JOINT ESTIMATION OF MULTIPLE GRANGER GRAPHICAL MODELS
USING NON-CONVEX PENALTY FUNCTIONS

Thesis presentation

Parinthorn Manomaisaowapak

Adpvisor: Assoc. Prof. Dr. Jitkomut Songsiri

Department of Electrical Engineering, Faculty of Engineering

Chulalongkorn University




OUTLINE

Introduction
Background
Methodology
Algorithms
Results

Conclusion




INTRODUCTION MWWWM

How to study relationship of time-series? WWM’WMW

b " ‘—‘-'
Effective brain connectivity

Causality analysis

Causality network  Causality matrix

12 3456 738

A 4

> Based on dynamical models

Granger causality(GC) -

X N O U A WN

> Has direction

> Granger graphical model



INTRODUCTION

High dimensional GC network Causality network

* GC network has large amount of connections

* We aim to extract only significant connections

|

Sparse estimation of GC network




INTRODUCTION

High dimensional multiple GC networks

WNNMWIWWM /analyze each instance — the relations will be revealed
WW’%WMWM separately if the samples are large enough
|

A WWW%M <
MMWMWVWM%MW“V \o jointly analyze _, allow low sample size estimation

channel

all instances By adding prior information

l

Joint estimation of multiple models °




BACKGROUND

Vector autoregressive model (VAR)

p
y(t) = z Ayt —r1)+€(t)
r=1 Ar e R<n ‘ Least-square estimation
y(®) = 01(0), -, ya (D)) ERT

Granger causality on VAR models

* Granger causality(GC, F;;) is a strength of evidence

* Absence of GC connection can be investigated by the relation —
Az

Tij =0 (Ar)l] = O,’r = 1,2, .. P [Granger, |980] A1

How can we force all VAR lags to be zero at once? - Regularized least-square estimation
penalty: Group lasso 0



BACKGROUND

Group norm penalty regularized regression

Non-convex extension 0<g<lp=1

Group Lasso, Y;cpll60;ll;  n————————)  Group norm penalty,ZiEz;IIHiIIg [Hu et.al., 17]

Better group sparsity recovery rate !

Penalty weighting extension

Adaptive Group Lasso, [Weighted Group norm penalty, Y’z WiIIBillg]
2ies WillOill2




METHODOLOGY K/ o

L\t w
M‘Mwmwww%
High dimensional multiple GC networks ettt
Joint estimation of multiple models Model | \
| [Joint estimation ]
min ) [£(0) + 41h(6)] + A9 (6, .., )
0,0k l_ 1
where h promotes differential sparsity in each model. @ [Penalty Se|ecti0n]
g| promotes common sparsity across all models. @ o= Model 2 1
1
Depends on the assumption of model relations [ Inference ]




METHODOLOGY

/Weighted non-convex Group norm penalty
We proposed three formulations,

CommonGrangerNet (CGN) :: é ; & '\- ).:

 Common network

DifferentialGrangerNet (DGN)

[ Penalty selection ]
e Common network
 Differential network l

FusedGrangerNet (FGN) é ié ;; [ Inference ]

 |dentical value common network
 Differential network

Model #| Model #2



METHODOLOGY et

MWWWWM%
min E[fi (6,) + A1h()] + A29 (61, ..., Bx) spotoret
Unknown A4, 1, —_— vary A4, A, for all combinations

| [Joint estimation ]
Find optimal 1, 4, by minimizing extended BIC 1
npi ” [Pty slecen

eBIC(A1,4;) = =2 L(A4,43) +Eog(N) df(A1,42) + 2y (df(/h A3) 1

[ Inference ]

Log-likelihood of K-VAR model. |
(Fitness of models) Model complexity

Prior knowledge
on parameters space
with strength 0 <y <1 @



METHODOLOGY

g
1

FGN

Model #|

]

Model #2

Consensus
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Group level inference
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[Joint estimation ]
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[ Penalty selection ]

|
[ eerce ]




ALGORITHMS

VAR parameters

l_T

Proposed formulations in general form g(x)
A

* The problem is in the form of min f(x) + hy(L1x) + h,(L,x)
X

* Vf is Lipschitz-continuous.
* Function g, h; are possibly non-differentiable at the solution (zero)

Indirect solver Direct solver
Smoothing g, h Proximal algorithms
1 Sparse solution

Gradient-based methods

Non-sparse solution



ALGORITHMS
{ Convex J { Non-convex J

Available proximal algorithms to solve
min £(x) + hy(Lyx) + by (Lyx) [ Convergence guarantee ]
X

[CGN|[DGN || FGN | [ CGN || DGN | FGN |

Proximal gradient v v
mxinf () +9(x) Accelerated proximal gradient (APG)
[Li, 2015]
Non-monotone APG v v
ADMM with fixed penalty v v v
min f(x) + §g(z [Xu,2017]
X,z [ +5@) ADMM with spectral adaptive penalty v/ v v
subjected to i i i ’
Ax+Bz=c
ADMM with heuristic adaptive penalty V' v v Converge in practice

L
set A = [ 1],B=—I,c=0
L,

G(z1,22) = hy(21) + hy(2z3)

=[] O



ALGORITHMS
{ Convex J { Non-convex J

Available proximal algorithms to solve

[ Convergence guarantee ]

mxin f(x) Hhy(L1x) + hy(Lyx) g
ProxXg,p,, proX,u,have closed-form but not prox,, [ CGN ][ DGN ][ FGN ] [ CGN ][ DGN ][ FGN ]
Proximal gradient (slow) v/ v
mxinf () +9(x) Accelerated proximal gradient (APG)
Non-monotone APG v v
Proximal gradient ~ x™ = prox,,(x — aVf(x)) | ' !

Non-monotone APG No closed form prox,

APG xT = proxe,(y — avf (y)) ‘
Numerical computation

proxqg(v) = argmin g(x) + (1/a)llx — vli3
X

caching variables



ALGORITHMS
{ Convex J { Non-convex J

Available proximal algorithms to solve

[ Convergence guarantee ]

mxin f(x) Hhy(Lix) + hy(Lyx) g
ProXgyp, , pProx,p, have closed-form but not proxg, [ CGN ][ DGN ][ FGN ] [ CGN ][ DGN ][ FGN ]
ADMM with fixed penalty v v v
rgcl’izn flx) + g(2) ADMM with spectral adaptive penalty N4 N4 v
subjected to
Ax+Bz=c ADMM with heuristic adaptive penalty  «/ v/ v Converge in practice

set A = [22]3 =—I,c=0
o P
G(z1,2,) = hi(zy) + hy(2y) Lp(x; v,z)=f(x)+g(z) + yT(C —Ax — Bz) + 2 lc — Ax — BZ“%
Z
2= [Xu,2017]

Spectral rule  Calculate from ADMM dual problem
p* = update(p) —[

+ —
Heuristic rule  ° 2,'0 ,
Until primal residuals converged



RESULTS

[ Experiments j—

ﬂ‘ ormulation performance\

CGN

Benchmark
DGN with existing works
FGN

K Based on simulation data /
/ Application \

Classification on simulation data

K fMRI data analysis /

7

CGN Benchmark

DGN Benchmark

Nonconvex
Benchmark

Classification

TN N N N N Y

fMRI data

]
]
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RESULTS

CGN BENCHMARK

Generated networks

Common density: 10%

T aa -
I I
I I
1 1

5 ¢

1
-

1
-

“I'__

XX

all lags

non-convex penalty weighted

[Gregorova, 2015]
[Songsiri, 2017]

cvx-CGN
CGN

CAKKX

v/
v/ v/

Common density: 20%

-4

= = B B

CGN  cvx-CGN Song17C Gregi15

CGN  cvx-CGN Song17C Gregl15

Fij =0 (AT)U =0;r = 1,2, e P

Problem parameters:
n=20,p=1,K=5

Common density: 10%, 20%

Differential density: 5%

CGN and cvx-CGN had higher performance

when density increased

CGN and cvx-CGN had lowest FPR and

highest Fl score median

Songl7C, Gregl5 has similar performance



RESULTS

DGN BENCHMARK

Fij =0 (AT)U =0;r = 1,2, e P

1

F1 (%)

FPR (%)

>

[Skripnikov, 2019b]
[Songsiri, 2017]

cvx-DGN
DGN

Generated networks

Differential density: 1%

all lags  non-convex penalty weighted
v (objective is non-convex) P;oilezrg,zazn;,e}:;r:s: 5 50
v Common density: 10%
v v Differential density: 1%, 5%
v v/ v

Differential density: 5%

Ve =5 - = e
90 . € | 1 + .
* I . -T-
o=l =
.
H
=
-+
_"_
15| =
1
10 T
L -T-
5 . = . =
e L =2 e =& -
0, 1 —— — - —

DGN cvx-DGN Song17D Skrip19b DGN  cvx-DGN Song17D Skrip19b

Skrip19b is the most sensitive to the change
in ground-truth density

Almost all instances of proposed methods
have higher F| score than others in higher density setting

Performance of the proposed methods
did not degrade as differential density
was increased



RESULTS

DGN BENCHMARK

Fij =0 (AT)U =0;r = 1,2, e P

F1 (

%)

~

FPR

all lags

non-convex penalty weighted

[Skripnikov, 2019b] v

Problem parameters:
n=20,p=1K=5,50
Common density: 10%

v Differential density: 1%, 5%

v/ v

(objective is non-convex)

d ; }‘ [Songsiri, 2017] v
cvx-DGN v
Generated networks DGN v/
DGN cvx-DGN Song17D Skrip19b
B T B2 =
9 * : - T
. T = 3
70 é
’ T
10 T
; . =J= —
2 & = & ¢
5 50 5 50 5 50 5 50

Performance of DGN, cvx-DGN, Song|7D was nearly
the same as number of models increased

Skrip19b has significant improvement
as the number of models increased

Almost all instances of DGN, cvx-DGN
have higher F| score than others



RESULTS

FGN BENCHMARK

Fij =0 (AT)U =0;r = 1,2, e P

1

F1 (%)

FPR (%)

o N OB~ O

00
95
90
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75

10+

non-convex penalty weighted

Problem parameters:
n=20p=1,K=5

Common density: 10%

v Differential density: 1%, 5%

v/ v

all lags
[Skripnikov, 2019a]
[Songsiri, 2015] v
cvx-FGN v
Generated networks FGN v/
| Differeptial densjty:1% Differential dengity: 5% |
5 T B e o
| a4 . . —
+ T : . +
+ +
5 L
2 -+ 1 | 4
i = - B
0= T = 53 &

FGN cvx-FGN Song17F Skrip19a FGN cvx-FGN Song17F Skrip19a

Performance of FGN did not degrade
as differential density was increased

cvx-FGN has wide range of results in 1% setting

Song | 7F has lower performance than Skrip19a



RESULTS

NON-CONVEX VS CONVEX

L 60

%)

FPR (

80

270 '

40

30

20

10

#model parameters : timepoints Problem parameters:
n=20,p=3,K=5
density: 10%
8:1 Differential density: 5%
common part total part total part
%0  — L
' %I - g R * All non-convex formulations significantly
: EI T | outperformed their convex relaxations
50 E * Directly supported by theoretical sparsity
- recovery property
+ * Implication
: - Convex formulations can still be used
; if the number of time-points is sufficiently high.
S " ;
T - T e B o
CGN cvx-CGN DGN cvx-DGN FGN cvx-FGN



RESULTS

APPLICATION

CLASSIFICATION

Classification scheme: Likelihood ratio test

channel
¥
{

i

Class #1's time-series

Underlying GC networks

testing time series

W%annel

Likelihood

GC network templates learned from joint estimation

Class 1

Class 2 Class 3 Class 4



RESULTS APPLICATION CLASSIFICATION

[ Generate K = 4 time-series from each of 10 GC topology ]

4 ¥

[ Testing time-series ] [ Training time-series } r

\ 4 \ 4

(Ceon | [con)

[ Maximum likelihood J- [ 10 estimated GC patterns] WMWWWMW

estimate )
vary VAR order p = 1, 2,3 WWWWWM

¥

Classified to the class with highest likelihood

eittinany
A —
fessapaiog




RESULTS APPLICATION CLASSIFICATION

[Ccvx-CGN
I improvement by CGN =1

100

50

* Near perfect classification rate in
non-convex case

—_
o
o

T * Non-convex case did not deteriorate
much when model order is wrong
compared to convex case.

Accuracy (%)

o

100

50

1 2 3 4 5 6 7 8 9 10
topology pattern # @



RESULTS APPLICATION ADHD-200

ADHD (Attention deficit hyperactivity disorder)

* ADHD is characterized by the inattention, hyperactivity,
poor impulse control and emotion processing

* These characteristics can be explained by using a causality analysis tool to reveal
the causal interconnections between brain regions or brain sub-networks

$

Necessary to find group level brain network differences between children with ADHD
and the typically developed children (TDC) to make a better understanding of the disease

$

Joint estimation of effective brain connectivity




RESULTS APPLICATION ADHD-200

Brain network differences learning process

ADHD./ ,,,,,,,,,, _ K =2
' - ADHD
° ./ combine
[ ADHD-200 data ]18 subjects oo allsupert HOHD common

¢ Oii:;,? DGN N

________ o — |+
°e s IIZI::::EII: bi FGN S
¢ .'/_‘_‘_—_‘_-_::_::::'_'_'.'.:.:_:_:_: a?losr{}b}ggt m
TDC., ,,,,,, o samples data TDC
— :
[ Joint GC estimation J D2K/F2K
K = number of ADHD subjects
1 : ["/A con — <
ADH By R
=
S e —— ADHD
K =number of TDC subjects
Effective connectivity o ¢ J
differences ranking T[‘)ﬁ CGN — —|—/
®
> TDC C18K

Learning paradigm (2 )



RESULTS

APPLICATION

ADHD-200

Results summary

Most extra/missing links take place in the orbitofrontal regions
and limbic system

The functions of both orbitofrontal regions and limbic systems are

known to be related with reward learning system, emotion processing
and the process involved with the memory

These results are consistent with the findings in ADHD literature

from both functional connectivity studies, clinical studies




CONCLUSION

We extended joint Granger graphical model estimation in three folds
by using group penalty, non-convex penalty and weighted penalty

We demonstrated the effectiveness of proposed methods by benchmarking
with other works with intensive simulation experiments

Our methods outperformed the other literature with the same
prior information assumptions on the relations among all models

We applied all formulations to reveal the effective brain connectivity
differences between ADHD and TDC and the results were consistent
with previously reported literature in both clinical studies and the studies
with data-driven methods
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