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Objectives 

• To develop a scheme for classifying the zero patterns of the Granger 
causality of state-space models using the permutation test.  

 

• To compare the performance of the permutation test with the Gaussian 
mixture models method in classification of zero and non-zero entries of 
Granger causality matrix obtained from state-space model  
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Methodology 

Figure 1. The scheme for learning GC pattern using state-space models. 
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Ground truth model 

Generate a VAR 
model with sparse 

GC matrix 

Generate a diagonal 
filter 

A State-space model 
 

𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵𝑤 𝑡  
        𝑦 𝑡 = 𝐶𝑥 𝑡  

 
 equivalent to 𝐺 𝑧 𝐴−1(𝑧) 

Σ𝑤  

𝑦 𝑡 𝑡=1
𝑁  𝐺 𝑧  

𝐴−1 𝑧  

Figure 2. The scheme for generating ground truth model and time series data. 

6 

Time series data 



Subspace identification 

We consider estimating parameters 𝐴, 𝐶, 𝑊, 𝑉, 𝑆 of a stochastic state-space model 
𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝑤 𝑡  
        𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝑣(𝑡) 

This method is based on orthogonal projection. Suppose that the outputs 𝑌 is known, 
it was shown in [2] that 

𝒪𝑖 ≡ 𝑌𝑖|2𝑖−1 /𝑌0|𝑖−1 = 𝑌𝑓/𝑌𝑝 (Projecting the future outputs onto the past output space)  

𝒪𝑖 = Γ𝑖𝑋 𝑖 ⟹ 𝑋 𝑖 = Γ𝑖
†𝒪𝑖 and 𝑋 𝑖+1 = Γ𝑖−1

† 𝒪𝑖−1  

𝑋 𝑖+1

𝑌𝑖|𝑖
=

𝐴
𝐶

𝑋 𝑖 +
𝜌𝑤

𝜌𝑣
 ⟹

𝐴 

𝐶 
=

𝑋 𝑖+1

𝑌𝑖|𝑖
𝑋 𝑖

†

𝑊 𝑆 

𝑆 𝑇 𝑉 
=

1

𝑗

𝜌𝑤

𝜌𝑣

𝜌𝑤

𝜌𝑣

𝑇
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Granger causality of state-space model 

The measure of the Granger causality from 𝑦𝑗 to 𝑦𝑖 is defined by 

𝐹𝑖𝑗 = log
Σ𝑖𝑖

𝑅

Σ𝑖𝑖
 

where Σ𝑖𝑖 is the covariance of the prediction error given all other 𝑦𝑘 and Σ𝑖𝑖
𝑅 is the 

covariance of the prediction error given all other 𝑦𝑘 except 𝑦𝑗 [3]. 
 
Together with this definition, we can define a Granger causality matrix 

𝐹 =

𝐹11 𝐹12 ⋯ 𝐹1𝑛

𝐹21 𝐹22 ⋯ 𝐹𝑛2

⋮ ⋮ ⋱ ⋮
𝐹𝑛1 𝐹𝑛2 ⋯ 𝐹𝑛𝑛
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For a state-space model 
𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝑤 𝑡  
        𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝑣(𝑡) 

where 𝑬
𝑤
𝑣

𝑤
𝑣

𝑻
=

𝑊 𝑆
𝑆𝑇 𝑉

 , we consider the reduced model with 

𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝑤 𝑡  
     𝑦𝑅 𝑡 = 𝐶𝑅𝑥 𝑡 + 𝑣𝑅(𝑡) 

where 𝑦𝑅 is 𝑦 without 𝑦𝑗 and 𝐶𝑅 is 𝐶 without 𝑗𝑡ℎ row. 
 

We have Σ = CPCT + V and Σ𝑅 = 𝐶𝑅𝑃𝑅 𝐶𝑅 𝑇 + 𝑉𝑅 where 𝑉𝑅 is V without 𝑗𝑡ℎ row and 
column and P is solved from DARE [1] 
 

𝑃 = 𝐴𝑃𝐴𝑇 − 𝐴𝑃𝐶𝑇 + 𝑆 𝐶𝑃𝐶𝑇 + 𝑉 −1 𝐶𝑃𝐴𝑇 + 𝑆𝑇 + 𝑊 
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Permutation test 

- The distribution of 𝐹𝑖𝑗 is unknown 

- The null hypothesis 𝐻0: 𝐹𝑖𝑗 = 0 is to be 
tested 

Justification: Under the true null hypothesis, 𝑦𝑖 

is not Granger-caused by 𝑦𝑗, so rearranging data 

in channel 𝑦𝑗 does not change the outcome. 
 

So, we may form a distribution of 𝐹𝑖𝑗 under 𝐻0 
empirically from the permutations of data [4]. 

Figure 3. One of the possible permutations. 

Window size 𝑊 
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Permutation test 

Figure 4. The scheme for calculating 𝑝-values. 

⋮ 
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The number of permutations (𝑃) is the factorial of the number of windows. Since this 
number can be very large, we performed a Monte-Carlo permutation test in which the 
number of permutations used is smaller than the number of all possible permutations 
and the samples of rearrangement are drawn randomly [5].  
 
Repeat for all 𝑗  and the 𝑝-value matrix is then obtained  

𝑝11 𝑝12 ⋯ 𝑝1𝑛

𝑝21 𝑝22 ⋯ 𝑝2𝑛

⋮ ⋮ ⋱ ⋮
𝑝𝑛1 𝑝𝑛2 ⋯ 𝑝𝑛𝑛

 

 

For a given significance level 𝛼, 𝐹𝑖𝑗 can be tested to decide that 𝐹𝑖𝑗 = 0 or not by 
thresholding the 𝑝-values. 
 

Permutation test 



Preliminary results 

An experiment was performed to study how the number of permutation (𝑃) 
affects the performance of the permutation test 

Hypothesis: The performance of the permutation test increase with the 
number of permutation 

Control variable: 
We generated 15 ground truth models with the following specification 
- 5 channels 
- 20 states (generate a VAR models of order 2 and a filter with 2 poles) 
- 1000 time points for time series data 
The estimation of state-space models were done with exactly 20 states. 
Data were partitioned into 10 windows in permutation tests. 
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Preliminary results 

Figure 5. The performance of the permutation test. 



Figure 6. An example of the results after thresholding. 
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Project Planning 
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Figure 7. The Gantt chart of this project. 
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Project Planning 

We plan to do the following experiments in the next semester. 
 

 • Experiment 2: Compare the performance of the permutation test with every permutations with 
the Monte-Carlo permutation. 
 
    Experiment settings:  With the same data, we use large window size (𝑊 = 5) for the normal 
permutation test so that the number of permutation is 5! = 120 which is feasible. Then we compare 
the result with the Monte-Carlo permutation test. 
 
 • Experiment 3: Study the effect of the number of states used in subspace identification on the 
performance of the permutation test. 
 
    Experiment settings: With the same data, we estimate state-space models with different 
assumption on the number of states and compare them. 
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Project Planning 

 • Experiment 4: Compare the performance and the computational cost of the permutation test with 
the GMM method  
 
    Experiment settings:  With the same data, we compare the performance measures of the 
permutation test with the GMM method proposed in [1]. The parameters of the permutation test 
are chosen based on the previous result. The computation time is also compared. 
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