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Chapter I

INTRODUCTION

This chapter presents an introduction of this dissertation consisting of three sections. Section 1.1
provides motivation and importance of this work, and an overview of this dissertation is given in Sec-
tion 1.2. In Section 1.3, problem statements which contain seizure detection and seizure onset and offset
determination are explained.

1.1 Motivation
Defined by the International League Against Epilepsy, an epileptic seizure is a transitory occur-

rence of a symptom due to an abnormal excessive or synchronous neuronal activity in the brain [1].
It was reported that 65 million people of all ages are affected by the epilepsy [2]. Consequences of
epilepsy are largely dependent on types of seizures and areas that the seizures appear. For instance,
a tonic-clonic seizure can initiate from one side or both sides of the brain, and people affected by the
tonic-clonic seizure have uncontrollable, stiffening, and jerking muscle [3]. An absence seizure which
is a generalized onset seizure affects patient’s awareness. The absence seizure usually has effects on
the patient in a short period, usually less than 10 seconds, but there are also absence seizures that last
longer [4]. Due to the impacts of epileptic seizures, which can lead to neuronal and physical injuries,
patients with recurrent or prolonged seizures should be reviewed by neurologists for a prompt diagnosis
and a treatment. Neurologists usually monitor the patients with continuous video-EEG monitoring [5; 6]
for those having refractory status epilepticus that are unresponsive to therapy. This is a combination of
electroencephalography (EEG) and video, recorded simultaneously to observe brain activities in relation
with a clinical change. Nevertheless, this task is still a time-consuming process for the neurologists to
continuously review long EEGs, and fatigue from examining the records for too long can lead to incon-
sistent diagnosis. In addition, it is also challenging to automatically indicate the seizure occurrences
in the long EEG records because of the rarity, unpredictability, and diversity of the epileptic seizures.
Therefore, automated epileptic seizure detection using EEG signals has been developed to facilitate the
analyses of long-term monitoring.

Seizure onset detection has an important role in situations that require immediate treatments, es-
pecially in cases when patients do not respond to the medication. There are two types of seizure onset
that can be inspected from the scalp EEG signals regarding to the spatial distribution of the seizure ac-
tivity. When a seizure which originates at some point rapidly spreads the whole networks, causing EEG
changes apparently on the whole brain, it is called a generalized-onset seizure. In contrast, a seizure is
focal-onset when originating within networks limited to one particular area, making the changes in EEG
restricted in a particular brain region [7; 8]. An immediate alarm in a seizure detection system is needed
for a patient who requires a treatment after the seizure starts. A detection delay from the actual seizure
onset possibly causes late therapy and wrong localization of an epileptogenic focus [9]. For instance, a
responsive neurostimulation system is a device that is implanted in the brain to observe and stimulate
brain activities [10; 11]. This device releases electricity to reduce an impact of seizure after the seizure
initiates, so the detection delay of the seizure onset plausibly makes the treatment less effective. More-
over, the onset of secondarily generalized seizures which is focal onset seizures that quickly spreads to
the whole brain is hardly localized. Hence, a nearly correct indication of the seizure onset is needed for
a proper treatment.

Moreover, detecting seizure offset is also important to neurologists for a proper diagnosis. Seizure
offset recognition can help reduce the side effects in postictal states by a prompt treatment [12]. Providing
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a period of an epileptic seizure in an EEG record to neurologists instead of only the occurrence of the
seizure can better assist the neurologists to consequently analyze and adjust antiepileptic drug therapy
properly [13]. For instance, it is highly possible that the seizure will become status epilepticus if it
lasts longer than five minutes without prompt therapy. In this case, lack of treatment can considerably
damage the human brain. However, it is not easy to indicate the seizure offset following the seizure
activity. There are several possibilities of transitions from the seizure activities to their terminations; the
seizure offset cannot be directly observed from the channels where the seizure initiates [14]; it is possible
that a focal-onset seizure is still localized or spreads to the whole brain.

From the needs and importance of the automatic detection of epileptic seizures and the starting
and ending points, this work mainly concentrates on detecting the seizure events and determining their
onsets and offsets. We divide the whole project into two main steps: epoch-based classification and
seizure onset and offset detection. The epoch-based classification is to classify EEG epochs segmented
from long EEG signals into classes, and the seizure onset and offset detection adopts the epoch-based
results to improve the classification performance and indicate the seizure onsets and offsets.

1.2 Dissertation overview
An overview of this dissertation contains the objective, scopes, methodology, and benefits and

outcomes of this dissertation. This dissertation is organized as follows. Chapter 2 reviews backgrounds
of this dissertation which includes montages and characteristics of EEG. Since this work focuses on
using machine learning techniques, empirical risk minimization, which is the most fundamental learning
concept in machine learning, descriptions of widely used classification methods, and cost functions
are also explained in Chapter 2. Studies related to the detection of seizure events, onsets and offsets
are discussed in Chapter 3. Moreover, Chapter 4 describes models for predicting seizure episodes and
indicating the onsets and offsets. This chapter also includes a proposed classification loss function, a
feature selection method, and a metric of detection delay. Chapter 5 explains an EEG database, evaluation
metrics, and a validation scheme. Primary experiments consisting of feature analysis, seizure detection,
and seizure onset and offset determination are clarified in Chapter 6. Finally, Chapter 7 summarizes the
conclusion, limitations, and future work of this dissertation. Since some details in Chapters 3, 4 and 6
were already published [15; 16; 17; 18], these contents in those chapters are partly taken from these
references.

Objectives
The aim of this work is to provide an offline detection method of seizure activities and an iden-

tification approach of their starting and ending time points in multi-channel scalp EEG signals to help
neurologists label EEG records that have been collected.

Scopes of work
• This work considers a patient-specific detection scheme to control demographics of case studies.

Data for training and testing are collected from the same patient, so diversity of patient profiles
do not affect the detection performance. We will show preliminary results in Appendix C.3 that,
even if we applied the patient-specific scheme, F1 scores of all patients still had a wide range.
Moreover, as reported in Section 6.2, it was impossible to select parameters of a radial basis
function for a support vector machine that could detect at least one seizure event from every
patient. It is evident that tuning appropriate hyperparameters of a patient non-specific seizure
detector is possibly unachievable; thus, we do not aim to develop a single detector for all patients.
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• Multi-channel scalp EEG signals are used to detect seizure activities, not intracranial EEG signals,
and no other modality of biomedical signal and imaging is included. An annotation of each record
must contain the beginning and ending time points of each seizure event. All training and test data
must be acquired from the same montage, and the data are collected from an online open source.
In addition, there must be at least seizure event in training data to learn the proposed model.

• The training and testing stages are conducted offline. All data must have been readily available
before all experiment are conducted. Types of seizures are not necessarily specified in a data set
of interest, as we do not discriminate seizure types in this work.

• Comparisons of existing methods are demonstrated. These also include the verification of the
proposed seizure onset and offset identification model using different epoch-based seizure clas-
sification approaches.

Methodology
This section explains the study plan depicted in Table 1.1 and the methodology of this work by

items as follows.

Table 1.1: Study plan.

Items Semester
1 2 3 4 5 6 7 8

Review literature
Collect online data
Write and submit review article
Propose seizure onset and offset detection method
Prepare proposal examination
Analyze the seizure onset and offset detection method
Submit technical article
Conclude the dissertation and prepare the examination

• Review literature of EEG data, pre-processing, feature extraction, classification, and process of
determining the seizure onset and offset in EEG signals.

• Collect data from several subjects where each subject has many records. There must be at least
one record of each subject containing at least one seizure activity.

• Propose a method to detect seizure episodes based on EEG epochs using a machine learning tool,
and present a technique to indicate the seizure onset and offset.

• Train an epoch-based classifier on EEG segments where the training set must contain at least one
seizure event and verify results of the classification on a test set collected from the same patient.

• Apply the proposed onset and offset detection model to the classification results of EEG epochs
to determine starting and ending points of the detected seizure episodes. Compare the results of
the onset and offset detection and the classification results in a fair setting.

• Conclude the detection performances, limitations, and future work.
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Benefits and outcomes
Benefits. Our method provides a pre-annotation of seizures for the neurologists to further analyze
seizure characteristics. With our proposed scheme, less efforts than usual from neurologists are required
to review the continuous EEG, and a little background knowledge about epilepsy is needed. Our scheme
requires a seizure-annotated EEG record containing at least one seizure event for customizing a model for
a particular patient. This customized model can then be used to automatically mark expected seizures on
unseen EEG records collected from the same patient, so the neurologists have to provide only the annota-
tion of the training set. Moreover, no other modalities, e.g., electrocardiogram (ECG), electromyogram
(EMG), are included; no other equipment is required to collect the data.

Outcomes. First, we provide an automatic detection method of epileptic seizures and their seizure
onsets and offsets using multi-channel EEG signals. The algorithm associated with the proposed method
is also given to train the model using multi-channel scalp EEG signals. Moreover, comparisons between
our proposed method and other approaches evaluated from the same set of data are presented in terms
of seizure detection and seizure onset and offset determination. In particular, these comparisons include
evaluations of the proposed seizure onset and offset detector when other epoch-based seizure classifica-
tion methods are applied.

1.3 Problem statements
This research aims to detect seizure events in long scalp EEGs and to determine the onsets and

offsets of the seizures. Consider a process of detecting the seizure onset and offset in a long EEG signal
shown in Figure 1.1. The problem of detecting the onset and offset consists of divided into two sequential
problems: finding epileptic seizure episodes in multi-channel EEG signals and indicating the beginning
and ending time points of the epileptic seizure activity. In the seizure detection process, each segmented
EEG from a long EEG signal is individually used to indicate a seizure occurrence. When all EEG epochs
from the long EEG signal are classified using the seizure detection algorithm, the outputs are assembled
into the sequence of seizure predictions. Subsequently, the prediction sequence is fed to the onset and
offset determination process to indicate the beginning and termination of each individual seizure in the
long EEG signal.

Seizure detection
The goal of the seizure classification is to classify EEG epochs into a correct class. Consider the

epoch-based seizure classification shown in Figure 1.1. A multi-channel EEG epoch segmented from
a long multi-channel EEG signal is considered as a sample. A seizure classifier then receives EEG
information as the input and returns either the probability or the decision of a seizure occurrence of
epochs as the output:

zi = h(xi) (1.1)

where h is a function representing the classifier, and xi and zi are the input and the output of h at the
epoch i, respectively. In this case, h can be any classifier including logistic regression, SVM, random
forest, and CNN. Depending on the classification method, we can use extracted features or raw EEG
data as the input. Similarly, z is either a seizure probability, e.g., zi ∈ [0, 1], or a predicted value, e.g.,
zi ∈ {0, 1}.
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Figure 1.1: Scheme of the problem containing two statements: epoch-based seizure detection
and onset-offset detection.

Seizure onset and offset determination
Seizure onset and offset determination is the process of implying the beginning and the ending in

a long EEG signal from the sequence of seizure predictions. Let z = (z1, z2, . . . , zN ) be the sequence of
the epoch-based seizure detection output, and ŷ = (ŷ1, ŷ2, . . . , ŷN ) be the output sequence of the onset
and offset determination, respectively, where ŷi is the probability that the epoch i is indicated as a seizure,
andN is the number of epochs in the long EEG signal. The goal is to find a function g : [0, 1]N → [0, 1]N

to modify z so that the output ŷ is more clinically realistic for indicating the seizure onset and offset as
shown in Figure 1.1:

ŷ = g(z). (1.2)

The seizure onset is determined by the first index k of a predicted group of seizure-detected epochs
containing ŷk ≥ 0.5. Similarly, the index k implies the seizure offset when k is the last index of the
predicted group.



Chapter II

BACKGROUND

In this chapter, required backgrounds are explained to comprehend contents in this dissertation.
This chapter is divided into four sections. In Section 2.1, characteristics and montages of EEGs are
demonstrated as basic knowledge for designing a classification method of seizures and a detection ap-
proach of their starting and ending points. Section 2.2 describes empirical risk minimization to compre-
hend a framework of machine learning. Next, conventional and existing classification methods that have
been widely used are explained in Section 2.3, and details of cost functions in classification problem are
finally provided in Section 2.4.

2.1 Electroencephalography (EEG)

EEG and montages
Electroencephalography (EEG) is a technique of recording and studying electric potentials in-

volved with the brain’s electrical activities [4]. The studies of the electrical activities in the brain have
used EEG records for diagnosing diseases in neuroscience, for example, epilepsy, brain tumors, head
injury, and sleep disorders. There are two types of EEGs, scalp and intracranial EEGs, depending on
where signals are observed. The scalp EEG signals are recorded by placing small disks called electrodes
in different positions on the scalp surface with liquid gel. For the intracranial EEG (iEEG), or so-called
electrocorticogram (ECoG), the subdural electrodes are implanted directly in the brain during the surgery
to measure the electrical signals directly from the cerebral cortex.

Locations of electrodes on the scalp are critical because the measured signals spatially vary on
the position of the scalp; difficulties and mistakes of interpreting brain conditions exist when electrode
locations are incorrect. One of the standard placements of electrodes is the international 10-20 electrode
system. As shown in Figure 2.1, electrodes are placed with 10% or 20% of actual distances between
adjacent electrodes in all three directions. The reference points of the system are nasion, the depressed
area between the eyes, and inion, the prominent bone locating on the middle line of the skull. Each
location is assigned by a letter to specify a lobe and by a number to specify the location of each lobe.
The letters F, T, C, P and O are used in the positions of Frontal, Temporal, Central, Parietal and Occipital
lobes, respectively, and the midline of the brain is indicated by Z. Odd numbers and even numbers refer
electrodes on the left and right hemispheres, respectively.

EEG recordings are monitored in the various way according to montages, the placements of the
electrodes. Two popularized montages that are currently used are bipolar and referential montages. In the
bipolar montage, a pair of adjacent electrodes are inputs to a differential amplifier resulting a waveform
of each channel displayed on the monitor. On the other hand, the referential montage is a montage that
the output of each channel is the voltage difference between a certain electrode and a common reference
electrode. Generally, there is no standard position for the reference; however, the linked ears, referring
to the positions A1 and A2, and midline positions are often preferred as a reference. When the common
reference is a voltage averaged over the brain, the montage is called an average reference montage.
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Figure 2.1: Illustration of the international 10-20 system from the top view of the head.

EEG characteristics
There are four main rhythms of the normal EEG, namely, alpha, beta, theta, and delta, that need to

be primarily described [4]. Neurologists normally use the knowledge of normal EEG patterns to visually
identify the epileptic seizures in the long EEG signals. A rhythm called Alpha rhythm is considered as
the principal background of the normal EEG occurring in a frequency range of 8 - 13 Hz. This rhythm
is predominantly observed when the patient is relaxed in a waking state with closed eyes. It is usually
maximum in the occipital area and spreads to the adjacent regions, e.g., parietal and temporal regions.
Patterns of the beta rhythm (14 - 30 Hz or higher) appears with longer duration than muscle action
potentials. Theta rhythm is defined as an activity in a frequency band of 4 - 7 Hz. It is typically dominant
in the midline and the temporal region. This rhythm indicates a waking and drowsiness state and should
be symmetrically diffused. If the theta activity appears only in one area or one hemisphere, this may
refer to structural disease. Delta rhythm is a slow wave that its frequency distributes in 0.5 - 4 Hz. This
wave usually has high amplitudes and can be observed during a deep sleep stage. Nevertheless, this wave
is also prominent to implications of cerebral dysfunction if seen during wakefulness in adults [4].

On the other hand, epileptiform patterns in EEG signals are abnormal patterns used to indicate
epileptic seizures in the long EEG signals. By definition, the epileptiform patterns are spikes and spike-
wave complexes; however, other abnormal patterns such as sharp waves are also important to the detec-
tion of the epileptic seizures [19]. The definition of the spike is an abrupt change of temporal potential
from the background where its decline slope is lower than that of the incline. The spike duration is less
than 70 milliseconds, the length of the sharp wave is 70 - 200 milliseconds, the slow wave lasts more than
200 milliseconds. The spike-slow-wave complex, also commonly called a spike wave, contains the spike
and a following slow wave with relatively high amplitudes. In addition, the sharp wave is practically
essential in determining the epileptic seizure even though it is not demonstrated as an epileptic pattern.
The sharp wave represents a wave with a frequency of 5 - 12.5 Hz. A sequence of spike, sharp, and
spike-slow wave is referred to ictal patterns of EEG when epileptic seizures occur. By the morphology
of these three patterns, i.e., spikes, spike-slow waves, and sharp waves, changes in amplitudes, frequen-
cies, and rhythms continuously established relative to the background [20]. During seizure activities,
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amplitudes of EEG signal during epileptic seizure activities tend to be higher than those of normal pe-
riods, a frequency shift appears when brain activities transit from normal events, e.g., drowsiness, eye
blink, to the seizure activities, and rhythms or patterns in EEG signals change from normal patterns to
specific patterns. However, some change seems to be an occurrence of epileptic seizures even though
this change is referred to an artifact. For instance, EEG signals interfered by main electricity have evo-
lution of amplitudes from low to high and then still maintain the amplitudes at this level for a course of
time. Moreover, periodic epileptiform discharges (PED) are also uncommon EEG characteristics similar
to seizure activities but determined as non-seizure activities. This makes seizure detection challenging
in discriminating the ictal patterns from interictal EEG signals.

2.2 Empirical risk minimization
Empirical risk minimization is a statistical learning principle in machine learning used to theo-

retically indicate bounds of performances of learning algorithms [21; 22]. Suppose that D = X × Y
is a space of pairs (xi, yi) where X and Y are spaces of all inputs and outputs, respectively. Formally,
there is a joint probability distribution fxy(x, y) over D, and (xi, yi) is drawn from the distribution fxy.
In supervised machine learning problems, there exists an actual function that maps every input sample
xi ∈ X to its label yi ∈ Y . The major goal is to find a mapping function called a hypothesis or a learner h
in a hypothesis spaceH that approximately behaves like the actual function: h(xi) ≈ yi,∀(xi, yi) ∈ D.

A loss function L : Y × Y → R+ ∪ {0} is a non-negative-valued function that quantifies how
accurate the classifier is from a difference between an output and a label. For instance, a 0-1 loss function,
which disregards a correct classification but absolutely focuses on an incorrect result, is defined as

L(h(xi), yi) =

{
0, h(xi) = yi,

1, otherwise. (2.1)

The true error, also called the expected risk and the Bayes risk, is defined as the expected value of
the loss function over the distribution fxy to measure the overall error of the results from the classifiers:

Rtrue(h) = E[L(h(x), y)]. (2.2)

Since Y contains only discrete elements, the true error becomes

Rtrue(h) =

∫ ∑
y∈Y

fxy(x, y)L(h(x), y)dx. (2.3)

The main problem is to find the optimal learner h∗ in the hypothesis space H such that it minimizes
Rtrue(h):

h∗ = argmin
h∈H

Rtrue(h). (2.4)

The optimal hypothesis h∗ is formally called the Bayes optimal classifier, and the minimum error
Rtrue(h

∗) is named as the Bayes error rate.
However, Rtrue(h) cannot be directly obtained from (2.3), and it cannot be minimized since

fxy(x, y) is practically unknown. Hence, the empirical error using data in D is employed as the es-
timation of Rtrue(h):

Remp(h) =
∑

(xi,yi)∈D

P (xi, yi)L(h(xi), yi), (2.5)

where P (xi, yi) is the hypothetical joint probability. Nevertheless, the joint probability is also generally
unknown. Therefore, it is assumed to be 1/|D| where |D| is the number of samples in set D:

Remp(h) =
1

|D|
∑

(xi,yi)∈D

L(h(xi), yi). (2.6)
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The optimal learner h∗ is, therefore, obtained by minimizing Remp(h):

h∗ = argmin
h∈H

Remp(h). (2.7)

This approximation in (2.6) is known to be an average of the loss L on the set D. In a machine learning
framework, we want to find the optimal learner over the hypothesis space, e.g., a space of linear classifiers
or polynomial classifiers, that can properly classify samples in a training set. Therefore, the empirical
risk minimization is the main concept in the classification problem to obtain the optimal learner.

2.3 Classification methods
The aim of an epoch-based seizure detection method is to independently classify EEG epochs,

which are segmented from multi-channel long EEG signals, into an appropriate class. In this section, we
describe details of classifiers, namely, logistic regression, support vector machine (SVM), decision tree,
random forest, and convolutional neural network (CNN), that have been commonly used in the epileptic
seizure detection. In this section, we denote x = {x1, x2, . . . , xN} a set of inputs of a classification
model and y = {y1, y2, . . . , yN} a set of labels, and a classifier is presented by h. We consider only
a two-class classification problem, so yi ∈ {0, 1}, unless there is an additional definition of the target
stated. In what follows, we define a loss which indicates an overall classification error to be L and a loss
from each misclassified sample to be L, i.e., L(x, y) = (1/N)

∑
i L(h(xi), yi).

Logistic regression
Logistic regressions are supervised machine learning models that use the logistic function to clas-

sify an input into a class by the value of probability [23]. The probability of yi = 1 is modelled as

P (yi = 1|xi) = h(xi) =
1

1 + e−(wTxi+b)

where w and b are model parameters. Typically, a standard approach to find the model parameters in a
classification problem is to minimize the negative log-likelihood function of the Bernoulli distribution.
The cross-entropy, derived from the negative log-likelihood function, that is commonly used is given by

L(x, y) = − 1

N

N∑
i=1

[yi logh(xi) + (1− yi) log(1− h(xi))].

The model parameters are finally obtained by minimizing the cost function L(x, y) over w and b.
In addition, a regularization technique such as l1 or l2 regularization can be added to the likelihood

function for more generalization of the model. For instance, the l2 regularization is applied to reduce the
weight magnitudes so that the model is not sensitive to data variation, and the cost function is given by

L(x, y) = − 1

N

N∑
i=1

[yi logh(xi) + (1− yi) log(1− h(xi))] + (γ/2)∥w∥22.

where γ is a regularization parameter. On the other hand, the l1 regularization is used to promote many
zeros in the model parameters by adding the l1-norm of the model weights to the likelihood function:

L(x, y) = − 1

N

m∑
i=1

[yi logh(xi) + (1− yi) log(1− h(xi))] + γ∥w∥1,
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Support vector machine
Support vector machines (SVMs) are classification models that separate data into class using a

fitted decision boundary given by wTϕ(x) + b where w and b are model parameters, and ϕ(x) is a
feature mapping of an input x [23]. The mapping function ϕ transforms the data so that the transformed
data between classes are linearly separable as demonstrated in Figure 2.2, and the mapping function is
simplified to x when the data can be originally separated by a linear decision boundary. Given the target
yi ∈ {1,−1}, the decision h(x) of SVM is in the form of

h(xi) = sign(wTϕ(xi) + b), (2.8)

where sign(x) is the signum function. The goal is to find the parameters w and b such that the margin
between the decision boundary and the nearest point is maximized, and that the number of incorrectly
classified samples is minimized. These parameters can be obtained by solving the optimization problem

minimize
w,b

(1/2)∥w∥22 + C
m∑
i=1

ζi

subject to yi(w
Tϕ(xi) + b) ≥ 1− ζi,

ζi ≥ 0, i = 1, . . . ,m,

(2.9)

where ζ1, ζ2, . . . , ζm are slack variables allowing some data to be incorrectly classified and C is a reg-
ularization parameter that controls the penalty of the slack variables. It is well-known that the optimal
parameters w and b from solving (2.9) are given by

w =

m∑
i=1

aiyiϕ(xi) and b =
1

NM

∑
i∈M

yi −
∑
j∈S

ajyjK(xi, xj)

 ,

where a1, . . . , am are Lagrange multipliers, K(x, y) = ϕ(x)Tϕ(y) is called a kernel function, S is the
set of indices of support vectors,M presents the set of indices of data that have 0 < ai < C, and NM
is the size of the setM. Substituting the obtained w in (2.8) yields

h(xi) = sign

∑
j∈S

ajyjK(xi, xj) + b

 . (2.10)

A kernel function K(x, y) is usually used when the input feature in a classification problem are
not linearly separable. Common kernels, e.g., linear kernel, polynomial kernel, and radial basis function
(RBF) kernel, are summarized in Table 2.1 where c and d are parameters to be selected to construct the
polynomial mapping ϕ(x), and σ is a bandwidth parameter. The linear kernel is normally used when the
data is linearly separable, whereas the polynomial kernel is applied when the data can be classified by a
polynomial function. The RBF kernel is generally exploited when the distance of the original features
in the same class is small.

Decision tree
Decision trees are tree-based supervised machine learning models that predict a target as illustrated

in Figure 2.3 where the root node receives an input, leaf nodes provide outcomes of the model, and
internal nodes show decision criteria [22]. The idea of the decision tree is to segment a feature space
into regions in which the data are correctly classified by simple rules. For instance, Figure 2.4 shows a
feature space which is split into 4 regions by the decision tree using a set of conditions on each variable.
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Support 
vector

Maximum 
margin

Figure 2.2: Illustration of kernel function. The left side shows the input space, and the right
side shows the transformed feature space.

Table 2.1: Commonly used kernels in SVM.

Kernel Formula
Linear K(x, y) = xTy
Polynomial K(x, y) = (c+ xTy)d

RBF K(x, y) = e−
∥x−y∥2

2σ2

The model is simple to comprehend and interpret since the decision tree can be clearly visualized. The
structure of the decision tree can be more complex when the number of nodes and the depth of the
tree increase to fit more complex data. However, with more depth and leaves, the decision tree can be
easily overfitting due to small variation in the data. Many small regions containing noises are typically
generated by a large tree. For example, region R4 in Figure 2.4 contains only one sample surrounded by
other class samples. In this case, region R4 should not be created since the sample seems to be corrupted
by a noise.

In a classification problem, the goal is to find optimal rules θ in the decision tree such that a
decision is correct for a given input. Here, the optimal rules appear to be conditions for generating
regions that best separate training data into appropriate classes. To learn the set, suppose that Rm is a
region generated from node m, and p̂m denotes the proportion of class labelled by y = 1 in Rm:

p̂m =
1

Nm

∑
xi∈Rm

I(yi = 1),

where Nm is the number of samples in Rm, and I(x) is the indicator function. A sample x in node m is
classified to the majority class, a class with the highest proportion p̂m:

h(xi) =

{
1, p̂m ≥ 0.5,

0, otherwise .
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Figure 2.3: Model of decision tree. An arrow shows a flow of data from node to node.

Figure 2.4: Feature space split into regions by decision tree using simple conditions on each
variable where regions R1, R2, and R4 are of the same class.

Therefore, the set of the optimal rules is obtained by solving the following optimization problem

minimize
θ

M∑
m=1

Nm

∑
xi∈Rm

L(h(xi), yi) + αM,

where M is the number of leaf nodes and α is a regularization parameter controlling the tree size and
accuracy of the decision. Three widely used loss functions to measure a classification error are as follows:

• Misclassification rate:
∑

xi∈Rm
L(h(xi), yi) = 1−max(p̂m, 1− p̂m).

• Gini impurity:
∑

xi∈Rm
L(h(xi), yi) = 2p̂m(1− p̂m).

• Cross-entropy:
∑

xi∈Rm
L(h(xi), yi) = −p̂m log p̂m − (1− p̂m) log(1− p̂m).
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It has been shown that the characteristics of these losses are similar [22]. However, the difference
should be taken into account to choose a suitable loss. The misclassification rate is less sensitives to
perturbation in p̂m than the others. On the other hand, the Gini impurity and the cross-entropy are
numerically stable because they are differentiable. In addition, the computational complexity of the Gini
impurity is less complex than that of the cross-entropy since the cross-entropy uses logarithms in its
formula; thus, it is faster to calculate the Gini impurity than the cross-entropy.

As mentioned, the complexity of a decision tree is mainly related to the tree structure, and the
tree is more complex as the depth and the number of nodes increase. Tree growing begins from the root
node, and the node is successively split when there is an impurity produced by the node. This process
terminates when all samples are correctly classified by the tree. Nonetheless, the resulted tree is possibly
too large and prone to be overfitting since it creates many small regions for a few data. One way to prevent
this problem is to set the maximum depth of the tree and the maximum number of leaf nodes. These
parameters directly limit the tree size so that the tree is not considerably large. Nevertheless, if these
values are low, the tree is probably too small to be applied. Another condition is to assign the minimum
number of samples needed to split an internal node. This condition restricts the tree from growing if
the region corresponding to the internal node contains only a few samples. In addition, the minimum
number of samples in leaf nodes can also be used to avoid creating small regions for a few data. However,
the tree growing is hardly proceeded when these minimum numbers are high; thus, the tree becomes too
small to be used.

Random forest
Random forests are also tree-based models that aggregate outcomes of multiple decision trees to

reduce overfitting in a single tree [24]. The idea is to create several decision trees by randomizing training
data independently. The random term here refers to randomization of features and an amount of features
used to generate trees to reduce bias from each tree. By averaging outputs of all trees, it has been proved
that, with this framework, the random forest is relatively more robust to outliers and disturbances in data
than a single decision tree [24]. Moreover, all trees can be parallelly generated, so the random forest is
naturally built faster than other ensemble methods such as boosting.

Input

Majority voting

Final decision

Figure 2.5: Model of random forests. Orange nodes represent flows of data in each tree.

Consider a random forest used in a classification problem shown in Figure 2.5. Let h1, . . . , hn be
trees in the random forest. Each tree is independently trained in parallel using a set of random data. To
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predict a new input xi, the probability of yi = 1 can be observed by averaging all outputs of the trees

h(xi) =
1

n

n∑
j=1

hj(xi),

and the final class is selected from the majority class; when h(xi) ≥ 0.5, the class labelled by yi = 1 is
chosen in a binary classification problem.

Convolutional neural network (CNN)
CNN is a type of neural networks that has been widely used in various applications: image pro-

cessing, object detection, face recognition, natural language processing, and video processing [25]. For
example, VGG16 is a deep CNN that achieves top-5 accuracy in the ImageNet data set [26]. The CNN is
biologically inspired by the idea of animal vision that concentrates on a specific area of an image, called
receptive field, instead of focusing on the whole image. The main advantages of this network are that
it has spatial invariance property and less computational complexity because of the weight-sharing ar-
chitecture of convolutional layers [27]. The CNN structure mainly consists of convolutional, activation,
pooling, and fully connected layers stacked deeply as demonstrated in Figure 2.6. The computations
of the convolutional, activation, and pooling layers are visualized in Figure 2.7. Some regularization
technique such as dropout is also added to reduce the effect of an overfitting problem [28], and a batch
normalization layer is used to enhance the learning speed [29].

Input Convolution Pooling Convolution Pooling Fully
connected

Output

Figure 2.6: Convolutional neural network structure.

The convolutional layer is a layer in which each neuron is locally connected to some area in the
previous layer. This layer is mainly designed to extract and collect low-level and high-level features from
each layer [27]. The result of each neuron is obtained by multiplying the local input by weights of filters.
As shown in Figure 2.7a, the convolutional layer is a result of convolution of the input and the weights.
The result can be visually interpreted as a feature map extracted on the receptive field. Hence, to extract
many features simultaneously in the same layer, independent filters stacked in depth are used instead of
only one filter.

The activation layer visualizes active nodes using an activation function. The output of every
node in the previous layer is independently passed to the activation function. Additionally, the activation
function can also be physically interpreted as a function that activates and deactivates each neuron in the
layer. An example of using activation functions transforming a feature map is illustrated in Figure 2.7b.
Common activation functions are listed with their benefits and drawbacks as follows.



15

• Identity function is a function that the output and input are the same:

f(z) = z,
d

dz
f(z) = 1. (2.11)

The identity function is put in the output layer when a regression problem is considered. However,
it is well-known that the activation function in hidden layers should not be the identity function
because if that is the case, then the output is only a linear transformation of the input.

• Sigmoid function (σ), or logistic function, is a common activation function used in neural net-
works. The output of the function is the conditional probability given the input:

σ(z) =
1

1 + e−z
,

dσ(z)

dz
= σ(z)(1− σ(z)). (2.12)

The advantages of this function are that it is differentiable at every point, bounded, and monotonic,
so it is also known as a smooth version of the step function. However, when z is largely positive
and negative, the slope of the curve becomes to small, increasing training time; this problem is
called a vanishing gradient. The sigmoid function also has a shift bias, causing the network to
learn slowly [30].

• Hyperbolic tangent (tanh) function is a function that is similar to the sigmoid function that it is
bounded. Unlike the sigmoid function, the output of the tanh function is in the range of (−1, 1):

tanh(z) =
ez − e−z

ez + e−z
,

d tanh(z)
dz

= 1− tanh2(z). (2.13)

The tanh function is used to overcome the shifted bias problem; however, the vanishing gradient
problem still occurs.

• Rectified linear unit (ReLU) function is a piece-wise linear function that provides zero output
when the input is negative, and passes the input to the output when the input is positive:

ReLU(z) = max(0, z),
d

dz
ReLU(z) =

{
0, z < 0,

1, z > 0.
(2.14)

The main advantage of using the ReLU function is its computational efficiency for both forward
and backward propagation [31]. Moreover, the ReLU function overcomes the vanishing gradient
problem when z is large since its derivative is always one. It has also been shown that, in prac-
tice, using the ReLU function provides greater convergence performance than using the sigmoid
function. However, the function is not differentiable when z = 0, and the network learning is pro-
hibited when there are several dead neurons, the neurons that initially give zero outputs always
provide zero outputs.

The pooling layer is a layer used extract some appropriate features from the previous layer. When
an input is two-dimensional, an image for example, this can be interpreted as performing downsampling
along the first and second dimensions of the input. It can be intuitively considered as collecting useful
information from the previous layer and filtering out some spatially unnecessary parts. Two common
pooling strategies are max pooling and average pooling. As depicted in Figure 2.7c, the max pooling
passes the highest value from the receptive field, while the average pooling does average the values in
the window.

The batch normalization layer normalizes each input features independently at each mini-batch so
that the mean of features is zero and the variance of features closes to one [29]. According to the ability
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Figure 2.7: Computation of convolutional, activation, and pooling layers in CNN.

to extract features in each layer, each neuron in the feature map possibly has different mean and variance.
Moreover, distributions of the activation outputs are also changed during training since the weights are
adapted continuously. This problem is called Internal Covariate Shift, and it affects the learning speed.
This layer is added to enhance the network to converge faster and prevent the network from the internal
covariate shift. Considering a mini-batch B = {x1, x2, . . . , xk} of the layer inputs, the process of the
batch normalization is demonstrated in Algorithm 1 where ϵ is a positive constant preventing numerical
instability, and parameters γ and β are to be trained using a backpropagation algorithm [29].

The dropout layer is added to randomly and temporarily removes some neurons in the input layer
to prevent overfitting [28]. The idea is to reduce joint adjustments of weights that are suitable for training
data. At each iteration, the dropout technique temporarily sets neurons to be inactive with a probability
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Algorithm 1: Batch normalization
Input: x over a mini-batch: B = {x1, x2, . . . , xk}
Parameter: γ, β
Output: {yi = γxi + β}

1 µB ← 1
k

k∑
i=1

xi // mean of mini-batch

2 σ2
B ← 1

k

k∑
i=1

(xi − µB)
2 // variance of mini-batch

3 x̂i ← xi−µB√
σ2
B+ϵ

// normalization

4 yi ← γx̂i + β // scale and shift

p during training as shown in Figure 2.8. The dead neurons in the layer are untrainable, so the weights
that need to be trained are only the remaining connections. For testing, all weights are presented, and the
weights are multiplied by the probability p to make the node outputs equal to the expected outputs over
the distribution used during training. Furthermore, the dropout is also claimed to be superior to other
regularization techniques because a neural network with the dropout provides a lower generalization
error [28].

(a) Standard neural network.

X

X

X X

(b) After employing dropout.

Figure 2.8: Dropout in neural network. The neurons with cross signs are temporarily removed
from the network.

The fully-connected layer is a layer containing neurons that are all connected to every neuron in
the adjacent layers where each connection presents a weight that links two neurons. As demonstrated
in Figure 2.6, in deep learning, the fully-connected layer is usually added in the last layer because of
its capability of classifying features from the input. Finally, similar to the other machine learning ap-
proaches, the model parameters can be obtained by minimizing a cost function, and the most widely used
loss function is the cross-entropy.
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2.4 Cost functions in classification problem
Given a classifier h, a loss function L in a classification problem provides an overall similarity

measure between actual outputs and predicted outputs in a certain way. Here, three existing cost functions
widely used in the classification problem, namely, binary cross entropy, soft-dice loss [32], and squared-
dice loss [33] are discussed. Note that both dice losses were mentioned as soft-dice loss in their studies;
we call them differently to avoid confusion. In a classification problem, a confusion matrix which consists
of numbers of true positives, true negatives, false positives, and false positive is considered to evaluate
a classification method. We then describe the loss functions explained in this section by these terms for
interpretations in this section.

Cross-entropy
The cross entropy is a common loss in classification problem which is derived from the probability

mass function of the Bernoulli distribution:

Lent(x, y) = −
1

N

N∑
i=1

[yi logh(xi) + (1− yi) log (1− h(xi))] . (2.15)

We observe that
∑

i(1−yi) log(1−h(xi)) and
∑

i yi logh(xi) intuitively reflect costs corresponding to
false positives and false negatives, respectively. This means that minimizing the cross-entropy is similar
to maximizing classification accuracy. However, this loss penalizes all incorrect samples equally; a
majority class does provide more contribution than a minority class when the data are highly imbalanced.
In this case, the minority class is likely to be ignored; thus, this loss is typically inappropriate to be
used [34].

Soft-dice loss
The soft-dice loss (LsoftDL) is a function motivated by a dice similarity coefficient (DSC) used to

measure a similarity between two sets [32]. DSC is an index for determining an analogy of two set of
samples. In a classification problem, DSC, also known as F1, indicates the overlap between true and
predicted values defined by

DSC =
2TP

2TP + FP + FN
(2.16)

when TP, FP, and FN stand for numbers of true positives, false positives, and false negatives, respectively.
LsoftDL is then defined by

LsoftDL(x, y) = 1−
2

N∑
i=1

yih(xi)

N∑
i=1

(yi + h(xi))

. (2.17)

The second term of RHS in (2.17) is obtained by substituting
∑

i yih(xi),
∑

i(1−yi)h(xi), and
∑

i yi(1−
h(xi)) for TP, FP, and FN in DSC, respectively. Therefore, minimizing LsoftDL is similar to maximizing
F1. In addition, DSC does not directly use correctly classified majority samples, i.e., true negatives,
so this coefficient has no bias towards the majority class. Thus, when the data is imbalanced, it is an
appropriate evaluation metric in the classification task, and the loss yields a suitable property to use in
the class-imbalanced problem.
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Squared-dice loss
The squared-dice loss (LsqDL) was originally inspired by DSC for an imbalanced data prob-

lem [33]. In contrast to LsoftDL, LsqDL uses the sum of squares of the actual and predicted labels in
the denominator:

LsqDL(x, y) = 1−
2

N∑
i=1

yih(xi)

N∑
i=1

(
y2i + (h(xi))2

) . (2.18)

Similar to the soft-dice loss, the squared-dice loss does not take true negatives into account. In the true
negative case, which is yi = 0 and h(xi) ≈ 0, yih(xi) and y2i + (h(xi))

2 are all zeros, so the remaining
terms in (2.18) are for true positive, false positive, and false negative cases. Therefore, the square-dice
loss is also an appropriate loss to determine a classification error in the class-imbalanced problem.



Chapter III

LITERATURE REVIEW

In this chapter, we review previous research related to seizure onset and offset detection using
EEGs. In our opinion, to indicate the onset and offset of an epileptic seizure, the seizure is required to
be detected first. Hence, this review of literature is primarily divided into two categories: automated
epileptic seizure detection and application of seizure onset and offset detection. In Section 3.1, we firstly
explain an overall scheme usually used in the automatic epileptic seizure detection. Widely used features
and their benefits are then summarized as they are essential to the detection process. Up to now, the CHB-
MIT Scalp EEG database [35] is the only data set that meets the scopes of this dissertation, so only seizure
detection methods performed on this database are further described and compared. Subsequently, details
of previous detection methods of seizure onset and offset are summarized in Section 3.2.

3.1 Automated epileptic seizure detection
Overall, the automatic detection of epileptic seizures normally contains processes of feature ex-

traction, and classification while a signal transformation or decomposition is also commonly but not
necessarily used [36; 37; 16]. Artifact or noise rejection has been frequently added at the beginning of
the detection process to reduce noises from the signals [38]. In addition, a channel selection technique has
been considered in case of multi-channel EEG signals [37], and feature dimension reduction or feature
selection algorithms have been taken into account when inputs have a considerably large magnitude [39].

Features are observable quantities used to determine characteristics or properties of events. In
a classification problem, the features should be chosen appropriately to be distinguishable between
classes. Many features have been employed to discriminate ictal patterns from normal activities in
EEG [36; 40; 16]. These features are generally categorized according to the purpose of the work. Some
studies employed a group of features according to their meanings and interpretations [41; 42; 43; 44; 45],
while others used features according to the domain from which they were extracted [46; 47; 40; 48]. For
instance, entropy-based features such as Shannon entropy and approximate entropy were commonly ap-
plied to measure the fluctuation of the signal [49; 50; 51; 52]. Using amplitude-related features including
nonlinear energy [53] and variance has shown a significant performance of detecting seizure activities
with high amplitudes [54; 55; 56; 57]. On the other hand, features are also categorized into time do-
main, frequency domain, and time-frequency domains regarding signal transformation before the feature
extraction. Time-domain features are computed on raw or decomposed signals, intrinsic mode func-
tions (IMFs) from empirical mode decomposition (EMD) for example, in the time domain [58; 52; 59],
whereas frequency-domain features are calculated discrete-Fourier transform (DFT) or power spectral
density (PSD) coefficients of raw EEG signals [60; 61]. On the other hand, time-frequency-domain
attributes are obtained from transformed EEG signals containing both time and frequency informa-
tion [62; 63; 64; 65; 44]. For instance, coefficients of short-time Fourier transform (STFT) or discrete-
wavelet transform (DWT) are used in feature extraction [42; 52]. From literature, we can conclude
that statistical parameters, energy and entropies were common features in those three domains to cap-
ture information about distributions, amplitudes, and uncertainties. Statistical parameters such as mean,
variance, skewness, and kurtosis were always applied jointly [66; 64], whereas features relevant to am-
plitude and uncertainty were sometimes used independently [63; 52]. Moreover, from our review, the
energy was the most widely used feature to capture changes of amplitude in EEG signals, and the most
common statistical parameters were mean and variance [16].
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Focusing on using scalp EEG signals, many detection methods have been developed based on AI
and machine learning to automatically detect epileptic seizures in the EEG records [36; 50; 37; 16; 45].
Many studies have utilized single-domain features to capture ictal patterns in EEG signals. Amplitude-
integrated EEG (aEEG) was exploited to identify occurrences of high-amplitude seizures [56]. By using
an adaptive thresholding method, the method obtained good detection rate (GDR) of 88.50% and FPR/
h of 0.18. Nevertheless, this method also responded to artifacts with high amplitudes and required EEG
signal beginning with normal EEGs. An energy computed in frequency domain using filter bank analysis
and a radial basis function support vector machine (RBF SVM) were jointly employed to characterize the
epileptic seizures. As a result, the energies from seizure samples were higher than that of the normal ones.
Moreover, the logarithm of variance of DWT coefficients in each sub-band from specific periods of EEGs
in a selected channel was used to determine a seizure epoch by thresholding [67]. According to the best
result from of each patient, the method obtained the average performances of 93.24% accuracy, 83.34%
sensitivity, and 95.53% specificity. Similarly, the author also conducted an experiment using a smaller
data set, including only 12 subjects. The results showed that using those features with SVM outperformed
a feature combination of line length, nonlinear energy, variance, power, and maximum value of raw
EEG signals with the average accuracy, sensitivity, and specificity of 96.87%, 72.99%, and 98.13%,
respectively. Furthermore, the STFT spectrogram was used with a modified stacked sparse denoising
autoencoder (mSSDA) to detect an epileptic seizure in individual epochs [68]. It was concluded that
this method outperformed the other methods conducted in the experiment and obtained the accuracy of
93.82% and F1 of 96.05%. Nevertheless, no details of chosen data and validation are reported.

On the other hand, a combination of features in a single domain was proposed to capture ictal
patterns in many aspects. Fractal dimension called a box-counting dimension (DB) and an energy were
exploited to observe complexity and amplitude of the EEG signal [57]. The records included in [57]
were chosen to have the same bipolar montage, and the subject chb16 was excluded because of the
short seizure duration. Eventually, the authors showed that using relevant vector machine (RVM) with
these features computed on harmonic wavelet packet transform (HWPT) coefficients potentially achieved
the sensitivity of 97.00% and FPR/h of 0.10. Mean, ratio of variance, standard deviation (sd), skewness,
kurtosis, mean frequency, and peak frequency were extracted from DWT coefficients [69]. An extreme
learning machine (ELM) was employed to classify EEG epochs into a specific class. Due to its effec-
tiveness and efficiency, this combination could accomplish the accuracy of 94.83%. The work in [38]
compared the detection performance of using different transformations and different classifiers via the
accuracy. First, multi-channel EEG signals were filtered by multi-scale principal component analysis
(MSPCA) to remove artifacts. Then, absolute mean value, average power, sd, ratio of absolute mean
values, skewness, and kurtosis computed on decomposed signals by EMD, DWT and wavelet packet
decomposition (WPD) were applied to random forest (RF), SVM, artificial neural network (ANN), and
k-NN for comparisons. Finally, it was concluded that the methods using DWT and WPD obtained 100%
accuracy. However, only 2,000 eight-second EEG epochs, 1,000 samples for each group, were selected.

In addition, multi-domain features were also exploited to obtain information in different domains.
The work in [70] employed many classifiers: linear discriminant analysis (LDA), quadratic discrimi-
nant analysis (QDA), polynomial classifier, logistic regression, k-nearest neighbor (k-NN), decision tree,
Parzen classifier, and SVM. Variance, root mean squared value (RMS), skewness, kurtosis, and sample
entropy (SampEn) were used as time-domain features, and peak frequency and median frequency com-
puted from PSD were exploited to extract information in frequency domain. Combined with a feature
selection call LDA with a backward search, the k-NN outperformed the other classifier with the sen-
sitivity of 84.00% and specificity of 85.00%. However, the authors chose only records that contained
seizures activities in this study.

Due to the current interest of deep learning and its ability to implicitly extract latent features,
many deep learning models were recently applied to classify seizure epochs [71; 72; 73]. Many
studies mainly focused on designs and choices of deep learning architectures suitable for indicating
seizures [74; 75; 76; 77; 78; 79]. For example, raw EEG signals were purely used as inputs of ANN [80].
It was reported that this method accomplished 100% accuracy; however, the data were specified to con-
tain simple and complex partial epileptic seizures in the frontal area collected from only female subjects.
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A bidirectional long short-term memory model (Bi-LSTM) was applied to maximum, minimum, me-
dian, mean, sd, variance, skewness, kurtosis, mean absolute deviation (MAD), and RMS extracted from
local mean decomposition (LMD) to detect seizure epochs [77]. This method achieved the accuracy of
92.66%, sensitivity of 93.61%, and specificity of 97.00%. A convolutional neural network (CNN)-based
ensemble model including InceptionV3 and ResNet152 was designed to classify EEG epochs using the
information of PSD [81]. By the chosen records of 11 cases, the accuracy of 92.60%, sensitivity of
92.30%, and specificity of 97.00% were obtained. On the other hand, some attempts tried to transform
EEG segments into a specific representation of deep learning model input. For instance, the 224× 224
EEG plot images were constructed from raw EEG segments as inputs to CNN models based on VGG16
for seizure classification [82], and the results on their private data set were promising. From current
attention on graph neural network, temporal graph CNNs exploiting connections between each channel
were designed to detect seizure epochs and determine the seizure areas [83]. EEG data were rearranged
to a 5× 4×M tensor according to the channel locations where M is the number of time samples. As a
result, the outcomes of the model provided more insights into spatial distributions of seizures.

From the literature, we found that many deep learning models have developed by exploiting char-
acteristics of epilepsy such as ictal patterns, PSD, and connections of each channel to detect epileptic
seizures. These models were mostly based on conventional deep learning models, e.g., CNN, ANN, and
LSTM; no novel models for time series analysis such as an attention network [84] have been applied.
In addition, most of them merely focused on the seizure detection performances, and only a few tried to
provide more insight into the characteristics of detected seizures such as affected areas.

In conclusion, Tables 3.1 and 3.2 summarize seizure detection methods performed on the CHB-
MIT Scalp EEG database by domains of features. We observed that results from epoch-based seizure
detection are not realistically suitable for inferring the seizure onset and offset even though those methods
achieved promising results. First, false negatives that unfortunately occur in the middle of true positives
lead to wrong inferences of seizure events. In this case, a single seizure is incorrectly predicted as many
consecutive seizures due to the false negatives. Second, several false positives appearing isolatedly cause
too frequent false alarms. Both prediction outcomes are not clinically realistic because there is no abrupt
change in EEG patterns during a seizure event. In addition, most of the previous studies intentionally
selected data in their experiments to reduce imbalance in the data [85; 73]. However, inclusion and
exclusion criteria were not given with exact details; it is not clear how well their methods perform on the
excluded data set. It is evident that determining the seizure onset and offset as the first and last epochs
of seizures predicted by existing epoch-based seizure classifiers is clinically inappropriate. We, hence,
further focus on methods that can potentially indicate the seizure onset and offset so that the seizure
predictions are more clinically precise.

3.2 Applications of seizure onset and offset detection
There have been only a few attempts that aim to develop seizure onset and offset detection. One

of the first automated seizure offset detection was designed by in [88]. The researchers proposed both
patient specific and non-specific algorithms using multi-channel scalp EEG signals. Long EEG signals of
patients in the CHB-MIT Scalp EEG database were analyzed by segmenting the signals into five second
epochs and advancing each epoch by one second. Both patient specific and non-specific methods used
signal energies of 25 contiguous frequency bands spanning 0 - 25 Hz from each channel independently
to observe spatial and spectral properties in the epoch. For the patient non-specific setting, a feature
vector was constructed from the signal energy averaged over channels of the frequency bands. For the
patient-specific case, each feature was a weighted average of the energy of each frequency band over all
channels. The weights were calculated based on the differences between the signal energies in ictal and
postictal states. Each feature vector was then fed to SVM to classify the epoch as ictal or postictal. A
linear SVM was used in the patient-specific case whereas RBF SVM was exploited in the other case.
Once the seizure onset had been recognized by the algorithm from their previous study [86], the end of
seizure was declared when five consecutive epochs were recognized as postictal. It was reported that the
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Table 3.1: Literature summary of automated epileptic seizure detection using the CHB-MIT
Scalp EEG database when single-domain features were used.

Domain Features Method Performance Ref.
Time Raw signal ANN Acc = 100% [80]

aEEG Thresholding GDR = 88.50%, FPR/h = 0.18 [56]
Line length, NE, variance, average power, max RBF SVM Acc = 95.17%, Sen = 66.35%, Spec

= 96.91%
[67]

Absolute mean values, average power, sd, ratio of absolute
mean values, skewness, kurtosis

MSPCA + EMD + RF Acc = 96.90% [38]

MSPCA + EMD + SVM Acc = 97.50% [38]
MSPCA + EMD + ANN Acc = 96.90% [38]
MSPCA + EMD + k-NN Acc = 94.90% [38]

DB
4 RVM Sen = 97.00%, FPR/h = 0.24 [57]

Min, max, median ,mean, sd, variance, skewness, kurtosis,
MAD, RMS

LMD + Bi-LSTM Acc = 92.66%, Sen = 93.61, Spec =
91.85%

[77]

Frequency Energy RBF SVM GDR = 96.00%, FPR/h = 0.08 [86]∗
PSD CNN-based ensemble Acc = 92.60%, Sen = 92.30%, Spec

= 97.00%
[81]

Time-
frequency

Spectrogram STFT + mSSDA Acc = 93.82% [68]

Mean, ratio of variance, sd, skewness, kurtosis, mean fre-
quency, peak frequency

DWT + ELM Acc = 94.83% [69]

Log of variance DWT + thresholding Acc = 93.24%, Sen = 83.34%, Spec
= 93.53%

[87]

DWT + RBF SVM Acc = 96.87%, Sen = 72.99%, Spec
= 98.13%

[67]∗

Absolute mean, average power, sd, ratio of absolute mean,
skewness, kurtosis

MSPCA1 + DWT + RF Acc = 100% [38]

MSPCA + DWT + SVM Acc = 100% [38]
MSPCA + DWT + ANN Acc = 100% [38]
MSPCA + DWT + k-NN Acc = 100% [38]
MSPCA + WPD2 + RF Acc = 100% [38]
MSPCA + WPD + SVM Acc = 100% [38]
MSPCA + WPD + ANN Acc = 100% [38]
MSPCA + WPD + k-NN Acc = 100% [38]

Energy HWPT3 + RVM Sen = 97.00%, FPR/h = 0.25 [57]
Energy, DB HWPT + RVM Sen = 97.00%, FPR/h = 0.10 [57]

Acc = accuracy, Sen = sensitivity, Spec = specificity, FPR/h = false positive rate per hour
1 Multi-scale principal component analysis, 2 wavelet packet decomposition, 3 harmonic wavelet packet transform, 4 box-counting dimension
∗ Use all data records

patient non-specific method was able to detect all seizure ends with an average accuracy of 84% and an
average absolute offset latency of 8.9 ± 2.3 seconds while the patient-specific algorithm detected 132
out of 133 seizure offsets with an accuracy of 90.00% and an averaged absolute latency of 10.3 ± 5.5
seconds over patients. However, seizures that slowly changed from the ictal to the postictal periods led to
a large delay of seizure offset detection. In contrast, seizure ends were so early detected when the seizure
activities were corrupted by artifacts. Additionally, this method requires an onset detection system to
alarm the seizure onset first.

Orosco et al. [85] applied stationary wavelet transform (SWT)-based feature extraction in detecting
seizures and their onset and offset. Eighteen subjects from the CHB-MIT Scalp EEG database were
used to perform patient-specific and patient non-specific scenarios. Non-overlapping two second epochs
were decomposed by SWT in each channel individually and coefficients of 4 sub-bands corresponding
to normal EEG rhythms were used to extract features. For each channel, mean frequency and peak
frequency were calculated from PSD of all selected sub-bands coefficients and a relative energy of each
frequency band, an energy of each band normalized by the total energy, was extracted. The features
were then spatially averaged over left anterior, right anterior, left posterior, right posterior, and central
areas. By feature selection based on the statistical parameter called Lambda of Wilks, 26 features left
were applied to LDA and artificial neural network (ANN). The results showed that, in the patient-specific
case, LDA outperformed ANN with overall specificity of 99.99%, GDR of 92.60%, false positive rate per
hour (FPR/h) of 0.30, and onset and offset latencies of 0.2 and 4 seconds after and before the annotation.
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Table 3.2: Literature summary of automated epileptic seizure detection using the CHB-MIT
Scalp EEG database when multi-domain features were used.

Time Frequency Time-frequency Method Performance Ref.
Variance, RMS, skewness,
kurtosis, SampEn

Peak frequency, median
frequency

LDA Sen = 70.00%, Spec = 83.00% [70]

QDA Sen = 65.00%, Spec = 92.00% [70]
Polynomial classifier Sen = 70.00%, Spec = 83.00% [70]
Logistic regression Sen = 79.00%, Spec = 86.00% [70]
k-NN Sen = 84.00%, Spec = 85.00% [70]
Decision tree Sen = 78.00%, Spec = 80.00% [70]
Parzen classifier Sen = 61.00%, Spec = 86.00% [70]
SVM Sen = 79.00%, Spec = 86.00% [70]

For the patient non-specific case, LDA also achieved 99.90% specificity, 87.50% GDR, 0.9 FPR/h, and
onset and offset latencies of 1.3 and 3.7 seconds, respectively, on average. In this paper, the positive
latency was observed when the algorithm detected a seizure before an annotation. Nevertheless, ranges
of seizure onset and offset were very wide in both patient specific and non-specific cases. Ranges of the
seizure onset and offset in the patient-specific case were 42.4 and 84.4 seconds, while the ranges of the
onset and offset in the other case were 248 and 81.3 seconds, respectively. Due to high FPRs per hour
obtained from each subject, it is possible only some isolated EEG epochs of each seizure were detected
so that GDR was that high.

Another approach focusing on the patient-specific detection of seizure onset and offset that used
the CHB-MIT Scalp EEG database was found in [89]. EEG records from 18 patients were analyzed
from a one-second sliding window by exploiting an orthonormal triadic wavelet transform. Each EEG
epoch was decomposed into specific frequency ranges using triadic wavelets. Statistics-based features
were extracted each channel individually from selected frequency bands corresponding to normal EEG
rhythms. Then the features of each channel were classified by LDA and k-nearest neighbor (k-NN)
independently. Segments which were recognized as seizure for at least 6 channels were marked as 1
representing seizure EEG epochs. The results from the channel-based detection were post-processed
by centered moving average (CMA) of length 15 to reduce a false alarm. Eventually, the output from
CMA of each epoch was compared to a threshold of 0.4 to determine the final decision. The first epoch
detected as seizure was determined as a seizure onset and a seizure end was observed when the final
decision changed from 1 to 0, representing transition from a seizure stage to a normal stage. As a result,
the method using k-NN achieved 99.62% accuracy, 98.36% GDR, 99.62% specificity, 0.80 FPR/h, 6.32-
second seizure onset latency, and −1.17-second seizure offset latency on average. On the other hand,
averaged classification performance measurements evaluated by LDA were 98% accuracy, 100% GDR,
98.05% specificity, 4.02 FPR/h, and 1.41 and 8.19 second onset and offset latencies, respectively. This
study denoted the positive latency as a time delay that a predicted time point was after an actual time
point. However, a seizure offset of some patients was announced 20 seconds after the annotation, whereas
a seizure end of other patients was detected 20 seconds prematurely. Furthermore, 100% GDR was
accomplished when FPR/h was extremely high. Specifically, FPR/h of some subjects was higher than
10, meaning that there were repeated false alarms about every six minutes.

From the literature, we can conclude that these studies applied conventional machine learning
models requiring hand-crafted features to indicate epileptic seizures in EEGs, so the prior knowledge of
normal EEGs and epilepsy is needed to extract appropriate features. Next, these studies selected some
EEG data from the database, but the inclusion and exclusion criteria were not exactly given. More-
over, according to the reported performance metrics of seizure detection, there is no evidence that the
proposed method could determine the duration of seizures accurately, so it is possible that the seizure
episodes were correctly detected by the proposed method with only short periods. In addition, mean la-
tencies used in [85; 89] may be misleading for interpreting the seizure onset and offset detection results.
In [85], positive and negative latencies were defined as early and late predictions of seizure onset/offset,
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respectively, and the mean latency was used as a performance index of delay detection. Cancellations in
the calculation of the mean latencies possibly occur, making the average values low even though their
ranges could be particularly high.



Chapter IV

PROPOSED METHOD

This chapter presents proposed methods for detection of the starting and ending points of seizure
activities. First, we propose a method to indicate significance of individual feature on epileptic seizure
detection using the Bayesian error rate in Section 4.1. These significant features are selected as inputs
of epoch-based seizure detectors for comparisons with our proposed model. Next, Section 4.2 presents
a CNN model to detect seizure episodes using raw EEG segments without any specific knowledge of
ictal patterns. Two seizure onset and offset determination methods called a counting-based method and
ScoreNet are then explained in Section 4.3. We also establish a new loss function called log-dice loss
to address a problem of imbalanced-class data. Finally, a metric called an effective latency index (EL-
index) is introduced to measure the precision of seizure onset and offset detection. Note that we have
already published the studies of the work of the feature significance in [16], and the proposed CNN and
the counting-based method in [17], so some details here are taken from those articles.

4.1 Feature significance based on Bayesian error rate
A feature is an attribute that measures some properties or characteristics of data. Selecting useful

features of a certain problem is important to a classification task. Many studies used only single feature to
capture characteristics of seizures in EEGs [90; 63; 42; 47; 52; 48]. However, common feature selection
and dimensionality reduction methods used in automatic epileptic seizure detection do not provide infor-
mation about how a single feature independently improves the classification performances [39; 91; 92].
In this section, we exploit the Bayesian error rate to determine the significance of each feature on the
seizure detection. These significant features are further used in epoch-based seizure detection methods
to compare classification results with those of the proposed CNN model.

We define x as a feature, C(x) as a class to which feature x is classified, and Ci denotes an actual
class i labeled from the data. An error of incorrect classification is generally defined as

err =
∫ ∑

Ci ̸=C(x)

P (Ci|x) p(x)dx, (4.1)

where P (Ci|x) is the posterior probability of x in class i, and p(x) is the probability density function of
x. Intuitively, the classification error is the total joint probability that the feature is incorrectly classified,
and the error depends on both the ability of a classifier and the feature. To find the significance of each
feature, we apply the Bayes optimal classifier to indicate the highest contribution of which the feature
can possibly achieve. The Bayes optimal classifier provides the minimum error, also known as the Bayes
error rate, by choosing the class of which the posterior probability is the highest [93]. As a result, the
Bayes error rate (errb) is obtained from

errb =

∫ ∑
Ci ̸=Cmax

P (Ci|x) p(x)dx, (4.2)

where Cmax is the class of which the posterior probability is maximum. According to the Bayes’ rule,
the posterior probability in (4.2) is formulated as

P (Ci|x) =
p(x|Ci)P (Ci)

p(x)
, (4.3)



27

where p(x|Ci) is a likelihood function, P (Ci) is the prior distribution, and p(x) is the evidence.
In practice, the distribution of the likelihood function is naturally unknown. In order to approx-

imate the distribution, a non-parametric distribution estimation is exploited. For all real x values, the
likelihood function can be estimated using the non-parametric kernel smooth function by

p (x|Ci) =
1

Nih

Ni∑
j=1

K

(
x− xj

h

)
,

where Ni is the sample size of class Ci, xj is a sample in the class, K is the kernel function and h is a
bandwidth [94; 95]. Regarding the classification problem, the prior P (Ci) is assumed to be binomial
estimated by the size of class Ci divided by the total number of samples. Finally, p(x) is obtained by the
total probability, and it completes the calculation of P (Ci|x) in (4.3).

Our problem is a two-class classification (normal/seizure) problem, so the expression of the
Bayesian error reduces to

errb =

∫
min
i=1,2

P (Ci|x) p(x)dx, (4.4)

where C1 and C2 stand for the abnormal and normal classes. To evaluate the significant of individual
features, we propose to use an improvement rate (rate) from a standard condition (err0) as follows:

err0 =

∞∫
−∞

P (C2|x) p(x)dx = P (C2) , rate =
err0 − errb

err0
× 100%. (4.5)

The standard condition can be interpreted as classifying all samples to the normal class. This means that
the improvement rate on the Bayesian error rate indicates the best contribution of individual feature to
the epileptic seizure detection. The improvement rate will be used to analyze features in Section 6.1 and
select features for other seizure detectors to compare seizure detection performances with our proposed
method in Section 6.2.

4.2 Convolutional neural network-based seizure detection
In this research, we design a deep CNN model to implicitly extract features from temporal and

spatial domains in EEG epochs. The deep model contains CNN blocks for feature extraction and fully-
connected layers for classification. The CNN block consists of layers including a convolutional layer, a
normalization layer, an activation layer, and a max-pooling layer as shown in Figure 4.1a. Every block
has the same sequence of layers but hyperparameters of some layers are changed to serve a physical
meaning. For example, some block consists of a one-dimensional max-pooling layer to down sample
feature maps in the temporal domain only, whereas a two-dimensional max-pooling layer is used to
reduce the dimensions temporally and spatially.

In the CNN block, the convolutional layer is established to capture both temporal information,
EEG pattern, and spatial characteristics and dispersion of electric field. To appropriately design the layer,
the dimension of EEG epoch is taken into consideration. Suppose that a raw EEG epoch is expressed as
a matrix of size m×N , where m is a number of channels, and N is a number of temporal samples in the
epoch. Practically, the epoch width is extremely larger than its height (m ≪ N ), and ictal patterns are
primarily observed by temporal characteristics of EEGs. Therefore, the width of the filter is supposed
to be larger than its height to capture the temporal patterns rather than the spatial ones. Moreover, we
exploit the concept of filter decomposition to reduce a model complexity and to overcome overfitting
problems [96]. A two-dimensional filter is decomposed into two one-dimensional filters as shown in
Figure 4.1b. The first filter can be physically interpreted as a feature extractor in temporal domain, and
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(a) Block of CNN containing convolutional layer, batch normalization layer, activation layer, and max-
pooling layer.

= *

(b) Example of filter factorization from a three-by-two filter into three-by-one and one-by-two filters. The
first filter aims to extract a temporal feature and the second filter indicates a spatial relationship.

Figure 4.1: Design of CNN block. In the blue box, the two-dimensional filter is factorized into
two one-dimensional filters.

the other filter is to find a relationship of a feature between channels. Next, a batch normalization layer is
added to reduce an internal covariate shift [29] in the extracted feature. Following the normalization layer,
the ReLU function is used as an activation function to fasten the learning procedure [31]. Subsequently,
a max-pooling layer is used to draw the most active values of features in a receptive field. The number of
blocks is set to appropriately extract high-level useful features from EEG patterns. Finally, dropout layers
are applied to reduce overfitting problems, and fully-connected layers are exploited in the last layers to
classify each EEG epoch into a specific class (normal/abnormal).

According to this concept, we propose a CNN model illustrated in Figure 4.2 where the model
input is a raw EEG epoch, and the model output is a seizure probability. From the shape of the input, we
set the first and second filter sizes to 1×3 and 2×1, respectively, to implicitly extract temporal information
rather than to observe a spatial characteristic of the adjacent channel. In Figure 4.2, each rectangular box
represents a layer, and the description in the box explains the type of the layer. In this case, Conv(h,w, f)
is a convolutional layer containing f h-by-w filters, BN stands for a batch normalization layer, ReLU is
an activation layer using the ReLU function as the activation function, Max(h,w) is an h-by-w max-
pooling layer, Dropout(α) is a dropout layer with the disconnection fraction of α to the input nodes, and
FC(n) is a fully-connected layer with n neurons. Totally, there are 17,297 parameters in this model to be
trained. The optimizer called ADADELTA is exploited to train the model because it is robust to noise
and has an adaptive learning rate [97]. Furthermore, the binary cross-entropy is used as a loss function,
and the sample is identified as ictal when the seizure probability is higher than 0.5.
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Figure 4.2: Deep CNN structure proposed in this dissertation. Raw EEG segments of 18 chan-
nels are inputs, and seizure probabilities are outputs.

4.3 Seizure onset and offset detection
The process of detecting seizure onset and offset from detected seizure episodes is important since

predictions of epoch-based seizure detection cannot be directly used to infer the seizure onset and offset.
We design two seizure onset and offset detection models, namely, a counting-based method [17] and a
neural network-based model called ScoreNet. The counting-based method is a criterion-based method
initiated to verify our hypothesis that there are isolated false positives making high false positive rate
per hour and isolated false negatives leading to wrong inferences of seizure episodes. This method is
then formalized to a general form of convolution, and ScoreNet is established by adding flexibility to the
convolution form. Additionally, a log-dice loss is proposed as an objective function for training ScoreNet
to deal with the imbalanced data problem. We will show in Section 6.2 that using only an epoch-based
seizure detector commonly produces numerous false positives and false negatives, and our proposed



30

detectors of seizure onset and offset can considerably reduce these false predictions.

Counting-based model
The counting-based method is a criterion-based seizure onset and offset detector designed from

clinical characteristics of seizures. In practice, a seizure does not occur only a few seconds and suddenly
disappears [4]. This means that classifying EEG epochs independently is not appropriate for indicating
the seizure onset and offset because consecutive epochs are correlated. Moreover, in clinic, it is typical
to label some adjacent seizure episodes and normal EEG epochs during those episodes as one seizure.
From these characteristics, we establish this method to both merge near detected epochs into one event
and disregard isolated predictions that are likely to be false positives.

Recall that z = (z1, z2, . . . , zN ) and ŷ = (ŷ1, ŷ2, . . . , ŷN ) are sequences of epoch-based seizure
classification outputs and of onset and offset detector outputs of length N , respectively. In this method,
zi can be only either 0 (normal) or 1 (seizure), as shown in Figure 4.3a. We denote ki as an index of an
epoch classified as a seizure, i.e., zki

= 1, for i = 1, 2, . . . ,m when m is the number of seizure-detected
epoch, and 1 ≤ ki ≤ N . From the seizure characteristics described above, we can imply that if there
are adequately near detected episodes, then all epochs, including the normal ones, among these episodes
should be grouped together and identified as ictal. On the other hand, those episodes are regarded as
normal when the number of the consecutive detected epochs is insufficient. These conditions can be
mathematically written as follows.

Epoch

1

0

𝐳

(a) Epoch-based classification outputs.

Epoch

1

0

𝐜 𝒘𝒒 = 𝟐𝒒 = 𝟎 𝒒 = 𝟒

(b) Seizure candidate groups represented by rectangular windows.

Epoch

1

0

Onset Offset Onset Offset 𝐲

(c) Seizure onset and offset detection outcomes. The first candidate group is
neglected because q < p.

Figure 4.3: Illustration of the counting-based method where w = 2 and p = 2.

Suppose that qi is the number of neighboring detected epochs. From the statements above, qi is
counted when kj+1 and kj should be close enough, i.e., |kj+1 − kj | ≤ 2w when 2w is the maximum
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required distance between two adjacent epochs. Therefore, qi can be mathematically expressed as

qi =



i+p−1∑
j=1

Θ(2w − |kj+1 − kj |) , i ≤ p

m−1∑
j=i−p

Θ(2w − |kj+1 − kj |) , i ≥ m− p

i+p−1∑
j=i−p

Θ(2w − |kj+1 − kj |) , otherwise,

(4.6)

where Θ(x) is the Heaviside step function, and p is a required number of neighboring detected epochs.
For −w ≤ l ≤ w and 1 ≤ ki + l ≤ N , the output of the method is

ŷki+l =

{
1 qi ≥ p

0 otherwise. (4.7)

Finally, the seizure onset and offset are indicated from the first and last epochs of that group, respectively.
The process of this method illustrated in Figure 4.3 can be firstly interpreted as covering all de-

tected epochs by a window of size 2w + 1 centered at the epoch; we call the covered epochs seizure
candidates c since they are potential to be part of a seizure event. Subsequently, groups of consecutive
seizure candidates containing at least p pairs of near detected epochs (z = 1) are finally declared as
ictal, and those not satisfying the condition in (4.7) are disregarded as normal. As shown in Figure 4.3,
there are some isolated detected epochs occurring from the epoch-based classification outputs, which is
impractical. After applying the counting-based method, the first candidate group is regarded as normal
because there is only one detected epoch occurring. On the other hand, the other groups are classified
as ictal since there are enough detected epochs within these groups, and the onset and offset of each
detected event are the first and last epochs of the group as shown in Figure 4.3c.

Formalization of counting-based method
We notice that the counting-based method is hardly analyzed in the form given in (4.7). Both ci

and qi are calculated by naively finding near detected epochs. Moreover, the optimal parameters w and
p can be obtained by only manual tuning. Hence, we formalize each statement of the counting-based
method in a convolution form so that this method can be analyzed easily.

The process formalized in the form of convolution is illustrated in Figure 4.4. Recall that a seizure
candidate ci, an epoch that is near any detected epoch can be alternatively expressed by applying a filter
of one of length 2w + 1 followed by setting one as a threshold:

ci = Θ
(
zTi 1− 1

)
, i = 1, 2, . . . , N, (4.8)

where zi = (zi+w, . . . , zi, . . . , zi−w), and zj = 0 for j ≤ 0 and j > N , and 1 indicates the vector of ones
with a compatible size. A group of seizure candidates is then formed from adjacent seizure candidates
that have the same value as shown in Figure 4.4. Unlike the counting-based method described above
that ci = 1 is only used for grouping, ci = 0 and ci = 1 are both utilized to form groups of seizure
candidates.

Subsequently, a score si is defined as a value that reveals an existence of a pair of positive predic-
tions. Similar to (4.8), si can be mathematically expressed as

si = Θ
(
zTi 1− 2

)
, i = 1, 2, . . . , N.
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Figure 4.4: General form of the counting-based method when w = 1 and p = 4. Only groups
G2 and G8 having scores higher than p are finally predicted events.

The bias term refers to an existence of the prediction pair. We then define an output gate oi which
automatically allows a seizure candidate to be an epoch of a seizure when the total score of the group is
higher than p:

oi = Θ

∑
j∈Gl

sj − p

 , ∀i ∈ Gl.

when Gl denotes the set of indices of the group l, and p stands for the required number of adjacent
prediction pairs. Note that the total score here is similar to qi in (4.6). We can obviously see that, for any
i, k ∈ Gl, oi = ok because the scores are from the same candidate group. Hence, we denote an output
gate of the group l as

õl = Θ

∑
j∈Gl

sj − p

 l = 1, 2, . . . ,m, (4.9)

whenm is a number of candidate group. Intuitively, õl is similarly interpreted as an output gate in LSTM;
õl automatically indicates whether a candidate group l is chosen. Finally, for i ∈ Gl and l = 1, . . . ,m,
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the output ŷi is
ŷi = ciõl. (4.10)

This means that the output ŷi = 1 when the epoch has at least one adjacent detected epoch (ci = 1), and
the number of prediction pairs meets the requirement (õl = 1).

ScoreNet
ScoreNet is a neural network-based post-processing model used for inferring the seizure onset and

offset. According to the details of the formalized form, it can be interpreted as the convolution of zi
and a constant filter 1. This means that each epoch-based seizure result has an equal effect on the final
decision. We hypothesize that results of different epochs may contribute significance differently. Hence,
ScoreNet is proposed by adapting the formalized form of the counting-based method.

In ScoreNet, the term zTi 1−1 is generalized as zTi a+b to add more flexibility to this scheme when
a is a real-valued vector and b is a real number. With this expression, a and b are allowed to vary upon
data. Furthermore, the Heaviside step function must be changed to a differentiable function. In this case,
a sigmoid function (σ) is used to determine the candidate ci. On the other hand, the hyperbolic tangent
function (tanh) is applied to calculate the score si because its larger output range helps distinguish normal
and abnormal groups of seizure candidates. Therefore, we propose the formulae of the candidate and
score as

ci = σ
(
zTi a1 + b1

)
, i = 1, 2, . . . , N, (4.11)

and
si = tanh

(
zTi a2 + b2

)
, i = 1, 2, . . . , N, (4.12)

where a1, a2, b1, and b2 are model parameters. Here, zi can be a seizure probability, i.e., zi ∈ [0, 1], or a
binary prediction, i.e., zi ∈ {0, 1} from the epoch-based classification step. Note that the expressions of
ci and si resemble node equations in neural networks that take a linear combination of the inputs and pass
through a nonlinear activation. Candidates are then separated into groups using a threshold γ. Since the
sigmoid function is a one-to-one function, the bias b1 is uniquely adapted for a chosen γ during training.
Hence, γ can be arbitrarily set to any real value in (0, 1); here, we set γ = 0.5.

We use an average of the group scores in the calculation of the output gate õi of the group l
in (4.9) instead of the summation to eliminate the effect of the candidate group size. From (4.9), adding
parameters a3 and b3 as scaling and bias terms, the output gate of the group l is proposed as

õl = σ

 a3
Nl

∑
j∈Gl

sj + b3

 , (4.13)

where Nl is the group size. Finally, the output form in (4.10) is also modified because ŷi could be low
even though ci and õl are both sufficiently high. For instance, when ci = 0.7 and õl = 0.7, this epoch
should have been classified as abnormal, but it is decided to be normal since ciõl is 0.49(< 0.5). Similar
to (4.13), we add a weight a4 and a bias b4 to scale the value of ciõl. For any i ∈ Gl, the output ŷi is
given by

ŷi = σ (a4ciõl + b4) . (4.14)

As a result, we have proposed a more general model of seizure onset and offset detection, described
by (4.11) - (4.14). Note that the expressions of ci and si resemble node equations in neural networks
that take a linear combination of inputs and pass the combination through a nonlinear activation. We
propose to train ScoreNet using a nonlinear conjugate gradient method because the method empirically
converges faster than other methods when training neural networks [98].
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Log-dice loss
We propose the log-dice loss for training ScoreNet to overcome an imbalanced data problem. From

the soft-dice loss in (2.17), penalties of wrongly classifying hard and easy samples, samples incorrectly
classified with large and small errors, are linearly proportional. Costs in incorrectly predicting hard and
easy samples are slightly different. We then propose the log-dice loss that includes different penalties
on the hard and easy samples using the dissimilarity of yi and h(xi) in the log-scale.

By conceptually maximizing F1, from DSC in (2.16), we substitute
∑

i yi log(1−h(xi)),
∑

i(1−
yi) log(1 − h(xi)), and

∑
i yi logh(xi) for TP,FP, and FN, respectively. These terms are large when

yi and h(xi) agree with their original definitions, and small otherwise. For instance, when yi = 1 and
h(xi) ≈ 1, which is a true positive case, yi log(1−h(xi)) approaches infinity, (1−yi) log(1−h(xi)) = 0,
and yi logh(xi) ≈ 0. With these definitions, the log-dice loss is proposed as

LlogDL (x, y) = 1−
2

N∑
i=1

yi log(1− h(xi))

N∑
i=1

[(1 + yi) log(1− h(xi)) + yi logh(xi)]
(4.15)

The log-dice loss is equal to 1 − DSC when substituting TP, FN, and FP in (2.16) for −
∑

i yi log(1 −
ŷi),−

∑
i yi log ŷi, and −

∑
i(1 − yi) log(1 − ŷi), respectively. Figure 4.5 shows the modified classi-

fication indices; by incorporating the logarithmic function, the index value rapidly increases where ŷ is
close to y.

The value of LlogDL is in the range of (0, 1] and decreases as y and ŷ become more similar. LlogDL
reaches its maximum of one (worst score) under two cases: i) when y = 0 (all samples are normal),
regardless of the prediction ŷ because the index does not consider TN; or ii) when y = 1 and ŷ = 0 (no
TP in the prediction). Figure 4.6 compares the cross-entropy, soft-dice, squared-dice and log-dice loss
functions as ŷ varies under two values of y (one-sample case for illustration). When y = 0, LlogDL’s
constant loss means that the normal class are neglected when optimizing model parameters. On the other
hand, when y = 1, and ŷ ≤ 0.5, the log-dice loss has a higher penalty than the cross-entropy, soft-dice
and squared-dice losses, implying that LlogDL optimizes model parameters to prevent FN better than the
other losses.
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Figure 4.5: Modified classification indices in the log-dice loss.
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Figure 4.6: Loss functions in binary classification and the proposed log-dice loss.

4.4 Effective latency index
An effective latency index (EL-index) is an indicator for measuring delays of correct event detec-

tion while undetected events are also taken into account. The motivation is to give a positive score to any
event which is correctly detected, and zero for any undetected event. This score should be low when the
delay of the detected event is high, and vice versa. Normally, a latency is the time difference between a
predicted event (onset/offset) and an actual event. There is currently no consensus of latency determina-
tion when situations such as late or early detection and multiple predictions happen. We denote di > 0
and di < 0 the latencies of early and late detection of seizure onset and offset, respectively, and there
are n seizure activities. Note that di is not defined for an undetected seizure event. Moreover, let ki
be an indicator of the event i being detected: ki = 1 when the event is correctly detected, and ki = 0
otherwise. With these notations, the mean latency is given by

d̄ =

n∑
i=1

kidi

n∑
i=1

ki

,

and the mean absolute latency is similarly expressed as

d̂ =

n∑
i=1

ki|di|
n∑

i=1
ki

.

In general, d̄ and d̂ are particularly low when delays are small, which commonly refer to high
precision in the detection. However, both of them ignore all undetected events from the calculation,
leading to misunderstanding when their values are promising. For instance, they are low if a few events
are almost perfectly detected while the other events are all overlooked. Moreover, d̄ is possibly low
because of the cancellation of positive and negative latency. Therefore, we propose the EL-index to
solve these problems. The EL-index is defined as

EL-index =
1

n

n∑
i=1

kir
|di|, (4.16)
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where 0 < r < 1 and n is the number of true seizure events. This decay rate r can be arbitrarily
specified by the user according to an impact degree of the delay in each application. For example, in the
case of detecting life-threatening abnormalities in the ECG, r should be low because the delay impact is
considerable.

The EL-index values range from zero (missing all events) to one (perfectly detecting all events).
Given a correct detection (ki = 1), the value r|di| exponentially decreases when |di| increases, meaning
that a higher latency dramatically causes a smaller EL-index. On the other hand, when an event is
undetected (ki = 0), the term r|di| is ignored from the EL-index. This is similar to assigning di =∞ for
the undetected event, making r|di| approaches zero. Hence, undetected events always provide the least
contribution to the EL-index.

If we denote GDR (a good detection rate) a portion of correctly detected seizure events in one
record and hence given by (1/n)

∑n
i=1 ki, we can see that the EL-index given in (4.16) can be regarded

as an exponentially weighted GDR. Moreover, an upper limit and a lower limit of the EL-index can be
derived as

GDR · r|d|max ≤ EL-index ≤ GDR,
where |d|max is the maximum value of absolute time delays. It is evident that the EL-index cannot be
higher than GDR, and it is bounded below by the function GDR · r|d|. Moreover, the EL-index can
distinguish distributions of collected time delays. Suppose we have two cases of time delay samples
from test results. The distributions of these two cases are narrowly spread and highly varied, but the
samples of two cases have the same mean absolute latency d̂ and the same GDR. When all time delays
are similar, i.e., di ≈ ±d̂, for any detected event i, we can derive that the EL-index is close to the
exponential bound

EL-index ≈ GDR · rd̂. (4.17)
In contrast, when the time delays are highly varied, the EL-index is far from the exponential bound
in (4.17), and the EL-index in this case is always higher than that of the first case:

GDR · rd̂ ≤ GDR ·

n∑
i=1

kir
|di|

n∑
i=1

ki

=
1

n

n∑
i=1

kir
|di|.

Time

Method A Method BLabel

Mean latency Mean absolute latency EL-index

Onset Method A 0.00 1.00 0.60

Method B 0.00 2.00 0.81

Offset Method A 0.50 1.50 0.57

Method B 0.00 2.00 0.82

Figure 4.7: Comparisons of time-based measurements.

Figure 4.7 shows comparisons of these three metrics when r = 0.9. It is obvious that the mean
latency is not an appropriate metric because the mean latency of onset latencies from both methods are
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zero, but both methods do not perfectly detect seizure onsets. Method A obtains less mean absolute
latency of onset than method B but method A cannot detect the second seizure event (k2 = 0). The EL-
index of detecting seizure onset of method B is, therefore, higher than that of method A. Moreover, the
seizure onsets are more accurately detected more than the seizure offsets when method A is considered;
the EL-index of detecting the onset is higher. For method B, latencies of detecting the event terminations
are relatively diverse compared to those of detecting the starting points, so the EL-index of detecting
offset is higher than that of detecting onset given the same mean absolute latency.
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(CNN,SVM, 
RF,…)
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Epoch-based output
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Figure 4.8: Scheme of using ScoreNet with any classifier.

In summary, we propose the CNN model in Section 4.2 to detect seizure episodes in EEG epochs
and two seizure onset and offset detector to indicate the onset and offset in Section 4.3. ScoreNet can
be used with any epoch-based classifiers as shown in Figure 4.8. Given gradients of ScoreNet in Ap-
pendix B, we optimize this loss over a1, a2, a3, a4, b1, b2, b3, and b4 using the conjugate gradient method.
Finally, the EL-index is used to measure time delays of detecting the seizure onset and offset.



Chapter V

MATERIAL AND EVALUATION

This chapter explains a material, performance metrics, and an evaluation scheme used in this
dissertation. We firstly describe the database called CHB-MIT Scalp EEG that meets the scopes of
our work. Next, the performance metrics, including epoch-based, event-based, and time-based metrics,
are presented. Finally, a leave-one-record-out cross validation (LOOCV) is described as a validation
scheme.

5.1 CHB-MIT Scalp EEG database
According to the scopes of this work, the research scheme is patient-specific; data in training and

testing processes are collected from the same patient. The data are multi-channel scalp EEG signals,
and there exist at least two EEG records containing an epileptic seizure in each case to ensure anomaly
samples in training data. Moreover, the starting and ending time points of each individual seizure must be
annotated. From the above conditions, the CHB-MIT Scalp EEG database [35] is the only open-source
database that currently meets all requirements, so we select to conduct experiments on this database.
The other widely used databases that do not match our scopes are listed with comments as follows.

• Bonn University database [99]: This database consists of both scalp EEG and intracranial EEG
collected from a single channel.

• Temple University Hospital EEG Seizure database [100]: None of patients are included in both
training and evaluation sets.

The CHB-MIT Scalp EEG database comprises of EEG recordings of 24 cases collected from 23
subjects at the Children’s Hospital Boston [35]. Every signal was recorded at the sampling frequency
of 256Hz with resolution of 16 bit. The international 10-20 system was exploited to locate electrodes
on the scalp and both referential and bipolar montages were used. In summary, there are 686 long
EEG records which include 129 records containing 198 seizures in this database. The total duration
and the numbers of seizure activities from each case are concluded in Table 5.1. All records are publicly
and freely downloaded from PhysioNet (https://physionet.org/physiobank/database/
chbmit/).

5.2 Performance metrics
Performance indices of the seizure onset and offset detection are crucial for comparisons of the

detection algorithms. We categorize the performance metrics into three groups regarding the purposes of
the evaluations. As a binary classification problem, epoch-based and event-based metrics are commonly
used to evaluate the performance of the seizure detection. In addition, time-based metrics, including
an EL-index described in Section 4.4, are considered when we assess methods of the seizure onset and
offset detection.

https://physionet.org/physiobank/database/chbmit/
https://physionet.org/physiobank/database/chbmit/
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Table 5.1: Summary of the CHB-MIT Scalp EEG database.

Cases # records Total duration (sec) # seizures Seizure duration (sec)

chb01 42 145,988 7 449
chb02 36 126,959 3 175
chb03 38 136,806 7 409
chb04 42 561,834 4 382
chb05 39 140,410 5 563
chb06 18 240,246 10 163
chb07 19 241,388 3 328
chb08 20 72,023 5 924
chb09 19 244,338 4 280
chb10 25 180,084 7 454
chb11 35 123,257 3 809
chb12 24 85,300 40 1,515
chb13 33 118,800 12 547
chb14 26 93,600 8 177
chb15 40 144,036 20 2,012
chb16 19 68,400 10 94
chb17 21 75,624 3 296
chb18 36 128,285 6 323
chb19 30 107,746 3 239
chb20 29 99,366 8 302
chb21 33 118,189 4 203
chb22 31 111,611 3 207
chb23 9 95,610 7 431
chb24 22 76,640 16 527

sum 686 3,536,540 198 11,809

Epoch-based metrics
Epoch-based metrics are used to perform an evaluation of the detection performance when each

epoch is regarded as a data sample. The calculations of the epoch-based metrics are related to the con-
fusion matrix. For instance, many studies has reported the performance as accuracy, sensitivity, and
specificity [36; 42; 101; 16]. The epoch-based metrics can also imply how well the classifier is when
a duration is concerned. The epoch-based metrics are calculated from a confusion matrix containing
the numbers of true positive (TP), false positive (FP), false negative (FN), and true negative (FN). With
these values, many metrics are established for specific purposes. For example, common metrics such as
accuracy (Acc), sensitivity (Sen), and specificity (Spec) are defined as

Acc =
TP + TN

TP + FP + FN + TN
× 100%,

Sen =
TP

TP + FN
× 100%,

Spec =
TN

TN + FP
× 100%.
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The accuracy is normally used to indicate the overall performance of the classification, while the sen-
sitivity and specificity are indicators determining the performance of correctly classifying outputs as
ictal and normal, respectively. Moreover, F1, also known as F-measure is the measure of classification
performance that takes an imbalance of the data into account [102]. It is calculated from a harmonic
mean of precision, or positive predictive value, and recall, or sensitivity. In other words, F1 can also be
calculated as follows:

F1 =
2TP

2TP + FN + FP
× 100%.

However, it is hardly said that high values of the epoch-based metrics are clinically referred to
promising results. For example, as shown in Figure 5.1, the epoch-based metrics by method A is still
incredibly high even though the detector misses one whole short seizure activity when other seizure
episodes are correctly classified. Therefore, using only epoch-based metrics is not sufficient to conclude
the performance of the detection method.

Time

Epoch-based metrics Event-based metrics

F1 (%) Acc (%) Sen (%) Spec (%) GDR (%) FPR/h

Method A 80.00 80.65 80.00 81.25 66.67 3

Method B 49.23 64.51 35.56 91.67 100.00 1

Label Method A Method B

Figure 5.1: Comparisons of epoch-based and event-based metrics.

Event-based metrics
Event-based metrics are used to evaluate a classifier based on seizure events in long EEG signals.

In this case, the true positive is counted when there is an overlap between predicted seizure episodes and
the annotation, the false positive is declared when a detected period of EEG signal does not overlap an
actual seizure period, and the false negative is indicated when there is no detected epoch during a seizure
activity. Note that there is no definition of true negative for the evaluation.

Two common metrics, namely, good detection rate (GDR) and false positive rate per hour (FPR/h)
calculated based on the intersection of detection results and annotations are used in this application [57;
86; 56]. GDR, or event-based sensitivity, is defined as the percentage of detected seizure events that
have an overlap with the annotations. FPR/h, also called false detection rate per hour, is the proportion
of wrongly identified seizures in one hour. A higher GDR indicates a higher number of correctly detected
seizure events, while a small FPR/h refers to having a lower number of wrongly recognized seizure events.

Nevertheless, promising values of event-based metrics should be concerned to avoid being misled
into a conclusion of the correct detection when a duration is considered. For instance, as demonstrated
by method B in Figure 5.1, detecting an occurrence of seizure at the last second of an actual seizure
event is still considered as good detection even though the detection system nearly misses the whole
seizure event. Hence, the event-based metrics should be used with the epoch-based metrics for fairness
and completeness of the evaluation.
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Time-based metrics
Time-based metrics are indicators of measuring time delay of the seizure onset and offset detec-

tion. A latency is a measurement of identifying the difference between actual and detected time points.
Unfortunately, there is no standard calculation of the latency in this application since many studies have
previously defined the latency differently [85; 89]. Therefore, in this study, the latency is defined as a
delay of a detected seizure onset/offset when an actual seizure onset/offset is set to be a reference. We
use positive and negative latencies defined in Section 4.4; the positive and negative onset/offset latencies
refer to the declarations of onset/offset after and before the annotation, respectively.

Normally, the mean latency and the mean absolute latency are used to indicate the precision of
detecting the seizure onset and offset [85; 88]. As discussed in Section 4.4, these metrics are inappropri-
ate to measure the performance of seizure onset and offset detection due to the cancellations of positive
and negative latencies, and the neglect of undetected seizure events. Therefore, the proposed EL-index
is mainly used to quantify the performance, and the mean latency is exploited to determine the trend
(early/late) of the detection error.

5.3 Leave-one-record-out cross validation
A means of evaluating the automatic epileptic seizure detection is essential to compare the per-

formances of each model. Since our purpose is to detect seizure episodes and to indicate onsets and
offsets, using a validation method that considers EEG epochs as samples is not appropriate because we
cannot determine the onsets and offsets if the results are not sequential. In this case, a leave-one-record-
out cross validation (LOOCV) is exploited. Suppose that there are n patients, and each subject has k
records. For each patient, EEG records are divided into two groups: training set and validation set as
shown in Figure 5.2. A training set contains k−1 records, and the excluded record is of a validation set.
The model is trained on the data in the training set, and then validated on the record in the validation set.
Performance metrics described in Section 5.2 are then evaluated from the validation set. This process
repeats until every record is in the validation set. Finally, each metric from all k×n validation cases are
accumulated and reported in terms of the mean, median, and interquartile range of these metrics.

k records

Performance

Performance

Performance

…

Training set Validation set

Performance

Figure 5.2: Leave-one-record out cross validation scheme.



Chapter VI

EXPERIMENT

This chapter demonstrates primary experiments conducted in this dissertation. Firstly, the signif-
icance of each individual feature for discriminating ictal patterns from normal EEGs using the Bayesian
error rate is explored in Section 6.1. Next, Section 6.2 provides details of epoch-based seizure clas-
sification methods, and reports of seizure onset and offset determination are demonstrated in Sec-
tion 6.3. Both experimental setups and results of each topic are also included in this chapter, and
the results obtained from this work are compared to those reported in other studies with a remark of
data used in their experiments. Since some experimental results were already published [16; 17], and
some is available in [18], the contents in this chapter are partly taken from these references. In ad-
dition, supplementary experiments such as varying parameters of the counting-based method are ex-
plained in appendix. Codes of running ScoreNet and experimental results are available at https:
//github.com/Siyaosk129/ScoreNet.

6.1 Feature analysis
This experiment aims to analyze the significance of each individual feature for the seizure detection

using the Bayesian error rate proposed in Section 4.1. Features used in this study are from three domains:
time domain, frequency domain, and time-frequency domain. The obtained significant features are then
fed to an existing feature selection method called correlation-based feature selection (CFS) [103] to
examine redundancy between these features.

Experimental setup
According to Section 4.1, the kernel function K and the bandwidth h need to be specified in

the kernel density estimation. In this research, the Gaussian kernel and the optimal bandwidth h ≈
1.06σ̂N

− 1

5

i , minimizing mean integrated squared error, were chosen, where σ̂ and N are the sample
standard deviation of the data and the sample size. We randomly selected two records from each case
in the CHB-MIT Scalp EEG database subject to the inclusion condition that every record must contain
at least one seizure activity. Those random records for assessing the improvement rate of the Bayes
error rate of each feature are shown in Table 6.1. Since the EEG channels of each record were originally
inconsistent, we firstly modified the EEG channels so that the montages were bipolar. The modified EEG
channels used in this study were sequentially listed as follows: FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3,
F3-C3, C3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, and P8-O2.

In this experiment, an EEG epoch was defined by a segment of a four-second raw EEG signal in
every channel with an overlap of three seconds to the consecutive epoch. These choices were selected
from inspecting the processing step using the commercial software called Persyst [104]. A feature was
then computed from each channel of the EEG epoch independently. Only widely used features in the
literature shown in Table 6.2 are selected for the analysis, and formulae and descriptions of these features
are presented in Appendix A.1. A template length m and a tolerance r of which ApEn and SampEn from
normal and abnormal EEGs are maximally different were selected. As a result from Appendix C.2, the
template length m and the tolerance r were set to m = 2 and r = 0.1sd, where sd is the sample standard
deviation of the EEG data. All time domain features were calculated from a raw EEG signal, whereas fea-
tures from the frequency domain were extracted from power spectral density, and time-frequency-domain

https://github.com/Siyaosk129/ScoreNet
https://github.com/Siyaosk129/ScoreNet
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Table 6.1: List of records used to evaluate feature significance.

Records
chb01_04 chb01_16 chb02_16+ chb02_19 chb03_03 chb03_35
chb04_08 chb04_28 chb05_06 chb05_13 chb06_01 chb06_04
chb07_13 chb07_19 chb08_02 chb08_05 chb09_06 chb09_08
chb10_38 chb10_89 chb11_92 chb11_99 chb12_33 chb12_38
chb13_19 chb13_55 chb14_04 chb14_18 chb15_06 chb15_15
chb16_17 chb16_18 chb17a_04 chb17b_63 chb18_32 chb18_35
chb19_29 chb19_30 chb20_14 chb20_16 chb21_21 chb21_22
chb22_21 chb22_22 chb23_06 chb23_09 chb24_04 chb24_11

Table 6.2: List of features for the Bayesian error rate evaluation.

Domains Features
Time Mean, variance, coefficient of variation (CV), skewness, kurtosis,

max, min, energy, nonlinear energy (NE), line length, Shannon en-
tropy (ShEn), approximate entropy (ApEn), sample entropy (Sam-
pEn), number of zero-crossing, number of local extrema, mobility,
complexity

Frequency Intensity weighted mean frequency (IWMF), intensity weighted
bandwidth (IWBW), spectral entropy (SE), peak frequency, peak
amplitude

Time-
frequency

Mean, absolute mean, variance, skewness, kurtosis, max, min, en-
ergy, line length

features were computed from discrete-wavelet-transform (DWT) coefficients with the Daubechies 4-tap
wavelet for five levels.

Currently, the EEG channel selection is still an open research problem, and using multi-channel
EEG signals may be redundant. Moreover, some commercial software also analyzes the seizure activity
over the left side and the right side of the brain instead of using individual channels. For these reasons,
we used a spatial averaging of features over the left side and the right side of the brain independently,
denoted as xleft and xright, respectively. We then estimated the posterior probability distributions and
computed the Bayes error rates using the left and right feature representatives.

Results and discussions
From the chosen records, there were 263,424 samples in the normal group and 4,677 epochs

belonging to the seizure group, so err0 = 0.0174. The features with an improvement rate higher than
4.50% were considered as significant. Table 6.3 shows the Bayes error rate and improvement rate of
each time-domain feature and frequency-domain feature. The results from the data set showed that most
features achieved almost the same Bayes errors which were close to err0, except for the variance, energy,
nonlinear energy, and Shannon entropy that obtained high improvement rates of 4.77% to 10.07%, where
the nonlinear energy reached the highest improvement rate. Figure 6.1 displays the improvement rates
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of all time-frequency-domain features in each wavelet decomposition level. Overall, the results showed
that the variance and energy of the wavelet coefficients in all decomposition levels yielded relatively
high improvement rates compared to other features. Specifically, energy from level D1 of the left half
brain accomplished the highest improvement rate of 13.51%. Line length from levels D5 and A5, and
kurtosis from D1 of the left hemisphere also achieved significant improvement rates.

Table 6.3: Bayes error (errb) and improvement rate of time-domain and frequency-domain fea-
tures using the CHB-MIT Scalp EEG database.

(a)) Time-domain features.

Feature Left side Right side
errb rate errb rate

Mean 0.0174 0.00 0.0174 0.05
Variance 0.0160 8.20 0.0166 4.78
CV 0.0174 0.00 0.0174 0.00
Skewness 0.0174 0.00 0.0174 0.00
Kurtosis 0.0174 0.08 0.0174 0.17
Max 0.0174 0.00 0.0174 0.00
Min 0.0174 0.00 0.0174 0.00
Energy 0.0160 8.18 0.0166 4.77
NE 0.0157 10.07 0.0160 8.36
Line length 0.0166 1.92 0.0167 1.16
ShEn 0.0174 0.33 0.0165 5.64
ApEn 0.0174 0.00 0.0174 0.00
SampEn 0.0174 0.00 0.0174 0.00
Local extrema 0.0174 0.00 0.0174 0.00
Zero-crossing 0.0174 0.09 0.0174 0.09
Mobility 0.0174 0.00 0.0174 0.00
Complexity 0.0174 0.00 0.0174 0.00

(b)) Frequency-domain features.

Feature Left side Right side
errb rate errb rate

IWMF 0.0174 0.00 0.0174 0.00
IWBW 0.0174 0.00 0.0174 0.00
SE 0.0174 0.00 0.0174 0.00
Peak amplitude 0.0174 0.00 0.0174 0.00
Peak frequency 0.0174 0.00 0.0174 0.00

We found that the most significant features were related to amplitudes and variations of the sig-
nals, such as variance, energy, and nonlinear energy. Additionally, features that can capture changes in
amplitude, frequency, and rhythmicity of EEGs gain some improvement since there is continuous evo-
lution of amplitude, frequency, and rhythms during seizure activities compared to the background [20].
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On the other hand, frequency-domain features do not help improve the performance from the baseline
because, in this data set, there are artifacts causing the seizure probability to be less than that of the other
class.
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Figure 6.1: Improvement rates based on the Bayesian method of time-frequency domain fea-
tures. D1, D2, D3, D4, D5, and A5 represent sub-bands from which the features are
extracted.

Subsequently, the significant features achieving the improvement rate higher than 4.50% (in total,
34 features) were then applied to the CFS algorithm to examine their redundancy; see more details of this
algorithm in Appendix A.2. Figure 6.2 shows that the merit score initially increases as m (the number
of features in the subset) increases until the feature subset contains five features, with a maximum score
of 1.25× 10−2. As m increases beyond five, the merit score decreases.
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Figure 6.2: Merit scores of feature subsets. The subset size achieving highest merit score is 5.
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Figure 6.3: The features ranked by CFS and their improvement rates. All features in the optimal
subset also obtained high improvement rates.

Additionally, the features and their improvement rates in the final feature subset were ranked in the
descending order by CFS as shown in Figure 6.3, where L and R stand for features computed from the
left side and right side, respectively. The features in the optimal subset were EnergyD1R, VarianceD5L,
VarianceD1L, EnergyD5L, and VarianceD1R. Accordingly, these five features also achieved relatively
high improvement rates among the significant features. As shown in Figure 6.2, the merit scores of
the optimal feature subset of each size were not that different. This indicated that the results of feature
significance from our experiments also agree with the outputs of the CFS algorithm. Moreover, these
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five features obviously require just onlyO(N) for the total computation when N is the data size. Hence,
these five features should be at least used as features in the automatic epileptic seizure detection because
of their high improvement rates and low computational complexity.

6.2 Seizure detection
The goal of this experiment is to indicate an occurrence of an epileptic seizure in an EEG epoch.

We design a CNN model to detect the seizure without any feature extraction and noise removal processes.
Four classifiers, namely, logistic regression, SVM, decision tree, and random forest are exploited for
comparisons epoch-based seizure detection results with those obtained from the proposed CNN model.
Moreover, the counting-based method and ScoreNet are applied to these classifiers, including the pro-
posed CNN, to show the consistency of the improvement in the seizure detection performance.

Experimental setup
This experiment was fully performed on all records in the CHB-MIT Scalp EEG database in a

patient-specific scenario; all EEG data in training and test sets were from the same patient. Similar
to Section 6.1, from the inconsistency of EEG montages, the EEG records were firstly rearranged so
that the montages were bipolar. The sequential order of the modified 18 channels were FP1-F7, F7-T7,
T7-P7, P7-O1, FP1-F3, F3-T3, T3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8,
P8-O2, FZ-CZ, and CZ-PZ. According to LOOCV, the modified EEGs from each case were split into
training and validation sets. The long EEG records in each set were segmented into non-overlapped
epochs of one-second period; the EEG segment was of size 18×256. These epochs were then randomly
shuffled to reduce bias and variance from the order of the data.

Table 6.4: List of extracted features used for seizure detection.

Domains Features
Time Variance, energy, NE, ShEn, ApEn, SampEn

Frequency Energies from eight sub-bands ranging 0 - 25 Hz

Time-frequency Mean of absolute value, variance, energy, maximum, minimum, line
length

In order to compare the classification outcomes of the proposed CNN model, four classifiers,
namely, logistic regression, linear SVM, decision tree, and random forest were applied to indicate seizure
episodes from EEG epochs. Note that we attempted to use RBF SVM to determine seizure occurrences.
However, it was impossible to select model parameters such that the model can detect at least one seizure
from every patient. Thus, RBF SVM was not included in the comparison. Since the chosen classifiers
require hand-crafted features to characterize ictal and normal patterns, we chose features that have been
widely used and able to discriminate epileptic event from normal epochs [86; 36; 50; 16]. We also
exploited the knowledge obtained in Section 6.1 for selecting the features. The final set of features for
these classifiers is demonstrated in Table 6.4, where the template length m and the tolerance r were set
to m = 2 and r = 0.1sd where sd is the sample standard deviation of the EEG data. The time-domain
features and frequency-domain features were extracted from a raw EEG epoch and its power spectral
density, whereas DWT coefficients from five decomposition levels using the Daubechies wavelet of four
taps were used to calculate the time-frequency-domain features. Each feature was computed from an
EEG signal in each channel, and then normalized to a z-score. Totally, 900 features from every channel
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were combined into a feature vector for the classification of EEG epoch. In addition, we used a grid
search for tuning hyperparameters of the other epoch-based classifiers. Similar to the CNN case, the
hyperparameters that yielded at least one true positive in every patient and achieved high overall F1 from
test records were selected.

After the epoch-based seizure detection process, the counting-based method and ScoreNet pro-
posed in Section 4.3 were then applied as post-processing techniques to improve the epoch-based clas-
sification performance. We firstly collected seizure predictions of each epoch-based classifier from both
training and validation sets for learning and testing abilities of the post-processing approaches. These
predictions were then arranged by time indices to match the annotations of seizure onsets and offsets.
We set parameters of the counting-based method to w = 6 and p = 2 since these parameters achieved
the best F1 as reported in Appendix C.3. ScoreNet was trained and validated on the arranged predictions
of the training and validation set. We also exploited the binary cross-entropy, soft-dice loss [32], and
square-dice loss [33] for learning ScoreNet.

Finally, we evaluated and compared the seizure detection methods using epoch-based metrics and
event-based metrics to demonstrate seizure detection performance in both aspects. In the epoch-based
metrics, F1 was mainly focused as its suitability of measuring class-imbalanced classification results. The
other metrics: accuracy, sensitivity, and specificity, were reported as supplementary outcomes. GDR and
FPR/h were considered as the event-based metrics to determine correctness of detecting seizure events.
Additionally, we also adopted a patient-specific LOOCV as a validation scheme for the case of ScoreNet.
The performance metrics were collected from each validation case and then demonstrated in terms of
the mean, median, and interquartile range of these metrics.

Results and discussions
In what follows, epoch-based classification results performed by CNN, logistic regression, linear

SVM, decision tree, and random forest reported in this experiment are labeled by classification
in Figures 6.4 to 6.6. After ScoreNet was applied with different loss functions i.e., entropy, soft-dice
loss, squared-dice loss, and log-dice loss, the performances are compared with those from the prior
classification step, and are tagged by entropy, softdl, sqdl, logdl. When the counting-
based method was applied, we refer to this result as counting. In the following figures showing the
performances, color bars indicate the average values, the circle markers present the median, and the
vertical bars show the interquartiles.

Figures 6.4 to 6.6 show comparisons of the event-based metrics and epoch-based metrics in all
seizure detection cases, including cases of applying the counting-based method and ScoreNet to improve
seizure detection results from using only the classifiers. Note that no displays of the interquartile ranges
appear in Figures 6.4 and 6.5 because they are too small to be clearly visualized; the median, first and
third quartiles of GDR, specificity, and accuracy were all 100%, and those of FPR/h were 0. In overall,
the epoch-based seizure classifiers in the prior step detected seizure events with GDR of more than 80%,
obtained F1 and sensitivity of less than 40% and 55%, and accuracy and specificity of more than 99%, but
FPR varied drastically from 0.53 per hour to 5.24 per hour on average upon the classifiers. In particular,
the logistic regression, linear SVM, and decision tree achieved superior GDRs, but unfortunately yielded
inferior F1 and high FPRs per hour, whereas the random forest obtained the best F1 and FPR/h but the
lowest GDR. Moreover, high GDR and F1 of 93.74% and 28.61%, and an intermediate FPR/h of 1.78
were obtained by the proposed CNN model. As a result, it is possible that the logistic regression, linear
SVM, and decision tree randomly detected many isolated EEG epochs, resulting in high FPR/h, and low
F1 and specificity. On the other hand, the random forest possibly indicates some seizure occurrences
with small seizure probabilities so that those epochs are finally decided to be normal. In addition, even
though the proposed CNN is likely to produce a moderate number of false positives, the model still
correctly detects both seizure events and seizure epochs. As a result, the proposed CNN without any
hand-crafted features is comparable to the random forest and superior to the other classifiers with the
selected significant features if we consider F1, GDR and FPR/h as performance metrics.
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Figure 6.4: Comparisons of averaged GDR and FPR/h obtained from test cases using different
epoch-based seizure detection methods.

On average, after applying the counting-based method and ScoreNet, regardless of the classifica-
tion methods, F1 scores increased at least 18%, FPRs were significantly reduced to at most 0.64 times per
hour, but GDRs were slightly dropped. Specifically, using ScoreNet with any dice loss functions gener-
ally provided better F1 scores and GDRs than the counting-based method, and FPRs decreased the most
when the binary cross-entropy function was used. The combination of the proposed CNN and ScoreNet
and the soft-dice loss accomplished the highest F1 of 70.15%. On the other hand, the counting-based
method typically yielded a higher sensitivity but lower accuracy and specificity than ScoreNet. We found
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Figure 6.5: Comparisons of averaged specificity and accuracy obtained from test cases using
different epoch-based seizure detection methods.

that the criterion (4.7) that allows seizure candidates to be seizure-detected epochs can be easily satisfied
with the chosen parameters w = 6 and p = 2, so many groups of seizure candidates are eventually re-
garded as seizure activities. Nevertheless, many onsets and offsets of these candidate groups are detected
earlier and later than the actual onsets and offsets, respectively, resulting in lower specificity and accu-
racy compared to that of ScoreNet. According to a large number of normal epochs, these reductions in
the specificity and accuracy implies moderate numbers of the exceeding false positives. Thus, outcomes
of ScoreNet with any dice loss function are more promising than those of the counting-based method.
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Figure 6.6: Comparisons of averaged F1 and sensitivity obtained from test cases using differ-
ent epoch-based seizure detection methods. Color bars indicate the average values, the circle
markers present the median, and the vertical bars show the interquartiles.

When applying ScoreNet with the dice loss functions, we found that GDR was slightly dropped
only 1 - 5%, and GDR significantly decreased about 15 - 20% when the cross-entropy function was
used. On the other hand, GDR obtained from the case of the random forest increased up to 7% by
combinations of ScoreNet and the dice loss functions. As shown in Figure 6.7, we found that the random
forest can produce a sequence of small seizure probabilities distinguishable from the background. In
this case, ScoreNet could potentially identify the seizure from the seizure probabilities. This means
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that using ScoreNet generally improves epoch-based classification performance metrics. Specifically, a
combination of ScoreNet and any dice loss function can also indicate some seizures from events that are
not originally detected in the classification process. Thus, the dice-loss functions, including the log-dice
loss, are appropriate for handling an imbalanced-class data problem.

0

0.5

1

O
ut

pu
t

800 850 900 950 1000 1050 1100
Epochs

0

0.5

1

C
an

di
da

te

0

0.5

1

In
pu

t

0

0.5

1

La
be

l

Test case: chb13_21

Figure 6.7: Results of ScoreNet when the log-dice loss and the random forest are used, and the
test case is chb13_21.

From the reports of F1, GDR, and FPR/h, we can generally interpret that some isolated predictions,
i.e., true positives, false positives, and false negatives, are eliminated by using the proposed seizure
onset and offset determination methods, and the result of eliminating these predictions depends on the
employed cost function. According to a large reduction of FPR/h, this indicates that using the cross-
entropy with ScoreNet potentially reduces several isolated false positives. However, since using the
cross-entropy has a bias towards the normal class, and only a few epochs are correctly classified as
seizures by epoch-based classifiers, the number of predicted positives is not sufficiently high and, hence,
those predicted positives are suppressed in the onset and offset detection process, resulting in a decrease
in the true positives. In the case of the dice loss functions, ScoreNet generally yields similar results
of seizure detection performance across any seizure detection methods. Specifically, a combination
of ScoreNet and the soft-dice loss generally provides the best results of detecting seizure activities,
and ScoreNet with the squared-dice loss can better reduce FPR/h. Since only a few segments during
some seizure episodes were detected, the model recognized them as artifacts. As a result, GDR also
was relatively lower compared to that of the other loss functions. In addition, using the log-dice loss
can better improve the classification performance when classification errors are large. For instance, the
results of using random forest and log-dice loss are illustrated in Figure 6.7. Seizure probabilities from
the random forest (input) during the actual seizure are not sufficiently high to be detected, but they are
visually distinguishable from the background. We can see that these predictions are then jointly boosted
by ScoreNet so that they are potential enough to represent the seizure episode. GDR and F1 are, thus,
improved the most when using the log-dice loss in the case of random forest.

Finally, Table 6.5 summarizes a comparison of seizure detection performance noted with an
amount of data and a validation scheme used in each study; the method achieving the best F1 is cho-
sen to compare the performance. It was found that several studies specifically selected records from the
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database, and a few applied LOOCV as a validation scheme. Work in [105] used only records contain-
ing seizure in the experiment, and neither data specification nor validation scheme was reported in [68].
Moreover, some studies performed data sampling approaches to create balanced training data [45],but in
practice some EEG characteristics – such as rarity and types – cannot be accurately selected; it is more
clinically challenging to use all data and apply LOOCV to verify the detection performance. With these
considerations in mind, our proposed method yielded competitive performances against previous results.

Table 6.5: Comparison of seizure detection methods using CHB-MIT database.

Study Detection Data Validation Method Acc Sen Spec F1 GDR FPR/h
type specification

[56] Event Long seizures No CV aEEG + adaptive NR NR NR NR 88.50 0.18
threshold

[68] Event NR NR Spectrogram + mSSDA 93.82 NR NR 96.05 NR NR
[57] Event Specific records LOOCV Energy and fractal NR NR NR NR 97.00 0.10

(22 cases) dimension + RVM
[81] Event 166 mins (11 cases) No CV PSD + CNN-based 92.60 92.30 97.00 NR NR NR

70% training data ensemble
[77] Event All No CV Statistical features + 92.66 93.61 91.85 NR NR NR

Balanced training data Bi-LSTM
[86]* Onset NR LOOCV Energy + RBF SVM NR NR NR NR 96.00 0.08
[105] Onset Seizure in record LOOCV Unified multi-level 97.80 NR NR 78.00 97.20 0.64

spectral-temporal
feature + RBF SVM

[85] Onset/offset Bipolar montage (18 cases) 10-fold Relative band energy + NR NR 99.99 NR 92.60 0.30
Balanced training data LDA

[89] Onset/offset 397 hrs (18 cases) 5-fold Statistical features + 98.00 NR 98.05 NR 100.00 4.02
60% training data LDA

[17] Onset/offset All LOOCV CNN + counting-based 99.72 72.78 99.82 64.40 83.41 0.12
method

Proposed Onset/offset All LOOCV CNN+ ScoreNet 99.83 76.54 99.92 70.15 91.96 0.09
method (soft-dice loss)
NR = no report, All = use full data set, * Use median instead of mean in the report

6.3 Seizure onset and offset detection
This experiment is conducted to ensure that the counting-based method and ScoreNet have abilities

to indicate the seizure onset and offset of predicted seizure episodes declared by the prior classification.
As shown in Section 6.2, predictions from any epoch-based seizure detector are not sufficient to be
directly exploited to infer the onset and offset of the seizure. Therefore, in this experiment, results from
the epoch-based seizure detector cannot be used for comparisons, and only the outcomes of the proposed
seizure onset and offset detection models are compared. In addition, an EL-index discussed in Section 4.4
is mainly used to as a time-based metric, and a mean latency is exploited for only describing late or early
prediction.

Experimental setup
This experiment was set the same as in Section 6.2. To assess the performance of seizure onset and

offset detection, we exploited the usage of the EL-index explained in Section 4.4 and compared it with
other latency indices. Here, the seizure onset and offset were identified by the first and last epochs of a
predicted seizure episode. If more than one predicted seizure event appears during one actual event, as
shown in Figure 6.8, the onset of the first predicted event and the offset of the last positive activity were
used to calculate the time-based metrics. Since a time gap between any two actual seizures is practically
substantial, it is unlikely that our predicted seizure could overlap with two actual events, so we omit the
calculation of this case. Finally, the mean latency, mean absolute latency, and EL-index calculated from
the latencies for each test case and each seizure onset and offset detector were reported and compared.
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Figure 6.8: Example of determining onset and offset of seizure. Negative latency (d < 0) and
positive latency (d > 0) mean early and late detection, respectively.

Results and discussion
As in Section 6.2, epoch-based classification results performed by CNN, logistic regression, linear

SVM, decision tree, and random forest reported in this experiment are labeled by classification
in Figures 6.10 and 6.11. After ScoreNet was applied with different loss functions i.e., entropy, soft-
dice loss, squared-dice loss, and log-dice loss, the performances are compared with those from the prior
classification step, and are tagged by entropy, softdl, sqdl, logdl. When the counting-
based method was applied, we refer to this result as counting. Color bars indicate the average values,
the circle markers present the median, and the vertical bars show the interquartiles.

GDR, |d|, and the corresponding EL-indices collected from the test results are displayed in Fig-
ure 6.9, for each value of GDR shown in different colors. When GDR = 0, we set d to zero for the
purpose of visualization in the plot. The test cases of 0% GDR shown in yellow markers imply that
there is a portion of undetected events. Hence, if we use only the mean absolute latency index, these
detection failures are ignored whereas EL-index can capture this since zero GDR is mapped to zero
score of EL-index. As shown in Figure 6.9, at low GDR (about 40 - 50%), it is possible that seizure
events were randomly detected but low mean absolute latency could be obtained whereas the EL-index
is dropped (indicating worse performance). Therefore, the proposed EL-index is more suitable for being
a time-based index than the mean absolute latency.

For the cases of non-zero GDR, the EL-index is dominantly high when the detection delay is
insignificant and many focused events are detected. From Figure 6.9, the relationship of EL-index and
mean absolute latency mostly satisfies the exponential bound, GDR ·r|d| represented in dashed lines. As
analyzed in Section 4.4, this means that latencies from detecting seizure onsets/offsets mostly have low
variation. In addition, consider markers above the dashed line for a specific GDR. The mean absolute
latency definitely cannot differentiate cases of similar and different onset/offset latencies, whereas the
EL-index does. Therefore, the EL-index provides not only a meaning of accurate seizure onset/offset
detection but also the accuracy of seizure event detection and the interpretation of latency distributions
when being considered jointly with GDR.

Figure 6.10 illustrates mean onset and offset latencies from each detection method to show trends
of the detection errors. We discovered that using ScoreNet yielded positive medians and averages of
mean onset latencies, and those of mean offset latencies were negative. On the other hand, the counting-
based method gave negative medians of the mean onset latencies and positive medians of the mean offset
latencies, but the averages of those latencies varied depending on the epoch-based classifier. In the case
of ScoreNet, the magnitudes of the positive mean onset latencies seem to be higher than those of the
negative ones, whereas the magnitudes of the negative mean offset latencies are larger than those of
the positive ones. According to the characteristics of seizures, patterns of pre-ictal and post-ictal states,
state before and after the actual seizure, dominantly appear less than ictal patterns. In practice, it is
highly possible that neurologists annotate the starting and ending points of the seizure at the pre-ictal
and post-ictal states to ensure that the annotation fully covers the event. Hence, ScoreNet generally
indicates a seizure episode smaller than the actual event. For the counting-based method, the outcomes
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Figure 6.9: Relation of EL-index and average of absolute latency from test data given r = 0.9.
The marker size is proportional to the number of samples in a log scale, and a dashed line
illustrates GDR · r|d|. We set d = 0 when GDR = 0 for the purpose of visualization.

tend to be contrary to those of ScoreNet. According to the medians, the mean onset latencies tend to be
negative, i.e., early detection, and the mean offset latencies are likely to be positive, i.e., late detection.
As discussed in Section 6.2, there are predicted seizures longer than actual events. In this case, the
false positives occurring before the annotated seizure onset and after the labeled seizure offset resulted
in early and late predictions of the onset and the offset, respectively. As a result, the counting-based
method seems to indicate a seizure event that excessively covers an actual seizure.

Figure 6.11 shows comparisons of EL-indices of detecting seizure onsets and offsets using various
methods when r = 0.9, and Table 6.6 concludes EL-indices obtained from all methods. In the case of
seizure onset detection, the mean values of EL-indices ranged from 0.50 to 0.71, and the medians ranged
from 0.59 to 0.81. For detecting seizure offset, means and medians of EL-indices ranged from 0.45 to
0.67 and from 0.53 to 0.73, respectively. As shown in Figure 6.9 and from the minimum median of 0.53,
this implies that seizure onsets and offsets are typically detected with mean absolute errors less than 10
seconds, which is clinically acceptable. In particular, EL-indices of indicating seizure onset and offset
using ScoreNet with dice loss functions were similarly high compared to those of the other methods, and
applying the log-dice loss with ScoreNet achieved slightly better EL-indices of detecting seizure offset
among the other dice loss functions. It is evident that all seizure onset and offset detection methods could
better indicate seizure onsets than seizure offsets. This is due to epileptic seizure characteristics that ictal
patterns establish at the end of an event less dominantly than at the beginning, so predictions of seizure
epochs tend to appear less at the event termination. This also means that ScoreNet with the log-dice
loss can better fix incorrect classification outcomes having low seizure probabilities at the ending of the
event. Thus, exploiting the log-dice loss is more useful when a large margin of detection error occurs.
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Figure 6.10: Comparisons of mean latencies of detecting seizure onset and offset.
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Figure 6.11: Comparisons of EL-indices of detecting seizure onset and offset.
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Table 6.6: Summary of mean EL-index of seizure onset and offset determination. The maximum
EL-index from each classifier is given in boldface.

CNN Logistic SVM Decision Random
regression tree forest

Onset entropy 0.50 0.57 0.54 0.52 0.56
softdl 0.65 0.72 0.67 0.64 0.64
sqdl 0.65 0.69 0.67 0.63 0.61
logdl 0.65 0.71 0.68 0.64 0.63
counting 0.59 0.62 0.61 0.55 0.51

Offset entropy 0.45 0.51 0.49 0.47 0.50
softdl 0.58 0.65 0.61 0.62 0.59
sqdl 0.57 0.65 0.61 0.60 0.59
logdl 0.59 0.67 0.63 0.61 0.59
counting 0.47 0.51 0.50 0.50 0.45



Chapter VII

CONCLUSION AND FUTURE WORK

This chapter concludes the dissertation with goals and contributions followed by limitations and
future work.

7.1 Goals and contributions
This dissertation aimed to develop and validate a method of seizure onset and offset detection.

The contributions of this dissertation are as follows.
In Section 4.1, we presented a way to evaluate an individual feature by using the Bayesian error and

non-parametric probability distribution estimation. Features from time, frequency, and time-frequency
domains were used to determine the significance and the redundancy. Two records containing at least
one seizure from every case of patient in the CHB-MIT Scalp EEG database were randomly selected to
conduct the experiment. As reported in Section 6.1, features related to changes in amplitude, frequency,
and rhythmicity of EEGs were significant to distinguish ictal patterns from normal EEGs. In particular,
energy, variance, nonlinear energy, and Shannon entropy extracted from raw EEGs, and energy and vari-
ance computed from DWT coefficients accomplished the highest improvement rates, so we recommend
using these features in this application.

We showed how to design a CNN model of which the input was a raw EEG segment to detect
an epileptic seizure episode in Section 4.2. Prior information of electrode placement was exploited to
construct the model input and to design the model structure. Comparisons of the proposed model with
other epoch-based classifiers were demonstrated using the same data set. As shown in Section 6.2, the
CNN model without any specific features, achieving F1 of 28.61%, GDR of 93.74%, and FPR/h of 1.78
was competitive with the random forest and outperformed the other classifiers. The performances of low
FPR/h and high GDR accomplished by the proposed model are clinically acceptable since the model
could detect almost all seizures event with an immediate number of false alarms per hour.

From Section 4.3, a counting-based method and ScoreNet were proposed to determine the seizure
onset and offset from detected seizure episodes. A condition of no abrupt change in EEG was used to
design the counting-based method, and ScoreNet was established by adding flexibility to the counting-
based method. We also introduced a log-dice loss based on a dice similarity coefficient to handle an
imbalanced data problem. Additionally, an EL-index was presented to measure the precision of seizure
onset and offset detection. As shown in Section 6.3, these methods could typically determine the seizure
onset and offset with an error of less than 10 seconds. Moreover, results in Section 6.2 showed that these
methods could generally reduce many false alarms and significantly improve F1 from the prior results
compromising with a slightly lower GDR. The best F1 of 70.15% was obtained by the combination
of the CNN model and ScoreNet with a soft-dice loss. According to nonlinear penalty, the log-dice
loss could better increase the detection performances than other losses when predictions from the prior
classification stage were largely incorrect. In addition, we discovered that the EL-index is suitable for
measuring a detection delay and also distinguishes different empirical distributions of latencies when
used with GDR and a mean absolute latency. Finally, ScoreNet has an ability to boost up performances
from a potential classifier where the improvement level is varied upon the classifier, and it can be easily
extended to multi-class classification problem by changing the dimensions of ScoreNet parameters.
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7.2 Limitations and future work
This study can be extended in several directions, and we include some interesting topics below.

Universal detector. As this dissertation considers a patient-specific scheme, data used to train and
validate a method must be collected from the same patient. Since the developed method needs to be
early trained before tested, it means that we need to record EEGs of the patient first. This becomes
a limitation of the method in some practical conditions that patients cannot be monitored beforehand.
Future work can focus on a patient non-specific epoch-based seizure detector so that the data for training
can be universally obtained. However, the performance of a universal detector can be lower on average
since some characteristics of seizures partially depend on profiles of each patient. To address this issue,
more highly discriminative features representing general seizure characteristics should be explored. For
instance, estimated seizure areas and locations are informative to the detection as these provide spatial
characteristics of seizures. This spatial information implicitly obtained by using independent component
analysis (ICA) [106] can be exploited as prior information for detecting the seizures.

Real-time detection. In Section 4.3, the counting-based method and ScoreNet require all epoch-
based detection results from long EEG signals to be collected offline. The main issue for this implemen-
tation occurs at a process of grouping seizure candidates since data must be collected to form candidate
groups. This means that these methods cannot be readily implemented for real-time detection since
clinical EEG data are continuously streamed. Therefore, future research will focus on modifying their
algorithms and applying these models to the streaming data. The implementation should be modified in
a way that output gates and outputs can be iteratively calculated once a new candidate group is formed.

Multi-modality. As explained in Section 1.2, we limited our study to only one biosignal, EEG, to
automatically detect epileptic seizures. However, in clinic, affected patients are usually observed by ex-
perts using a combination of multiple modalities such as continuous video-EEG monitoring. Moreover,
it was found that using ECG as another biological source reveals more information when EEG alone
is unreliable [54]. Therefore, in the future, advantages of jointly applying multiple tools such as ECG,
EMG, and video of the monitoring can be examined. Data fusion approaches, e.g., independent vector
analysis (IVA) [107], can be used to determine connections such as synchronous activities from those
modalities. Moreover, as generalization of ICA, IVA can also reveal common information of seizures
from different patient demographics.

Analysis of data usage. In this dissertation, we mainly aimed to develop an automatic detection
model of epileptic seizure onsets and offsets, and partially discussed that an imbalance ratio is a key factor
to improved performances reported in this dissertation. Experimental results in Appendix C.5 confirmed
our hypothesis that there were strong correlations between the detection accuracy and the imbalance ratio
in most test cases of several classification methods. However, given an amount of training data and a ratio
of abnormal to normal classes, we could not analytically specify a lower bound of detection performance,
and we are not certain if such analysis can be feasibly performed. This is due to the nature of neural
networks or other machine learning approaches that generally involve solving optimization problems
where the estimated model parameters are highly nonlinear and implicit functions of EEG record length,
the number of epochs, and the imbalance ratio, let alone the resulting detection performances. From
a practical point of view, we agree that it is beneficial to ensure the detection performances in some
degree for a given set of training data because this is useful for neurologists to only focus on labeling the
particular set of data; however, to the best of our knowledge, we believe that this can be done empirically
at this stage. A future study can systematically explore requirements of the training set such as types
of seizures, an appropriate imbalance ratio, and the minimum amount of the data. As an example,
to determine the minimum data size and imbalance ratio, we can increase or duplicate seizure-class
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samples, or decrease normal class samples. In addition, since the annotation of the CHB-MIT Scalp
EEG database does not contain types of seizures, collaboration with neurologists can be established to
acquire labels of the seizure types.
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Appendix A

FEATURE EXTRACTION AND CFS

This chapter describes the details of features used as well as a correlation-based feature selection
(CFS) in this dissertation.

A.1 Feature extraction
In this section, we categorize features by feature domains: time domain and frequency domain.

Time-domain features are those calculated on raw EEG signals or on pre-processed signals done in
the time domain, such as empirical mode decomposition [108]. On the other hand, frequency-domain
features are computed on discrete-Fourier transform of raw EEG signals. In addition, time-frequency-
domain features also use these descriptions and are computed from coefficients of a decomposition tech-
nique such as discrete wavelet transform and wavelet packet decomposition. To what follows, we denote
X = [x1, x2, . . . , xN ] a sequence of length N used for extracting a feature. For instance, X can be
an epoch of raw EEG segment, absolute values of a raw EEG segment, power spectral density (PSD),
approximation or detail coefficients from any wavelet transform, or intrinsic mode functions from empir-
ical mode decomposition. In this section, well-known features such as statistical parameters and energy
are briefly described, and those involving an uncertainty concept such as entropy are explained with
mathematical expressions.

Time-domain features
1. Groups of statistical parameters have been frequently used to discriminate between ictal and nor-

mal patterns because it is assumed that EEG statistical distributions during seizure and normal
periods are different. These parameters are mean, variance, mode, median, skewness (third mo-
ment describing data asymmetry), and kurtosis (fourth moment determining tailedness of the
distribution). The minimum and maximum values are also used to quantify the range of data or
the magnitude of signal baseline. Coefficient of variation (CV) defined as the ratio of the standard
deviation (sd) to the sample mean explains the dispersion of the data in relation to the population
mean.

2. Line length, originally presented in [109] as an approximation of Katz’s fractal dimension, is the
total vertical length of the signal defined as

L(X) =

N∑
i=2

|xi − xi−1|.

3. Nonlinear energy (NE), firstly established in [110], extends the concept of energy (quadratic mea-
sure) to including indefinite terms of shifted and lagged sequences, defined as

NE(X) =

N−1∑
i=2

(
x2i − xi+1xi−1

)
.
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In [110], if a signal has a simple harmonic motion with the amplitude A and the oscillation fre-
quency ω, it can be derived that NE is proportional to A2ω2 when the sampling frequency is high.
Hence, high values of NE can indicate both shifted values in a high frequency of oscillation and
amplitude.

4. Shannon entropy (ShEn) [111] reflects the uncertainty in random process or quantities. It is de-
fined as

ShEn(X) = −
∑
i

pi log pi,

where pi is the probability of an occurrence of each of value in X .

5. Approximate entropy (ApEn) [112] is a measure of the regularity and fluctuation in a time series
derived by comparing the similarity patterns of template vectors. The template vector of size
m is defined as a windowed signal: ui = [xi xi+1 · · · xi+m−1]

T , and we first consider the
self-similarity of the template vector u[i] with a tolerance r, defined by

Cm
i (r) =

1

N −m+ 1

N−m+1∑
j=1

Θ(r − ∥ui − uj∥∞) ,

where Θ(x) is the Heaviside step function, i.e., Θ(x) is one when x ≥ 0, and zero otherwise.
When X is mostly self-similar, then ui and uj sequences are very close and thus Ci is high.
ApEn aggregates the self-similarity indices over all shifted possibilities of template vectors given
template length and tolerance. ApEn is defined as

ApEn (X,m, r) =
1

N −m+ 1

N−m∑
i=0

logCm
i (r)− 1

N −m

N−m−1∑
i=0

logCm+1
i (r).

6. Sample entropy (SampEn) [113] is based upon a concept similar to ApEn, where SampEn com-
pares the total number of template vectors of size m and m + 1. SampEn differs from ApEn
in which the self-similarity of all pairs of template vectors u[i] and u[j] with a tolerance r is
calculated by

ϕm(r) =

N−m∑
j=0,j≠i

N−m∑
i=0

Θ(r − ∥ui − uj∥∞) .

If the signals are self-similar, ϕm(r) is high. SampEn is defined by

SampEn (X,m, r) = logϕm(r)− logϕm+1(r).

7. Two Hjorth parameters, i.e., mobility (Mob) and complexity (Com), were established to charac-
terize the spectral properties of EEG signals in the time domain [114]. The mobility is a measure
of a quantity related to the standard deviation of the signal PSD and is expressed as the ratio of
the standard deviation of a signal derivative to the standard deviation of the signal:

Mob(X) =
sd(Ẋ)

sd(X)

where sd(X) is the standard deviation of X , and Ẋ denotes the first derivative of X . The com-
plexity represents the difference between the signal and a pure sine wave and is defined by the
ratio of the mobility of a signal derivative to the mobility of the signal:

Com(X) =
Mob(Ẋ)

Mob(X)
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8. Number of zero-crossings is an indirect measurement of the frequency characteristics of a sig-
nal. If this number is large, it means the signal contains high frequency components and more
uncertainty.

9. Number of local extrema is the total number of local maxima and minima in a signal. It is similar to
the number of zero-crossings that indirectly represents the frequency measurement of the signal.

Frequency-domain features
Frequency domain analysis is also crucial since a frequency representation of an EEG signal pro-

vides some useful information about patterns in the signal. Normally, PSD and normalized PSD (by the
total power) are mostly used to extract features that represent the power partition at each frequency. This
section describes features that are extracted from the PSD and the normalized PSD.

1. The energy is extracted from some specified frequency ranges of the PSD, usually corresponding
to normal EEG activities, to determine the EEG rhythmicity in each frequency range.

2. Intensity weighted mean frequency (IWMF), also known as the mean frequency, gives the mean
of the frequency distribution using the normalized PSD, and is defined as

IWMF (X) =
∑
k

xkfk,

where xk is the normalized PSD of an EEG epoch at the frequency fk.

3. Intensity weighted bandwidth (IWBW) is a measure of the signal PSD width in terms of the stan-
dard deviation and is defined as

IWBW (X) =

√∑
k

xk (fk − IMWF (X))2,

where xk is the normalized PSD. According to the seizure patterns in typical EEG signals, the
PSD is sharper during seizure activities. Therefore, IWBW is smaller during those activities.

4. Spectral entropy (SE) is a measure of the random process uncertainty from the frequency distri-
bution. A low SE value means the frequency distribution is intense in some frequency bands. Its
calculation is similar to that for ShEn but replaces the probability distribution with the normalized
PSD as follows:

SE(X) = −
∑
k

xk logxk. (A.1)

5. Peak frequency, also called dominant frequency, is the frequency at which the PSD of the highest
average power in its full-width-half-max band has the highest magnitude. Since the peak frequen-
cies of normal and seizure are located differently, it can be used to differentiate the two events.

A.2 Correlation-based feature selection
CFS established in [103] is a feature selection algorithm based on the hypothesis that a good

subset of features is highly correlated with the class, but uncorrelated with others. For a feature subset F
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containing k features, an index called heuristic merit is exploited to measure feature-feature and feature-
class correlations and is defined by

MeritF =
kr̄fc√

k + k(k − 1)r̄ff
,

where r̄fc is the mean value of the correlation of feature and class, and r̄ff is the average of the feature-
feature correlation.

To find the optimal subset F with the highest merit score, the CFS algorithm provided in [115] is
applied, where the correlations are estimated by conditional entropy, and the process of this algorithm is
visualized in Figure A.1. The algorithm initially assigns the subset F to be empty. New feature subsets
(Fi) are constructed by adding another feature (fi) that has not been previously selected to F . All new
subsets (Fi) are then evaluated using the heuristic merit score, and the subset having the best merit score
is used as the subset F in the next iteration. This process is repeated until F has m features. The final
subset F contains features ranked in the descending order by the merit score.

Figure A.1: Flow of CFS algorithm.



Appendix B

GRADIENT DERIVATION OF SCORENET

This section describes full details of gradient calculation of ScoreNet explained in Section 4.3.
We want to find the gradients of L with respect to a1, a2, a3, a4, b1, b2, b3, and b4 since the gradients are
required to update the parameters, The computational graph of ScoreNet can be visualized in Figure B.
1 where αl and βl are the first and last indices of the l-th candidate group. The forward computation
consists of two main paths: the upper path for computing a seizure candidate c and the lower path for
computing a score s. Similar to a backpropagation algorithm in neural networks, the gradients of L can
be computed backward from an output ŷ to an input z.

Figure B.1: Computational graph of ScoreNet. A variable in red is an output of each node used
in the next node.

Consider the gradients computed at the epoch i. From (4.11) and (4.14), we can easily derive that

∂ŷi
∂b4

= ŷi(1− ŷi),
∂ŷi
∂a4

= ciõlŷi(1− ŷi),
∂ci
∂b1

= ci (1− ci) ,
∂ci
∂a1

= ci (1− ci) zi.

Similarly, from (4.12), the partial derivatives of si with respect to b2 and a2 are

∂si
∂b2

= 1− s2i ,
∂si
∂a2

=
(
1− s2i

)
zi.

In addition, according to (4.13), the gradients of õl with respect to b3 and a3 are

∂õl
∂b3

= õl (1− õl)
∂õl
∂a3

=
1

Nl
õl (1− õl)

∑
j∈Gl

sj .

To compute the gradients of L with respect to the model parameters, we first split the loss L into

a summation of local losses: L(y, ŷ) =
m∑
l=1

Ll(y, ŷ) where Ll is a local loss. For instance, Ll(y, ŷ) =
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(1/N)
∑
i∈Gl

[yi log ŷi + (1− yi) log (1− ŷi)]when the binary cross entropy is employed, andGl contains

indices of the group l. The gradients of each local loss are then calculated separately. From Figure B.1,
the gradients of the local loss with respect to ScoreNet parameters in the upper path can be computed as

∂Ll
∂b1

=
∑
i∈Gl

∂Ll
∂ŷi

∂ŷi
∂ci

∂ci
∂b1

=
∑
i∈Gl

[
∂Ll
∂ŷi

a4õlŷi(1− ŷi)ci (1− ci)

]

= a4õl

[
∂Ll

∂ŷαl

· · · ∂Ll

∂ŷβl

]ŷαl
(1− ŷαl

)cαl
(1− cαl

)
...

ŷβl
(1− ŷβl

)cβl
(1− cβl

)

 .

∂Ll
∂a1

=
∑
i∈Gl

∂Ll
∂ŷi

∂ŷi
∂ci

∂ci
∂a1

=
∑
i∈Gl

[
∂Ll
∂ŷi

a4õiŷi(1− ŷi) · ci (1− ci) zi
]

= a4õl

[
zαl

∂Ll

∂ŷαl

· · · zβl

∂Ll

∂ŷβl

]ŷαl
(1− ŷαl

)cαl
(1− cαl

)
...

ŷβl
(1− ŷβl

)cβl
(1− cβl

)

 . (B.1)

For the lower path, according to (4.14), the derivatives of the local loss with respect to b4 and a4
are as follows:

∂Ll
∂b4

=
∑
i∈Gl

∂Ll
∂ŷi

∂ŷi
∂b4

=
∑
i∈Gl

∂Ll
∂ŷi

ŷi (1− ŷi)

=
[

∂Ll

∂ŷαl

· · · ∂Ll

∂ŷβl

]ŷαl
(1− ŷαl

)
...

ŷβl
(1− ŷβl

)

 .

∂Ll
∂a4

=
∑
i∈Gl

∂Ll
∂ŷi

∂ŷi
∂a4

=
∑
i∈Gl

∂Ll
∂ŷi

ciõlŷi (1− ŷi)

= õl

[
cαl

∂Ll

∂ŷαl

· · · cβl

∂Ll

∂ŷβl

]ŷαl
(1− ŷαl

)
...

ŷβl
(1− ŷβl

)

 .

Next, the gradient of the local loss with respect to b3 is

∂Ll
∂b3

=
∑
i∈Gl

∂Ll
∂ŷi

∂ŷi
∂õl

∂õl
∂b3

=
∑
i∈Gl

∂Ll
∂ŷi

a4ciŷi(1− ŷi)õl (1− õl)

= a4(1− õl)õl
∑
i∈Gl

∂Ll
∂ŷi

ciŷi(1− ŷi)

= a4(1− õl)
∂Ll
∂a4

.

We can see that we can substitute ∂Ll

∂a4
for õl

∑
i∈Gl

∂Ll

∂ŷi
ciŷi(1 − ŷi) so that these terms are not repeatedly

computed. Consequently, the gradients of the local loss with respect to the other ScoreNet parameters
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associated with the lower path are demonstrated below.

∂Ll
∂a3

=
∑
i∈Gl

∂Ll
∂ŷi

∂ŷi
∂õl

∂õl
∂a3

=
∑
i∈Gl

∂Ll
∂ŷi

a4ciŷi(1− ŷi)õl (1− õl)
1

Nl

∑
j∈Gl

sj


=

1

Nl

[
a4(1− õl)õl

∑
i∈Gl

∂Ll
∂ŷi

ciŷi(1− ŷi)

]∑
j∈Gl

sj


=

1

Nl

∂Ll
∂b3

∑
j∈Gl

sj . (B.2)

∂Ll
∂b2

=
∑
i∈Gl

∂Ll
∂ŷi
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
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1− s2αl

)
...(

1− s2βl

)
 . (B.4)

These calculations are similar to backpropagation in neural network, and we can see that some
terms are repeatedly used for calculation. For instance, ∂Ll

∂b3
is used in (B.2), (B.3), and (B.4). Hence, we

can compute these repeated terms once and store them to reduce time for the calculations. Finally, the

gradients of L are obtained by combining the gradients of Ll, i.e., ∇L =
m∑
l=1

∇Ll.



Appendix C

SUPPLEMENTARY RESULTS

This chapter presents supplementary results used for supporting the main experiments in Chap-
ter 6. First, apart from the CHB-MIT Scalp EEG database, the significance of each feature is also
explored using an EEG record chosen from King Chulalongkorn Memorial Hospital. The EEG record
for this study has passed the Institutional Review Board of Faculty of Medicine, Chulalongkorn univer-
sity. An experiment of finding the most useful parameters m and r in approximate entropy and sample
entropy is conducted in Appendix C.2. Appendix C.3 discusses effects of parameters of the proposed
counting-based method on seizure detection performances. Moreover, we explain optimization setups
including initial point selection of ScoreNet in Appendix C.4. Finally, a correlation between detection
accuracy and an imbalance ratio of the training set is provided in Appendix C.5 to demonstrate a key
factor to the detection performance.

C.1 Feature significance using private record
This experiment is conducted to support the experiment of feature analysis described in Section 6.1

using a different EEG data set to ensure that attributes which are related to changes in amplitude, fre-
quency, and rhythmicity of EEGs achieve some significant levels.

Experiment
All details of the experimental setup were the same as in Section 6.1 except the data set. In this

experiment, the private record of 25 minutes from King Chulalongkorn Memorial Hospital was used to
analyze each individual feature. This record was collected with a sampling rate of 200 Hz measured with
the international 10-20 system. All seizure activities in this record were chosen to be generalized 3-Hz
spike-slow wave seizures in order to easily analyze and interpret the significance of each feature.

According to the chosen record, the number of normal epochs is 1,066, the among of seizure
epoch is 276, and the total number of epoch is 1,342. Therefore, the error of the common situation is
err0 = 0.1699. The features with improvement rate more than 40%, emphasized as boldface, were re-
garded as significant. Table C.1 shows the Bayesian errors and improvement rates of all time-domain
and frequency-domain features on left and right half of the brain. Apparently in time domain, variance,
max, min, energy, nonlinear energy, Shannon entropy, approximate entropy, sample entropy, and com-
plexity achieved typically high improvement rates of more than 40% for both left and right sides, where
variance yielded the best results of 67.30% and 55.00% improvement rates from the left and right hemi-
spheres, respectively. In frequency domain, IWBW and peak amplitude achieved similar improvement
rates around 40% on the left side, whereas their improvement rates were relatively lower on the right
side. This is because the spectral density of a seizure epoch is intense in some frequency range because
of the rhythmic patterns of spike-slow wave seizures.

Figure C.1a demonstrates the improvement rates of time-frequency-domain features in each de-
composition level. We found that amplitude-related features such as variance, energy, and line length
from D3, D4, and D5 gained improvement rates of over 60% on both sides, and these features computed
from the fifth approximation level on the left half brain obtained high improvement rates. On the other
hand, mean, skewness, and kurtosis from the decomposition levels obtained relatively low improvement
rates of less than 40%. It was also found that all features extracted from D1 achieved low improvement
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Table C.1: Bayes error (errb) and improvement rate of time-domain and frequency-domain fea-
tures using private record.

(a)) Time-domain features.

Feature Left side Right side
errb rate errb rate

Mean 0.1253 26.22 0.1284 24.44
Variance 0.0556 67.30 0.0764 55.00
CV 0.1606 5.47 0.1589 6.50
Skewness 0.1589 6.48 0.1452 14.54
Kurtosis 0.1588 6.54 0.1574 7.35
Max 0.0649 61.80 0.0837 50.73
Min 0.0854 49.76 0.0947 44.28
Energy 0.0624 63.27 0.1075 36.74
NE 0.0640 62.34 0.0765 54.95
Line Length 0.1034 39.14 0.1237 27.20
Hsh 0.0844 50.31 0.0978 42.43
ApEN 0.0949 44.14 0.1030 39.37
SampEN 0.0889 47.68 0.0835 50.88
Local extrema 0.1370 19.34 0.1257 26.01
Zero-crossing 0.1699 0.00 0.1699 0.00
Mobility 0.1370 19.36 0.1221 28.12
Complexity 0.0962 43.35 0.0878 48.33

(b)) Frequency-domain features.

Feature Left side Right side
errb rate errb rate

IWMF 0.1699 0.00 0.1699 0.00
IWBW 0.1111 34.63 0.0993 41.58
SE 0.1699 0.00 0.1699 0.00
Peak amplitude 0.0924 45.62 0.1435 15.53
Peak frequency 0.1415 16.70 0.1241 26.94

rates, whereas the improvement rates of those features from A5 varied depending on sides of the brain.
According to the decomposition technique, we found that decomposition levels D3, D4, and D5 corre-
spond to rhythms of normal EEG, whereas the fifth approximation level contains information of a low
frequency range. In this record, magnitudes of the signal in ictal patterns on the right side are more
dominant than those on the left side; thus, amplitude-related features from the right side are more sig-
nificant. In addition, the decomposition level D1 which corresponds to frequency band of higher than
50 Hz does not provide any information related to changes in EEGs. As a result, features that reflect
changes in amplitude, frequency, and rhythmicity of EEGs are capable of being used for the seizure
detection. Additionally, time-frequency-domain features are most significant in specific sub-bands as
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Figure C.1: Improvement rates of time-frequency domain features calculated on private record.
Labels D1, D2, D3, D4, D5, and A5 represent sub-bands from which the features are
extracted.

more information can be obtained from the sub-band.

C.2 ApEn and SampEn parameter selection
Approximate entropy (ApEn) and sample entropy (SampEn) are measurements of uncertainty

and predictability over time-series data, as described in Appendix A.1. ApEn and SampEn calculated
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from a time series data which consists of similar, predictable, and periodic pattern has a relatively small
value, whereas a more uncertain, unpredictable time series gives higher ApEn and SampEn. However,
an appropriate choice of a template length m and a tolerance r largely depends on an application. In
the application of the epileptic seizure detection, several values have been suggested without supports
from experiments. Therefore, this experiments aims to find the template length and the tolerance so that
ApEn and SampEn can powerfully distinguish between normal and ictal patterns in EEGs.

According to predictability of EEGs during seizures, ApEn and SampEn of seizure EEG epochs
are normally lower than those of normal EEG epochs, and the difference of ApEn and SampEn from the
normal and abnormal EEGs largely depend on m and r. In order to obtain ApEn and SampEn that can
potentially differentiate between the EEGs of normal and ictal patterns, m and r are selected to maximize
the differences of the features between these classes:

(mmax, rmax) = argmax
m,r

|SampEnnorm(m, r)− SampEnepi(m, r)| ,

and
(mmax, rmax) = argmax

m,r
|ApEnnorm(m, r)− ApEnepi(m, r)| ,

where SampEnnorm(m, r), ApEnnorm(m, r), SampEnepi(m, r), and ApEnepi(m, r) are SampEn and ApEn
from normal and abnormal epochs, respectively.

Experiment
In this experiment, a single EEG signal used in this experiment was selected from the CU database.

Since the record contained only generalized 3-Hz spike-and-slow wave seizures, using only one EEG
channel is sufficient to analyze ApEn and SampEn. Therefore, ApEn and SampEn were extracted from
the first channel (FP1-F7). Thirty epochs of four seconds from each of the normal and abnormal classes
were randomly chosen. Each epoch was used to extract ApEn and SampEn using various pairs of m and
r. A template length m and a tolerance r were varied independently: the template length was varied
from 2 to 80 sample points, and the tolerance was adjusted from 0.1sd to 2sd by 0.1sd where sd stands
for the standard deviation of the EEG epoch. A combination of a feature from these two classes was
then constructed to find the optimal m and r for each combination; hence, the total number of these
combinations was 900. However, it is possible that SampEn is indefinite when ϕm(r) = ϕm+1(r) = 0:
there is no occurrence of matching in the signal, and when ϕm ̸= 0, ϕm+1(r) = 0: there is no matching
with the template vector of length m+1. In this case, we neglected the invalidity case of SampEn; thus,
the number of combinations of SampEnnorm and SampEnepi was less than 900. Finally, a histogram of
the optimal m and r of each combination was constructed to find the most suitable m and r that provided
the highest number of the largest difference of each feature between these two classes.

Figure C.2 showing effects of a template length m and a tolerance r on ApEn and SampEn verifies
that ApEn and SampEn from a normal epoch are typically higher than those of a seizure epoch. Decreases
in both ApEn and SampEn occurred when the tolerance exceeded a certain value. It means that the
numbers of vector pairs of length m and m+ 1 are dissimilar when the tolerance is small. On the other
hand, when the tolerance is higher than the certain value, the difference between ϕm(r) and ϕm+1(r) are
both higher; hence, ApEn and SampEn are smaller. In addition, ApEn and SampEn were also reduced
when the template length increased. This indicates that a longer template length implies a more difficulty
for matching a pattern of a template vector in the input signal. As a result, ϕm(r) and ϕm+1(r) are
similarly smaller, and ,thus, ApEn and SampEn are lower.

Figure C.3 demonstrates the number of the maximum differences of ApEn (Figure C.3a) and Sam-
pEn (Figure C.3b) between seizure and normal signals. We can see that almost all maximum differences
were discovered when the tolerance r was in a range of 0.1sd and 0.2sd, and the template length m
was low. Specifically, in the case of ApEn, the maximum differences mostly occurred at m = 2 and
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Figure C.2: ApEn and SampEn when r is varied for a fixed m.

r = 0.1sd, whereas another large portion appeared at r = 0.2sd. This means that the maximum dif-
ference of ApEn from normal and seizure epochs is considerably reduced when r and m are higher, as
shown in Figures C.2a and C.2b. On the other hand, the maximum differences in the SampEn case were
distributed along the axis r = 0.1sd, and the highest frequency was located at m = 2. As a result, from
the chosen data, we can conclude that m = 2 and r = 0.1sd are the most suitable parameters of ApEn
and SampEn that help differentiate between normal and seizure epochs.

C.3 Parameter selection of counting-based method
Explained in Section 4.3, the counting-based method is a criterion-based post-processing tech-

nique for indicating the starting and ending time points of an epileptic seizure. There are two parameters,
i.e., w and p, that need to be specified. In this section, we perform an experiment to analyze effects of
these parameters on sensitivity, specificity, and F1. Furthermore, the parameters w and p achieving the
highest F1 are then used in Section 6.2. Since this work was already published [17], some details are
taken from the study.
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Figure C.3: Histograms of m and r obtained from maximizing the differences of ApEn and
SampEn from normal and seizure epochs.

Experiment
In this experiment, we applied the counting-based method to outcomes (normal/seizure) of the

proposed CNN model shown in Figure 4.2 from all test records. For a specific w and p, sensitivity,
specificity, and F1 were collected from each test record as performance metrics. These measurements
were averaged over records of each patient and then averaged again to obtain the overall metrics. The
parameters w and p were varied from 0 to 300 and from 1 to 30, respectively. Subsequently, the overall
sensitivity and specificity obtained from each case were used to display a receiver operating characteristic
(ROC) curve and analyze the effects of these parameters on the counting-based method.
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ROC curves when varying w with different values of p are demonstrated in Figure C.4. We found
that the sensitivity was significantly affected by w and p, whereas the specificity only changed less than
10%. When w was higher, the sensitivity rapidly increased at the beginning and converged to a certain
value afterw exceeded a certain point; in contrast, the sensitivity decreased as opposed to p. This implies
that the method is more capable of detecting seizures when increasing w and decreasing p. When a
required gap between detected epochs w is large, and only a few number of repeated detected epochs p is
needed, the criterion of allowing seizure candidates to be regarded as seizures (4.7) can be easily satisfied.
However, the specificity still decreased when w exceeded the certain point. As explained in Section 4.3,
when w is higher, more epochs near a detected epoch are allowed to be seizure candidates, leading to a
more number of false positives. Some of these candidates that are not parts of a seizure are eventually
declared as seizure epochs because the criterion (4.7) is satisfied. As a result, this implies that a high w
does provide terrible seizure detection outcomes, and, thus, appropriate values of w and p are required.
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Figure C.4: ROC curve when p is fixed and w is varied.

In addition, averaged F1 from all test cases for a specific p is plotted in Figure C.5. It is evident
that an increase of p typically reduced F1. For any p, when w increased, F1 increased at the beginning,
and was maximum at a certain point. When w was higher than the certain value, F1 was deducted. As
discussed above, a small value of p allows the requirement (4.7) to be easily satisfied, yielding high F1.
On the other hand, F1 decreased as w was larger since more excessive false negatives appeared. Finally,
as illustrated in Figure C.5, w = 6 and p = 2 providing the highest F1 of 64.40% are the most suitable
parameters the counting-based method.

Finally, Figure C.6 compares averaged F1 scores obtained from only CNN and CNN with the
counting-based method. Note that the averaged F1 scores from CNN across patients are largely different,
ranging from 2.56% to 57.66%. This means that the detection performances are highly relevant to the
demographics of patients. According to various types of seizures observed from different patients, it
might be extremely hard (or even impossible) to tune hyperparameters of CNN that are optimal for all
patients. These preliminary results lead to our decision on the patient-specific scheme as explained
in Section 1.2.

It is remarkable that, except the case chb04, the averaged F1 score of each case is higher after
using the counting-based method. This means that the counting-based is capable of solving problems
of isolated false positives and false negatives. Nevertheless, for chb04, F1 obtained from the counting-
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Figure C.5: F1 score when p is fixed and w is varied.
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Figure C.6: Averaged F1 of each subject before and after using the counting-based method.

based method vanished because CNN could detect only one seizure epoch. As a result, the counting-
based method ignored this epoch because of an insufficient number of near detected epochs.



85

C.4 Initialization of ScoreNet parameters
This section explains how we setup ScoreNet used in this dissertation. We firstly set the size of

each ScoreNet parameter corresponding to the optimal w in order to compare the performance with the
best counting-based method; the size of vectors a1 and a2 was 13, and the other parameters are scalars.
Three initial points were then selected due to the prior classification results based on the training data.
From (B.4) and (B.1), as zi is an output of a classification problem of highly imbalanced data, z is
extremely sparse; zi is usually a zero vector, and the gradients become vanished. Thus, the parameters
a1 and a2 are slightly updated, and hardly converge to a good local minimum. In this case, we mainly
initialized a1 and a2 first based on three situations, and the initialization of the other parameters was
empirically obtained to avoid a convergence to poor optimal points. Initial points of a1 and a2 were
based on the parameters of the counting based method, i.e., the initial points were multiples of 1. When
there are many false negatives from the prior classification step, magnitudes of a1 and a2 should be high
to boost a seizure candidate ci and we easily assign si = 1. On the other hand, the magnitudes of a1 and
a2 should be small to suppress the effect of false positives when the number of isolated false positive
is dominant. In addition, a1 and a2 should have the intermediate magnitudes relatively compared to
these two cases if the numbers of false positives and negatives are slightly different. The initial values
according to the circumstances are eventually listed in Table C.2.

Table C.2: List of initial parameters of ScoreNet. Vector of ones is represented by 1.

Cases Parameters
a1 a2 a3 a4 b1 b2 b3 b4

High false positive 1 1 3 3 −1 −2 0 −1

High false negative 9 · 1 9 · 1 4 4 −4 −8 1 −1

Balance 6 · 1 6 · 1 3 3 −3 −9 0 −1

C.5 Key factor to detection performance
Classification performances are naturally affected by a portion of training class sizes, especially

in the case of imbalanced data. Predictions from a classification method tend to be biased toward the
majority class, i.e., a normal class in this case. Many previous studies chose fewer normal samples to
reduce the difference between class sizes without any statistical evidence. In this section, a correlation
coefficient between a performance metric and an imbalance ratio is exploited to demonstrate a key factor
to the classification performance. The imbalance ratio is a ratio of the seizure class size to the normal
class size where the ratio is zero when there are no abnormal samples, and one when the data are balanced.
When the ratio increases, a number of true positives is expected to be higher. Accuracy is used for
the analysis because it considers both true positives and true negatives, so it suitably reflects the effect
of the data imbalance. Unlike F1 scores that can be calculated from only limited records containing
seizures, leading to insignificant and biased results, the accuracy is obtained from every test case. Thus,
the correlation coefficient between the accuracy and the imbalance ratio is supposed to be significantly
positive.
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Experiment
In this experiment, the CHB-MIT Scalp EEG database was used to determine effects of the imbal-

ance ratio on the accuracy. Epoch-based seizure detectors, i.e., CNN, logistic regression, SVM, decision
tree, and random forest were exploited with the same setup explained in Section 6.2. Here, the accuracy
from a test case was collected with the imbalance ratio of the training set. The correlation coefficient
between the accuracy and the ratio was subsequently calculated for each patient.

Table C.3 shows correlation coefficients between the accuracy and the imbalance ratio with the
corresponding p-values. It is evident from the p-values (α = 0.05) that the correlation coefficients were
all significantly positive except the cases of applying the SVM and logistic regression to patient chb16.
On the other hand, for the negative correlation cases, the coefficients were slightly negative and the p-
values were high, meaning that the correlations were weak. We observed that low accuracy was obtained
from a single record (chb16_01) as demonstrated in Figure C.7. Several isolated false positives were
predicted, resulting in remarkably low accuracy and insignificantly negative correlation. As a result, the
detection accuracy generally tends to be higher when more abnormal samples are added. Therefore, the
imbalance ratio of the training set is a key factor to the detection performance.
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Figure C.7: Illustration of correlation between accuracy and imbalance ratio for logistic regres-
sion and SVM of the case chb16 where red lines indicate trends using linear regressions.
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Table C.3: Correlation coefficients between accuracy and imbalance ratio from each patient.
Numbers in parentheses are the corresponding p-values, and red numbers indicate insignificant
correlations (p ≥ 0.05).

Patient CNN Logistic SVM Decision Random
regression tree forest

chb01 0.8777 0.7175 0.1533 0.8684 0.8580
(2× 10−14) (9× 10−8) (0.3323) (9× 10−14) (4× 10−13)

chb02 0.9235 0.8735 0.9404 0.9883 0.9609
(1× 10−15) (4× 10−12) (2× 10−17) (2× 10−29) (2× 10−20)

chb03 0.8379 0.4903 0.2855 0.8614 0.8881
(5× 10−11) (0.0018) (0.0823) (4× 10−12) (1× 10−13)

chb04 0.9959 0.4323 0.7276 0.9832 0.9947
(3× 10−43) (0.0043) (5× 10−8) (4× 10−31) (4× 10−41)

chb05 0.8403 0.9475 0.9507 0.9472 0.9164
(2× 10−11) (6× 10−20) (2× 10−20) (7× 10−20) (3× 10−16)

chb06 0.7897 0.1783 0.1781 0.8873 0.9369
(0.0001) (0.4790) (0.4794) (9× 10−7) (1× 10−8)

chb07 0.5636 0.5573 0.6072 0.6444 0.5542
(0.0120) (0.0132) (0.0058) (0.0029) (0.0138)

chb08 0.9713 0.8916 0.8133 0.9108 0.9727
(1× 10−12) (1× 10−7) (1× 10−5) (2× 10−8) (7× 10−13)

chb09 0.4885 0.4478 0.4189 0.8431 0.9823
(0.0338) (0.0545) (0.0742) (6× 10−6) (8× 10−14)

chb10 0.4973 0.7138 0.4408 0.4683 0.7960
(0.0114) (0.0001) (0.0274) (0.0182) (2× 10−6)

chb11 0.9993 0.9379 0.9942 0.9996 0.9997
(3× 10−48) (1× 10−16) (2× 10−33) (2× 10−52) (3× 10−55)

chb12 0.7815 0.8538 0.8595 0.8912 0.8805
(7× 10−6) (1× 10−7) (7× 10−8) (5× 10−9) (1× 10−8)

chb13 0.9897 0.9195 0.8326 0.8741 0.9998
(9× 10−28) (4× 10−14) (2× 10−9) (3× 10−11) (2× 10−55)

chb14 0.9211 0.8652 0.8038 0.9695 0.9639
(3× 10−11) (1× 10−8) (8× 10−7) (4× 10−16) (3× 10−15)

chb15 0.5120 0.5471 0.5345 0.5213 0.5779
(0.0007) (0.0003) (0.0004) (0.0006) (0.0001)

chb16 0.9816 −0.0688 −0.1047 0.9919 0.9981
(1× 10−13) (0.7797) (0.6696) (1× 10−16) (5× 10−22)

chb17 0.9636 0.8547 0.8412 0.9879 0.9998
(2× 10−12) (8× 10−7) (2× 10−6) (7× 10−17) (2× 10−33)

chb18 0.4052 0.4349 0.5905 0.6308 0.3734
(0.0142) (0.0080) (0.0001) (4× 10−5) (0.0249)

chb19 0.9983 0.8942 0.8591 0.9319 0.9078
(6× 10−36) (3× 10−11) (1× 10−9) (7× 10−14) (4× 10−12)

chb20 0.8810 0.8128 0.7631 0.9326 0.9340
(3× 10−10) (8× 10−8) (1× 10−6) (2× 10−13) (1× 10−13)

chb21 0.8680 0.9119 0.7093 0.9889 0.9999
(6× 10−11) (2× 10−13) (4× 10−6) (3× 10−27) (6× 10−59)

chb22 0.9574 0.9422 0.9375 0.9676 0.9931
(4× 10−17) (3× 10−15) (8× 10−15) (7× 10−19) (1× 10−28)

chb23 0.8949 0.8798 0.8545 0.9329 0.9210
(0.0011) (0.0018) (0.0033) (0.0002) (0.0004)

chb24 0.7961 0.3341 0.3595 0.3785 0.4239
(9× 10−6) (0.1286) (0.1003) (0.0824) (0.0493)
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