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INTRODUCTION
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Causality network Causality matrix

Causality analysis

How to study relationship of time-series?

Granger causality(GC)

Based on dynamical models

Has direction

A strength of evidence

Granger graphical model

Effective brain connectivity
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INTRODUCTION

• GC network has large amount of connections

• We aim to extract only significant connections
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Causality network

Sparse estimation of GC network

High dimensional GC network
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INTRODUCTION

𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

ch
an
n
el

analyze each instance

separately

jointly analyze

all instances
allow low sample size estimation

By adding prior information

the relations will be revealed 

if the samples are large enough

Joint estimation of multiple models

High dimensional multiple GC networks
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BACKGROUND

Vector autoregressive model (VAR)

Granger causality on VAR models

𝑦 𝑡 = ෍

𝑟=1

𝑝

𝐴𝑟𝑦 𝑡 − 𝑟 + 𝜖(𝑡)

𝐴𝑟 ∈ 𝐑𝒏×𝒏

𝑦(𝑡) = (𝑦1(𝑡), … , 𝑦𝑛(𝑡)) ∈ 𝐑𝒏

ℱ𝑖𝑗 = 0 ⇔ 𝐴𝑟 𝑖𝑗 = 0; 𝑟 = 1,2, …𝑝

• Granger causality(GC, 𝐹𝑖𝑗) is a strength of evidence

• Absence of GC connection can be investigated by the relation

How can we force all VAR lags to be zero at once?

A1
A2[Granger, 1980]

Least-square estimation

Regularized least-square estimation

ℱ

⇔

penalty: Group lasso
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BACKGROUND

Group Lasso, σ𝑖∈ℬ 𝜃𝑖 2

Non-convex extension

Group norm penalty,σ𝑖∈ℬ 𝜃𝑖 𝑝
𝑞

Adaptive Group Lasso,

σ𝑖∈ℬ𝑤𝑖 𝜃𝑖 2

Weighted Group norm penalty, σ𝑖∈ℬ𝑤𝑖 𝜃𝑖 𝑝
𝑞

Group norm penalty regularized regression

0 < 𝑞 < 1, 𝑝 ≥ 1

[Hu et. al., 17]

Better group sparsity recovery rate !

Penalty weighting extension
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METHODOLOGY

where ℎ promotes differential sparsity in each model. 

𝑔 promotes common sparsity across all models.

Model 1

Model 2

min
𝜃1,…,𝜃𝐾

෍

𝑖

[𝑓 𝜃𝑖 + 𝝀𝟏ℎ 𝜃𝑖 ] + 𝝀𝟐𝑔 𝜃1, … , 𝜃𝐾

Depends on the assumption of model relations

High dimensional multiple GC networks

Joint estimation of multiple models

Joint estimation

𝐾

Penalty selection

Inference
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METHODOLOGY

CommonGrangerNet (CGN)

DifferentialGrangerNet (DGN)

FusedGrangerNet (FGN)

• Common network

• Common network

• Differential network

• Identical value common network

• Differential network

We proposed three formulations,

Weighted non-convex Group norm penalty

Joint estimation

𝐾

Penalty selection

Inference

Model #1 Model #2
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METHODOLOGY

𝑒𝐵𝐼𝐶 𝜆1, 𝜆2 = −2 ℒ 𝜆1, 𝜆2 + log N ⋅ df 𝜆1, 𝜆2 + 2𝛾
𝑛2𝑝𝐾

df(𝜆1, 𝜆2)

Log-likelihood of K-VAR model. 

(Fitness of models) Model complexity

Find optimal 𝜆1, 𝜆2 by minimizing extended BIC

Prior knowledge 

on parameters space

with strength  0 ≤ 𝛾 ≤ 1

Joint estimation

𝐾

Penalty selection

Inference

min
𝜃1,…,𝜃𝐾

෍

𝑖

[𝑓𝑖 𝜃𝑖 + 𝝀𝟏ℎ 𝜃𝑖 ] + 𝝀𝟐𝑔(𝜃1, … , 𝜃𝐾)

Unknown 𝜆1, 𝜆2 vary 𝜆1, 𝜆2 for all combinations
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METHODOLOGY

CGN

DGN

FGN

Common networks Differential networks

Consensus

Group level inference

Abnormality

detection

+

+

Joint estimation

𝐾

Penalty selection

Inference

Model #1 Model #2
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ALGORITHMS

Proposed formulations in general form

• The problem is in the form of min
𝑥

𝑓 𝑥 + ℎ1 𝐿1𝑥 + ℎ2(𝐿2𝑥)

• ∇𝑓 is Lipschitz-continuous. 

• Function 𝑔, ℎ𝑖 are possibly non-differentiable at the solution (zero)

𝑔(𝑥)

Proximal algorithmsSmoothing 𝑔, ℎ

Indirect solver Direct solver

Gradient-based methods
Non-sparse solution

Sparse solution

VAR parameters
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Available proximal algorithms to solve

ALGORITHMS

CGN DGN FGN

Convex Non-convex

CGN DGN FGN

ADMM with fixed penalty

ADMM with spectral adaptive penalty

ADMM with heuristic adaptive penalty

Proximal gradient

Accelerated proximal gradient (APG)

Non-monotone APG

min
𝑥,𝑧

𝑓 𝑥 + ෤𝑔 𝑧

subjected to
𝐴𝑥+𝐵𝑧=𝑐

min
𝑥

𝑓 𝑥 + 𝑔(𝑥)

Converge in practice

Convergence guaranteemin
𝑥

𝑓 𝑥 + ℎ1 𝐿1𝑥 + ℎ2(𝐿2𝑥)

෤𝑔 𝑧1, 𝑧2 = ℎ1 𝑧1 + ℎ2(𝑧2)

set 𝐴 =
𝐿1
𝐿2

, 𝐵 = −𝐼, 𝑐 = 0

𝑧 =
𝑧1
𝑧2

[Xu, 2017]

[Li, 2015]
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CGN DGN FGN CGN DGN FGN

Proximal gradient

Accelerated proximal gradient (APG)

Non-monotone APG

min
𝑥

𝑓 𝑥 + ℎ1 𝐿1𝑥 + ℎ2(𝐿2𝑥)

min
𝑥

𝑓 𝑥 + 𝑔(𝑥)

𝑥+ = prox𝛼𝑔(𝑥 − 𝛼∇𝑓(𝑥))

𝑥+ = prox𝜶𝑔(𝒚 − 𝜶∇𝑓(𝒚))

Proximal gradient

APG

Non-monotone APG

Convex Non-convex

Convergence guarantee

No closed form prox𝛼𝑔

Numerical computation

𝐩𝐫𝐨𝐱𝜶𝒉𝟏 , 𝐩𝐫𝐨𝐱𝜶𝒉𝟐have closed-form but not 𝐩𝐫𝐨𝐱𝜶𝒈

𝑔

Available proximal algorithms to solve

prox𝛼𝑔 𝑣 = argmin
𝑥

𝑔 𝑥 + (1/𝛼) 𝑥 − 𝑣 2
2

caching variables

(slow)

ALGORITHMS
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CGN DGN FGN CGN DGN FGN

ADMM with fixed penalty

ADMM with spectral adaptive penalty

ADMM with heuristic adaptive penalty

min
𝑥

𝑓 𝑥 + ℎ1 𝐿1𝑥 + ℎ2(𝐿2𝑥)

min
𝑥,𝑧

𝑓 𝑥 + ෤𝑔 𝑧

subjected to
𝐴𝑥+𝐵𝑧=𝑐

෤𝑔 𝑧1, 𝑧2 = ℎ1 𝑧1 + ℎ2(𝑧2)

set 𝐴 =
𝐿1
𝐿2

, 𝐵 = −𝐼, 𝑐 = 0

Converge in practice

𝑧 =
𝑧1
𝑧2

𝜌+ = update(𝜌)

Spectral rule

Heuristic rule
𝜌+ = 2𝜌

Calculate from ADMM dual problem 

Convex Non-convex

Convergence guarantee

Until primal residuals converged

𝐩𝐫𝐨𝐱𝜶𝒉𝟏 , 𝐩𝐫𝐨𝐱𝜶𝒉𝟐have closed-form but not 𝐩𝐫𝐨𝐱𝜶𝒈

𝑔

Available proximal algorithms to solve

𝐿𝜌(𝑥, 𝑦, 𝑧) = 𝑓 𝑥 + ෤𝑔 𝑧 + 𝑦𝑇 𝑐 − 𝐴𝑥 − 𝐵𝑧 +
𝜌

2
𝑐 − 𝐴𝑥 − 𝐵𝑧 2

2

[Xu, 2017]

ALGORITHMS
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RESULTS

𝐄𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭𝐬

𝐅𝐨𝐫𝐦𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐩𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞

𝐀𝐩𝐩𝐥𝐢𝐜𝐚𝐭𝐢𝐨𝐧

𝐂𝐆𝐍

𝐃𝐆𝐍

𝐅𝐆𝐍

Benchmark 

with existing works

Based on simulation data

fMRI data analysis 

Classification on simulation data

𝐂𝐆𝐍 𝐁𝐞𝐧𝐜𝐡𝐦𝐚𝐫𝐤

𝐃𝐆𝐍 𝐁𝐞𝐧𝐜𝐡𝐦𝐚𝐫𝐤

𝐅𝐆𝐍 𝐁𝐞𝐧𝐜𝐡𝐦𝐚𝐫𝐤

𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧

𝐟𝐌𝐑𝐈 𝐝𝐚𝐭𝐚

𝐍𝐨𝐧𝐜𝐨𝐧𝐯𝐞𝐱
𝐁𝐞𝐧𝐜𝐡𝐦𝐚𝐫𝐤
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RESULTS CGN BENCHMARK

[Gregorova, 2015]

[Songsiri, 2017]

all lags non-convex penalty weighted

cvx-CGN

CGN

Problem parameters:

𝑛 = 20, 𝑝 = 1, 𝐾 = 5
Common density: 10%, 20%

Differential density: 5%

• CGN and cvx-CGN had higher performance 

when density increased

• CGN and cvx-CGN had lowest FPR and 

highest F1 score median

• Song17C, Greg15 has similar performance

Generated networks

𝐹𝑖𝑗 = 0 ⇔ 𝐴𝑟 𝑖𝑗 = 0; 𝑟 = 1,2, …𝑝
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RESULTS DGN BENCHMARK

[Skripnikov, 2019b]

[Songsiri, 2017]

all lags non-convex penalty weighted

cvx-DGN

DGNGenerated networks

Problem parameters:

𝑛 = 20, 𝑝 = 1, 𝐾 = 𝟓, 50
Common density: 10%

Differential density: 1%, 5%

(objective is non-convex)

• Skrip19b is the most sensitive to the change 

in ground-truth density

• Almost all instances of proposed methods

have higher F1 score than others in higher density setting

• Performance of the proposed methods

did not degrade as differential density 

was increased

𝐹𝑖𝑗 = 0 ⇔ 𝐴𝑟 𝑖𝑗 = 0; 𝑟 = 1,2, …𝑝
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RESULTS DGN BENCHMARK

all lags non-convex penalty weighted

cvx-DGN

DGN

Problem parameters:

𝑛 = 20, 𝑝 = 1, 𝐾 = 𝟓, 𝟓𝟎
Common density: 10%

Differential density: 1%, 5%

• Performance of DGN, cvx-DGN, Song17D was nearly 

the same as number of models increased

• Skrip19b has significant improvement
as the number of models increased

• Almost all instances of DGN, cvx-DGN

have higher F1 score than others

(objective is non-convex)

Generated networks

𝐹𝑖𝑗 = 0 ⇔ 𝐴𝑟 𝑖𝑗 = 0; 𝑟 = 1,2, …𝑝

[Skripnikov, 2019b]

[Songsiri, 2017]
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RESULTS FGN BENCHMARK

[Skripnikov, 2019a]

[Songsiri, 2015]

all lags non-convex penalty weighted

cvx-FGN

FGN

Problem parameters:

𝑛 = 20, 𝑝 = 1, 𝐾 = 5
Common density: 10%

Differential density: 1%, 5%

• Performance of FGN did not degrade 

as differential density was increased

• cvx-FGN has wide range of results in 1% setting

• Song17F has lower performance than Skrip19a

Generated networks

𝐹𝑖𝑗 = 0 ⇔ 𝐴𝑟 𝑖𝑗 = 0; 𝑟 = 1,2, …𝑝
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RESULTS NON-CONVEX VS CONVEX

• All non-convex formulations significantly

outperformed their convex relaxations

• Directly supported by theoretical sparsity 

recovery property

• Implication

- Convex formulations can still be used 

if the number of time-points is sufficiently high.

#model parameters ∶ timepoints

𝟒 ∶ 𝟏 𝟖 ∶ 𝟏

Problem parameters:

𝑛 = 20, 𝑝 = 3, 𝐾 = 5
Common density: 10%

Differential density:  5%
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Classification scheme: Likelihood ratio test

Class 1 Class 2 Class 3 Class 4

L
ik
el
ih
o
o
d

testing time series

GC network templates learned from joint estimationClass #1′s time-series

Underlying GC networks

                      

                        

                  

             

        

             

        

             

        

                      

                        

                  

             

        

             

        

             

        

                      

                        

                  

             

        

             

        

             

        

ch
an
n
el

channel

RESULTS APPLICATION CLASSIFICATION
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RESULTS

Generate 𝐾 = 4 time-series from each of 10 GC topology

cvx-CGNCGN

Testing time-series Training time-series

10 estimated GC patterns
Maximum likelihood 

estimate

vary VAR order 𝑝 = 1, 2, 3

Classified to the class with highest likelihood

APPLICATION CLASSIFICATION

⋯

⋯
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• Near perfect classification rate in

non-convex case

• Non-convex case did not deteriorate

much when model order is wrong

compared to convex case.

RESULTS APPLICATION CLASSIFICATION
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RESULTS APPLICATION ADHD-200

ADHD (Attention deficit hyperactivity disorder)

• ADHD is characterized by the inattention, hyperactivity, 

poor impulse control and emotion processing

• These characteristics can be explained by using a causality analysis tool to reveal

the causal interconnections between brain regions or brain sub-networks

Necessary to find group level brain network differences between children with ADHD 

and the typically developed children (TDC) to make a better understanding of the disease 

Joint estimation of effective brain connectivity
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RESULTS APPLICATION ADHD-200

TDC

combine 
all subject 
samples

DGN

or

FGN
+

ADHD

common

ADHD

TDC
data

D2K/F2K

ADHD

TDC

CGN

CGN

TDC

ADHD

combine 
all subject 
samples

ADHD
data

number of ADHD subjects

number of TDC subjects

C18K

TDC

ADHD-200 data

Brain network differences learning process

Joint GC estimation

Effective connectivity 

differences ranking

Learning paradigm

18 subjects
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RESULTS APPLICATION ADHD-200

Results summary

• Most extra/missing links take place in the orbitofrontal regions
and limbic system

• The functions of both orbitofrontal regions and limbic systems are

known to be related with reward learning system, emotion processing
and the process involved with the memory

• These results are consistent with the findings in ADHD literature

from both functional connectivity studies, clinical studies
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CONCLUSION

• We extended joint Granger graphical model estimation in three folds 

by using group penalty, non-convex penalty and weighted penalty

• We demonstrated the effectiveness of proposed methods by benchmarking

with other works with intensive simulation experiments

• Our methods outperformed the other literature with the same

prior information assumptions on the relations among all models

• We applied all formulations to reveal the effective brain connectivity

differences between ADHD and TDC and the results were consistent

with previously reported literature in both clinical studies and the studies

with data-driven methods



29

Q&A



30

[Bore20] J. C. Bore, P. Li, D. J. Harmah, F. Li, D. Yao, P. Xu, Directed EEG neural network analysis by LAPPS (p≤1) 

Penalized sparse Granger approach, Neural Networks, Volume 124, 2020, Pages 213-222,

[Boyd11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning 

via the alternating direction method of multipliers”, Foundation and Trends in Machine Learning, vol. 
3, no. 1, pp. 1-122, Jan. 2011.

[Granger1980]C.W.J. Granger, Testing for causality: A personal viewpoint, Journal of Economic Dynamics and 

Control, Volume 2, 1980, Pages 329-352, ISSN 0165-1889,

[Gregorova15]M. Gregorova, A. Kalousis, and S. Marchand-Maillet. Learning coherent Granger causality in panel 

vector autoregressive models. In Proceedings of the Demand Forecasting Workshop of the 32nd 

International Conference on Machine Learning. ICML, 2015.

[Hu17] Hu, C. Li, K. Meng, J. Qin, and X. Yang, “Group sparse optimization via ℓ𝑝,𝑞regularization,” Journal of 

Machine Learning Research, vol. 18, no. 30, pp. 1–52, 2017.

[Huang15] F. Huang and S. Chen, “Joint learning of multiple sparse matrix Gaussian graphical models,” IEEE 

Transactions on Neural Networks and Learning Systems, vol. 26, no. 11, pp. 2606–2620, 2015.

[Li15] H. Li and Z. Lin, “Accelerated proximal gradient methods for nonconvex programming,” in Advances 

in Neural Information Processing Systems 28, pp. 379–387, 2015.

[Skrip19a] A. Skripnikov and G. Michailidis, “Joint estimation of multiple network Granger causal models,” 

Econometrics and Statistics, vol. 10, pp. 120–133, 2019.

REFERENCES



31

[Skrip19b] A. Skripnikov and G. Michailidis, “Regularized joint estimation of related vector autoregressive 

models,” Computational Statistics & Data Analysis, vol. 139, pp. 164–177, 2019.

[Songsiri 15] Songsiri, J. 2015. Learning multiple Granger graphical models via group fused lasso. In Proceedings of the 

IEEE 10th Asian Control Conference (ASCC). 

[Songsiri 17] J. Songsiri. Estimations in Learning Granger Graphical Models with Application to fMRI Time Series. 

Technical report, Chulalongkorn University, Department of Electrical engineering, July 2017.

[Teboulle18] M. Teboulle. A simplified view of first order methods for optimization. Math. Program. 170, 1 (2018), 

67-96.

[Xu17] Z. Xu, M. Figueiredo, T. Goldstein, “Adaptive ADMM with Spectral Penalty Parameter Selection,” 

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR 54:718-

727, 2017.

REFERENCES


