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Abstract

Learning causality among variables in multivariate time-series is a way to characterize
the cause and effect relationship as a causality network. In multiple multivariate time-series,
we assume that the network of each multivariate time-series decomposes into two parts, the
global part, and the local part. The global part is a part where all networks share the com-
mon connections, while the local part is the leftover connections in each network. Granger
causality quantifies the causality network using a vector autoregressive (VAR) model. The
joint estimation of multiple sparse Granger causality networks is estimated by using a regu-
larization term as a convex penalty such as group lasso penalty. Recent advancements in the
sparse estimation field suggested that the non-convex penalties can be used to replace the
convex penalties because the non-convex penalties have a better sparsity recovery rate than
the convex penalties. This proposal considers an extension of joint estimation formulations
of multiple sparse Granger causality networks using non-convex group norm penalties. The
non-convex group norm penalties have a well-established statistical property that is shown
to be superior to a group lasso penalty. Since the problem is non-convex non-smooth, we ap-
plied the state-of-the-art, non-monotone accelerated proximal gradient (nmAPG), algorithm
to solve one of our formulations in a large scale setting and we fine-tuned penalty parame-
ter in the ADMM (Alternating Direction Methods of Multipliers) algorithm to solve other
formulations. The joint estimation with the non-convex group norm penalty outperformed
joint estimation based on group lasso penalty in our intensive simulated data experiments.

1 Introduction

Granger causality (GC) is used to quantify the strength of a cause and effect between time-
series. The Granger causality between all pairs of time-series forms a network call Granger
causality network or a GC network. The causality connections between multiple time-series
provide us a deeper understanding of their nature and their relationships. For instance, human
brain functionality can be described by a measure called effective brain connectivity. The effective
brain connectivity quantified the amount of information that one brain region exerts to another
[Fri11]. These relations belong in the cause-and-effect type of relationships, which can be
investigated by Granger causality. A Granger causality network among multiple time-series can
be determined by a linear vector autoregressive model (VAR). This model can be efficiently
estimated by an ordinary linear least-squares method or by solving the Yule-Walker equation
[Lüt05]. These methods generally produce a dense GC network. A lower density GC network or
a sparse GC network is preferred because it signifies the importance of those few connections.
A sparse GC network can be obtained by solving a regularized least-square using a group lasso
penalty [Hau12], [Son13].

The identification of a sparse GC network from a single multivariate time-series is only a
local method to determine the GC network. It is not natural to use a local method to infer on
the global GC network. For example, in neuroscience applications, the human brain network
cannot be concluded from a single subject, but it is possible to have a better approximation of
the global brain network from multiple subjects, which is called group-level brain connectivity.
However, the global network can be approximated from multiple networks. The joint estimation
of multiple Granger networks is the method that can be used to obtain an estimated version
of the global network using multiple networks. This method controls multiple GC networks to
have a similar sparsity structure. The similarity in all GC networks forms an approximation of
the global GC network. With the presence of heterogeneity in each network, the network can be
decomposed into two parts, the global network and the local network. We will refer to the global
part as a common GC network or a homogeneous part of the GC network. The local part is the
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connections of each network that is different from the common GC network. We will refer this
part as a differential GC network or a heterogeneous part of the GC network. The general form
of jointly sparse causality networks estimation is usually defined by the optimization problem,

minimize
x

g(x1, x2, ..., xK) +
K∑
i=1

[f(xi) + h(xi)] (1)

where f is a smooth loss function, which depends on the framework. The term h is a sparsity
inducing the regularization of a local network, and the sparsity of the global network is regularized
by term g. Both g and h have gradient discontinuity at x = 0. The problem parameters are
x1, . . . , xK where each xi is the parameter of ith time-series model. The formulation (1) has
already been applied in a Gaussian graphical model (GGM) framework where xi is an inverse
covariance matrix [TB20]. This formulation has already been applied to jointly estimate multiple
sparse GC networks [Son17, SM19a, SM19b, GKMM15, WBC18]. For example, [Son17] used
a group fused lasso penalty as the term g and group lasso for the term h. [SM19a] proposed a
fused lasso penalty as g and a lasso penalty as h to jointly estimate the model. In [SM19b], they
proposed to use group lasso to extract the homogeneous part of the GC matrix from multiple
data and use this model to estimate the heterogeneous part, which is a multi-stage optimization
approach.

These methods rely on non-smooth convex penalties or lasso-type penalties. It is known
that these convex penalties have an estimation bias problem [WCLQ18]. The lasso-type penalty
is known that it shrinks variables equally in all magnitude, so the estimated variables are biased
toward zero. In general, the bias of convex penalties is fixed by using a constraint least-square to
re-fit the models with the sparsity pattern learned from regularized regression using the convex
penalty. This approach is not possible when the system of linear equation is an under-determined
system that occurred when the problem is in a high-dimensional setting. In other cases, the
non-convex penalties such as `q penalty, with 0 < q < 1, SCAD penalty are known to have a
better recovery rate than the `1 penalty. So, the replacement of the group lasso by a non-convex
group penalty is a natural extension to the jointly sparse GC estimation. The non-convex `p,q
group norm penalty

‖x‖p,q =

K∑
i=1

‖xi‖qp

with p ≥ 1 and 0 < q < 1, has been proposed in [HLM+17] with theoretical results that
it has a better sparsity recovery rate than the group lasso penalty. In the GGM framework,
the non-convex regularization has already been applied. The group norm penalty that is used
to regulate the sparsity of the variables across multiple groups was originally introduced as a
group bridge penalty [HMXZ09]. In [GLMZ11], they proposed an `p,q penalty with, p = 1, q =
1/2. They claimed that this penalty has a representation as hierarchical regularization that
decomposed sparsity structure into a global part and local part. In [CZZ15], they also provided
a generalization of [GLMZ11] and two more non-convex functions that also have representation
as hierarchical regularization. Recently, the estimation of a single Granger graphical model with
a non-convex penalty and `1 type loss function has been proposed in [BLH+20]; however, they
do not use a group norm penalty to exploit the relation between VAR model’s coefficients and
Granger causality.

The non-convex extension turns the simple-to-solve convex problem to a non-convex opti-
mization problem. The gradient discontinuity at zero of the terms g, h in (1) forbids the usage
of gradient-based methods since the optimal point is expected to be precisely zero. An efficient
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algorithm is required to solve the problem in a large scale setting. Back to the application,
the inference task requires the sparse estimation method to eliminate insignificant causality. A
thresholding operator should be involved in the optimization process. The threshold is used
to distinguish between a true zero estimated variable and a small non-zero valued variable.
In a large-scale setting, a first-order algorithm is preferred because second-order methods are
not feasible to use in a high-dimensional case. The available first-order methods that have a
thresholding operation in the convex cases are the proximal algorithms [PB14], such as prox-
imal gradient methods and ADMM (Alternating Direction Methods of Multipliers) algorithm
[BPC+11]. The proximal algorithms are one of the non-smooth optimization methods for solv-
ing the original problem directly without smoothing the non-smooth part. When g, h in (1) are
non-convex regularization functions, the available algorithms are limited because the formulation
property violates the sufficient condition of many existing algorithms, such as the variants of
the ADMM algorithm. The convergence analysis of a general descent method for problems that
similar to the problem (1) is presented in [ABS13]. Their analysis suggested that the algorithm
should generate a strictly decreasing sequence to sufficiently obtain a global convergence. The
proximal gradient algorithm is one of the descent algorithms which can be employed to solve
the problem (1). However, the proximal gradient algorithm requires a proximal operator of the
regularization terms in (1). When the closed-form expression of the proximal operator is avail-
able, the state-of-the-art algorithm, non-monotone proximal gradient algorithm [LL15], can be
employed to solve (1). In general, the term g(x)+

∑
i h(xi) usually does not have a closed-form

expression, but each g, h has closed-form proximal operator so the splitting algorithm, such as
the ADMM algorithm, can be employed. The challenge in the non-convex case is that the prob-
lem (1) directly violates an assumption in the convergence analysis for the ADMM algorithm.
Even though the algorithm is failing to converge globally, the convergence of ADMM in our case
can be controlled through the ADMM penalty parameter, which can be fine-tuned to obtain
convergence to a critical point.

In this proposal, we propose to use a non-convex group norm penalty proposed in [HLM+17]
as a non-convex extension to the jointly sparse estimation of Granger networks from multiple
multivariate time-series data. Our work extended the original work of [Son17] to the non-
convex joint estimation of the Granger causality framework as our main contribution. We also
provided an efficient numerical method for solving (1) in a large scale setting using state-of-
the-art nmAPG algorithm when h = 0. In the case when the terms g, h present in the models,
the convergence of the ADMM algorithm can be obtained by fine-tuning the ADMM penalty
parameter.

We provide an overview of the work plan in section 2. In section 3, we introduced the concept
of Granger causality and its relation to the VAR models. In section 4 is our methodology, which
contains the formulations we proposed based on (1). The algorithms are discussed in section 5.
The preliminary results and our future works are given at the end of this proposal, which are
section 6 and 7, respectively.
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2 Proposal overview

2.1 Objectives

Multiple multivariate time-series

Formulation C

Formulation D

Formulation S

Identical VAR coefficients with differences

Common GC network with differences

Identical sparsity pattern

multiplech
an

ne
l

Figure 1: Our formulations on different type of multiple Granger networks

1. We aim to provide three formulations presented in Figure 1 which can be used to jointly
estimate multiple Granger causality networks based on different assumptions. The formu-
lations are

(a) Formulation C: The estimated networks have an identical sparsity pattern.

(b) Formulation D: The estimated networks have some identical parts and some different
parts.

(c) Formulation S: The estimated networks have some block-identical value of VAR’s
coefficients and some different sparsity pattern.

2. We provide efficient numerical methods to solve the proposed estimation methods in a
large scale setting.

2.2 Scope of work

1. The proposed framework will be verified on intensive simulations and one real-world data
set.

2. The usefulness of the methods will be illustrated on brain network application.

2.3 Expected outcome

1. Estimation formulations of multiple Granger graphical models.

2. Computer program that has input as a set of multivariate time-series and return group
and individual Granger graphical model of the multiple time-series.
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2.4 Work plan

𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟

Joint estimation

Identical sparsity pattern GC networks

Common network pattern with differences

Identical VAR coefficients with differences

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰
&

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐧𝐧𝐬𝐬

Gaussian graphical models

Granger graphical models

Numerical methods

Formulation 𝐂𝐂

Formulation 𝐃𝐃

Formulation 𝐒𝐒Convex optimization
Non-convex optimization

Efficiency evaluation of numerical methods

Algorithm hyperparameters selection and testing

Effectiveness of formulations

Convex & non-convex penalties
𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐧𝐧𝐧𝐧𝐧𝐧-𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜
𝐂𝐂

𝐃𝐃

𝐒𝐒

𝐂𝐂

𝐃𝐃

𝐒𝐒

Brain network application

Figure 2: Thesis work plan diagram. The formulations highlighted in green in the implementation
block indicate that the efficient algorithm is available. Formulations D and S in non-convex case
do not have an efficient algorithm yet.
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3 Granger causality estimation

We consider the vector autoregressive (VAR) model

y(t) = A1y(t− 1) +A2y(t− 2) + · · ·+Apy(t− p) (2)

where y(t) = (y1(t), y2(t), . . . , yn(t)) ∈ Rn, Ar ∈ Rn×n is VAR coefficient matrix of lag r, p
is the model order.The matrix (Ar)ij directly indicates a linear gain from time-series yj to yi.
The Granger causality can be quantified by this gain.

3.1 Granger causality

Granger causality (GC) is widely used in linear time-series modeling. A Granger causality
between a pair of variables in multivariate time-series can be quantified by estimating one of
which with and without another multivariate time-series. If the estimation is better in the sense
of having a smaller residual covariance matrix, then there exists a GC connection from the
additional time-series to the estimated time-series. The strength of GC connection from jth
multivariate time-series to ith multivariate time-series is quantified by

Fij = log det
ΣR
ii

Σii
(3)

where Σii is the covariance matrix of residuals from the estimation of ith multivariate time-series
and ΣR

ii is the covariance matrix from the estimation of ith multivariate time-series without jth
multivariate time-series. In a study of causality from one-dimensional time-series to another
one-dimensional time-series, the residual covariance matrix, Σii, reduced to a variance of ith
time-series residual.

In VAR model, the necessary and sufficient condition for the absence of causal relation is

Fij = 0↔ (Ar)ij = 0, r = 1, 2, · · · , p. (4)

This condition can be used as an estimation prior knowledge for knowing which VAR coefficients
should not exist if there is no GC connection. Both (3) and (4) are characterized in the time
domain. In the spectral domain, the Granger causality is defined in the same sense. The spectral
decomposition is used to compare the average power of log ratio of reduced model and full model
[BS14] as

Fij =
1

2π

∫ 2π

0
log

|Sii(λ)|
|Sii(λ)−Hij(λ)Sj|i(λ)H∗ij(λ)|

dλ (5)

where S(λ) = H(λ)ΣH(λ)∗ is the spectral decomposition of the VAR process, Sij(λ) denotes
a (i, j) sub-block of S(λ). The spectral definition of GC is also equivalence to transfer entropy
when the evaluating variables are Gaussian random variables [BBS09]. These interpretations of
Granger causality can be applied to other types of models including the models that are more
general than the VAR model such as the state-space model[BS15]. One way to describe the
causal relations among multiple time-series is to form it as a network or as a matrix as shown in
Figure 3. The yellow entries embedded Granger causality from node j to node i. We will refer
this as a Granger network, or a GC matrix.

In this kind of causality, the statistical test is required to test whether the causality is signif-
icant. A traditional method is to perform the statistical test on each Fij [BS14] independently.
This method can be used either when the sample size is large enough to have an approximated
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Figure 3: Granger causality network as a graph(left) and as a matrix (right).

asymptotic distribution or when non-parametric methods are applicable. However, each index
in the GC matrix should not be treated as if they are independent of each other because they
may be related to each other. So, we consider a sparsity prior for estimating the GC matrix
instead of performing independent statistical testing. The causality from jth time-series to ith
time-series in VAR models is characterized by (4). This condition motivates us to use a sparse
estimation scheme that automatically induces block sparsity in VAR coefficients to have a sparse
GC matrix. In general, the sparse estimation of a model can be expressed as

minimize
x

f(x) + g(x)

where function f indicates the fitting between model output and the data. The function g is
the sparse inducing regularization term. For our model, the fitting and regularization term will
be more precisely stated in the following section.

3.2 VAR estimation

In VAR estimation, we consider the Ordinary least square (OLS) estimation. The T time
points VAR process can be rearranged as

[
y(p+ 1) y(p+ 2) . . . y(T )

]
=
[
A1 . . . Ap

]

y(p) y(p+ 1) . . . y(T − 1)

...
... . . .

...
y(2) y(3) . . . y(T − p+ 1)
y(1) y(2) . . . y(T − p)


which is in the form of Y = AH, Y ∈ Rn×(T−p), H ∈ Rnp×(T−p), Ar ∈ Rn×n where n is the
dimension of time series and T is number of data points, p is the model order. The least-squares
estimation of VAR model is

minimize
A

(1/2)‖Y −AH‖2F

The analytical solution Â can be obtained by solving the normal equation,

Â(HHT ) = AHT

The least-square solution Â generally does not produce a sparse solution. The sparse regu-
larization term can be added to the objective to induce sparsity. In our framework, the sparsity
pattern of VAR coefficients must follow (4) in order to obtain a sparse GC matrix.
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3.3 Group norm penalty

From (4), the sparsity in the GC matrix can be enforced through the sparsity in all lags of
VAR coefficients. A group norm penalty is capable of shrinking all lags of VAR coefficients to
be zero simultaneously in a regularized regression problem. If we denote x = (x1, x2, ..., xK)
and each xi is a sub-block of x. The group norm penalty is defined as

‖x‖p,q =

K∑
i=1

‖xi‖qp

The group norm penalty is a composition of two different types of norms. For example, a group
lasso penalty is a special case of group norm penalty with p = 2, q = 1. The summation of a
norm is equivalent to find an `1 norm of a vector v = (‖x1‖2, . . . , ‖xK‖2). Since `1 penalty is
known to produce a sparse result for a regularized linear regression model, the problem,

minimize
x

‖Ax− b‖22 + λ
K∑
i=1

‖xi‖2, (6)

generally produces a sparse result in v = (‖x1‖2, ..., ‖xK‖2). The sparsity in each vi infers that
xi is a zero vector from the definition of a norm. In other words, the vector x is expected to be
a block-sparse vector.

If the block size of variables is equal to B, a regularization term is compactly defined as

g(x) = λ‖Lx‖(B)
2,1 (7)

where L is a designed matrix that choose which linear function of x to be sparse. We provide
two examples of explaining the group norm penalty (7) in the following.

• If x ∈ R100, B = 5, L = I then x = (x1, ..., x20), xi ∈ R5 and ‖x‖(B)
p,q =

∑20
i=1 ‖xi‖

q
p.

• If x ∈ R100, B = 25, L = I then x = (x1, ..., x4), xi ∈ R25 and ‖x‖(25)p,q =
∑4

i=1 ‖xi‖
q
p.

If the structural sparsity of model is known, one can design a matrix L to force Lx to be sparse.
For instance, if L is a projection matrix, some part of x can be prevented to be zero. If L is a
difference matrix, the some adjacent sub-vector of estimated x will be identical to each other.
This instance, when the difference matrix is used, is called a group fused lasso [ABD13] penalty.
For example when x = (x1, x2, x3), these two cases are[

x1
x3

]
=

[
I 0 0
0 0 I

]
x := L1x (8)

and x1 − x2x1 − x3
x2 − x3

 =

I −I 0
I 0 −I
0 I −I

x := L2x (9)

The matrix L2 is a difference matrix that takes every combination of differences into account.
The reason behind the sparsity inducing of the property of `1 type penalty is because of the

feasible region of the equivalent epigraph form has sharp edges along axes. For instance, the
lasso regression problem is to solve

minimize ‖Ax− b‖22 + λ‖x‖1

10



which its equivalent epigraph form of lasso problem is

minimize ‖Ax− b‖22
subject to ‖x‖1 ≤ t

where λ is a tuning parameter related to t. The feasible region of the lasso problem is an `1
norm ball which is a diamond shape with sharp edges along axes. This is for pointing out that
not all pairs of p, q of group norm regularization problem are able to produce a sparse result. For
example, when p = q = 2, the problem becomes a Tikhonov regularized least-squares, which
does not produce a sparse result in general. The epigraph form of this problem is

minimize ‖Ax− b‖22
subject to ‖x‖2 ≤ t

This is a direct consequent from its equivalent epigraph form that its feasible region is a sphere
which does not have a sharp edge along axes.

In the non-convex penalty `q case, the feasible region in its epigraph form has sharper edges
along axes than the lasso-type penalty. Consequently, it is more likely that this penalty will
produce sparser results. Moreover, it provides superior theoretical property. In [HLM+17], they
proposed a group norm penalty

g(x) = λ‖x‖(B)
p,q = λ

K∑
i=1

‖xi‖qp (10)

They also proved that the non-convex group norm penalty is easier to satisfy the restricted
eigenvalue condition (REC), which is a condition that indicates the accuracy of a sparse esti-
mation method, than the group lasso penalty. By following their notation, we will refer to this
group norm penalty as `p,q penalty.
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4 Methodology

Sparse GC networks can be efficiently estimated with a joint estimation framework, as described
in diagram 4. The process begins by feeding K sets of multiple multivariate to the joint esti-
mation process. The joint estimation process embeds the prior information to the optimization
problem with tuning parameters as the strength of prior information. The selection of these
tuning parameters is discussed at the end of this section.

In this work, we consider three types of prior information. The first prior information that
we consider is the case when all K Granger networks have identical sparsity patterns denoted
as common GC network, as shown in the left path of diagram 4. We refer to this formulation
as formulation C. The extraction of a group-level effective brain network from multiple sets of
fMRI time-series can be one of the applications of this formulation. In general, K ground-truth
networks have two parts, the homogeneous part, and the heterogeneous part. Formulation C is
able to capture only the homogeneous part but not the heterogeneous part. We then propose
the second formulation, formulation D, to promote common & differential network, which
is shown in the central path of the diagram. This formulation adds the degree of freedom to the
models by allowing some differences in the networks. The last formulation is called formulation
S. This formulation decomposed the learned networks into two parts, but the definition of
homogeneous part is different from that of Formulation C and D. The homogeneous part of
formulation S is in the sense that the VAR coefficients have identical value. We refer the result
of formulation S as a similar & differential network

In general, a joint sparse estimation of K models can be expressed as

minimize
A

f(A) + g(A(1), A(2), . . . , A(K)) (11)

where A(i) is the parameter of the ith model and A = (A(1), A(2), · · · , A(K)) is a K-tuple of
VAR coefficient matrices, the function f is sum-square-error loss, the function g is the structured
sparse-inducing regularization term. As a goodness of fit in `2-norm sense, the function f can
be

(1/2)

K∑
k=1

‖Y (k) −A(k)H(k)‖2F . (12)

From (4), the Granger causality from time-series j to time-series i is zero if and only if the
vector Bij =

[
(A1)ij · · · (Ap)ij

]
is zero vector. The group lasso can be employed to regulate

the solution with a block sparsity in Bij . In our notation, the group lasso penalty is

g(A) = λ
∑
i 6=j

K∑
k=1

‖B(k)
ij ‖2 (13)

where we define
B

(k)
ij = [(A

(k)
1 )ij · · · (A

(k)
p )ij ] ∈ Rp.

the sparse estimation of K models has been established. When K = 1, this formulation is the
same as in Haufe’s thesis [Hau12], that is a single VAR model estimation with sparse GC matrix
as a prior knowledge. We discuss the structured regularization as prior information for each
formulation in the following section.
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Figure 4: Joint Granger graphical models estimation diagram.
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4.1 Formulations and estimations

The estimation with regularization (13) does not consider any prior information on the
relations between models such as similarity or common parts of GC networks. In convex setting,

the term ‖B(k)
ij ‖2 is a local regularization, we define this as the differential regularization since

it regulates each model differently. To add a notion of global network precisely, we propose
two penalty terms to extract all models’ common parts. The first penalty is based on the non-
convex group norm penalty, which regulates the sparsity pattern of GC matrices to be identical.
The second penalty is based on the regularization of block-differences of VAR parameters. The
second penalty forces the VAR coefficients to have identical values, making the similarity across
all GC matrices.

4.1.1 Common estimation of GC networks (Formulation C)

Figure 5: Example of four common Granger networks. (Upper) the sparsity pattern of networks.
(Lower) the example of VAR coefficients in each network.

The common sparsity structure can be achieved by regulating a group of variables B
(k)
ij , k =

1, 2, . . . ,K with a group sparse penalty.
We define

Cij =
[
B

(1)
ij B

(2)
ij · · · B

(K)
ij

]
. (14)

As a result from (4), if Cij = 0, then all K models have no GC connection from variable j to
variable i. This suggests us to promote a common sparsity among all K GC matrices by using
the regularization term as

g(A) = λ
∑
i 6=j
‖Cij‖2. (15)

Relation to prior work. This group lasso formulation is an existing estimation method found
in [SM19b, GKMM15]. As described in section 3.3, the accuracy of parameter selection depends
on the statistical property of group lasso regression. The group lasso can be replaced by a group
norm penalty proposed in [HLM+17]. The non-convex formulation of this can be expressed as

g(A) = λ
∑
i 6=j
‖Cij‖qp. (16)
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This formulation allows us to determine the Granger network representation among multiple
models. The non-zero pattern and sample of VAR coefficients among four Granger graphical
models are shown in Figure 5. In the upper part of Figure 5, the nonzero entry (i, j) in GC
matrix refers to a Granger connection from variable j to variable i. In the lower part of the
figure, the intensity of each grid indicates GC strength between variables and directly relates to
the magnitude of VAR coefficients.

Although the Granger networks are forced to have an identical pattern, it adds flexibility
by allowing each VAR model to have a different value of coefficients. The tuning parameter λ
directly controls the sparsity of the GC matrix. In group lasso problem, the minimum tuning
parameter that the optimal solution is zero or

λc = inf
λ
{λ | Â = 0} (17)

where Â is obtained from solving (11) with g in (15). The formula is derived in [Son17]. We
denote this value of tuning parameter as λc. In the non-convex penalty case, it is known that it
should produce a sparser result than the group lasso. With λ = λc, the non-convex regularized
regression by using penalty in (16) should return the all-zero solution.

4.1.2 Common and differential estimation of GC networks (Formulation D)
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• • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • 

• • • • • • • • • • • • • 
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■ 
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Figure 6: Example of 4 common Granger networks (black dots) with differential pattern (red
dots). (Upper) the sparsity pattern of networks. (Lower) the example of VAR coefficients in
each network.

The penalty terms (15),(16) rely on an assumption that all multiple time-series have identical
Granger network. This assumption may not hold with the presence of heterogeneity of multiple
time-series which can be occurred when the data were collected in different scenarios. By adding
heterogeneity to the formulation (15), we yield

g(A) = λ1
∑
i 6=j

K∑
k=1

‖B(k)
ij ‖2 + λ2

∑
i 6=j
‖Cij‖2 (18)

and the non-convex extension is

g(A) = λ1
∑
i 6=j

K∑
k=1

‖B(k)
ij ‖

q
p + λ2

∑
i 6=j
‖Cij‖qp (19)
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This formulation adds more flexibility to the joint estimation by allowing differences in the
Granger networks from the first term in (19). The decomposition property of this formulation
is visualized in Figure 6. The common part of GC networks in both (15), (18). The sparsity of
heterogeneous part and homogeneous part are controlled by varying λ1 and λ2 respectively. It
is worth noting that each group norm penalty term in (18), (19) has different block size. The
range of tuning parameter λ1 and λ2 are also different. We heuristically follow [Son17] to use
range of each tuning parameter the same as (15) or set λc for λ1 when fixing λ2 = 0 and vice
versa.

Relation to prior works. In this formulation, we extend the original work of [Son17] by
replacing the group lasso penalty to the non-convex group norm penalty. The joint estimation
formulation that has the same purpose as this formulation is also presented in [SM19b]. They
proposed a two-stage method to estimate the common part and differential part. In the first
stage, they employed group lasso regression as same as our formulation C to extract the common
part of the GC network. In the second stage, they used estimation residuals from the first stage
to estimate the differential part of the Granger network. The two-stage approach for estimation
may be optimal in each stage, but may not for both.

4.1.3 Similar and differential estimation of GC networks (Formulation S)

Figure 7: Example of 4 common Granger networks (black dots) with differential pattern (red
dots). (Upper) the sparsity pattern of networks. (Lower) the example of VAR coefficients in
each network.

In this formulation, we assume that their ground-truth network shared identical value of VAR
coefficients and possessed some different part in the network. We propose to extend [Son17]
in two different points of view. First, we forced similarity across all models, and replacing the
group fused lasso penalty by the non-convex group norm penalty composited with difference
matrix. Our extension to the formulation [Son17] is to consider all possible differences of model
coefficients. [Son17] proposed a formulation

g(A) = λ1
∑
i 6=j

K∑
k=1

‖B(k)
ij ‖2 + λ2

K−1∑
k

∑
i 6=j
‖B(k)

ij −B
(k+1)
ij ‖2.

where only the adjacent model are encouraged to be similar. As an extension to this formulation,
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we proposed

g(A) = λ1
∑
i 6=j

K∑
k=1

‖B(k)
ij ‖2 + λ2

∑
k<`

∑
i 6=j
‖B(k)

ij −B
(`)
ij ‖2. (20)

which takes difference of all combination into account. As a non-convex extension, we propose

g(A) = λ1
∑
i 6=j

K∑
k=1

‖B(k)
ij ‖

q
p + λ2

∑
k<`

∑
i 6=j
‖B(k)

ij −B
(`)
ij ‖

q
p. (21)

This formulation promotes both differential sparsity and VAR coefficients similarity in all models.
We refer the model learned from this formulation as similar model. It is worth noting that the
difference between formulation S and formulation D is in the second term where formulation D
permit VAR coefficients to have different value while formulation S force them to be identical.
The Figure 7 shows the patterns of four Granger graphical model that the VAR coefficients are
identical in the common part.

Relation to prior works. The common parts of multiple GC networks can also be described
by the similarity of the GC strength. In [Son17], the author proposed to use group fused lasso to
regulate the difference between adjacent models. The regularization technique used in [Son17]
is limited to the case when similar models are consecutive to each other. This convex regularized
VAR model sparse estimation has been proposed in [SM19a], [WBC18]. Recently in [TB20],
they proposed joint estimation formulation based on Laplacian regularization. This model has
the same interpretation as this formulation. The differences are the type of models and the
choice of regulating function. They used Tikhonov regularized the differences between GGM
models, which is a smooth regularizer while we used the sparse inducing regularizer.

From all proposed formulation, the vector Cij is an n(n−1)pK-dimensional vector rearranged
from the VAR coefficients across all lags and all K models. This arrangement complicates the
implementation of the algorithm because of the regularized block (14) contains coefficients of
all K models. So instead of solving the objective with the coefficients in the fitting term have
a different arrangement from the regularization term, we vectorized the fitting term such that
its coefficient arrangement matches that of the regularization term.

4.1.4 Vectorized model estimation

In this section, we provide our three main formulations in a vectorized format as regularized
linear least-square problems so that formulation properties can be discussed and compared with
existing works.

In the original problem, we aim to investigate both common and differential GC connections
among K sets of multivariate time-series {y(1)(t), y(2)(t), . . . , y(K)(t)}Tt=1 where y(i)(t) is an
n-dimensional time-series of ith set for t = 1, 2, . . . , T . These time-series are fitted to pth order
VAR. The vectorized VAR coefficients is the same as Cij in (15). So the vectorized format of
formulation (16), (19) and (21), can be expressed as

minimize
x

f(x) + g(x) (22)

where x = [C11, C12, · · · Cn,n−1, Cn,n] ∈ Rn2pK and f(x) is the vectorized loss function
given by

f(x) = (1/2)‖Gx− b‖22 (23)

where G is the matrix size nTK × n2pK. The regularization terms are

17



• Vectorized formulation (15), (16)

g(x) = λ‖Px‖(pK)
p,q (24)

• Vectorized formulation (18), (19)

g(x) = λ1‖Px‖(p)p,q + λ2‖Px‖(pK)
p,q (25)

• Vectorized formulation (20), (21)

g(x) = λ1‖Px‖(p)p,q + λ2‖Dx‖(p)p,q (26)

where P is a projection matrix and D is a difference matrix. These notions enable us to
insert prior knowledge on which links of GC or their differences are taken into account. If so,
the parameters involved in those GC links or their differences will be included in the mapped
coordinate to be regularized. In the case different from ours, the matrix P,D, G can be any
matrix; however, it is worth noting that the convergence and efficiency of numerical methods to
solve these problems depends on the structure of matrix G,P,D.

In our setting, the matrix G is a tall matrix if T > np and GTG has a block-diagonal
structure. The matrix P has full row rank. The matrix D is a tall matrix, so it cannot be
full row rank. The properties of these matrices will affect the algorithm. We discuss this in
the algorithm section. The detailed explanation of projection matrix and difference matrix are
given in the Appendix A. In each of our formulation, the density of heterogeneous part and
homogeneous part in the Granger network can be controlled by varying λ1 and λ2, respectively.
The formulation is a special case of formulation D when λ1 = 0. The estimated VAR models in
each varying pair of λ1, λ2, are stored and prepared for the network density selection process.

4.2 GC network density selection

The performance of any regularized regression depends on the selection of tuning parameters
methods or the model selection. The tuning parameters that affect model complexity are λ1, λ2,
and VAR order p. The first two parameters control sparsity directly, but the tuning parameter p
controls only the number of model parameters. In our work, we assume that p can be fixed, so we
consider only sparsity level selection. The model selection criteria must be introduced to select
the best pair of λ1, λ2 for an optimal sparsity level. Due to the bias-variance decomposition
principle, the trade-off between complexity and model quality is inevitable. The regularization
level that yields an optimal trade-off between the fitting and complexity will be selected. To
select the model selection criteria, we split the types of selection into two types, the one that
relies on the trade-off between fitting and model complexity and relies on the sub-sampling
technique.

For the first type, we consider AIC (Akaike Information Criteria), BIC (Bayesian Information
Criteria) which are defined as

AIC(λ1, λ2) = −2L(λ1, λ2) + 2df(λ1, λ2) (27)

BIC(λ1, λ2) = −2L(λ1, λ2) + df(λ1, λ2) log(T ) (28)

where L is the log-likelihood of the model, T is number of time points and df is the measure of
complexity of the models or the degree of freedom. However, the asymptotic properties of these
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criteria depend on the choices of the degree of freedom [HTF01]. We heuristically selected the
degree of freedom as the number of all nonzero parameters which is the same as lasso regression.
In [Lüt05], the log-likelihood function of VAR is stated as

L = −(nT/2) log 2π − (T/2) log det Σ̂− (1/2)tr[(Y − ÂH)Σ−1(Y − ÂH)T ] (29)

where Σ̂ = 1
T−pEE

T with E = Y − ÂH, Â is a sparsity constrained least-square which the

sparsity is learned from the estimation process. By plugging Σ̂ into (29), we obtain

L = −(nT/2) log 2π − (T/2) log det Σ̂− (n/2)(T − p). (30)

we select (λ1, λ2) as,

(λ̂1, λ̂2)AIC = argmin
λ1,λ2

AIC(λ1, λ2)

(λ̂1, λ̂2)BIC = argmin
λ1,λ2

BIC(λ1, λ2)

For the second type of the model selection criteria, we consider the K-fold cross-validation
(CV). As illustrated in Figure 8, K-fold CV splits the data into K chunks. One chunk is selected

1 2 3

⋮ ⋮

4 ⋯ K

Figure 8: Visualization of K-fold cross-validation method.

as a validation data set and the remaining data are the training set. The training data is used to
estimate the model and evaluate error on the validation set. This process is repeated K times
to average error on validation set as described in figure 8. In the ith iteration of CV, the sum
squared error (SSE) of model with (λ1, λ2) is given by SSE(λ1, λ2, i) = ‖(yvalidate − ŷtrain)i‖22.
This method selects the model such that,

(λ̂1, λ̂2)CV = argmin
λ1,λ2

(1/K)
K∑
i=1

SSE(λ1, λ2, i)

or, in other words, the model that yields the lowest averaged validation error will be selected.
In our settings, the sparse solutions are expected but the goal of cross-validation is to minimize
the sum-squared-error in the validation set, so this method was shown to typically provide dense
solution. This method simply over-selects the variables in the model.

In a good variable selection method, the insignificant variables should be crossed out in
the process, both estimation and model selection. The stability selection [MB10] extends this
paradigm by introducing the stability of estimated variables. A stable variable is a variable that
rarely estimated as zero by a sparse estimation method when the data changed. The stability
selection changes the data by sub-sampling the data and estimate the model for a given amount
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of regularization. In a sparse linear regression context, the sub-samples are drawn by half of the
sample size. Each sub-sample is used as data of the sparse estimation and repeats the process
with the replacement of drawn data multiple times. A threshold of occurrence times to regard
a variable as a stable predictor is another tuning parameter to be manually selected. Unlike
BIC or AIC, this method is not a direct way for regularization level selection. The stability
selection is rather an ensemble method that is used to select stable variables over a given range
of regularization. In our case, the information-theoretic criterion is more useful in our case
than the stability selection method because of two reasons. First, the stability selection requires
sub-sampling of data, which is not practical for high dimensional model estimation. Second,
the sequence of time-series data is strongly correlated with the past of itself. This indicates
that the time-series cannot be randomly sub-sampled, so the time-series must be sub-sampled
in a block-wise manner, and the number of blocks must be high enough for an accurate, stable
solution selected by this method.

The computation expenses for each selection technique can be estimated. The penalties
(λ1, λ2) are varied in 2D grid sized L×L. In AIC and BIC, the value of criteria can be directly
assigned to each model. As a result, there are L2 models to be estimated in both AIC and BIC.
In K-fold CV, each model has to be estimated K times, resulting in the KL2 models to be
determined. Similar to the K-fold CV, each model has to be estimated I times, resulting in the
IL2 models to be determined. For these reasons, the computational complexity of both AIC,
BIC is much lower than the sub-sampling methods. Since we seek for simpler models, the BIC
score is preferred over AIC because it tends to choose a sparser model.

At this point, the problem statements and model selection techniques were concisely stated.
However, the formulations (15), (18), (20) are non-smooth convex optimization problems and
(16), (19), (21) are non-smooth non-convex optimization problems. The non-smoothness brings
us difficulties in the sense that the gradient method is not available, and the non-convex opti-
mization is more difficult to compute than the convex optimization, and the available solvers
are limited. In the next section, we discuss suitable algorithms to solve these formulations in a
large scale setting.

20



5 Algorithms

In all of our formulations, the optimization can be expressed, as stated in (22). For explicit
description, we state the problem again as

minimize
x

f(x) + g(x)

where f is a sum-squared error loss function which is convex and has a Lipschitz continuous
gradient. The term g depends on formulation parameters p, q. If p = 2 and q = 1 then g is
convex and not differentiable at zero as its gradient is not defined. In our non-convex formulation,
the term g is non-convex and not differentiable at zero. The gradient-based algorithm cannot
be applied since the solution of the formulation is encouraged to be concentrated at zero, where
the gradient is not defined. The problem (22) and its properties can be arranged into a format
to which existing proximal algorithms can be applied. In the subsequent section, we summarized
some background on proximal algorithms from [PB14].

5.1 Proximal operator

The definition of proximal operator is

proxλh(v) = argmin
x

h(x) +
1

2λ
‖x− v‖2 (31)

where h is convex function, x, v ∈ Rn, λ > 0. It can directly seen that if f is separable in x,
or h(x) =

∑
i ri(xi) and xi is a sub-block of x, then its proximal operator is separable in each

xi [PB14]. This property allows the parallel processing of proximal operator evaluation. For
example, the proximal operator of h is

proxλh(v) = argmin
x

K∑
i=1

ri(xi) + (1/2λ)‖x− v‖22

proxλri(v) = argmin
x

ri(xi) + (1/2λ)‖xi − vi‖22

proxλh(v) = (proxλr1(v1),proxλr2(v2), · · · ,proxλrK (vK))

In our formulations, the group norm penalties are also separable.

5.2 Proximal algorithms

The proximal algorithms are based on proximal operator. The proximal operator can be
interpreted in many ways. The most natural way to us is the interpretation as gradient flow
system. Consider the system

ẋ(t) = −∇f(x(t)) (32)

where the stationary point of the system is the local optima of f . The discretization methods
of this system can be made as

xk+1 − xk
λ

= −∇f(xk) (33)

xk+1 − xk
λ

= −∇f(xk+1) (34)

21



where (33) represents a Forward-Euler discretization and (34) represents a Backward-Euler dis-
cretization. The Forward-Euler one can be rearranged into the well-known gradient descent
algorithm. The equation (34) can be replaced using the definition of (31) as

xk+1 = proxλf (xk)

which is called the proximal point algorithm. For a typical gradient method, a closed-form
gradient must be accessible and easy to evaluate. If not, the gradient must be estimated.
The inexactness of gradient estimation will affect the convergence of algorithm. Similarly,
to gain a benefit of proximal algorithms, the proximal operator should be in a closed-form
expression. However, many problems, such as lasso problem, its proximal operator has a closed-
form expression for each term but not for both. This problem indicated the proximal point
algorithm is not able to solve this problem efficiently. In the sparse estimation problem, the
optimization problem is in the format of

minimize
x

f(x) + g(x) (35)

where the gradient of f is Lipschitz continuous and the gradient of g is undefined at x = 0.
When dealing with a gradient discontinuity for a convex function, the notion of subgradients
must be introduced. For a convex g, any vector s that satisfied the inequality,

g(x) ≥ g(z) + sT (x− z),

is called a subgradient of g at x = z denoted as ∂g(z). By considering the system(32) and
using notion of subgradient, the new subgradient flow system is

ẋ(t) = −∇f(x(t))− ∂g(x(t)) (36)

The terms related to xk can be rearranged on the same side of the discretization as in (33) and
the terms related to xk+1 can also be arranged on the other side of the discretization as in (34).
By combining forward and backward discretization, we achieve

xk+1 + λ∂g(xk+1) = xk − λ∇f(xk) (37)

With notion of proximal operator, the equation (37) reduces to

xk+1 = proxλg(xk − λ∇f(xk)) (38)

This algorithm also known as proximal gradient method or forward-backward algorithm as its
discretization interpretation.

In some kind of problems, a proximal operator of a non-smooth function is easy to evaluate
but not when its argument is a composition with a linear transformation L. For example,

minimize
x

f(x) + g(Lx). (39)

This problem can be transformed into constrained format which can be solved by the well-known
ADMM (Alternating Direction Method of Multipliers) algorithm. We will refer this algorithm
as vanilla ADMM [BPC+11]. ADMM was originally used to solve convex problems that in the
format of

minimize f(x) + g(z)
subject to Ax+Bz = c

(40)
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This algorithm is a variant of augmented Lagrangian methods and its augmented Lagrangian is

L(x, z, λ, ρ) = f(x) + g(z) + yT r + (ρ/2)‖r‖22 (41)

where x, z are both primal variables but z can be referred as the splitting variable, and r =
Ax+Bz− c is a primal residuals. The variable y is the dual variable. The algorithm parameter
ρ is a penalty parameter which plays important role in convergence speed of convex problem
and convergence in our non-convex formulation . The vanilla ADMM [BPC+11] simply updates
primal variable x and z that minimize the augmented Lagrangian (41) in the alternating scheme
and then update the dual variable y. The algorithm updates are as follow.

Algorithm 1: Vanilla ADMM [BPC+11]

initialization: x, z, ρ > 0.;
while ‖r‖2 ≥ εpri and ‖s‖2 ≥ εdual do

x+ = argminx f(x) + ρ
2‖Ax+Bz − c+ y

ρ‖
2
2, ;

z+ = argminz g(z) + ρ
2‖Ax

+ +Bz − c+ y
ρ‖

2
2, ;

y+ = y + ρ(Ax+ +Bz+ − c),

The primal and dual residuals are ‖r+‖2 = ‖Ax+ + Bz+ − c‖2, ‖s+‖2 = ρ‖ATB(z+ −
zk)‖2 respectively. The optimality condition can be checked through the convergence of these
measures. We used εpri, εdual as computed in [BPC+11]. When employing vanilla ADMM to
solve joint estimation, the problem with penalty g in (25) can be converted to ADMM format
as

minimize ‖Gx− b‖22 + g(z)
subject to Ax+Bz = c

with problem parameters

A =

[
P
P

]
, B = −I, c = 0 (42)

and the problem with penalty g in (26), the algorithm parameters A,B, c in (42) changed to

A =

[
P
D

]
, B = −I, c = 0 (43)

These settings allow exploitation in the ADMM update steps. With the sum-squared loss term
‖Gx− b‖22, the x update step reduces to solving a system of linear equation instead. Moreover,
when B = −I, the form in z-update step is the same as the proximal operator of g/ρ evaluated
at Ax+ + y/ρ. Both steps in vanilla ADMM reduce to the form,

x+ = {x | (ρATA+GTG)x = GT b+ ρAT (y − z)}
z+ = prox(g/ρ)(Ax

+ + y/ρ).

If the proximal operator has a closed-form expression, the significant computational cost only
depends on solving linear equation. The linear equation in the new x update step has block-
diagonal structure which can be exploited further to reduce the computational cost. However, the
vanilla ADMM only has theoretical global convergence for our convex problems. The important
question is Do these algorithms globally converge in the non-convex setting as well? In the
following part, we discuss about how we employ ADMM algorithm to solve the joint estimation
with convex penalties first and then discuss the algorithm that are available to solve our problems
with non-convex penalties in the last part.

23



5.3 Choices of algorithms

The main problem (22) and with different choices of penalties (24), (25), (26) can be represented
in a general form as

minimize
x

f(x) + λ1h1(L1x) + λ2h2(L2x) (44)

This is not readily in the same format as vanilla ADMM except when regularization term is (24).
The regularization term in (44) is compactly defined as

g(x) = λ1hm(x) + λ2hn(x) (45)

where hm(x) = ‖x‖(m)
p,q =

∑K
i=1 ‖xi‖

q
p which is a group norm penalty with parameter

(p, q,m) with x = (x1, x2, . . . , xK) ∈ RmK , xi ∈ Rm. The superscript m is used to point out
that the vector x can be partitioned with a certain block size, which is m in this case, and the
norm is evaluated on the sub-block of that size.

To convert the general form (44) to ADMM format, we split the variable as z = (z1, z2) =
Lx = (L1x, L2x). so by using the property of proximal operator (5.1), the proximal operator of
function (45) will be

proxλg(v) =

[
proxλ1hm(v1)
proxλ1hn(v2)

]
with v = (v1, v2). This expression in each formulation has a different form. For p = 2, q = 1,
the ith block of its proximal operator when the block size is m is

(proxλhm(v))i = max{0, 1− λ

‖vi‖2
}

The proximal operators are not always in closed-form for all of the pairs (p, q) with q < 1.
For example, the single variable optimization problem

minimize
x

λ|x|0.1 + (ax− b)2

when x > 0, the critical point can be obtained from solving the zero gradient condition,

(1/10)λ+ 2a2y19 − 2aby9 = 0

for y, with y = x1/10. This problem is impossible to solve analytically as a direct consequent
from Abel’s theorem [DF03], which stated that there is no closed-form expression of the roots of
fifth-degree polynomials or higher. In [HLM+17], they derived closed-form of proximal operators
of group norm penalty for some pairs of (p, q).

We selected the value of p = 2, q = 1/2 due to the fact that its proximal operator has a
closed-form expression and the experimental result in [HLM+17] yielded that q = 1/2 is the best
among all 0 ≤ q ≤ 1. For this pair of p, q, the closed-form expression of ith block of proximal
operator when block size is m is

(proxλhm(v))i =


(

16‖vi‖
3/2
2 cos3(R(vi))

3
√
3λ+16‖vi‖

3/2
2 cos3(R(vi))

)
vi, if ‖vi‖2 > (3/2)λ2/3

0, if ‖vi‖2 ≤ (3/2)λ2/3
(46)

where R(x) = π/3− arccos(λ4 ( 3
‖x‖2 )3/2).

In this thesis, the formulations are based on non-convex penalties; however, the convergence
of our convex cases still need to be clarified. We split the content of this section into two parts.
The detail of solving convex formulation and their convergence property is given in the first part.
The second part contains the literature review on non-convex and non-smooth optimization in
the sparse regression problems.
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5.3.1 Convex penalty

In our convex cases, the theoretical convergence of ADMM algorithm is global which follows
from the convergence analysis of [BPC+11]. The problem (44) is in ADMM format when

A =

[
L1

L2

]
, B = −I, the ADMM algorithm for solving (24)-(26) can be explicitly described as

the following,

Algorithm 2: SparseGrangerNet

initialization: x, z = (z1, z2), y = (y1, y2), ρ > 0.;
while ‖r‖2 ≥ εpri and ‖s‖2 ≥ εdual do

x+ =
(
ρ(LT1 L1 + LT2 L2) +GTG)−1(GT b+ ρ

[
LT1 LT2

]
(y − z)

)
;

z+1 = prox(λ1hn1/ρ)
(L1x

+ + y1/ρ) ;

z+2 = prox(λ2hn2/ρ)
(L2x

+ + y2/ρ) ;

y+1 = y1 + ρ(L1x
+ − z+1 );

y+2 = y2 + ρ(L2x
+ − z+2 )

where (L1, L2) = (P,P) and (P,D) in the formulation (25), (26) respectively. The formu-
lation (24) is solved as in (25) with λ1 = 0. The value of (n1, n2) is (p, pK) in the formulation
(24), (25) but (p, p) in the formulation (26) where p is the number of lag and K is number of
models. This technique is not new, the SDMM algorithm is similar to our algorithm but has
been derived in the different point of view on the objective function. The algorithm (2) can be
extended to solve the problems in the form of

minimize
x

f0(x) + f1(L1x) + · · ·+ fm(Lmx)

which the primal, non-splitting variable x presented in the cost function explicitly. The SDMM
algorithm [CP11] is used to solve problems in the form of

minimize
x

f1(L1x) + f2(L2x) + · · ·+ fm(Lmx)

which only primal, splitting variables (zi = Lix) are in the cost function. One can understand
that solving linear equation in x-update step is inevitable. In SDMM, the x-update step takes
the form of

x+ = argmin
x

ρ

2

∥∥∥∥Qx− z +
y

ρ

∥∥∥∥2
2

x+ =

{
x | QTQx = QT (z − y

ρ
)

}
where Q = (G,L1, L2, . . . , Lm) which is a row concatenation of these matrices. This confirmed
the necessity of solving system of linear equations for both SDMM and ours in the x update
step. However, the way SDMM algorithm plug the loss function into the update of splitting
variables causes the additional step of solving system of linear equations due to the sum-squared
loss term. The variable z1 update step in SDMM, that applied to our problem with L1 = G,
take the form of,

z+1 = argmin
z1

‖z1 − b‖22 + (ρ/2)‖Gx+ − z1 + (y1/ρ)‖22.

This extra step involved the solution of the system of linear equations. With this reason,
computational complexity of SparseGrangerNet is computationally cheaper than SDMM.
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5.3.2 Non-convex penalty

As a remark, the general form of our formulations (24),(25) ,(26) is

minimize
x

f(x) + λ1hm(L1x) + λ2hn(L2x) := f(x) + g(x) (47)

where f(x) is a smooth loss function, hm, hn are the group norm penalty with block size m,n
respectively. When employing this formulation to jointly estimate multiple Granger graphical
models, there are two cases of Li. The first case is when L = P or a projection operator.
This matrix is fat matrix with full row rank. The second case is when L = D or the difference
matrix. In our models, the difference matrix is a tall matrix as we intend to penalize difference
of all combination of the models. The detailed explanation of these notions are presented in the
section 4.1.4. As shown in (42), (43), these problems can be solved by ADMM algorithm.

ADMM Variants of ADMM can be applied if they have splitting property to deal with the
linear transformation. The variants of ADMM that are in our interest are the Bregman ADMM
and the multi-block ADMM. The Bregman-ADMM is proposed in [WB14] for replacing the Eu-
clidean distance in the ADMM update step with the Bregman distance. This only reduced the
computational complexity of ADMM. In multi-block ADMM, the constraint is

∑N
i=1Aixi = c.

This definition collides with the vanilla ADMM when N = 2. However, it is known that even in
the convex-case, this variant of ADMM may diverge [CHY16]. The convergence analysis of split-
ting algorithm in literature has different settings from our setting in (47) [HLR16], [OCBP14].
Even when the problem is the same as ours, most of them restricted the matrix A in (40) to
be full row rank [GHW17], [LP15], [WCX18], [ZQG16], [ST19]. The rank assumption was as-
sumed in two contexts. First, the full row rank assumption is used for bounding the augmented
Lagrangian to be a strictly decreasing sequence generated from the ADMM update step [LP15],
[WCX18], [ZQG16]. In the second context, the full row rank assumption was used to guarantee
the existence of critical points of the problem [ST19]. To be more specific in the second case,
the problem

minimize
x

f(x) + g(Ax) (48)

has the first-order optimality condition as

0 ∈ ∇f(x) +AT∂g(Ax). (49)

The optimality condition is sufficiently satisfied when the matrix A is full row rank or a surjective
mapping [ST19]. However, the full row rank may be too conservative because the −∇f(x) may
lie in the row space of A. Some literature also provided a scheme that does not assume the
surjective mapping assumption, such as in semi convex setting [MSMC15], [ZS19]. In our
setting, the weakest assumption for the theoretical global convergence of vanilla ADMM has
been proposed in [WYZ19]. They investigated the convergence of the multi-block ADMM
algorithm. One of their sufficient conditions is range(B) ⊂ range(A). As shown in (42),
(43), our matrix B is a negative identity matrix and the matrix A is a row-concatenation of
two matrices. With the concatenation, the row space of B never be a proper subset of row
space of A. Our non-convex formulations directly violate the assumption in their convergence
analysis. This restriction is used to bound the augmented Lagrangian to force it to be a strictly
decreasing sequence.
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Other proximal gradient methods In non-convex formulation (16), the linear transformation
P is a projection operator. The proximal operator of the term that composite with a projection
matrix is easy to compute, so the proximal gradient methods can be used to solve this problem ef-
ficiently by virtue of the separability property of the proximal operator. The global convergence of
the proximal gradient methods in this non-convex problem is derived under Kurdyka- Lojasiewicz
(KL) framework due to its descent property [HLM+17]. In [XCXZ12], [ZMZ+13] they proposed
to use proximal gradient to solve `1/2 (iterative half-thresholding algorithm), `q (Generalized
iterated shrinkage algorithm, GISA) norm penalization respectively. These are special cases of
[HLM+17]. Moreover, [ZMZ+13] proposed an algorithm to evaluate the proximal operator of
`q penalty. They derived the threshold bound of the proximal operator to determine whether
the variable is zero or not first. If not, they employed the Gauss-Seidel algorithm to solve a
nonlinear equation as an evaluation of the proximal operator. This is possible because of the
separation of variables in the proximal operator of `q penalty. In the convex case, the proximal
gradient methods have their accelerated version called accelerated proximal gradient method
(APG). An example of this algorithm is known as FISTA [BT09]. In convex problems, the error
bound as a function of iteration k of APG is in order of O(1/k2) while the proximal gradient
algorithm only has the iteration complexity in order of O(1/k) [TY10]. However, the APG
algorithm does not generate decreasing sequences of objective value as in the proximal gradient
algorithm. Like the ADMM case, the strictly decreasing sequence of Lagrangian in (47) is one
of sufficient condition to conclude a global convergence of iterations [ABS13]. In [LL15], they
proposed variants of APG, which denotes as monotone APG algorithm and non-monotone APG
algorithm to solve the non-monotone sequence generated by the APG. In monotone APG, they
add a monitoring step that detects the descent of the loss function on an accelerated update
step. If the step makes the loss increase, the proximal gradient step that is a descent step is
used instead. However, they stated that this algorithm is too conservative and maybe too slow.
They further extended this into non-monotone APG (nmAPG). The convergence proof in the
KL framework requires the descent property of the objective function. The global convergence
of nmAPG is achieved from forcing the decaying weighted average of the objective function
to be a strictly decreasing sequence. This adds flexibility to the iteration update. The idea
behind this is to use the monitoring step as same as mAPG. The nmAPG algorithm is shown in
Algorithm 3.

Line search for step size selection In order to have a global convergence, the step size of
nmAPG must be less than the reciprocal of Lipschitz constant of the ∇f(x). We followed
the original literature to used Barzilai-Borwein (BB) line search and backtracking to achieve a
larger step size. The idea behind BB line search is to estimate the curvature of the update
step by choosing step size α such that αI is the best estimation of Hessian. If the line search
criteria does not satisfied, the step size is scaled down with a factor of ρ. The line search rule
is described in (4), (5).

With backtracking rule (4), (5), there would be no prior knowledge on Lipschitz constant.
However, if the choice of backtracking parameter ρ is poorly chosen, the algorithm may con-
verge slowly. This can be prevented by setting up a safeguard step to select a larger step size
between one that yielded from backtracking line search and one that yielded from the reciprocal
of Lipschitz constant. Even though the variants of proximal gradient methods are proved to
converge in our non-convex formulation (16), these algorithms cannot be applied to formulation
D,S. The closed-form proximal operator of the penalty terms must be available for large scale
computation otherwise its numerical solution should be sufficiently cheap. The convergence of
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Algorithm 3: Non-monotone APG [LL15]

Input: x0, G, b

Output: x̂

Initialize: z = x = x−, t = 1, t− = 0, η ∈ [0, 1), δ > 0, q = 1,

αx ≤ 1/‖G‖2, αy ≤ 1/‖G‖2.

while ‖x+ − x‖2 ≥ ε do

y = x+ t−

t (z − x) + t−−1
t (x− x−),

z+ = proxαyg(y − αyG
T (Gy − b)), [Can be replaced with Subroutine 4]

if F (z+) ≤ c− δ‖z+ − y‖22 then
x+ = z+

else
v+ = proxαxg(x− αxG

T (Gx− b)), [Can be replaced with Subroutine 5]

x+ =

{
z+, if F (z+) ≤ F (v+),

v+, else,
,

t+ = (1/2)(
√

4t2 + 1 + 1),

q+ = ηq + 1,

c+ = (ηqc+ F (x+))(q+)−1.

where F (x) = (1/2)‖Gx− b‖22 + g(x) in (24).

Subroutine 4: Barzilai-Borwein Backtracking line search for αy [CP11]

Input: G, y, y−, ρ
Output: z+

Initialize: s = y − y−, r = GTGs, αy =
‖s‖22
sT r

, 0 < ρ < 1

while F (z+) ≥ F (y)− δ‖z+ − y‖22, and F (z+) ≥ c− δ‖z+ − y‖22, do
z+ = proxαyg(y − αyG

T (Gy − b)),
αy = ραy,

where F (x) = (1/2)‖Gx− b‖22 + g(x) with g(x) in (24).

Subroutine 5: Barzilai-Borwein Backtracking line search for αx [CP11]

Input: G, x, y−, ρ
Output: v+

Initialize: s = x− y−, r = GTGs, αx =
‖s‖22
sT r

, 0 < ρ < 1

while F (v+) ≥ c− δ‖v+ − x‖22 do
v+ = proxαxg(x− αxG

T (Gx− b)),
αx = ραx,

where F (x) = (1/2)‖Gx− b‖22 + g(x) with g(x) in (24).
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Formulation Algorithms Convergence proof

Convex
min
x

(1/2)‖Gx− b‖22 + λ‖Px‖(pK)
2,1 ADMM [BPC+11]

min
x

(1/2)‖Gx− b‖22 + λ1‖Px‖(p)2,1 + λ2‖Px‖(pK)
2,1 ADMM [BPC+11]

min
x

(1/2)‖Gx− b‖22 + λ1‖Px‖(p)2,1 + λ2‖Dx‖(p)2,1 ADMM [BPC+11]

Non-convex
min
x

(1/2)‖Gx− b‖22 + λ‖Px‖(pK)
p,q nmAPG [LL15]

min
x

(1/2)‖Gx− b‖22 + λ1‖Px‖(p)p,q + λ2‖Px‖(pK)
p,q ADMM 7

min
x

(1/2)‖Gx− b‖22 + λ1‖Px‖(p)p,q + λ2‖Dx‖(p)p,q ADMM 7

Table 1: The existing global convergence proof for each algorithm to solve each of our formu-
lations.

proximal algorithms depended on the exactness of the proximal operator. Numerical errors on
proximal operator computation or the inexact proximal operator may cause the algorithm to
diverge. In [GWHH18], [YKG+17], they proposed a way to control the inexactness of computed
proximal operator up to some tolerance degree to make the nmAPG algorithm converged. This
allows a cheaper computation of the proximal operator. This should be an alternative solution to
the ADMM algorithm in our non-convex cases. However, the numerical solution for the proximal
operator of the non-convex function may have multiple local optima and some of p, q already
have a closed-form expression of proximal operator. For this reason, the splitting technique such
as ADMM is preferred over the inexact proximal algorithms. The ADMM algorithm in a non-
convex setting is known that its main factor in the convergence issue is its penalty parameters
ρ. The penalty needed to be large enough [WYZ19],[GHW17] to make the iterations converged.
Furthermore, the optimality condition can still be efficiently checked through the primal, dual
residuals [BPC+11].

To solve the convergence issue, one obvious way to do is to restart the algorithm with a
larger ρ. However, a larger ρ may make the optimization progress slower. To see this issue, we
replace the ADMM format (40) to

minimize f(x) + g(z) + (ρ/2)‖Ax+Bz − c‖22
subject to Ax+Bz = c

which does not change the problem at all. This is the trade-off between the f(x) + g(z), the
true objective function, and the primal residuals. If ρ is too small, then the algorithm may
generate infeasible sequences, which are regarded as divergence. If ρ is too large, then the
minimization focuses heavily on minimizing the primal residuals but not on minimizing its actual
objective. This is one of the interpretations of why the convergence is slow when ρ is large.
A scheme of adaptive ρ adjustment was introduced to cope with the slow convergence issue.
The ADMM with the adaptive regime is proposed in [XFG17], which is called spectral ADMM,
but it was applied to solve the convex problems. In non-convex settings, [XDF+16] gives the
performance of spectral ADMM over the non-convex problem, and the results yielded that the
spectral ADMM also performed well in the non-convex setting.

To conclude this section, we refer to Table 1. The ADMM algorithm has a global convergence
in all convex formulations; however, it has no global convergence guaranteed in all of the non-
convex formulations. Only non-convex formulation C can be solved using nmAPG,mAPG, PG
algorithms. These algorithms have global convergence. Although the ADMM algorithm does not
have global convergence, with a proper choice of the algorithm parameter, it can be controlled
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to have a convergence in practice. For instance, the spectral ADMM may be used to solve
these formulations. At this point, the algorithms to solve formulation in the table 1 have been
established. In the next section, we implemented these algorithms to investigate the performance
of our proposed formulations in the simulated data intensively.

6 Preliminary results

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄

Efficiency evaluation of numerical methods

Algorithm hyperparameters selection and testing

Effectiveness of formulations

Experiment 1: initial point selection for nmAPG

Experiment 2: efficiency in linear regression model
Experiment 3: VAR time-series generation

Experiment 4: Common Granger network extraction
Experiment 5: Classification
Experiment 6: Effectiveness of formulation D

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 & 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏
"Learning A Common Granger Causality Network Using
A Non−Convex Regularization", ICASSP-2020

Experiment 8: Application on fMRI time-series

Experiment 7: Effectiveness of formulation S

𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈

𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐧𝐧𝐧𝐧𝐧𝐧-𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜
𝐂𝐂,𝐃𝐃, 𝐒𝐒 𝐂𝐂

𝐃𝐃, 𝐒𝐒

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟

𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋
𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫

Brain network application

𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐧𝐧𝐧𝐧𝐧𝐧-𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜
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𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀

𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧

Figure 9: Progress of work plan in this thesis. The highlighted parts denotes our unfinished
works. The formulation highlighted in green in the implementation block can be solved efficiently
in a large scale. The algorithm is stated below the formulation. The formulation highlighted in
orange is able to solve with spectral ADMM but not as efficient as other cases.

We intended to use this section to illustrate the performance of both formulation and algo-
rithm. The experiments were designed from a work plan stated in Figure 2. We illustrated the
progress of this thesis in Figure 9. The shaded area denotes the unfinished tasks. In the imple-
mentation block, the green highlight indicates that we have already implemented an efficient
algorithm stated below to solve the formulation in a large scale setting. The orange highlight
indicates that we have implemented the algorithm, which is stated below the formulations, that
make the iterates converged to a critical point but cannot be used in a large scale setting yet.

The experiments are divided into two main parts. First is due to the nature of the non-
convexity of the problem, we set experiment 1 to find a good initial guess for initializing the
non-convex optimization. After the initialization problem is concluded, we further investigate
the performance of the methods in the second part of the experiments. The experiments in this
part are experiments 3, 4, 5, 6. In a sparse GC estimation framework, the regularization must
be varied in order to evaluate the performance. As shown in Figure 10, the estimation of GC
networks in each regularization level can be interpreted as a binary classification, whether each
GC connection exists or not. So, there will be two types of classification errors, the false positives
and false negatives, and two types of correct classification, true positives, and true negatives.
The positive results denote the existence of GC connection. The negative results denote the
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Figure 10: The ROC curve in sparse GC estimation.

absence of GC connection. These accuracy measures at one instance of regularization can be
used to compute false positive rate (FPR) and true positive rate (TPR) as

• FPR = FP
FP+TN

• TPR = TP
TP+FN

By varying the regularization, the yielded pairs of FPR,TPR form a curve called receiver oper-
ating characteristic (ROC) curve, as shown in the right-hand-side part of Figure 10. This curve
is a tool to illustrate the performance of a method when the sensitivity of a method is varied.
The densest GC network will have a 100% true positive rate but also 100% false positive rate,
which will be at the upper-right corner of the ROC curve. The sparsest GC network yielded
from (17) will have a 0% false positive rate but also 0% true positive rate, which will be at the
lower-left corner of the ROC curve. The area under the ROC curve (AUC) can be used as a
performance criterion. To see the estimation bias, we also consider the relative parameter bias,

• relative parameter bias = ‖x̂−xtrue‖2
‖xtrue‖2

In conclusion, the criteria we choose are FPR, TPR, AUC, and relative parameter bias.
As we stated in the algorithm section, the vanilla ADMM algorithm has a convergence

issue when solving formulation D. However, we were able to fine-tune the penalty parameter to
have convergence. This allowed us to see the performance of the formulations but for limited
samples. This problem will be discussed again at the end of this proposal as our future work.
For completeness of this section, the experiments we performed are

1. Experiment 1: Initial point selection for nmAPG algorithm.

2. Experiment 2: Non-convex group norm regularization performance in linear regression
model.
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3. Experiment 3: VAR time-series with pre-specified GC patterns generation

4. Experiment 4: Common Granger network extraction

5. Experiment 5: Supervised-classification using learned common Granger network

6. Experiment 6: Effectiveness of differential prior

In each experiment, the importance of the experiment is discussed in the beginning.

6.1 Experiment: Initial point selection for nmAPG algorithm.

Objective The non-convex problems are known to have multiple local-minima and heavily
affected by the choices of initialization. In these experiments, we aim to select an initial point for
solving the non-convex optimization problem (16) when applied to the simple linear regression
problem. One of the heuristic approaches was initializing the non-convex problem with the
solution of group lasso regression, but we aim to find if there are other easier choices than
solving an optimization problem.

Setting In this experiment, we investigated the initialization in non-convex formulation (16)
in a simple linear regression model. The ground-truth model is defined as

b = Gx̃+ ε

where b ∈ R200, x̃ ∈ R1000 with SNR of 20dB. We also assumed that x̃ has structural sparsity,
each group of size 10 and there are 10 non-zero groups out of 100 groups.

We considered 7 initialization in comparison which are,

• xzero = 0, (zero initialization)

• xridge = (GTG+ 0.1I1000)
−1GT b, (ridge solution initialization, λ = 0.1)

• xminnorm = G(GGT )−1b, (minimum-norm solution initialization)

• xrand ∼ N (0, I1000), (Gaussian iid. randomized zero mean initialization)

• xrand+ridge ∼ N (xridge, I1000), (Gaussian iid. randomized with ridge as mean vector
initialization)

• xconvex = {x|argmin
x

1
2‖Gx− b‖

2
2 + λ‖x‖(10)2,1 }, (convex)

• xGroundtruth = x̃, (Ground-truth initialization)

We noted that the ground-truth initialization cannot be achieved in practice, we used this as
a benchmark to compare with other initialization as the ground-truth initialization should give
the best performance.
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Initialization Loss Parameters bias
zero 5.2445 0.5208

ridge 5.2442 0.5208

min-norm 5.2445 0.5208

rand 5.7040 0.7892

ridge+rand 5.7069 0.7931

convex 5.2183 0.4764

Ground truth 5.2115 0.4118

Table 2: Average value of loss and relative parameter bias in each initialization over 1000
realization.

Results The performance of each initialization can be directly measured by the value of the
loss function in (16). Moreover, we investigated the relative model’s parameters bias between
the learned patterns to confirm whether the lower loss should imply lower error between the
ground truth model’s parameters and the estimated parameters. To conclude, we selected the
performance indicators as

1. Loss function, (1/2)‖Gx̂− b‖22 + λ‖x̂‖(10)2,1/2

2. Relative parameter bias, ‖x̂−xtrue‖2‖xtrue‖2 .

The initialization that gives the lowest parameter bias will be used in the performance comparison
experiments. The result is reported in Table 2. In the table, the ground truth initialization gave
the best performance on both loss and relative bias, which support what we hypothesized. The
second-best performance is the convex initialization. The results suggested us to select the
convex initialization due to ground truth initialization is impractical. As we can see that the
initialization from the convex solution gives the second rank of performance, both loss and
parameter bias. In the rest experiments, we initialized the algorithm to solve the non-convex
formulation with the solution of their convex formulation counterpart.

6.2 Experiment: Non-convex group norm regularization performance in linear
regression model

Objective In this experiment, we explored the performance of the non-convex group norm
penalty or the `p,q group-norm penalty against the group lasso or the `2,1 group-norm penalty.
The objective is to find out whether the non-convex regularizer outperformed the group lasso
and further compare it with the non-group case, which is lasso and `q penalty. We expected that
the structural prior of both group lasso and `p,q group norm penalty to outperform its non-group
counterpart.

Setting We generated a model in the same way with the previous experiment or the initializa-
tion selection experiment with SNR = 20dB. We varied the regularization parameter in (24) to
yield the densest model to the sparsest model. The sparsest model is yielded from the minimum
regularization that gives all zero solutions in the group lasso case. The non-convex formulation
also varied in the same range because the non-convex formulation tends to be sparser. So that,
the regularization bound of the convex case is also a sufficient condition in the non-convex case.
The range in `1, `q is set in the same sense. We repeated this experiment 10 times. The area
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under the ROC curve is the indication we selected to measure the performance between these
two regression methods.
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Figure 11: ROC curve of linear regression using `1/2, `2,1/2 regression, lasso and group lasso.
nmAPG was initialized by solution of (left) `2,1 regression, (right) ground truth parameters.

Results The result in the figure 11 suggested that the regularized regression with `2,1/2 out-
performed `2,1, which agreed with the previous result in the literature. Moreover, both group
and non-group non-convex penalties have significant improvement when using the ground-truth
model as an initialization as shown in the right plot of Figure 11. This result indicated that
there would be a room for improvement for initial point selection. The effectiveness of group
penalties are evidently shown in the left plot of Figure 11. Even `q was outperformed by the
group lasso. So, if the good initialization cannot be found, the penalty with a grouping structure
should be considered first.

6.3 Experiment: VAR time-series with pre-specified GC patterns generation

Objectives In this experiment, we aim to generate multiple VAR models with pre-specified
GC patterns in both common parts and differential parts. The generated models will be used
to generate time-series for other experiments.

Setting To generate a stable VAR model with dimension (n, p,K) where n is the time-series
dimension, p is lag number, K is the number of models, we first define the stability of VAR
processes. In single VAR model of order p, The generated VAR processes is stable if and only if
the matrix, 

A1 A2 · · · Ap−1 Ap
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

 ,
has eigenvalue inside unit circle. We exploited the special case when each Ar is a diagonal
matrix, so that the characteristic equation of this matrix is

n∏
i=1

(zp(A1)(i,i) + zp−1(A2)(i,i) + · · ·+ (Ap)(i,i)) = 0

34



We randomized the diagonal matrix Ar such that the roots of this characteristic equation stay
inside unit circle to guarantee stability of VAR processes. We repeated this K times to yield
K VAR models. We refer this as the diagonal VAR model. However, we also assume that the
K VAR models have three types of relation to mimic our assumption on the formulation. The
assumptions are

1. Common type ground truth: All K models have Identical pattern of GC network. The
value of coefficients can be different,

2. Differential type ground truth: All K models partially share pattern of GC network but
each model also has its own different pattern. The density of shared pattern is referred as
common density and the density of different pattern is referred as differential density,

3. Similar type ground truth: this assumption is the same as the differential ground truth
but the shared pattern also have the same VAR coefficients.

After we yielded the diagonal VAR models, we randomized off-diagonal coefficients of K to have
GC networks pattern as described which are based on the condition (4).

In our settings, the models parameters are

• n = 15, p = 2,K = 4,

• common density = 0.1, 0.2,

• differential density = 0.01, 0.05,

• spectral radius ∼ U(−0.7, 0.7)

The time-series generation is simple. We generated multivariate time-series of the generated
model for 4500 time points with iid. unit variance Gaussian noise.

Result In this experiment, we discuss how we randomly generated stable VAR processes.
However, this method is not efficient due to its stability criterion. If there exists a dense
connection in the GC pattern or the model is in high order, the stability of the model is hard to
achieve. To the best of our knowledge, the dense model cannot be easily constructed. However,
dense models are not of our interests.

6.4 Experiment: Group-level Granger network extraction

Objectives In this experiment, we investigate the performance of formulation C (16) under
the simulated time-series data with given Granger networks that decomposed into common and
differential networks. We intended to use this formulation to extract the group-level Granger
causality of a panel time-series data. In real data applications, the panel data can be time-series
of each brain region for multiple patients. The extraction of a common network can be applied
to fetch the group-level brain connectivity of patients with brain disease.

Setting We generated GC networks with a common density of 0.1 and 0.2 and the differential
density of 0.01 and 0.05 by the method described in the data generation section. We set
n = 15, p = 2,K = 4 in this experiment. To see the performance, we also varied the time-series
length, which is the sample size to be T = 50, 300, 1350. The sparsity level is varied from the
densest solution to the sparsest solution. The regularization level that gives the sparsest solution
is derived in [Son17].
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Figure 12: The ROC curve comparison between group lasso and `2,1/2 penalty. Common
density is varied as 0.1, 0.2 (upper-lower). Differential density is varied as 0.01, 0.05 (left-
right).

Results The figure 6.4 shown ROC curves of the joint estimation formulations based on both
`2,1/2 and group lasso penalty. We used only a common GC network part of the ground-
truth model to evaluate accuracy. The results suggested that the networks learned from `2,1/2
regularized estimation have a larger area under the ROC curve than the networks that were
extracted using group lasso regularized estimation. We also noticed that even with a smaller
sample size, the non-convex formulation is still outperformed the convex one. The performance
of both convex and non-convex penalty is dropped when the model density is increased. This
is a result of a poor choice of prior information about the sparsity of the true model. From the
ROC curves, the results yielded from convex formulation were heavily sensitive to the increment
of model density, while the non-convex formulation was more robust to the increment in model
density.

6.5 Experiment: Supervised-classification using learned common Granger net-
work

Objective In the previous experiment, we showed that the non-convex regularization improved
the recovery of a sparse common Granger network of multiple models. Since a common Granger
network can be represented as a Granger network of a class of data. The learned common
Granger network can be used to represent those classes if there are multiple classes of data. So
the supervised-classification scheme based on a likelihood ratio test is possible.
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Figure 13: Supervised classification scheme.

Setting The overall process is given in Figure 13. The idea behind this scheme is intuitively
simple. First, we suppose that there are M classes of data; each class has K sets of n-
dimensional time-series that shared a common Granger network. The common Granger network
is extracted by our formulation and group lasso and used as a template for each class. The
unknown time-series is fitted into a multi-classes VAR model with the sparsity pattern constraint
of each class. The template that explains the unknown time-series the most in the sense of
highest likelihood, then the unknown time-series belongs to that class.

In this experiment, we generated 10 classes of multiple 15-dimensional second-order VAR
processes with given Granger networks. The common network’s density is set to be 20%. We
followed the described classification routine. However, we also varied the model order to see
whether the wrongly chosen model order significantly degrades the performance or not.
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Figure 14: Classification accuracy

Results In Figure 14, the classification using GC template learned with `2,1/2 regularization
has significant accuracy improvement from the classification in the group lasso case. With the
`2,1/2 penalty, the classification has a near-perfect classification rate. Moreover, even if the
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model order p is wrongly chosen, the performance does not decay. The result in this experiment
suggested that the template extracted by `2,1/2 regularized joint estimation outperformed the
template in the group lasso case.

6.6 Experiment: Effectiveness of differential prior

Objective In this experiment, we investigated the performance of our non-convex formulation
or formulation D (19) to our generated data sets. Since the convergence of the ADMM algorithm
is unknown, we fine-tuned the penalty parameter and monitoring the primal residuals and dual
residuals. We applied our penalty in (19), and the convex penalty (18) to see whether the
performance of the non-convex group norm penalty outperforms its convex counterpart or not.
We varied λ1, λ2 from densest solution to the sparsest solution. The tuning parameter λ1
controls the differential sparsity pattern, while λ2 controls the common sparsity pattern.

Setting In this experiments, we generated three types of ground-truth models as a result from
Experiment 3. The ground-truth types are

1. Common type ground-truth

2. Differential type ground-truth

3. Similar type ground-truth

In all types, we generated four sets of 15-dimensional VAR models. In each type, the ground-
truth GC networks were designed to have patterns the same as in the formulations. In the
common type ground-truth, all models have identical GC networks. In the differential type
ground-truth, the GC networks have both common and differential network. In the similar type
ground-truth, all models have a common part with identical coefficient and some differential
networks. The vanilla ADMM algorithm is used to solve this problem with fine-tuned algorithm
parameter to have a convergence to critical point.

Results The convex formulation results are shown in Figure 15 and non-convex formulation
in Figure 16. From both figures, the subplots in the left column are ROC curves yielded from
comparing a common GC network extracted from the estimation to the ground-truth model’s
common GC network. The middle subplot is an ROC curve yielded from comparing an estimated
differential GC network to the ground-truth model’s differential GC network. The ROC curves
in the right column yielded from a direct comparison between the ground-truth GC network
and the estimated GC network. In the common type ground-truth, the differential network’s
ROC is null because of the common type ground-truth model does not have differential parts
to compare. In each subplot, the ROC curve is constructed by fixing λ2 and varying λ1. The
darker red denotes the smaller value of λ2. The trend between AUC and λ2 is apparent in
Figure 15. The subplot (2,3) in Figure 15 shows that when λ2 increases to a suitable value that
results in an appropriate level of sparsity in the common GC network, we will see the ROC with
the highest AUC. However, as we keep increasing λ2, this does not necessarily improve AUC
because if λ2 is too large, the common GC network is entirely sparse, causing all entries in VAR
coefficients zero. In that case, the effect of λ1 for promoting differential sparsity in each model
becomes trivial, as we can see in the brighter-tone ROC having a small AUC. The ROC of the
left and middle column may be a loop because we evaluated the common sparsity and differential
sparsity independently, but the common and differential networks are related when varying the
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Figure 15: The ROC curve of learned GC networks using convex penalty.

regularization. Normally, the ROC curve starts at (FPR,TPR) = (0, 0) or the diagonal GC
matrix case and ends at (1, 1) or the densest GC matrix case. If there is a GC connection for
every pair of variables, then every connection is a common network without any differential GC
networks because all connections exist in common in all models. So, the differential ROC starts
at (0, 0). by increasing λ1, the differential networks are encouraged. However, if λ1 is too
large, then all differential networks are removed, so the differential ROC ends at (0, 0). This is
the reason why the ROC curve is a loop in differential ROC curve in Figure 15 and Figure 16.
The reason behind the difference between the common network ROC and the overall ROC in a
common type ground-truth is that the number of true negatives is not equal, while the number
of true positives is equal. By direct comparison of AUC, the results show that the non-convex
cases outperformed the convex case at all ground-truth types in the sense of having more area
under the ROC curve.

39



0 0.2 0.4 0.6 0.8 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P
R

0 0.2 0.4 0.6 0.8 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P
R

0 0.2 0.4 0.6 0.8 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P
R

Common network extraction ROC Differential network extraction ROC Overall ROC

C
om

m
on

 t
yp

e 
g
ro

u
n
d
-t

ru
th

0 0.2 0.4 0.6 0.8 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P
R

0 0.2 0.4 0.6 0.8 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P
R

0 0.2 0.4 0.6 0.8 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P
R

D
if
fe

re
n
ti
al

 t
yp

e 
g
ro

u
n
d
-t

ru
th

0 0.2 0.4 0.6 0.8 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P
R

0 0.2 0.4 0.6 0.8 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P
R

0 0.2 0.4 0.6 0.8 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P
R

S
im

ila
r 

ty
p
e 

g
ro

u
n
d
-t

ru
th

Figure 16: The ROC curve of learned GC networks using non-convex penalty.
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7 Future works

We proposed joint estimation formulations to estimate multiple Granger graphical models
with non-convex block-sparse inducing penalties. The networks decomposed to homogeneity and
heterogeneity parts. As shown in Figure 9, we performed the experiments that are not shaded.
Those experiments are carefully designed to verify the usefulness of the proposed formulation
step by step. In the first experiment, we answered our research question on how we should
guess the initialization of our non-convex optimization problem. A good guess we found is the
solution of the convex optimization problem counterpart. After that, the performance of non-
convex group sparse regularization is verified in our second experiment. The experiment 4, 5,
and finally 6, are the heart of this thesis. These experiments were set up to provide clarification
to us for answering the question, will our formulation work? All numerical results suggested that
our formulation performed better than the convex formulations proposed in [Son17] in the sense
of having more area under the ROC curve. However, this question is only partially answered.
Experiment 6 cannot be performed intensively and, hence, cannot be used in a large scale setting
yet. The available and efficient algorithm for this problem is required to answer the question.
Both algorithm performance and coding efficiency are crucial to our work not only in theoretical
but also in a practical aspect. In real data applications such as fMRI data analysis of brain
connectivity, there will be a large number of brain regions to identify their causal relations. As
stated in our work plan, we will further optimize the algorithm and develop a program to perform
experiments in a large scale setting. Moreover, from the partial success in our simulation data
sets, we aim to extract group-level brain connectivity from fMRI data as our future work.

A part of this proposal’s preliminary results based on formulation C (24) was presented at
ICASSP conference [MS20]. The published work is based on experiment 3, experiment 4, and
experiment 5.
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Appendix

A Definition of P ,D

In our formulations, the transformation P is a projection mapping that extracts all off-diagonal
entries of VAR coefficients. The transformation D is a difference matrix transformation that
maps VAR coefficients of each model into the difference of off-diagonal VAR coefficients between
each model. This is because of the time-series should be dependent on itself so the diagonal
entries of VAR coefficients should not be regularized. For example, we consider a case when
x = (C11, C12, C21, C22) with Cij ∈ RpK . A projection matrix P is defined by

P =

[
0 IpK 0 0
0 0 IpK 0

]
(50)

so that Px = (C12, C21) which is the off-diagonal entries in GC matrix. The matrix P has

dimension R(n2−n)pK×n2pK since the diagonal entries of all p lag VAR coefficient matrix of size
n×n in all K models are removed from the projected space. The generalization of this case to
n-dimensional case is evident.

From formulation S (21), the regularization can be thought of a difference matrix multiply
with each Cij . The following example is the simple case when K = 3. We express Cij in the
form of (14) to make it explicit.B

(1)
ij −B

(2)
ij

B
(1)
ij −B

(3)
ij

B
(2)
ij −B

(3)
ij

 =

Ip −Ip 0
Ip 0 −Ip
0 Ip −Ip


B

(1)
ij

B
(2)
ij

B
(3)
ij

 := DijCij

For the same reason in the projection case, we interest only the case when i 6= j, the difference
matrix is defined as

D̃ = diag(D12,D13, . . . ,Dn−2 n,Dn−1 n) (51)

where D̃ ∈ R(n2−n)p(K2 )×(n2−n)pK . If prior information on which GC connections are indeed
significant or insignificant is available, the identity matrix in both Dij ,P can be replaced with
arbitrary positive scaling of identity matrix of the same size. This allows adaptive regularization
framework for the estimation. When all Dij are identical to Dc, the matrix D̃ is

D̃ = In ⊗Dc

where ⊗ is a kronecker product. For a more compact representation, we define

D = D̃P

so that Dx is the group differences of the off-diagonal coefficients only.
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