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INTRODUCTION Graphical representation
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Causality network Causality matrix

Causality analysis

How to study relationship of variables?

Granger causality(GC)
Based on dynamical models

Directly related to sparsity of model coefficient

A strength of evidence

Granger graphical model
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INTRODUCTION

• GC network has large amount of connections

• We aim to extract only significant connections
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Sparse representation of GC network

Graphical representation

High dimensional GC network
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INTRODUCTION

Sparse estimation formulation in general form.

min
𝜃𝜃
𝑓𝑓 𝜃𝜃 + 𝜆𝜆𝑔𝑔(𝜃𝜃)

Model parameter

Fitting term Sparsity inducing penalty

𝜆𝜆 ↑

SparseDense
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INTRODUCTION

consider when the same multivariate time-series are measured in different settings

𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬

ch
an

ne
l

analyze each setting
separately

jointly analyze
all setting

allow low sample size estimation
By adding prior information

the relations will show 
if the samples are large enough

Joint estimation of multiple models
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INTRODUCTION

where ℎ𝑖𝑖 aims to promote differential sparsity in each model. 
𝑔𝑔 aims to promote common sparsity across all models.

Model 1

Model 2

min
𝜃𝜃1,…,𝜃𝜃𝐾𝐾

�
𝑖𝑖

[𝑓𝑓𝑖𝑖 𝜃𝜃𝑖𝑖 + 𝝀𝝀𝟏𝟏ℎ𝑖𝑖 𝜃𝜃𝑖𝑖 ] + 𝝀𝝀𝟐𝟐𝑔𝑔(𝜃𝜃1, … ,𝜃𝜃𝐾𝐾)

Goal: Find important connections of multiple networks with prior knowledge

Require definition of similarity

Sparsity inducing function

group lasso

fused lasso

𝜃𝜃1, … ,𝜃𝜃𝐾𝐾 has same non-zero pattern

𝜃𝜃𝑚𝑚 − 𝜃𝜃ℓ is sparse

Example

Some model coefficients are identical
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THESIS OVERVIEW

Objectives

• To propose three formulations. The formulations are
• Formulation C: The estimated networks have an identical sparsity pattern
• Formulation D: The estimated networks have some common parts and some

different parts.
• Formulation S: The estimated networks have some common parts and some

different parts. The common parts also share model parameters.

• To provide efficient numerical methods for solving the proposed estimation methods
in a large-scale setting.

Formulation C

Formulation D

Formulation S

common GC network with identical strength
&

differential network

common GC network & differential network

identical GC networks

Multiple multivariate time-series

multiple

ch
an

ne
l



9

THESIS OVERVIEW

• The proposed framework will be verified intensively in a simulated data sets 
and one real-world data set

• The usefulness of the methods will be illustrated on brain network application

Scope of work

Expected outcome

• Estimation formulations of multiple Granger graphical models
• A computer program that has input as a set of multivariate time-series and return

group and individual Granger graphical model of the multiple time-series
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Common network has identical strength + differences

Common network + differences

Common network
[Skripnikov, 2019]

[Wilms, 18]

[Gregorova, 2015]

[Bore, 2020]

[Guo, 2011], 
[Chun, 2015]

[Songsiri, 2017]
RELATED WORKS

[Skripnikov, 2019]

[Tuck, 2020]

group lasso, fused lasso

group lasso

group lasso+Tikhonov

group lasso, two-stages

non-convex penalty
Gaussian graphical model

sparse fused-lasso

sparse fused-lasso
Gaussian graphical model

non-convex penalty
single Granger model

+

non-convex group penalties [Our work]

extension

non-convex 
group norm penalty

[Hu, 2017]

C

D

S

[Chartrand, 2008]

non-convex penalty
∑|𝑥𝑥𝑖𝑖|𝑞𝑞 0 < 𝑞𝑞 < 1

∑‖𝑥𝑥𝐺𝐺𝑖𝑖‖𝑝𝑝
𝑞𝑞 𝑝𝑝 ≥ 1, 0 < 𝑞𝑞 < 1
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WORK PLAN

𝐋𝐋𝐬𝐬𝐬𝐬𝐬𝐬𝐋𝐋𝐋𝐋𝐬𝐬𝐋𝐋𝐋𝐋𝐬𝐬 𝐬𝐬𝐋𝐋𝐋𝐋𝐬𝐬𝐬𝐬𝐬𝐬 𝐏𝐏𝐋𝐋𝐏𝐏𝐏𝐏𝐏𝐏𝐬𝐬𝐏𝐏 𝐟𝐟𝐏𝐏𝐋𝐋𝐏𝐏𝐋𝐋𝐏𝐏𝐋𝐋𝐬𝐬𝐬𝐬𝐏𝐏𝐬𝐬

Joint estimation

Identical sparsity pattern GC networks

Common network pattern with differences

Identical VAR coefficients with differences

𝐄𝐄𝐄𝐄𝐄𝐄𝐬𝐬𝐋𝐋𝐬𝐬𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬

𝐓𝐓𝐓𝐓𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐰𝐰𝐋𝐋𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬
&

𝐏𝐏𝐋𝐋𝐏𝐏𝐏𝐏𝐬𝐬𝐏𝐏𝐋𝐋𝐬𝐬𝐬𝐬𝐏𝐏𝐬𝐬𝐬𝐬

Gaussian graphical models

Granger graphical models

Numerical methods

Formulation 𝐂𝐂

Formulation 𝐃𝐃

Formulation 𝐒𝐒Convex optimization
Non-convex optimization

Efficiency evaluation of numerical methods

Algorithm hyperparameters selection and testing

Effectiveness of formulations

Convex & non-convex penalties
𝐈𝐈𝐏𝐏𝐄𝐄𝐏𝐏𝐬𝐬𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬𝐋𝐋𝐬𝐬𝐬𝐬𝐏𝐏𝐬𝐬
𝐏𝐏𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬𝐄𝐄 𝐬𝐬𝐏𝐏𝐬𝐬-𝐏𝐏𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬𝐄𝐄
𝐂𝐂

𝐃𝐃

𝐒𝐒

𝐂𝐂

𝐃𝐃

𝐒𝐒

Brain network application
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BACKGROUND

Vector autoregressive model (VAR)

Granger causality on VAR models

𝑦𝑦 𝑡𝑡 = �
𝑟𝑟=1

𝑝𝑝

𝐴𝐴𝑟𝑟𝑦𝑦 𝑡𝑡 − 𝑟𝑟 + 𝜂𝜂(𝑡𝑡)

𝐴𝐴𝑟𝑟 ∈ 𝐑𝐑𝒏𝒏×𝒏𝒏 𝑦𝑦 = (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) ∈ 𝐑𝐑𝒏𝒏

𝐹𝐹𝑖𝑖𝑖𝑖 = 0 ⇔ 𝐴𝐴𝑟𝑟 𝑖𝑖𝑖𝑖 = 0; 𝑟𝑟 = 1,2, …𝑝𝑝

• Granger causality(GC, 𝐹𝐹𝑖𝑖𝑖𝑖) is a strength of evidence

• Absence of GC connection can be investigated by the relation

Stacked lags

1 2 3

1
2

3

Sparsity inducing penalty can be designed using this prior knowledge

A1
A2

[Granger, 1980]
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METHODOLOGY

set 1 set 2 set K

…
Joint estimation formulation

⋮

𝐾𝐾 multivariate time-series

vary sparsity

Model selection

Estimated networks

OVERVIEW
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METHODOLOGY PROPOSED FORMULATIONS

Formulation C

Formulation D

Formulation S

• Common pattern.

• Common pattern
• Different pattern

• Shared VAR coefficients value in all models 
• Different pattern

Common

Differential

Similar

We proposed three formulations,

Model 1 Model 2 

Expected outcome

C

D

S

Stacked VAR coefficient matrix

Induce block sparsity by group norm penalty

𝐹𝐹13
(1)

𝐹𝐹13
(2)

𝐹𝐹12
(2)

𝐹𝐹12
(1)

𝐹𝐹21
(1)
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METHODOLOGY MODEL SELECTION

𝐵𝐵𝐵𝐵𝐵𝐵 𝜆𝜆1, 𝜆𝜆2 = −2 ℒ 𝜆𝜆1, 𝜆𝜆2 + log N ⋅ df 𝜆𝜆1, 𝜆𝜆2

Log-likelihood of VAR model. 
(Fitness of models)

Effective degree of freedom 
(Complexity of models).

# off-diagonal nonzero estimated parameters

We used BIC criteria to find optimal tuning-parameters

There are other choices.
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METHODOLOGY ALGORITHM

Problem properties (Formulation C, D, S)

• The problem is in the form of min
𝑥𝑥

𝑓𝑓 𝑥𝑥 + 𝑔𝑔 𝑥𝑥
• ∇𝑓𝑓 is Lipschitz-continuous. 
• Function 𝑔𝑔 is not differentiable at zero while we prefer sparse solutions
• We aim to solve high-dimensional problem or in a large-scale setting.

First order algorithm should be considered first

Proximal gradient methods unify the framework that solve this problem

Half-thresholding algorithm
FISTA

ISTA
GIST

Iterative hard-thresholding algorithm

GISA
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METHODOLOGY ALGORITHM

Proximal algorithms

• require evaluation of proximal operator

• are widely used in sparse estimation using lasso, group lasso for a convex case

• proximal operator has a closed-form expression for some functions, such as

prox𝛼𝛼𝑔𝑔 𝑣𝑣 = argmin
𝑥𝑥

𝑔𝑔 𝑥𝑥 +
1

2𝛼𝛼
𝑥𝑥 − 𝑣𝑣 2

2

Definition: proximal operator of function 𝑔𝑔

(prox𝜆𝜆 𝑥𝑥 1 𝑣𝑣 )𝑖𝑖 = sign(𝑣𝑣𝑖𝑖)max{0, 𝑣𝑣𝑖𝑖 − 𝜆𝜆}

prox𝜆𝜆 𝑥𝑥 2 𝑣𝑣 = max 0,1 −
𝜆𝜆
𝑣𝑣 2

𝑣𝑣

ℓ1 norm

ℓ2 norm

Soft thresholding operator

Block-soft thresholding operator
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METHODOLOGY ALGORITHM

proximal gradient algorithm

Have a sufficient descent property in 𝐹𝐹

min
𝑥𝑥
𝐹𝐹 𝑥𝑥 = 𝑓𝑓 𝑥𝑥 + 𝑔𝑔(𝑥𝑥)

accelerated proximal gradient(APG)

Solve

𝑥𝑥+ = prox𝛼𝛼𝑔𝑔(𝑥𝑥 − 𝛼𝛼∇𝑓𝑓(𝑥𝑥))

Globally converge for our formulation 
in non-convex setting

• 𝑥𝑥+ = prox𝛼𝛼𝑔𝑔(𝑦𝑦 − 𝛼𝛼∇𝑓𝑓(𝑦𝑦))

• 𝑦𝑦 = 𝑥𝑥− + correction term

• update correction term
not a sufficient descent method

no convergence guaranteed for our formulation

add a monitoring scheme

monotone APG non-monotone APG

Globally converges in our formulations

[Li, 2015]

its special case is FISTA

But it is slow

by virtue from its sufficient descent property
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METHODOLOGY ALGORITHM

proximal gradient methods

min
𝑥𝑥
𝐹𝐹 𝑥𝑥 = 𝑓𝑓 𝑥𝑥 + 𝑔𝑔(𝑥𝑥)solve

require proximal operator of
𝑔𝑔 𝑥𝑥 = ℎ1 𝐿𝐿1𝑥𝑥 + ℎ2(𝐿𝐿2𝑥𝑥)

only ℎ1 𝑥𝑥 , ℎ2(𝑥𝑥)
have closed-form proximal operator

[Hu, 2017]

Alternating direction methods of multipliers(ADMM)

min
𝑥𝑥,𝑧𝑧

𝐹𝐹 𝑥𝑥 = 𝑓𝑓 𝑥𝑥 + 𝑔𝑔 𝑧𝑧 + 𝜌𝜌 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑧𝑧 − 𝑐𝑐 2
2solve

subjected to
𝐴𝐴𝑥𝑥+𝐵𝐵𝑧𝑧=𝑐𝑐

set 𝐴𝐴 = 𝐿𝐿1
𝐿𝐿2

,𝐵𝐵 = −𝐵𝐵, 𝑐𝑐 = 0

no convergence guaranteed in non-convex formulations 

Evaluation of prox𝛼𝛼𝑔𝑔 𝑣𝑣
Reduce to prox𝛼𝛼ℎ1 𝑣𝑣 , prox𝛼𝛼ℎ2 𝑣𝑣

a convergence to critical point can be obtained
by selecting a proper penalty parameter 𝝆𝝆

related work: SDMM

set 𝐴𝐴 =
𝐵𝐵
𝐿𝐿1
𝐿𝐿2

,𝐵𝐵 = −𝐵𝐵, 𝑐𝑐 = 0

Higher
computation complexity 

than ours

adaptive 𝝆𝝆 may solve the problem Spectral ADMM [Xu, 2017]

[Combettes, 2011]
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PRELIMINARY RESULTS

𝐄𝐄𝐄𝐄𝐄𝐄𝐬𝐬𝐋𝐋𝐬𝐬𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬

Efficiency evaluation of numerical methods

Algorithm hyperparameters selection and testing

Effectiveness of formulations

Experiment 1: initial point selection for nmAPG

Experiment 2: efficiency in linear regression model
Experiment 3: VAR time-series generation

Experiment 4: Common Granger network extraction
Experiment 5: Classification
Experiment 6: Effectiveness of formulation D

𝐓𝐓𝐓𝐓𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐰𝐰𝐋𝐋𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 & 𝐏𝐏𝐋𝐋𝐏𝐏𝐏𝐏𝐬𝐬𝐏𝐏𝐋𝐋𝐬𝐬𝐬𝐬𝐏𝐏𝐬𝐬 Experiment 8: Application on fMRI time-series

Experiment 7: Effectiveness of formulation S

𝐏𝐏𝐋𝐋𝐏𝐏𝐏𝐏𝐏𝐏𝐬𝐬𝐏𝐏 𝐟𝐟𝐏𝐏𝐋𝐋𝐏𝐏𝐋𝐋𝐏𝐏𝐋𝐋𝐬𝐬𝐬𝐬𝐏𝐏𝐬𝐬

𝐋𝐋𝐬𝐬𝐬𝐬𝐬𝐬𝐋𝐋𝐋𝐋𝐬𝐬𝐋𝐋𝐋𝐋𝐬𝐬
𝐋𝐋𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐰𝐰

Brain network application

𝐈𝐈𝐏𝐏𝐄𝐄𝐏𝐏𝐬𝐬𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬𝐋𝐋𝐬𝐬𝐬𝐬𝐏𝐏𝐬𝐬
𝐏𝐏𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬𝐄𝐄 𝐬𝐬𝐏𝐏𝐬𝐬-𝐏𝐏𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬𝐄𝐄
𝐂𝐂
𝐃𝐃
𝐒𝐒

𝐂𝐂

𝐃𝐃
𝐒𝐒𝐀𝐀𝐃𝐃𝐀𝐀𝐀𝐀

𝐒𝐒𝐄𝐄𝐬𝐬𝐏𝐏𝐬𝐬𝐋𝐋𝐋𝐋𝐏𝐏 𝐀𝐀𝐃𝐃𝐀𝐀𝐀𝐀

𝐬𝐬𝐏𝐏𝐀𝐀𝐏𝐏𝐧𝐧
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PRELIMINARY RESULTS

Performance index

FP

FN

Ground-truth
Estimated GC matrix

𝜆𝜆 = 0

𝜆𝜆 ↑

𝜆𝜆c

FPR

TPR

AUC

FPR, TPR 𝜆𝜆=0

FPR, TPR 𝜆𝜆↑

FPR, TPR 𝜆𝜆c

TN

TP

• Area under ROC curve

• Relative parameter bias

• �𝑥𝑥−𝑥𝑥true 2
𝑥𝑥true 2

FPR =
False positive

# Negative

TPR =
True positive

# Positive

Estimation
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PRELIMINARY RESULTS

Objective: To test the formulations with known given structure
Experiment 3: VAR time-series with prespecified GC patterns generation

1. Common type ground truth 2. Differential type ground truth 3. Similar type ground truth

We randomized stable VAR coefficients that the Granger causality patterns are

Examples of generated GC matrix topology

Common network density and differential network density can be set.
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PRELIMINARY RESULTS

Objective: To extract common GC network with a presence of heterogeneous connections
Experiment 4: Group level Granger network extraction

𝐾𝐾 models

ch
an

ne
l

Formulation C

Extracted common network

Groundtruth networks



24

PRELIMINARY RESULTS

• 4 sets of 15-dimensional 2nd-order-VAR models
• Common density : 10%, 20%
• Differential density : 5%

Generate time-series 
with unit variance Gaussian noise.Common density = 10%

Common density = 20%

Objective: To extract common GC network with a presence of heterogeneous connections
Experiment 4: Group level Granger network extraction
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PRELIMINARY RESULTS

Common density : 𝟎𝟎.𝟐𝟐Common density : 𝟎𝟎.𝟏𝟏

Experiment 4: Group level Granger network extraction
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PRELIMINARY RESULTS

Objective: To illustrate the application of common Granger network extraction
Experiment 5: Supervised-classification using learned common Granger network

Class 1 Class 2 Class 3 Class 4

Li
ke

lih
oo

d

testing time series

GC network templates learned from joint estimationClass #1′s time-series

Class #1 GC network extraction

 
  

   

  
 

  
 

  
 

 
  

   

  
 

  
 

  
 

 
  

   

  
 

  
 

  
 ch

an
ne

l

channel
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PRELIMINARY RESULTS

Setting

Experiment 5: Supervised-classification using learned common Granger network

• 10 GC networks defined on 2nd order15-dimensional VAR models

• The GC matrix of classifying time-series has sparsity pattern same as one of classes

• Common network density is set to 20%

• vary VAR lag order to test the performance when model order is wrongly chosen
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PRELIMINARY RESULTS

Result

Experiment 5: Supervised-classification using learned common Granger network

• Near perfect classification rate in
non-convex case

• Non-convex case did not deteriorate
much when model order is wrong
compared to convex case.



29

PRELIMINARY RESULTS

Objective: To illustrate the performance of formulation D
Experiment 6: Performance of differential priors

Setting
• 4 sets of 15-dimensional 2nd-order-VAR models
• Common network density is set to 20%
• Differential network density is set to 5%
• The ground-truth types are common type, differential type, similar type

similar typecommon type differential type
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PRELIMINARY RESULTS

Experiment 6: Performance of differential priors
Ground truth type

C D S

convex formulation D
using

Group lasso

Overall ROC

non-convex formulation D
using

Group norm penalty
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FUTURE WORK

𝐄𝐄𝐄𝐄𝐄𝐄𝐬𝐬𝐋𝐋𝐬𝐬𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬

Effectiveness of formulations
Experiment 4: Common Granger network extraction
Experiment 5: Classification
Experiment 6: Effectiveness of formulation D

𝐓𝐓𝐓𝐓𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐰𝐰𝐋𝐋𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 & 𝐏𝐏𝐋𝐋𝐏𝐏𝐏𝐏𝐬𝐬𝐏𝐏𝐋𝐋𝐬𝐬𝐬𝐬𝐏𝐏𝐬𝐬
"Learning A Common Granger Causality Network Using
A Non−Convex Regularization", ICASSP-2020

Experiment 8: Application on fMRI time-series

Experiment 7: Effectiveness of formulation S
Brain network application

• Control the convergence of ADMM algorithm to solve formulation D, S
• Increase performance of algorithms
• Apply formulations on fMRI data

Formulation C (non-convex)

Goal
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Q&A
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SUPPLEMENTARY: FORMULATION COST 
FUNCTION

(1/2) 𝑌𝑌(𝑘𝑘) − 𝐴𝐴(𝑘𝑘)𝐻𝐻(𝑘𝑘)
2
2

𝐵𝐵𝑖𝑖𝑖𝑖
(𝑘𝑘) = [(𝐴𝐴1

(𝑘𝑘))𝑖𝑖𝑖𝑖 … (𝐴𝐴𝑝𝑝
(𝑘𝑘))𝑖𝑖𝑖𝑖]

𝐵𝐵𝑖𝑖𝑖𝑖 = [𝐵𝐵𝑖𝑖𝑖𝑖
1 … 𝐵𝐵𝑖𝑖𝑖𝑖

(𝐾𝐾)]�
𝑘𝑘=1

𝐾𝐾

(1/2) 𝑌𝑌(𝑘𝑘) − 𝐴𝐴(𝑘𝑘)𝐻𝐻(𝑘𝑘)
2
2

𝐴𝐴(𝑘𝑘) = �̂�𝐴1
(𝑘𝑘) … , �̂�𝐴𝑝𝑝

(𝑘𝑘)

Least square (individual)

Least square (joint)

�
𝑘𝑘=1

𝐾𝐾

�
𝑖𝑖≠𝑖𝑖

𝐵𝐵𝑖𝑖𝑖𝑖
𝑘𝑘

2

�
𝑘𝑘=1

𝐾𝐾

�
𝑖𝑖≠𝑖𝑖

𝐵𝐵𝑖𝑖𝑖𝑖 2
�
𝑘𝑘<𝑘𝑘′

�
𝑖𝑖≠𝑖𝑖

𝐵𝐵𝑖𝑖𝑖𝑖𝑘𝑘 − 𝐵𝐵𝑖𝑖𝑖𝑖𝑘𝑘
′

2�
𝑘𝑘=1

𝐾𝐾

�
𝑖𝑖≠𝑖𝑖

𝐵𝐵𝑖𝑖𝑖𝑖 2

�
𝑘𝑘=1

𝐾𝐾

�
𝑖𝑖≠𝑖𝑖

𝐵𝐵𝑖𝑖𝑖𝑖
𝑘𝑘

2

Formulation C Formulation D Formulation S

Regularization
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Group norm penalty

𝐾𝐾 models

𝐹𝐹𝑖𝑖𝑖𝑖
(𝑘𝑘) = 0 ⇔ 𝐴𝐴𝑟𝑟

𝑘𝑘
𝑖𝑖𝑖𝑖

= 0; 𝑟𝑟 = 1,2, …𝑝𝑝

1 2 3

1
2

3

Stacked VAR coefficient matrix

Knowing that the sparsity 
must be a block of size 𝑝𝑝

𝐵𝐵11

𝐵𝐵33

⋮

Penalize ∑𝑖𝑖≠𝑖𝑖 𝐵𝐵𝑖𝑖𝑖𝑖 2
𝑞𝑞

𝒙𝒙

𝑷𝑷𝒙𝒙 𝟐𝟐,𝒒𝒒
(𝒑𝒑)

𝐵𝐵12

𝑞𝑞 = 1, Group lasso
𝒒𝒒 = 𝟏𝟏/𝟐𝟐, Our non-convex extension

Joint estimation

⋮

⋮

𝐵𝐵𝑖𝑖𝑖𝑖
(1)

𝐵𝐵𝑖𝑖𝑖𝑖
(2)

𝐵𝐵𝑖𝑖𝑖𝑖

Penalize ∑𝑖𝑖≠𝑖𝑖 𝐵𝐵𝑖𝑖𝑖𝑖 2
𝑞𝑞

𝑷𝑷𝒙𝒙 𝟐𝟐,𝒒𝒒
(𝒑𝒑𝒑𝒑)

Penalize ∑𝑚𝑚≠𝑙𝑙 ∑𝑖𝑖≠𝑖𝑖 𝐵𝐵𝑖𝑖𝑖𝑖
(𝑚𝑚) − 𝐵𝐵𝑖𝑖𝑖𝑖

(𝑙𝑙)
2

𝑞𝑞

𝑫𝑫𝒙𝒙 𝟐𝟐,𝒒𝒒
(𝒑𝒑)

Penalize ∑𝑘𝑘∑𝑖𝑖≠𝑖𝑖 𝐵𝐵𝑖𝑖𝑖𝑖
(𝑘𝑘)

2

𝑞𝑞
𝑷𝑷𝒙𝒙 𝟐𝟐,𝒒𝒒

(𝒑𝒑)

⋮

⋮

⋮

⋮
𝐵𝐵𝑖𝑖𝑖𝑖

(1) 𝐵𝐵𝑖𝑖𝑖𝑖
(2)𝐴𝐴1 11

𝐴𝐴2 11
vectorize
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SUPPLEMENTARY

min
x

𝑦𝑦 − 𝐺𝐺𝑥𝑥 2
2+𝜆𝜆 𝑃𝑃𝑥𝑥 2,𝑞𝑞

(𝑝𝑝𝐾𝐾)
C.

D.

S.

min
x

𝑦𝑦 − 𝐺𝐺𝑥𝑥 2
2+𝜆𝜆1 𝑃𝑃𝑥𝑥 2,𝑞𝑞

(𝑝𝑝) + 𝜆𝜆2 𝑃𝑃𝑥𝑥 2,𝑞𝑞
(𝑝𝑝𝐾𝐾)

min
x

𝑦𝑦 − 𝐺𝐺𝑥𝑥 2
2+𝜆𝜆1 𝑃𝑃𝑥𝑥 2,𝑞𝑞

(𝑝𝑝) + 𝜆𝜆2 𝐷𝐷𝑥𝑥 2,𝑞𝑞
(𝑝𝑝)

𝑇𝑇1
𝑇𝑇2

𝑥𝑥 − 𝑧𝑧 = 0
𝑔𝑔(𝑧𝑧)

VECTORIZATION
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𝑥𝑥+ = argmin
𝑥𝑥

𝐺𝐺𝑥𝑥 − 𝑏𝑏 2
2 +

𝜌𝜌
2

𝐿𝐿1
𝐿𝐿2

𝑥𝑥 − 𝑧𝑧 +
𝑦𝑦
𝜌𝜌 2

2

𝑧𝑧+ = min
𝑧𝑧1,𝑧𝑧2

𝜆𝜆1 𝑧𝑧1 2,𝑞𝑞
𝑀𝑀1 + 𝜆𝜆2 𝑧𝑧2 2,𝑞𝑞

(𝑀𝑀2) +
𝜌𝜌
2

𝐿𝐿1
𝐿𝐿2

𝑥𝑥 − 𝑧𝑧 +
𝑦𝑦
𝜌𝜌 2

2

𝑦𝑦+ = 𝑦𝑦 + 𝜌𝜌( 𝐿𝐿1𝐿𝐿2
𝑥𝑥 − 𝑧𝑧)
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Beck & Teboulle

𝑧𝑧𝑘𝑘+1 = prox𝜆𝜆𝑔𝑔(𝑦𝑦𝑘𝑘 − 𝜆𝜆∇𝑓𝑓(𝑦𝑦𝑘𝑘))

𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑘𝑘 +
𝑡𝑡𝑘𝑘−1 − 1

𝑡𝑡𝑘𝑘
𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘−1 +

𝑡𝑡𝑘𝑘−1
𝑡𝑡𝑘𝑘

(𝑧𝑧𝑘𝑘 − 𝑥𝑥𝑘𝑘)

Monotone accelerated proximal gradient (mAPG)

𝑥𝑥𝑘𝑘+1 = argmin{𝐹𝐹 𝑥𝑥𝑘𝑘 ,𝐹𝐹(𝑧𝑧𝑘𝑘+1)} Monitoring step

Does not generate sufficient decreasing sequence.

𝑡𝑡𝑘𝑘+1 = 0.5(1 + 1 + 4𝑡𝑡𝑘𝑘2 ) 

Descent

SUPPLEMENTARY
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Monotone accelerated proximal gradient (mAPG)

𝑥𝑥𝑘𝑘+1 = argmin{𝐹𝐹 𝒗𝒗𝒌𝒌+𝟏𝟏 ,𝐹𝐹(𝑧𝑧𝑘𝑘+1)} Monitoring step

Monotone APG is proved to converge in some non-convex problems.

𝑣𝑣𝑘𝑘+1 = prox𝜆𝜆𝑔𝑔(𝑥𝑥𝑘𝑘 − 𝜆𝜆∇𝑓𝑓(𝑥𝑥𝑘𝑘))
Compute original proximal gradient step

Li & LinBeck & Teboulle

𝑧𝑧𝑘𝑘+1 = prox𝜆𝜆𝑔𝑔(𝑦𝑦𝑘𝑘 − 𝜆𝜆∇𝑓𝑓(𝑦𝑦𝑘𝑘))

𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑘𝑘 +
𝑡𝑡𝑘𝑘−1 − 1

𝑡𝑡𝑘𝑘
𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘−1 +

𝑡𝑡𝑘𝑘−1
𝑡𝑡𝑘𝑘

(𝑧𝑧𝑘𝑘 − 𝑥𝑥𝑘𝑘)

𝑡𝑡𝑘𝑘+1 = 0.5(1 + 1 + 4𝑡𝑡𝑘𝑘2 ) 

Descent Sufficient descent

However, monitoring step is too conservative. 

Sufficient descent

SUPPLEMENTARY
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Li & LinBeck & Teboulle

𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑘𝑘 +
𝑡𝑡𝑘𝑘−1 − 1

𝑡𝑡𝑘𝑘
𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘−1 +

𝑡𝑡𝑘𝑘−1
𝑡𝑡𝑘𝑘

(𝑧𝑧𝑘𝑘 − 𝑥𝑥𝑘𝑘)

𝑡𝑡𝑘𝑘+1 = 0.5(1 + 1 + 4𝑡𝑡𝑘𝑘2 ) 

Descent Sufficient descent

𝐹𝐹 𝑧𝑧𝑘𝑘+1 ≤ 𝐹𝐹(𝑥𝑥𝑘𝑘) − 𝛿𝛿 𝑧𝑧𝑘𝑘+1 − 𝑥𝑥𝑘𝑘 2
2?

𝑥𝑥𝑘𝑘+1 = prox𝜆𝜆𝑔𝑔(𝑥𝑥𝑘𝑘 − 𝜆𝜆∇𝑓𝑓(𝑥𝑥𝑘𝑘))
𝑧𝑧𝑘𝑘+1 = prox𝜆𝜆𝑔𝑔(𝑦𝑦𝑘𝑘 − 𝜆𝜆∇𝑓𝑓(𝑦𝑦𝑘𝑘))

Monotone accelerated proximal gradient (mAPG)

𝑥𝑥𝑘𝑘+1 = 𝑧𝑧𝑘𝑘+1

Can sufficient descent property can be dropped in non-convex setting ?

No proximal step

YES NO

There is a trick.

SUPPLEMENTARY
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Non-monotone accelerated proximal gradient (nmAPG)
Li & LinBeck & Teboulle

𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑘𝑘 +
𝑡𝑡𝑘𝑘−1 − 1

𝑡𝑡𝑘𝑘
𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘−1 +

𝑡𝑡𝑘𝑘−1
𝑡𝑡𝑘𝑘

(𝑧𝑧𝑘𝑘 − 𝑥𝑥𝑘𝑘)

𝑡𝑡𝑘𝑘+1 = 0.5(1 + 1 + 4𝑡𝑡𝑘𝑘2 ) 

Descent Sufficient descent

In objective function

𝐹𝐹 𝑧𝑧𝑘𝑘+1 ≤ 𝒄𝒄𝒌𝒌 − 𝛿𝛿 𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘 2
2?

𝑧𝑧𝑘𝑘+1 = prox𝜆𝜆𝑔𝑔(𝑦𝑦𝑘𝑘 − 𝜆𝜆∇𝑓𝑓(𝑦𝑦𝑘𝑘))

𝑐𝑐𝑘𝑘 is weighted average of objective function in iterations 1, … , 𝑘𝑘.

𝑥𝑥𝑘𝑘+1 = 𝑧𝑧𝑘𝑘+1
No proximal step

YES NO

Sequence 𝑐𝑐𝑘𝑘 is strictly monotone decreasing while 𝑭𝑭(𝒙𝒙𝒌𝒌) may not.

Monitoring step in mAPG

𝑥𝑥𝑘𝑘+1 = argmin{𝐹𝐹 𝒗𝒗𝒌𝒌+𝟏𝟏 ,𝐹𝐹(𝑧𝑧𝑘𝑘+1)}

SUPPLEMENTARY
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SUPPLEMENTARY

Group lasso
Sum of 2-norm 

of variables components
2-norm composite

with 1-norm

Sparsity inducing part

2-norm composite 
with ½ quasi-norm

Weaker true support recovery condition
than Group lasso

Penalize Interpreted as

CONVEXNON-CONVEX

Choices of sparsity inducing-penalty



47

min
𝐴𝐴𝑥𝑥+𝐵𝐵𝑧𝑧=𝑐𝑐

𝑓𝑓 𝑥𝑥 + 𝑔𝑔(𝑧𝑧)

𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑧𝑧 − 𝑐𝑐 2𝑓𝑓 𝑥𝑥 + 𝑔𝑔(𝑧𝑧)

ADMM convergence issues

ℒ 𝑥𝑥, 𝑧𝑧, 𝑦𝑦, 𝜌𝜌 = 𝑓𝑓 𝑥𝑥 + 𝑔𝑔 𝑧𝑧 + 𝑦𝑦𝑇𝑇𝑟𝑟 +
𝝆𝝆
2 𝑟𝑟 2

2

𝑟𝑟 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑧𝑧 − 𝑐𝑐

SUPPLEMENTARY
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