JOINT ESTIMATION OF MULTIPLE GRANGER GRAPHICAL MODELS USING NON-CONVEX PENALTIES

Thesis Proposal

Parinthorn Manomaisaowapak
Advisor: Assist. Prof. Dr. Jitkomut Songsiri
Department of Electrical Engineering, Faculty of Engineering
Chulalongkorn University

OUTLINE

- Introduction
- Overview
- Related works
- Work plan
- Background
- Methodology
- Preliminary results
- Future works

INTRODUCTION

How to study relationship of variables?

Causality analysis
Granger causality(GC)

Graphical representation

High dimensional GC network

- GC network has large amount of connections
- We aim to extract only significant connections

Causality network

Causality matrix

4

Sparse estimation formulation in general form.

Dense

Sparse

INTRODUCTION

consider when the same multivariate time-series are measured in different settings

INTRODUCTION

Goal: Find important connections of multiple networks with prior knowledge

$$
\min _{\theta_{1}, \ldots, \theta_{K}} \sum_{i}\left[f_{i}\left(\theta_{i}\right)+\lambda_{1} h_{i}\left(\theta_{i}\right)\right]+\lambda_{2} g\left(\theta_{1}, \ldots, \theta_{K}\right)
$$

where h_{i} aims to promote differential sparsity in each model.

Sparsity inducing function
Example
$\longrightarrow \quad \theta_{1}, \ldots, \theta_{K}$ has same non-zero pattern
fused lasso $\longrightarrow \theta_{m}-\theta_{\ell}$ is sparse \longrightarrow Some model coefficients are identical

Objectives

identical GC networks

common GC network \& differential network

Multiple multivariate time-series
common GC network with identical strength
\&

- To propose three formulations. The formulations are differential network
- Formulation C :The estimated networks have an identical sparsity pattern
- Formulation D:The estimated networks have some common parts and some different parts.
- Formulation S:The estimated networks have some common parts and some different parts. The common parts also share model parameters.
- To provide efficient numerical methods for solving the proposed estimation methods in a large-scale setting.

Scope of work

- The proposed framework will be verified intensively in a simulated data sets and one real-world data set
- The usefulness of the methods will be illustrated on brain network application

Expected outcome

- Estimation formulations of multiple Granger graphical models
- A computer program that has input as a set of multivariate time-series and return group and individual Granger graphical model of the multiple time-series
non-convex group penalties [Our work]
[[Songsiri, 2017] group lasso,fused lasso

$$
\text { extension }
$$

group lasso
group lasso+Tikhonov
Common network
C

D

Common network + differences

[Skripnikov, 2019]
sparse fused-lasso
sparse fused-lasso
Gaussian graphical model
[Bore, 2020]
non-convex group norm penalty $\sum\left\|x_{G_{i}}\right\|_{p}^{q} \quad p \geq 1,0<q<1$
[Hu, 2017]
\uparrow
non-convex penalty
$\sum\left|x_{i}\right|^{q} \quad 0<q<1$
[Chartrand, 2008]

BACKGROUND

Vector autoregressive model (VAR)

$$
\begin{aligned}
y(t) & =\sum_{r=1}^{p} A_{r} y(t-r)+\eta(t) \\
A_{r} & \in \mathbf{R}^{n \times \boldsymbol{n}} \quad y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbf{R}^{\boldsymbol{n}}
\end{aligned}
$$

Granger causality on VAR models

- Granger causality (GC, $F_{i j}$) is a strength of evidence
- Absence of GC connection can be investigated by the relation

$$
\begin{gathered}
F_{i j}=0 \Leftrightarrow\left(A_{r}\right)_{i j}=0 ; r=1,2, \ldots p \text { [Granger, I980] } \\
\downarrow
\end{gathered}
$$

Sparsity inducing penalty can be designed using this prior knowledge

We used BIC criteria to find optimal tuning-parameters

$$
\operatorname{BIC}\left(\lambda_{1}, \lambda_{2}\right)=-2 \mathcal{L}\left(\lambda_{1}, \lambda_{2}\right)+\log (\mathrm{N}) \cdot \operatorname{df}\left(\lambda_{1}, \lambda_{2}\right)
$$

Log-likelihood of VAR model. Effective degree of freedom (Fitness of models)
(Complexity of models).
\# off-diagonal nonzero estimated parameters

Problem properties (Formulation C, D, S)

- The problem is in the form of $\min _{x} f(x)+g(x)$
- ∇f is Lipschitz-continuous.
- Function g is not differentiable at zero while we prefer sparse solutions
- We aim to solve high-dimensional problem or in a large-scale setting.

1

First order algorithm should be considered first
\downarrow

Proximal gradient methods unify the framework that solve this problem

Proximal algorithms

- require evaluation of proximal operator

Definition: proximal operator of function g

$$
\operatorname{prox}_{\alpha g}(v)=\underset{x}{\operatorname{argmin}} g(x)+\frac{1}{2 \alpha}\|x-v\|_{2}^{2}
$$

- are widely used in sparse estimation using lasso, group lasso for a convex case
- proximal operator has a closed-form expression for some functions, such as

$$
\begin{array}{lll}
\ell_{1} \text { norm } & \left(\operatorname{prox}_{\lambda\|x\|_{1}}(v)\right)_{i}=\operatorname{sign}\left(v_{i}\right) \max \left\{0, v_{i}-\lambda\right\} & \text { Soft thresholding operator } \\
\ell_{2} \text { norm } & \operatorname{prox}_{\lambda\|x\|_{2}}(v)=\max \left\{0,1-\frac{\lambda}{\|v\|_{2}}\right\} v & \text { Block-soft thresholding operator }
\end{array}
$$

proximal gradient algorithm
Solve $\quad \min _{x} F(x)=f(x)+g(x)$

Have a sufficient descent property in F

Globally converge for our formulation in non-convex setting
by virtue from its sufficient descent property

But it is slow

accelerated proximal gradient(APG)

- $y=x^{-}+$correction term
- $x^{+}=\operatorname{prox}_{\alpha g}(y-\alpha \nabla f(y))$
- update correction term
not a sufficient descent method
no convergence guaranteed for our formulation

proximal gradient methods

$$
\begin{gathered}
\text { solve } \min _{x} F(x)=f(x)+g(x) \\
\text { require proximal operator of } \\
g(x)=h_{1}\left(L_{1} x\right)+h_{2}\left(L_{2} x\right)
\end{gathered}
$$

only $h_{1}(x), h_{2}(x)$
have closed-form proximal operator [Hu, 20I7]

Alternating direction methods of multipliers(ADMM)

no convergence guaranteed in non-convex formulations

by selecting a proper penalty parameter ρ

PRELIMINARY RESULTS

Performance index $\quad \rightarrow \quad \mathrm{FPR}=\frac{\text { False positive }}{\# \text { Negative }}$
 - Area under ROC curve $-\quad$ TPR $=\frac{\text { True positive }}{\# \text { Positive }}$

- Relative parameter bias
- $\frac{\left\|\hat{x}-x_{\text {true }}\right\|_{2}}{\left\|x_{\text {true }}\right\|_{2}}$

Ground-truth

Estimated GC matrix

PRELIMINARY RESULTS

Experiment 3: VAR time-series with prespecified GC patterns generation
Objective: To test the formulations with known given structure
We randomized stable VAR coefficients that the Granger causality patterns are
I. Common type ground truth
2. Differential type ground truth
3. Similar type ground truth

Examples of generated GC matrix topology

Common network density and differential network density can be set.

PRELIMINARY RESULTS

Experiment 4: Group level Granger network extraction
Objective: To extract common GC network with a presence of heterogeneous connections

PRELIMINARY RESULTS

Experiment 4: Group level Granger network extraction

Objective: To extract common GC network with a presence of heterogeneous connections

- 4 sets of 15 -dimensional 2nd-order-VAR models
- Common density : 10\%, 20\%
- Differential density :5\%

Common density $=10 \%$

Common density $=20 \%$

Generate time-series
with unit variance Gaussian noise.

PRELIMINARY RESULTS

Experiment 4: Group level Granger network extraction

Common density : $\mathbf{0 . 1}$

Common density: 0.2

PRELIMINARY RESULTS

Experiment 5: Supervised-classification using learned common Granger network

Objective: To illustrate the application of common Granger network extraction

PRELIMINARY RESULTS

Experiment 5: Supervised-classification using learned common Granger network

Setting

- 10 GC networks defined on $2^{\text {nd }}$ order15-dimensionalVAR models
- The GC matrix of classifying time-series has sparsity pattern same as one of classes
- Common network density is set to 20%
- vary VAR lag order to test the performance when model order is wrongly chosen

PRELIMINARY RESULTS

Experiment 5: Supervised-classification using learned common Granger network
Result

- Near perfect classification rate in non-convex case
- Non-convex case did not deteriorate much when model order is wrong compared to convex case.

PRELIMINARY RESULTS
 Experiment 6: Performance of differential priors

Objective: To illustrate the performance of formulation D
Setting

- 4 sets of 15 -dimensional 2 nd-order-VAR models
- Common network density is set to 20%
- Differential network density is set to 5%
- The ground-truth types are common type, differential type, similar type

common type

FUTURE WORK

Experiments

- Effectiveness of formulations

Experiment 4: Common Granger network extraction Experiment 5: Classification
Experiment 6: Effectiveness of formulation D
Experiment 7: Effectiveness of formulation S

- Brain network application

Experiment 8: Application on fMRI time-series

Goal

- Control the convergence of ADMM algorithm to solve formulation D, S
- Increase performance of algorithms
- Apply formulations on fMRI data

REFERENCES

[Bore20] J.C.Bore, P. Li, D.J. Harmah, F. Li, D.Yao, P. Xu, Directed EEG neural network analysis by LAPPS ($\mathrm{P} \leq \mathrm{I}$) Penalized sparse Granger approach, Neural Networks,Volume 124, 2020, Pages 213-222,
[Boyd II] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers", Foundation and Trends in Machine Learning, vol. 3, no. I, pp. I-I22, Jan. 201 I.
[Chartrand08]R. Chartrand,V. Staneva,. (2008). Restricted isometry properties and nonconvex compressive sensing. Inverse Problems 24(3).
[Chunl5] H. Chun, X. Zhang, and H. Zhao,"Gene regulation network inference with joint sparse Gaussian graphical models," Journal of Computational and Graphical Statistics, vol. 24, no. 4, pp. 954-974, 2015.
[Combettes I I]P. L. Combettes and J. C. Pesquet. Proximal Splitting Methods in Signal Processing, pages 185-2I2. Springer New York, New York, NY, 201 I.
[Granger 1980]C.W.J. Granger, Testing for causality:A personal viewpoint, Journal of Economic Dynamics and Control, Volume 2, 1980, Pages 329-352, ISSN 0165-I889,
[Gregoroval 5]M. Gregorova, A. Kalousis, and S. Marchand-Maillet. Learning coherent Granger causality in panel vector autoregressive models. In Proceedings of the Demand Forecasting Workshop of the 32nd International Conference on Machine Learning. ICML, 2015.
[Guol I] J. Guo, E. Levina, G. Michailidis, and J. Zhu, "Joint estimation of multiple graphical models," Biometrika, vol. 98, no. I, pp. I-I5, 201 I.
[Hul7] Hu, C. Li, K. Meng, J. Qin, and X.Yang, "Group sparse optimization via $\ell_{p, q}$ regularization," Journal of Machine Learning Research, vol. 18, no. 30, pp. I-52, 2017.

REFERENCES

[HuangI5] F. Huang and S. Chen, "Joint learning of multiple sparse matrix Gaussian graphical models," IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. II, pp. 2606-2620, 2015.
[Lil5] H. Li and Z. Lin, "Accelerated proximal gradient methods for nonconvex programming," in Advances in Neural Information Processing Systems 28, pp. 379-387, 2015.
[Skrip 19] A. Skripnikov and G. Michailidis,"Joint estimation of multiple network Granger causal models," Econometrics and Statistics, vol. IO, pp. I20-133, 2019.
[Skrip 19] A. Skripnikov and G. Michailidis, "Regularized joint estimation of related vector autoregressive models," Computational Statistics \& Data Analysis, vol. I39, pp. 164-177, 2019.
[Songsiri I7] J. Songsiri. Estimations in Learning Granger Graphical Models with Application to fMRITime Series. Technical report, Chulalongkorn University, Department of Electrical engineering, July 2017.
[TeboulleI8] M.Teboulle.A simplified view of first order methods for optimization. Math. Program. I70, I (2018), 67-96.
[Tuck20] J.Tuck and S. Boyd. Fitting Laplacian regularized stratified Gaussian models.ArXiv, abs/2005.0I752, 2020.
[Wang19] Y.Wang,W.Yin, J. Zeng. Global Convergence of ADMM in Nonconvex Nonsmooth Optimization. Journal of Scientific Computing 78, 29-63 (2019).
[Wilms I8] I.Wilms, L. Barbaglia, and C. Croux,"Multiclass vector auto-regressive models for multistore sales data," Journal of the Royal Statistical Society: Series C (Applied Statistics), vol. 67, no. 2, pp. 435-452, 2018.
[Xul7] Z. Xu, M. Figueiredo,T. Goldstein,"Adaptive ADMM with Spectral Penalty Parameter Selection," Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR 54:718727, 2017.

Objective	TASK	PHASE ONE												PHASE TWO																								PHASE THREE										
		June 2019				July 2019				August 2019				September 2019				October 2019				November 2019				December 2019				January 2020				Febuary 2020				March 2020				April 2020				May 2020		
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	34
1	Literature review on sparse formulation in graphical models																																															
1.1	Joint sparse estimation of Gaussian graphical models																																															
1.2	Joint sparse estimation of Granger graphical models																																															
1.3	Survey of non-smooth, non-convex optimization algorithms																																															
1.5	Survey of non-convex regularization																																															
2	Algorithm implementation \& Experiment design																																															
2.1	ADMM algorithm implementation for nonconvex optimization																																															
2.2	nmAPG algorithm implementation																																															
2.3	Coding optimization																																															
2.4	Experiments planning																																															
3	Perform simulated data experiments																																															
3.1	Experiment 1: initial point selection in linear regression model																																															
3.2	Experiment 2: non-convex group norm regularization in linear regression models																																															
3.3	Experiment 3: VAR time-series with prespecified GC patterns generation																																															
3.4	Experiment 4: Common Granger network extraction																																															
3.5	Experiment 5 : Supervised-classification using learned common Granger network																																															
3.6	Submit part of the proposal work to ICASSP																																															
3.7	Experiment 6: Effectiveness of differential priors																																															
3.8	Preparing proposal																																															

Objective	TASK	PHASE FOUR												PHASE FIVE												PHASE SIX							
		June 2020				July 2020				August 2020				September 2020				October 2020				November 2020				December 2020				January 2021			
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
4	Future works																																
4.1	Spectral ADMM implementation \& Optimization																																
4.2	Literature review on fMRI data preprocessing																																
4.3	Perform real data experiments																																
4.4	Conclude result \& preparing thesis defense																																

SUPPLEMENTARY: FORMULATION COST FUNCTION

$$
\sum_{k=1}^{K}(1 / 2)\left\|Y^{(k)}-A^{(k)} H^{(k)}\right\|_{2}^{2}
$$

Least square (individual)

$$
\begin{aligned}
A^{(k)} & =\left[\hat{A}_{1}^{(k)} \ldots, \hat{A}_{p}^{(k)}\right] \\
B_{i j}^{(k)} & =\left[\left(A_{1}^{(k)}\right)_{i j} \ldots\left(A_{p}^{(k)}\right)_{i j}\right]
\end{aligned}
$$

Least square (joint)

$$
C_{i j}=\left[B_{i j}^{(1)} \ldots B_{i j}^{(K)}\right]
$$

Formulation C

$$
\sum_{k=1}^{K} \sum_{i \neq j}\left\|B_{i j}^{(k)}\right\|_{2}
$$

$$
\sum_{k=1}^{K} \sum_{i \neq j}\left\|C_{i j}\right\|_{2}
$$

Formulation D

$$
\sum_{k=1}^{K} \sum_{i \neq j}\left\|B_{i j}^{(k)}\right\|_{2}
$$

$$
\sum_{k=1}^{K} \sum_{i \neq j}\left\|C_{i j}\right\|_{2}
$$

Group norm penalty

StackedVAR coefficient matrix

Knowing that the sparsity must be a block of size p

$$
\begin{gathered}
\stackrel{\downarrow}{\text { Penalize } \sum_{i \neq j}\left\|B_{i j}\right\|_{2}^{q} \rightarrow \overbrace{\boldsymbol{P} \boldsymbol{x} \|_{2, \boldsymbol{q}}^{(\boldsymbol{p})}}} \boldsymbol{\sim} \\
\begin{array}{l}
q=1, \text { Group lasso } \\
q=1 / 2, \text { Our non-convex extension }
\end{array}
\end{gathered}
$$

SUPPLEMENTARY

C. $\min _{\mathrm{x}}\|y-G x\|_{2}^{2}+\lambda\|P x\|_{2, q}^{(p K)}$
D. $\min _{\mathrm{x}}\|y-G x\|_{2}^{2}+\lambda_{1}\|P x\|_{2, q}^{(p)}+\lambda_{2}\|P x\|_{2, q}^{(p K)}$
S. $\min _{\mathrm{x}}\|y-G x\|_{2}^{2}+\underbrace{\lambda_{1}\|P x\|_{2, q}^{(p)}+\lambda_{2}\|D x\|_{2, q}^{(p)}}_{\left.\begin{array}{c}g(z) \\ {\left[T_{1}\right.} \\ T_{2}\end{array}\right] x-z=0}$

SUPPLEMENTARY : ADMM STEP

$$
\begin{aligned}
& x^{+}=\underset{x}{\operatorname{argmin}}\|G x-b\|_{2}^{2}+\frac{\rho}{2}\left\|\left[\begin{array}{l}
L_{1} \\
L_{2}
\end{array}\right] x-z+\frac{y}{\rho}\right\|_{2}^{2} \\
& z^{+}=\min _{z_{1}, z_{2}} \lambda_{1}\left\|z_{1}\right\|_{2, q}^{\left(M_{1}\right)}+\lambda_{2}\left\|z_{2}\right\|_{2, q}^{\left(M_{2}\right)}+\frac{\rho}{2}\left\|\left[\begin{array}{l}
L_{1} \\
L_{2}
\end{array}\right] x-z+\frac{y}{\rho}\right\|_{2}^{2} \\
& y^{+}=y+\rho\left(\left[\begin{array}{l}
L_{1} \\
L_{2}
\end{array}\right] x-z\right)
\end{aligned}
$$

SUPPLEMENTARY

Monotone accelerated proximal gradient (mAPG)

Beck \& Teboulle
Descent

$$
\begin{aligned}
y_{k} & =x_{k}+\frac{t_{k-1}-1}{t_{k}}\left(x_{k}-x_{k-1}\right)+\frac{t_{k-1}}{t_{k}}\left(z_{k}-x_{k}\right) \\
t_{k+1} & =0.5\left(1+\sqrt{1+4 t_{k}^{2}}\right) \\
z_{k+1} & =\operatorname{prox}_{\lambda g}\left(y_{k}-\lambda \nabla f\left(y_{k}\right)\right) \\
x_{k+1} & =\operatorname{argmin}\left\{F\left(x_{k}\right), F\left(z_{k+1}\right)\right\} \text { Monitoring step }
\end{aligned}
$$

Does not generate sufficient decreasing sequence.

SUPPLEMENTARY

Monotone accelerated proximal gradient (mAPG)

Beck \& Teboulle
Descent

\square | Li \& Lin |
| :---: |
| Sufficient descent |

$$
\begin{aligned}
& y_{k}=x_{k}+\frac{t_{k-1}-1}{t_{k}}\left(x_{k}-x_{k-1}\right)+\frac{t_{k-1}}{t_{k}}\left(z_{k}-x_{k}\right) \\
& t_{k+1}=0.5\left(1+\sqrt{1+4 t_{k}^{2}}\right) \\
& z_{k+1}=\operatorname{prox}_{\lambda g}\left(y_{k}-\lambda \nabla f\left(y_{k}\right)\right) \quad \begin{array}{c}
\text { Compute original proximal gradient step }
\end{array} \\
& v_{k+1}=\operatorname{prox}_{\lambda g}\left(x_{k}-\lambda \nabla f\left(x_{k}\right)\right) \\
& x_{k+1}=\operatorname{argmin}\left\{F\left(v_{k+1}\right), F\left(z_{k+1}\right)\right\} \quad \text { Monitoring step } \longrightarrow \text { Sufficient descent }
\end{aligned}
$$

Monotone APG is proved to converge in some non-convex problems.

However, monitoring step is too conservative.

SUPPLEMENTARY

Monotone accelerated proximal gradient (mAPG)

Beck \& Teboulle
Descent

$$
y_{k}=x_{k}+\frac{t_{k-1}-1}{t_{k}}\left(x_{k}-x_{k-1}\right)+\frac{t_{k-1}}{t_{k}}\left(z_{k}-x_{k}\right)
$$

$$
\begin{aligned}
& t_{k+1}=0.5\left(1+\sqrt{1+4 t_{k}^{2}}\right) \\
& z_{k+1}=\operatorname{prox}_{\lambda g}\left(y_{k}-\lambda \nabla f\left(y_{k}\right)\right)
\end{aligned} \quad\left[\begin{array}{c}
F\left(z_{k+1}\right) \leq F\left(x_{k}\right)-\delta\left\|z_{k+1}-x_{k}\right\|_{2}^{2} ? \\
\text { YES } \\
\mathrm{NO} \\
\hline
\end{array}\right.
$$

$$
x_{k+1}=z_{k+1} \quad x_{k+1}=\operatorname{prox}_{\lambda g}\left(x_{k}-\lambda \nabla f\left(x_{k}\right)\right)
$$

No proximal step

Can sufficient descent property can be dropped in non-convex setting ? There is a trick.

SUPPLEMENTARY

Non-monotone accelerated proximal gradient (nmAPG)
In objective function
Beck \& Teboulle
Descent

$$
y_{k}=x_{k}+\frac{t_{k-1}-1}{t_{k}}\left(x_{k}-x_{k-1}\right)+\frac{t_{k-1}}{t_{k}}\left(z_{k}-x_{k}\right)
$$

$$
\begin{aligned}
& t_{k+1}=0.5\left(1+\sqrt{1+4 t_{k}^{2}}\right) \\
& z_{k+1}=\operatorname{prox}_{\lambda g}\left(y_{k}-\lambda \nabla f\left(y_{k}\right)\right)
\end{aligned} \quad\left[\begin{array}{c}
F\left(z_{k+1}\right) \leq c_{k}-\delta\left\|z_{k+1}-y_{k}\right\|_{2}^{2} ? \\
\text { YES }
\end{array} \mathrm{NO}\right.
$$

$$
x_{k+1}=z_{k+1}
$$

No proximal step
c_{k} is weighted average of objective function in iterations $1, \ldots, k$.
Sequence c_{k} is strictly monotone decreasing while $F\left(x_{k}\right)$ may not.

SUPPLEMENTARY

Choices of sparsity inducing-penalty

Sum of 2-norm
f variables components

Sparsity inducing part
 with $1 / 2$ quasi-norm

SUPPLEMENTARY

ADMM convergence issues $\quad \min _{A x+B z=c} f(x)+g(z)$

$$
f(x)+g(z)
$$

Converge:Primal residuals

$$
\begin{aligned}
& \mathcal{L}(x, z, y, \rho)=f(x)+g(z)+y^{T} r+\frac{\rho}{2}\|r\|_{2}^{2} \\
& r=(A x+B z-c)
\end{aligned}
$$

