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Time series data Causality pattern 
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• Granger causality (GC) is a tool to measure causal connectivities between variables in time series 
based on model estimation. A state-space model is considered as it is more general than other 
linear models such as autoregressive model or moving average model. 

• Learning causalities in time series data has many applications especially in neuroscience in which 
causal relationships between brain regions are explored. 

• The statistical distribution of GC of the state-space model is unknown, so a method to classify 
zero and non-zero causalities is proposed in [1] by fitting averaged GC measures to a Gaussian 
Mixture Model (GMM). 

• We consider applying permutation test, which does not required knowledge of GC distribution, to 
classify zero and non-zero causalities.  
 



- Objectives 

• To develop a scheme for classifying the zero patterns of the GC of 
state-space models using the permutation test.  

• To compare the performance of the permutation test with the GMM 
method in classification of zero and non-zero entries of GC matrix 
obtained from state-space model  
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Project Overview 

• We perform GC estimation on simulated data 

• We compare performance, computational cost and assumptions required 
between permutation test and GMM method 

 

- Scope of work 



Extract 𝑗th row (repeat for all 𝑗 = 1, … , 𝑛) 

Original 𝑗th row 

Randomly permuting segments in 𝑗th rows 

Permutation 1 

Partitioning 

Permutation 2 Permutation 𝑃 … 

Methodology: GC learning scheme 

𝑦1 
𝑦2 
𝑦3 
 ⋮ 
𝑦𝑛  
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𝐹 1𝑗
(1)

, 𝐹 2𝑗
(1)

, … , 𝐹 𝑛𝑗
(1)

 𝐹 1𝑗
(2)

, 𝐹 2𝑗
(2)

, … , 𝐹 𝑛𝑗
(2)

 𝐹 1𝑗
(𝑃)

, 𝐹 2𝑗
(𝑃)

, … , 𝐹 𝑛𝑗
(𝑃)

 … 

Cumulative permutation distribution 
(after repeat for all 𝑗 = 1, … , 𝑛) 

Φ𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑛, and 𝑖 ≠ 𝑗 

The scheme for obtaining permutation distribution. 
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Subspace 
identification 

GC estimation 

Estimated state- 
space matrices  

𝐴 , 𝐶 , 𝑊 , 𝑉 , 𝑆  

Estimated GC 
matrix  𝐹  

GC pattern 

𝑝-value calculation 

𝑝𝑖𝑗 = 1 − Φ𝑖𝑗 𝐹 𝑖𝑗  

𝑦1 
𝑦2 
𝑦3 
 ⋮ 
𝑦𝑛  

The scheme learning GC using permutation test. 

Cumulative permutation 
distribution  

Φ𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑛, and 𝑖 ≠ 𝑗 

Thresholding Significance level 𝛼 

Methodology: GC learning scheme 



Generate a VAR 
model with sparse 

GC matrix 

Generate a diagonal 
filter 

A State-space model 
 

𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵𝑤 𝑡  
        𝑦 𝑡 = 𝐶𝑥 𝑡  

 
 equivalent to 𝐺 𝑧 𝐴−1(𝑧) 

Σ𝑤 

𝑦 𝑡 𝑡=1
𝑁  𝐺 𝑧  

𝐴−1 𝑧  

The scheme for generating ground truth model and time series data. 
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Time series data 

Methodology: Ground truth model generation 



We consider estimating parameters 𝐴, 𝐶, 𝑊, 𝑉, 𝑆 of a stochastic state-space model 

𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝑤 𝑡  
        𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝑣(𝑡) 

This method is based on orthogonal projection. Suppose that the outputs 𝑌 is known, 
it was shown in [2] that 

𝒪𝑖 ≡ 𝑌𝑖|2𝑖−1 /𝑌0|𝑖−1 = 𝑌𝑓/𝑌𝑝 (Projecting the future outputs onto the past output space)  

𝒪𝑖 = Γ𝑖𝑋 𝑖 ⟹ 𝑋 𝑖 = Γ𝑖
†𝒪𝑖 and 𝑋 𝑖+1 = Γ𝑖−1

† 𝒪𝑖−1  

𝑋 𝑖+1

𝑌𝑖|𝑖
=

𝐴
𝐶

𝑋 𝑖 +
𝜌𝑤

𝜌𝑣
 ⟹

𝐴 

𝐶 
=

𝑋 𝑖+1

𝑌𝑖|𝑖
𝑋 𝑖

†

𝑊 𝑆 

𝑆 𝑇 𝑉 
=

1

𝑗

𝜌𝑤

𝜌𝑣

𝜌𝑤

𝜌𝑣

𝑇
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Methodology: Subspace identification 



The measure of the Granger causality from 𝑦𝑗 to 𝑦𝑖 is defined by 

𝐹𝑖𝑗 = log
𝛴𝑖𝑖

𝑅

𝛴𝑖𝑖
 

where 𝛴 is the covariance of the prediction error given all other 𝑦𝑘 and 𝛴𝑅 is the 

covariance of the prediction error given all other 𝑦𝑘 except 𝑦𝑗 [3]. 
 
The calculation of 𝛴 and 𝛴𝑅 are done by solving 𝑃 from the Discrete Algebraic Riccati 
Equation (DARE) 
 

𝑃 = 𝐴𝑃𝐴𝑇 − 𝐴𝑃𝐶𝑇 + 𝑆 𝐶𝑃𝐶𝑇 + 𝑉 −1 𝐶𝑃𝐴𝑇 + 𝑆𝑇 + 𝑊 
 

And using the fact that 𝛴 = 𝐶𝑃𝐶𝑇 + 𝑉. For 𝛴𝑅, we again solve DARE but without 𝑗𝑡ℎ 
row in 𝐶, and without both 𝑗𝑡ℎ row and column in 𝑉. 
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Methodology: Granger causality 



- The distribution of 𝐹𝑖𝑗 is unknown 

- The null hypothesis 𝐻0: 𝐹𝑖𝑗 = 0 is to be 
tested 

Justification: Under the true null hypothesis, 𝑦𝑖 

is not Granger-caused by 𝑦𝑗, so rearranging data 

in channel 𝑦𝑗 does not change the outcome. 
 

So, we may form a distribution of 𝐹𝑖𝑗 under 𝐻0 
empirically from the permutations of data [4]. 

One of the possible permutations. 

Segment size 𝑊 
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Methodology: Permutation test 
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The scheme for calculating 𝑝-values. 

⋮ 

Permutation 1 

Original 𝑦𝑗 

𝐹 𝑖𝑗
(1)

 

𝐹 𝑖𝑗
(2)

 

𝐹 𝑖𝑗
(𝑃)

 

Cumulative 
permutation 
distribution 

Φ𝑖𝑗 

𝑝𝑖𝑗 = 1 − Φ𝑖𝑗 𝐹 𝑖𝑗  
for 𝑖 = 1, … , 𝑛 

Permutation 2 

Permutation 𝑃 

𝐹 𝑖𝑗 

Methodology: Permutation test 
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For a given significance level 𝛼, 𝐹𝑖𝑗 can be tested to decide that 𝐹𝑖𝑗 = 0 or 𝐹𝑖𝑗 ≠ 0 by 
thresholding the 𝑝-values. 
 

• Multiple testing issue: Testing many hypotheses (𝐹𝑖𝑗 = 0  for all 𝑖, 𝑗) at once may 

give overall Type I error, or a family-wise error rate (FWER), greater than 𝛼.  
 

• Remedies: Let 𝑁 be the number of hypotheses to be tested. 
• Bonferroni Correction: Test each hypotheses with a corrected significance level 

𝛼𝐵𝑜𝑛 =
𝛼

𝑁
. 

• Benjamini-Hochberg procedure: Sorting p-values in the ascending order 

𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑁 

Then use a corrected significance level 𝛼𝐵𝐻 =
𝛼

𝑁
max*𝑘|𝑝𝑘 ≤

𝑘𝛼

𝑁
+ for thresholding. 

Methodology: Permutation test 



Comparative method: Gaussian Mixture Model (GMM) 

Splitting into multi-trials data set 

𝐹 1  𝐹 2  𝐹 3  𝐹 4  𝐹 5  𝐹 6  𝐹 𝑁0−2  𝐹 𝑁0−1  𝐹 𝑁0  

… 

… 

𝐹 1  𝐹 2  𝐹 𝑁  … 

𝑦1 
𝑦2 
𝑦3 
 ⋮ 
𝑦𝑛  𝑦1 

𝑦2 
𝑦3 
 ⋮ 
𝑦𝑛  

Averaging Averaging Averaging 

Vectorization and 
fitting GMM 

GMM modes 
𝜇1, 𝜎1  
𝜇2, 𝜎2  

      ⋮ 
(𝜇𝑘, 𝜎𝑘) 
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The scheme for obtaining GMM from time series data. 
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Subspace 
identification 

GC estimation 

Estimated state- 
space matrices  

𝐴 , 𝐶 , 𝑊 , 𝑉 , 𝑆  
Estimated GC 

matrix  𝐹  

GC pattern 

Clustering 

Comparative method: Gaussian Mixture Model (GMM) 

𝑦1 
𝑦2 
𝑦3 
 ⋮ 
𝑦𝑛  

GMM modes (from previous) 
𝜇1, 𝜎1 , 𝜇2, 𝜎2 , … , (𝜇𝑘, 𝜎𝑘) 

The scheme learning GC using GMM method. 



Comparative method: Gaussian Mixture Model (GMM) [1] 
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An example of fitting a GMM to data with 3 modes. 



16 

 
 
• Complete permutations and Monte-Carlo permutation test  
• Comparison of the performance between permutation test and GMM method  
• Performance under different ground truth network densities  
• Comparison of the computation time between permutation test and GMM 

method  
 

Results & Discussion 

Subspace 
identification  

and GC computation 

𝑦1 
𝑦2 
𝑦3 
 ⋮ 
𝑦𝑛  

Time series data 

GC learning 
scheme 

Estimated 
GC matrix 

𝑦1 

𝑦2 

𝑦3 

𝑦4 𝑦5 

GC pattern 
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Results & Discussion 

The performance of the permutation test when choosing the number of 
partitioning segments to be 5 (Complete) and 10 (Monte-Carlo) segments 
respectively. 

• Complete test yielded slightly better ACC without correction.  
• Monte-Carlo test allowed applying correction methods and gave much better 

performance.   
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Results & Discussion 

The performance of GMM method and permutation test on data from ground truth models 
with sparse GC.  

• With more data, GMM method can perform as good as permutation test. 
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Results & Discussion 
Examples of GC patterns obtained from permutation test and GMM on sparse and dense ground 
truths. 

• Permutation test gave more false positives when the ground truth had denser GC. 
• GMM method showed slightly more false positives in both sparse and dense ground truths. 

S
p
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D
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Results & Discussion 
The performance of GMM method and permutation test on data from ground truth models with sparse 
and dense GC. 

• Both methods performed worse on dense ground truths but permutation test showed  
significantly drop in performance. 
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Results & Discussion 

The computation time (seconds) of GMM method and permutation 

𝑁 = length of time series data 
𝑃 = number of permutations used in permutation test 
𝑛 = number of dimensions in time series data  
𝑁0 = number of GC samples used in GMM method 
𝑇𝑆𝑆𝐼𝐷(𝑛) = computation time of subspace 
identification on data of length 𝑛 
𝑇𝐺𝐶 = computation time of calculating GC matrix 

𝑇𝑓𝑖𝑡𝐺𝑀 = computation time of fitting GMM 

• Permutation test required much more computation time than GMM method 
since, in general, 𝑛𝑃 ≫ 𝑁0 and 𝑇𝑆𝑆𝐼𝐷 𝑁 > 𝑇𝑆𝑆𝐼𝐷 𝑁/𝑁0 . 

Method Computation time 

Permutation test 1 + 𝑛𝑃 𝑇𝑆𝑆𝐼𝐷 𝑁 + 1 + 𝑛𝑃 𝑇𝐺𝐶  

GMM method 
1 + 𝑁0 𝑇𝑆𝑆𝐼𝐷

𝑁

𝑁0
+ 1 + 𝑁0 𝑇𝐺𝐶  

+ 𝑇𝑓𝑖𝑡𝐺𝑀  
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Conclusion 

• Higher number of permutations in Monte-Carlo permutation test gives higher 
performance. 

• Monte-Carlo permutation test is more preferable as it allows using 𝑝-value correction 
methods which yield higher performance. 

• Overestimating order of state-space model does not hinder the performance as much 
as underestimating. 

• On sparse ground truths, permutation test performs better than GMM method but 
the difference can be reduced by increasing the length of the time series data.  

• Both permutation test and GMM methods perform worse on dense ground truths 
when compared to sparse ground truths. The decrease in performance is significant 
in permutation test. 

• Permutation test requires much more computation time than GMM method.  
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