,max}}} + w_{\text{dchg}} \sum_{i=1}^{2} \frac{\left| P_{\text{dchg,HA}}^{(i)}(t) - P_{\text{dchg,ref}}^{(i)}(t) \right|}{R_{\text{dchg,max}}} \right\}$$
(14)

INTRODUCTION

BACKGROUND

METHODOLOGY

EMS OPTIMIZATION

DA EMS OPTIMIZATION PROBLEM

minimize $J_{cost} + w_m J_{multibatt} + w_s J_{smooth charge} + w_c J_{charge batt}$ subject to Power balance constraints (6) Battery dynamic (1) Battery charge/discharge constraints (2)-(3) Battery's terminal SOC (5) Battery's SOC constraint (4)

CAN BE FORMULATED AS A LINEAR PROGRAMING

INTRODUCTION

BACKGROUND

METHODOLOGY

EMS OPTIMIZATION

HA EMS OPTIMIZATION PROBLEM

minimize $J_{\text{cost}} + w_m J_{\text{multibatt}} + w_s J_{\text{smooth charge}} + w_c J_{\text{charge batt}} + J_{\text{trackDA}}$ subject to Power balance constraints (6) Battery dynamic (1) Battery charge/discharge constraints (2)-(3) Battery's terminal SOC (5) Battery's SOC constraint (4)

CAN BE FORMULATED AS A LINEAR PROGRAMING

INTRODUCTION

BACKGROUND

METHODOLOGY

DATA PREPARATION

DATA PREPARATION

Load consumption

- Load data were sourced from CUBEM and **Prof. Surapong's meter.**
- Ranging from March 2023 to December 2024
- **Resampled to 5- and 15-minute.**

Solar irradiance and ambient temperature • Obtained from CUEE, SoDa (INWP, TNWP), and **Clear Sky Model (Iclr) Resampled to 5- and 15-minute**

- lacksquare

METHODOLOGY

INTRODUCTION

BACKGROUND

DATA PREPARATION

BACKGROUND

INTRODUCTION

METHODOLOGY

FORCASTING MODEL

INTRODUCTION

BACKGROUND

METHODOLOGY

FORCASTING MODEL

LOAD FORCASTING MODEL

INPUT FEATURES LAG FEATURE

ACTUAL LOAD CONSUMPTION POWER

FUTURE EXOGENOUS FEATURES

- O AMBIENT TEMPERATURE FROM NWP
- LAB HOUR
- LAB DAY
- WORKDAY

OUTPUT TARGET

PREDICTED LOAD CONSUMPTION POWER

INTRODUCTION

BACKGROUND

METHODOLOGY

IRRADIANCE FORCASTING MODEL

• ACTUAL SOLAR IRRADIANCE

FUTURE EXOGENOUS FEATURES

 SOLAR IRRADIANCE FROM NWP SOLAR IRRADIANCE FROM CLEAR SKY MODEL O AMBIENT TEMPERATURE FROM NWP CLOUD INDEX RED CHANNEL CLOUD INDEX GRAYSCALE

PREDICTED SOLAR IRRADIANCE

LOAD FORCASTING MODEL

INTRODUCTION

BACKGROUND

METHODOLOGY

LOAD FORCASTING MODEL

The actual loadtime series is compared with two predicted series Lhat1 (5-minute ahead) and Lhat12 (1-hour ahead). The 5-minute model yields lower errors, with MAE of 0.25 to 1.3 kW (4% of peak load), compared to MAE of 0.65 to 3.2 kW (10% of Peak Load) for the 1-hour model.

INTRODUCTION

BACKGROUND

METHODOLOGY

IRRADIANCE FORCASTING MODEL

INTRODUCTION

BACKGROUND

METHODOLOGY

IRRADIANCE FORCASTING MODEL

The actual irradiance time series is compared with two predicted series Ihat1 (5-minute ahead) and Ihat12 (1-hour ahead). The 5-minute model yields lower errors, with MAE of 5 to 115 W/m² (12% of peak) and RMSE of 12 to 170 W/m^2 (17% of peak), compared to MAE of 6 to 151 W/m^2 (15% of peak) and RMSE of 14 to 191 W/m^2 (20% of peak) for the 1-hour model. Both models show increased error around midday, coinciding with rapid fluctuations in solar radiation.

INTRODUCTION

BACKGROUND

METHODOLOGY

CONVERTED SOLAR POWER

The actual PV generation time series is compared with two predicted series PVhat1 (5-minute ahead) and PVhat12 (1-hour ahead), both derived from the linear relationship $P=\alpha I$, where α is a monthly average conversion factor calculated from actual PV output and irradiance data. The 5-minute prediction more closely follows the actual PV profile, especially during periods of rapid variation, while the 1-hour prediction shows smoother trends but greater deviations.

BACKGROUND

$$P_{\rm pv} = \alpha(t) \cdot I(t)$$

METHODOLOGY

INTRODUCTION

MODEL PREDICTIVE CONTROL (MPC)

BACKGROUND

METHODOLOGY

INTRODUCTION

MPC IN EMS

INTRODUCTION

BACKGROUND

METHODOLOGY

RESULT & DISCUSSION

EMS Horizon

METHODOLOGY

DATA PREPARATION

RESULT&DISCUSSION

Experiment Scenario

METHODOLOGY

DATA PREPARATION

RESULT&DISCUSSION

Experiment Scenario

METHODOLOGY

DATA PREPARATION

RESULT&DISCUSSION

HOUR-AHEAD MPC

OBJECTIVE PROFIT

The objective is to compare the total electricity cost between 4 Pnet cases (EMS ideal, EMS forecast, EMS actual, NoEMS).

minimize	$J_{\text{cost}} + w_{\text{m}}J_{\text{multibatt}} + w_{\text{s}}J_{\text{smopth charge}} + w_{\text{c}}J_{\text{charge batt}} + J_{\text{trackDA}}$
subject to	Power balance constraints (6)
	Battery dynamic (1)
	Battery charge/discharge constraints (2) - (3)
	Battery's SOC constraint (4)

DATA PREPARATION

METHODOLOGY

Parameter	Value	Unit
η_c	0.95	-
η_d	0.95 * 0.93	-
Max charge rate	100	kW
Max discharge rate	100	kW
Battery capacity	215	kWh
$SoC_1(1)$	50	%
$SoC_2(1)$	50	%
SoC _{min}	20	%
SoC _{max}	80	%
Final SoC target	0	%
Nominal voltage	$\frac{672+864}{2}$	V
Number of batteries	$\tilde{2}$	units
w_{s}	3	-
w_{m}	10^{-4}	-
w_{C}	0.05	-
wnet	0	-
w_{chg}	5	-
$w_{\sf dchg}$	5	-

RESULT&DISCUSSION

- 23.00 06.00: During this period, solar generation is unavailable, so electricity is purchased from the grid to charge the battery. The battery is charged to be ready for daytime use.
- 06.00 15.00: Solar generation meets the load demand, and excess energy is used to charge the battery. Any surplus energy is sold back to the grid, making the system more self-sufficient.
- 15.00 23.00: As solar generation decreases in the afternoon, the battery discharges to meet the load demand. The system relies more on stored energy to power the load during this period. Power Summary: 16-Jun-2024 to 18-Jun-2024

METHODOLOGY

The comparison shows that EMS actual consistently outperforms No EMS. In some months, such as December, the cost gap is smaller by 1,651 THB, suggesting seasonal or operational factors influencing EMS performance. Additionally, EMS actual closely tracks EMS ideal, indicating effective real-world EMS implementation. The largest gap occurs in May, where EMS actual outperforms EMS ideal by 1,859 THB, possibly due to higher solar generation or reduced load.

DATA PREPARATION

METHODOLOGY

HB)	Actual (THB)	NoEMS (THB)	Actual – Ideal (THB)	Actual – NoEMS (THB)			
;	548	4,507	392	-3,958			
5	2,277	5,841	1,216	-3,563			
	2,618	6,537	951	-3,919			
	608	5,072	1,067	-4,463			
	2,032	5,129	1,856	-3,097			
1	-1,103	1,130	845	-2,234			
	745	2,949	882	-2,204			
	1,515	4,702	1,093	-3,187			
	2,389	5,529	822	-3,141			
	756	3,627	934	-2,871			
8	-515	2,324	799	-2,838			
4	-3,256	-1,605	178	-1,651			
5	8,615	45,743	11,036	-37,128			

Note: Negative Profit = Cost of Purchase - Revenue from Sale

RESULT&DISCUSSION

The comparison shows that EMS actual consistently outperforms No EMS over the course of the year, with a total annual cost saving of 37,128 THB. This suggests that seasonal or operational factors may influence EMS performance. Additionally, EMS actual closely tracks EMS ideal, indicating effective real-world EMS implementation. Compared to EMS ideal, EMS actual incurs a higher annual cost of 11,036 THB, which may be attributed to forecasting errors or real-world operational constraints that limit optimal performance.

METHODOLOGY

DATA PREPARATION

Note: Negative Profit = Cost of Purchase - Revenue from Sale

RESULT&DISCUSSION

Conclusion

Implementing EMS

Objective

The EMS is implemented with an objective that considers three key cost components: energy units, energy prices, and profit. It also incorporates battery management and Day-Ahead (DA) schedule tracking to ensure efficient energy utilization and reliable system operation.

• Time Frame

The EMS uses a hierarchical time structure for planning and control: Day-Ahead (DA): Uses 15-minute resolution data to compute a 3-

- day-ahead schedule.
- Hour-Ahead (HA): Uses 5-minute resolution data to update the schedule 1 hour ahead.

• Use of Linear Programming (LP)

A linear programming (LP) formulation is used to solve the optimization problem efficiently. This approach allows the EMS to operate with highresolution control at both 5-minute and 15-minute intervals.

DATA PREPARATION METHODOLOGY

RESULT&DISCUSSION CONCLUSION

Profit Objective

- The EMS actual electric cost is higher than the EMS ideal by 11,036 THB per year, which corresponds to an average of approximately 920 THB per month.
- The EMS actual electric cost is lower than that without EMS by 37,128 THB annually, or about 3,094 THB per month on average.

RESULT&DISCUSSION

THANK YOU

BACKGROUND

Experiment Scenario

Ideal:
$$P_{\text{net, ideal}}(t) = P_{\text{load}}(t) - P_{\text{pv}}(t) + \sum_{i=1}^{n} \left(P_{o}(t) - P_{o}(t) + \sum_{i=1}^{n} \left(P_{o}(t)$$

EMS:
$$P_{\text{net, ems}}(t) = \hat{P}_{\text{load}}(t) - \hat{P}_{\text{pv}}(t) + \sum_{i=1}^{n} \hat{P}_{\text{load}}(t)$$

Actual: $P_{\text{net, actual}}(t) = P_{\text{load}}(t) - P_{\text{pv}}(t) + \sum_{i=1}^{n} P_{\text{load}}(t) = P_{\text{load}}(t) + P_{\text{load}}(t) = P_{\text{load}}(t) + P_{\text{load}}(t) = P_{\text{load}}(t) + P_{\text{load}}(t) + P_{\text{load}}(t) = P_{\text{load}}(t) + P_{\text{load}}(t) + P_{\text{load}}(t) = P_{\text{load}}(t) + P_{\text{load}}(t$

No EMS: $P_{\text{net, noems}}(t) = P_{\text{load}}(t) - P_{\text{pv}}(t)$

DATA PREPARATION

METHODOLOGY

RESULT&DISCUSSION

$$\begin{split} \hat{P}_{\text{chg}}^{(i)}(t) &- P_{\text{dchg}}^{(i)}(t) \Big) \\ &\left(\hat{P}_{\text{chg}}^{(i)}(t) - \hat{P}_{\text{dchg}}^{(i)}(t) \right) \\ &\sum_{1} \left(\hat{P}_{\text{chg}}^{(i)}(t) - \hat{P}_{\text{dchg}}^{(i)}(t) \right) \end{split}$$

The objective is to compare the total electricity cost between 4 Pnet cases (Ideal, EMS, Actual, NoEMS).

minimize	$J_{\text{cost}} + w_{\text{m}}J_{\text{multibatt}} + w_{\text{s}}J_{\text{smooth charge}} + w_{\text{c}}J_{\text{charge batt}} + J_{\text{trackDA}}$
subject to	Power balance constraints (6)
-	Battery dynamic (1)
	Battery charge/discharge constraints (2) - (3)
	Battery's SOC constraint (4)

DATA PREPARATION

METHODOLOGY

Parameter	Value	Unit
η_c	0.95	-
η_d	0.95 * 0.93	-
Max charge rate	100	kW
Max discharge rate	100	kW
Battery capacity	215	kWh
$SoC_1(1)$	50	%
$SoC_2(1)$	50	%
SoC _{min}	20	%
SoC _{max}	80	%
Final SoC target	0	%
Nominal voltage	$\frac{672+864}{2}$	V
Number of batteries	$\tilde{2}$	units
w_{s}	3	-
wm	10^{-4}	-
w_{C}	0.05	-
wnet	0	-
w_{chg}	5	-
$w_{\sf dchg}$	5	-

RESULT&DISCUSSION

METHODOLOGY

DATA PREPARATION

RESULT&DISCUSSION

Month	Ideal (THB)	EMS (THB)	Actual (THB)	NOEMS (THB)	Actual – Ideal (THB)	Actual – NoEMS (THB)
January	1,628	2,389	3,605	8,170	1,977	-4,565
February	1,688	2,880	4,025	9,189	2,337	-5,164
March	2,051	3,409	5,222	10,308	3,171	-5,086
April	1,447	2,471	3,626	10,669	2,179	-7,043
May	909	1,761	3,674	9,634	2,766	-5,959
June	319	1,289	2,258	6,337	1,939	-4,079
July	1,188	1,782	2,916	6,321	1,727	-3,406
August	1,268	2,578	4,043	8,919	2,776	-4,875
September	2,075	2,032	4,058	8,406	1,983	-4,348
October	790	1,903	3,404	8,155	2,614	-4,752
November	576	1,530	2,426	7,290	1,850	-4,864
December	113	310	833	3,856	721	-3,023
Total	14,051	24,333	40,091	97,256	26,040	-57,164

METHODOLOGY

DATA PREPARATION

RESULT&DISCUSSION

METHODOLOGY

DATA PREPARATION

RESULT&DISCUSSION