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Introduction

a nonlinear estimator is one that is a nonlinear function of the dependent variable
0= f(y), f isnonlinear
e.g., 0 is the conditional mean

e statistical results in small samples may be limited for nonlinear estimators

e the asymptotical theory has two major treatments derived from linear model:

— alternative methods of proof are needed since there is no direct formula for most
nonlinear estimators

— asymptotic distribution is obtained under the weakest distributional assumptions
possible
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in a nonlinear regression model we have

e y (dependent variables)
e 1 (explanatory variables)

e 1 is a function of x and they have a joint distribution

fact: the best estimate of y given x is the conditional mean: E|y|x]
objective: we would like to model E[y|z] as a function of x

to this end, we define a parametric model for E[y|x|:
m(x,0)

e © € R" is explanatory variable

e 0 € R is parameter vector (and p can be greater or less than n)
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examples of nonlinear regression functions:

e exponential regression function: useful model whenever y > 0

m(z,0) = exp(z’0)

e logistic function: when y is restricted in (0, 1)

T
e:ﬁ@

1 +ex'?

m(x,0) =

these examples are nonlinear functions in 6

if we have a correctly specified model for E|y|x|, meaning
30 such that E[y|z] = m(x, 0%)
then we would like to estimate for 6 given we know y
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Examples of nonlinear estimators

a Poisson regression model for y having nonnegative integer values 0,1, . ..

aside: Poisson probability mass function:
FlyN) =e Ny, y=0,1,..., El=X var(y) =\
objective: determine X\ from y

e assumption: A varies across regressors x and parameter vector 3

T
e propose to use the model A = e* 7 to guarantee \ > (

e based on one sample of y, x, the density of Poisson regression model is

flylz, B) = e Dexp(xTB)Y [y
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suppose we have many indenpendent samples: (y;,x;),i =1,2,..., N

each ith sample obyes the joint density (take the log )

log f(yilxs, B) = —exp(x] B) + ysx; B — logy;!
objective: choose [ that maximizes the joint density
|
1ng<y17 I 7yN‘331, c. oy TN, 5) — W Z (_eXp<x?ﬁ) - ylxtzrﬁ — 1Ogyz)

1=1

(where we apply that all samples are independent)

e choosing (3 this way is called maximum likelihood estimation
e no explicit solution for ﬁA but requires numerical methods to solve

e once we obtain [, we can determine \
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Estimate model of conditional expectation

a typical model for estimating conditional expectation is
y=m(z,0)+u, Elulz]=0
where u is an additive, unobservable error with a zero conditional mean

e define the error u = y — m(x, 0)

e when v is restricted on some range, u and x cannot be independent, e.g.

y>0 = u>-—mx,0)

e it is too strong to assume that u; and x; are independent

Nonlinear estimators
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Nonlinear least squares (NLS)

let © C R? be the parameter space
assumptions: for some 6* € O, Ely|z] = m(x, 0*)

we seek for 6 that solves the population problem

minimize E{[y — m(x, 0)]*}
0o

where the expectation is taken over the joint distribution of (z, )

we can show that
E{ly — m(z,0)°} > E{ly — m(z,6")]’}, V6c©

conclusion: 6* indexing E[y|z] in fact minimizes the expected square error
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the nonlinear least-squares estimation is the problem:

N
1
minimize - ;1 ly; — m(x;, 0)]

e it is the sample analogue problem, when samples of y; and x; are drawn from the
population

e 0 minimizes the sum of squared residuals

e the factor 1/2 simplifies the subsequent analysis

e can be solved by deriving the optimality condition: zero gradient condition
e no explicit solution

e the distribution of the NLS estimator depends on the dgp
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m-estimator

more generally, we define an m-estimator 6 of 6 as

. 1
0 = arggnax QN (D) = N Z q(yi, z;,0)

where

e ((-) is a scalar-valued function (but mapped from vector variables)
e () is a sample average of ¢ where N does not affect the minimization problem

e it is the sample analogue problem, as opposed to the population problem:

mlIellel"léllze [Q(y,% )]
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examples:

e NLS is a special case of m-estimator where ¢ is the quadratic function:

Q<y7 Ly 9) — (y o m(:z:, 9))2

e Poisson maximum likelihood estimation:

T
q(y,z,B) = —* P +ya’ B —logy!

e the term m-estimator stands for maximume-likelihood estimation where
q(y,x,0) =—log f(y|z,0) called loglikelihood function

(-negative log of joint distribution of y given x and parameter 6)
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Properties of m-estimator

e identification
e consistency

e |limit normal distribution

details in Cameron 2005, chapter 5.3
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Identification of the true value
recall that if for some 6* € ©
Ely|z| = m(z,0%)

then we say we have a correctly specified model for the conditional mean

and often we say that 6* is called the true parameter value of 6

e when the model is correctly specified, 8* is the unique solution to

mn@uerglze [Q(y,flfa )]

e identification requires that 8™ be the unique solution:

Elq(y,z,0")] < Elq(y,z,0)], Y0€0O, 0#06"
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Consistency of m-estimator

consistency is established in the following manners

e suppose Qn(0) = Q*(0) as N — oo (or other sense of convergence)
e let 0* be the solution that minimizes QQ*(0)

e let O be the solution that minimizes Q n(6)

e a consistency result is established to conclude if 0 2 0~

formal statements can be further read in Cameron 2005, chapter 5.3
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Limit normal distribution

we consider the behaviour of vV N(0 — 6*) as N — oo

under appropriate assumptions this yields the limit distribution of an m-estimator
VN@B —6*) 5 N(0, A" BA™Y
where

e A is the probability limit of the term involving the Hessian of ¢

e B is the probability limit of the term involving the gradient of ¢
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Asymptotic Normality of m-estimators

define z = (x,y) (or data samples), so ¢(z, 6) denote q(y, z, )
notation: all derivatives here are w.r.t. 6

assumptions:

e 0% is in the interior of ©
e Vq(z,-) is continuously differentiable on the interior of ©

e each element of V?g(z, ) is bounded in absolute value by b(z) where
E[b(2)] < o0

o A=E[V?q(z,0%)] is positive definite
o E[Vq(z,0%)] =0

e cach element of Vq(z,0*) has finite second moment
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under the given assumptions plus the conditions for consistency and identification,
then we have

VN(@O - 0*) 5 N(0,ABA™Y

where
A =E[V%(2,0%)], B=E[Vq(z 0")Vq(z,0")"] £ cov(Vq(z,6"))
thus the asymptotic covariance is given by

Avar(f) = A"'BA™Y/N
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Maximum Likelihood (ML) Estimation

a special case of m-estimator

e likelihood function
e ML estimator
e examples

e distribution of ML estimator
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Likelihood function

let f(y,x|0) be the joint probability mass/density function

log-likelihood function is defined as

Ln(0) = log f(y,z|0)

e because f(y,x|0) can be viewed as a function of 8 given x,y

e y and x denote the data from /N samples, hence £ depends on N

the likelihood principle: choose the value of 6 that maximize £ (6)
e.g., La(01) = 0.001, L (6:) = 0.003

0, gives a higher probability of the observed data occuring, hence is a better estimator
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Conditional likelihood

a likelihood function can be rewritten as

fly,x10) = f(ylz,0)f(x]0)

which requires both conditional density of y given x and the marginal of «

e the goal of regression is to model the behavior of y given x

e so estimation is usually based on the conditional likelihood function:

Ln(0) = log f(y|x,0)

(using that log is an increasing function)

e we can view x as nonrandom vectors that are set ahead of time and appear in the

unconditional distribution of y

Nonlinear estimators

9-20



if the observations (y;, x;) are independent over 7 then the joint conditional density
IS

f(y17y27'°'7yN‘:C17x27°"7xN79> :Hf(yzlxMe)

this leads to the conditional log-likelihood function

Qn(0) = (1/N)Ln(6 Zlogf yilz:, 0)

where we divide by N so that the objective function is an average
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example 1 (Bernoulli RVs): let y,...,yn be random samples from a Bernoulli
distribution

assume that the probability of success is given by p, a parameter to be estimated

the density function of Bernoulli distribution is

f(yilp) = p¥ (1 — p)' =¥
if we assume y;'s are i.i.d. samples, the joint density function is

N

1,92, ynlp) = pri(l —p) Y
i=1

the likelihood function is

Qn(0)(1/N)log f(yr, vz, - - -, ynlp) = (1/N) Z yilogp + (1 — y;)log(1 — p)
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example 2 (Probit): suppose the observation value of ¥ is binary
y = sign(zf +e), e~ N(0,1)

where sign(-) is the sign function, i.e., sign(y) = 1 if y > 0 and 0 otherwise

to derive the conditional density of y, we first compute

Ply=1lz,0) = P(x0+e>0|x,0)=Ple>—z6|x,0)
= 1—®(—x0) = O(x0)
Ply=0]|z,0) = 1— ®(x0)

where ®(-) denotes the standard normal CDF

therefore, the dentity of y given = and 6 is
f(ylz,0) = [2(z0)![L — ¢(20)]'7Y, y=0,1
and that f(y|z,0) =0 when y ¢ {0, 1}
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suppose i.i.d. N samples of observations are drawn: vy, 4o, ...,yn

the conditional density of y; given z; and @ is
f(yilzi,0) = [0(2:0)]Y[L — O(z:0)] ¥, y=0,1

hence, the joint conditional density function is
N
Fl, - ynlan, oy, 0) = [[[0(@0)]Y 1 — &(x:0)]' ¥

1=1

the conditional loglikelihood function is

QN(0) = 5 3 {uilog(B(xi0)) + (1 — y3)log(1 — O(z,0))}

Nonlinear estimators 9-24



example 3 (Poisson regression): from page 9-4

e determine A, the mean of the poisson distribution from observations y;, x;
T
e propose to use the model A = e* # to guarantee \ > (

e based on one sample of y, z, the density of Poisson regression model is
flylz, 8) = e Pexp(aT )Y /y!

e when all samples are i.i.d., the conditional loglikelihod function is

N N
Qn(0) = %Zbg fyilzs, B) = (1/N) Y —exp(a] B) + yiz] B — logy,!
i-1 i=1
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example 4 (Gaussian vectors): estimate the mean and covariance matrix of
Gaussian RVs

e observe a sequence of independent random vectors: y1,vo,..., YN

e cach y; is an n-dimensional Gaussian: yi ~ N (u, ), but u, ¥ are unknown

the likelihood function of y1,...,yxN given u, X is
1 1 1 o
¥) = : cexp— = (yr— 1) S (yr —
f(yla 7yN|:u7 ) (27-‘-)Nn/2 ‘Z|N/2 exp 9 £ (yk ,LL> (yk ,U,)

the conditional log-likelihood function is

= (n/2)log(2m) + (1/2) logdet ™" = (1/2N) > “(yx — )" S (g — 1)
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Maximum likelihood estimator (MLE)

the MLE is the estimator that maximizes the log-likelihood function

AN

6 = argmax log f(y, x|0)
0

or maximizes the conditional log-likelihood function

0 = argmax log f(y|zx, 0)
0

e MLE is a special case of extremum estimators since it solves an optimization
problem, which typically has no analytical solution

e usually MLE is a local maximum that solves the zero gradient condition:

OLN(0) 0
06
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the score of the loglikelihood for observation i is defined as

_ Olog f(yilz:,0) 1

si(0) 99 = il 9>V9f(yi\$i, 0)

e if @ € R" then s; is the gradient vector of size n x 1

e the zero gradient condition for solving MLE is then described as

N

OLN(O)  ~— oy 1 o
. Z 54(0) = Z o VoSl 6

(the sum of the first derivatives of the log density)

e the gradient vector aﬁ%@w) is called the score vector

e when the score is evaluated at 6*, it is called the efficient score
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Some ML estimators have closed-form expression

example 1 (Bernoulli): characterize the score likelihood

| 1
5i(p) = yi— — (1 = yi)——
) =vis — (L~ )

the zero gradient condition for solving MLE is

N | N N
O:ZSz(ZﬁZZ—?Z?Ji—? (1 — i)
=1 1=1 1=1

MLE of probability of success is in fact the portion of success from N samples
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example 4 (Gaussian): rewrite the relevant term in conditional likelihood

N
Qn (2, p) =logdet 2! — (1/N) Zyk’_ “Hyr — )
k=1

two parameters to be estimated, but we can maximize over p first

the gradient w.r.t. u is set to zero

aQ =
- ZZ (=) =0 = [p=(1/N)> yx
k=1

k=1

the likelihood function evaluated at (1 can be expressed as
Qn(S, ) =logdet ™! —tr(CY™Y) £ logdet X — tr(CX)

where C' = (1/N) Zk (yr — 1) (yg — )" is the sample covariance matrix

Nonlinear estimators
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taking the derivative w.r.t. X gives

0Qu

:X—l_ X — —1
5% ¢ = C

in conclusion, the ML estimators of > and u are

= (1/N)D> (yk — i)y — )"

the sample mean and sample covariance matrix we already knew
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Most ML estimations require numerical algorithms

example 2 (Probit): the zero gradient condition of the likelihood function is

N

IQN _ Z 3y f(:0) n (1 — yi)(—fi(x:0) ) —

26 (2 T—o(w) "

1=1

(using @'(z) = f(z))

example 3 (Poisson): the zero gradient condition is

IQN al Tg
—_— = —x;e%i P 4+ y;x;) =0
33 ;( Yiti)

e the zero gradient (or first-order) condition is a nonlinear equation in 6

e numerically solving MLE involves nonlinear optimization such as Newton-Raphson
method
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Distribution of ML estimators

to derive asymptotic distributin of ML estimators, we discuss

e regularity condition
e Fisher information matrix

e theorem of asymptotic distribution
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Regularity conditions

the ML regularity conditions are that

1. the score vector has expected value zero:

E [V log f(y]z, 0)] = / Vo log f(yle, 0)f (y]z, 6)dy = 0

2. the expected Hessian is the expected outer product of the gradient

—E [Vjlog f(y|z,0)] = E [(Vglog f(y|z,0))(Velog f(y|z, )" ]

when evalued at @ = 0™ it is known as the unconditional information matrix
equality (UIME)

the regularity conditions hold when the expectation is w.r.t f(y|x, 0)
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Fisher information matrix

the Fisher information matrix for 6 contained in y (1 sample) is defined as

I<‘9> =E [(V@ 1Og f(yv ’ZL’, 9)>(V9 log f(y|:1:‘, 0)>T}

the expectation of the outer product of the score vector

the Fisher information matrix for 6 contained in y1,ys,...,yn is
IN(9) =E [(VoLn(0))(VeLn(0))"]
since Y1, Ys, . .., yn are identical samples drawn from the same distribution

In(0) = NZ(6)
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e 7(0 is a positive semidefinite matrix
e since the score vector has mean zero, Zn(6) is the variance of VoL n(6)
e large Zn(0) means small changes in 6 lead to larger change in Ly

e the second regularity condition implies that
7(6) = ~E [V3log f(y], 0)]

when evaluated at 6* this is called the information matrix (IM) equality

e we will see later that Z gives the quality of an estimator
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Distribution of ML estimator

assumptions:

1. the dgp is the conditional density f(y;|z;,0) used to defined the likelihood
2. the density f(-) satisfies f(y,0) = f(y, ) iff = «

3. the following matrix exists and is finite nonsingular

P=—-E [%VQEN(H*)]

4. the order of differentiation and integration of £ can be reversed

then the ML estimator éml is consistent for 8* and

VN (O — 6%) 5 N (0, P~H

Nonlinear estimators
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e condition 1: the conditional density is correctly specified

e condition 1&2: ensure that 6* is identified

e condition 3: analogous to the assumption on plim N ~' X7 X for OLS estimator
e condition 4: necessary for the regularity conditions to hold

o if (y;,x;) are identical for all 7, then

E[V°Ly(0%)] = ZVZlogf(yz\wz,Q*ﬂ=NE{V21ng(yla?,9*)]

=1

P is replaced by evaluation based on one sample of (y, x)

P = —E[Vjlog f(ylz,0")

e asymptotic normality is obtained from the result on page 9-16 with A = —B

e P is essentially the Fisher information matrix, Z(6)
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Estimating the asymptotic covariance

asymptotic normality of ML.:
O 5 N (6%, P7L/N)
where the asymptotic covariance can be also expressed as
Avar(0,) = P7'Y/N =Z(0)"' /N = Zn(0)™"

at least three possible estimators of Z converges to —E[V?*log f(y|z, 0%)]

—(U/N) DV log f(yil6), (1/N) }_ Vlog f(il6)V log f(yil0)"

1=1

—(1/N) Z E,.[V*log f(yi|z:, 0))

1=1
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—_— A A~ A( )—1

thus Avar(f,,) = Zn(6) = % can be taken to be any of the three matrices

—1

! Z Vlog f(yz-é)] ,

> " Vlog f(yi]0)V log f(yz-é))T]

1=1

[_ Z E,.[V*1og f(yi|zi, é))]]

1=1
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example 1 (Bernoulli): the loglikelihood based on one sample is

log f(ylp) = ylogp + (1 — y)log(1 — p)

the gradient and the Hessian of the loglikelihood (w.r.t. p) is given by

R y  1-y
Vlog(ylp) = = — ., Vlog(ylp) = —= +
wip) p 1—p (wip) p*  (1—p)?
the Fisher information matrix (based on 1 sample) is
P:Z(Q):—E[VQlog(y]p)]:—(p+ L= p ): 1 > ()
p* (1-p?) p(-p)

hence, Z=1(0) = p(1 — p) and the asymptotic distribution is

VN (bt — %) 2 N(0,p(1 = p))
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example 2 (Probit): consider the gradient of loglikelihood based on 1 sample

syf(e0) (L= ylaf(ad)  of(@0)(y — D(b)

O (x0) 1 — $(x0) O(x0)(1 — O(x0))
2’ f2(20)(y — P(x0))”
P2(z0)(1 — O(x0))?

Vlog f(ylz,0) =

Z(0) = —E[V'log f] = E[Vlog f - Vlog f*] =

2 fah)
D2(20)(1 — O(20))

note that y is Bernoulli with mean p = ®(x0) and variance ®(x0)(1 — ®(z0))

_ 2° f2(x0) - ©(20)(1 — d(x0)) _ x° f?(x0)
P2(z0)(1 — d(x6))? O(z0)(1 — d(x6))

2]02 .CIZ 9) !
Avar <Z (2,0) Oz 9>>>
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example 3 (Poisson): the gradient of loglikelihood based on 1 sample is

Vlog f(y|z, B) = —we® P + ya
it follows that

V2log f(ylz, B) = —wa”e” P

T(0) = —Byu[V?log f(y|z, 8)] = w2”e™ 7 - 0

the estimate of asymptotic covariance is

N ~1
Avar(8) = [Z emfﬁxix?]

1=1
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example 4 (scalar Gaussian): here 0 = (d, ;1) where d = 0 > ()

log f(yl0) = —(1/2)log(d) — (1/2)(y — p)*/d

Viog f = (1j2) [T/ W]
Vo f = (1/2) |2 _2(9_5/2)/d1
7(0) = —E[V2log f] = —(1/2) [1/d2 8 2/d? _g/d]

2@ 0
o) = [ 0 d] - 0
Avar(6?) = 26*/N
(

—_—

Avar(f)

6°/N
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Cramér-Rao inequality

for any unbiased estimator f with the covariance matrix of the error:

AN A

cov(f) =E(0 — 0)(0 — é)Ta

AN

we always have a lower bound on cov(6):

AN

cov(f) = In(0)"}

e the RHS is called the Cramér-Rao lower bound, and also equal to Z(6)~!/N

e provide the minimal covariance matrix over all possible estimators 6
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e a consistent asymptotically normal estimator 0 of 0 is said to be asymptotically

efficient if A
Avar(9) =Z(6)"'/N

e ML estimator has the smallest asymptotic variance among root-N consistent
estimators (requiring the correctly specified conditional density)
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Example of CR bound

estimating )\ in exponential RVs: f(z) = \e "

1 1
log f(z|A) =log A — Az, Vlog f(xz|\) =55 V?log f(x|\) = 32
therefore, Z(\) = 1/A? and CR bound is var(\) > \2/N
estimating 6 in Bernoulli RVs: p(z) = 0*(1 — 0)!~®
r (1—x)
logp(z|d) = xlogh+ (1 —x)log(l—0), Vlogp(x|d) = 10
1 —x) 6 1—6
21 _ _£ . < E 21 — .
V= log p(x|0) PRt [V logp(x|0)] = —3 =07

therefore, Z(0) = 9(11_9) and CR bound is var(6) > (1 — 0)/N
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Important proofs

e derivation of regularity conditions

e proof of Cramér-Rao bound
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Derivation of regularity conditions

o from [ f(y|0)dy = 1, differentiate both sides w.r.t 8 gives Vg [ f(y|6)dy = 0

e if the range of integration does not depend on @, by Leibniz integral rule
/Vef(yW)dy =0

e from the derivative of log(-) function,
Vof(yl0) = Velog f(yl0) - f(yl0)

e substitute into the previous equation
[ Voloss(s16)- io)dy =0 = EVolos(sl6)] =0

this is the regularity condition (1) w.r.t. to the density f(y|0)
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o from [Vylog f(y|0) - f(y|0)dy = 0, differentiate both sides w.r.t. 6

/ {Vilog f(yl0)f(yl0) + (Volog f(y]0)(Vef(y|0) "} dy =0

e substitute Vyf(y|0) = Vglog f(y|0) - f(y|@) to the previous equation

/ {Vilog f(y]6)f(yl0) + (Valog f(y]0))(Velog f(yl0)" f(yl6)} dy =0

e this is equivalent to

E[Vjlog f(y]0)] = —E[(Vglog f(y|0))(Velog f(y|6))"]

when the expectation is w.r.t. the density f(y|6)

this is the regularity condition (2)
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Proof of the Cramér-Rao inequality

with abuse of notation, we mean vy = (y1, 2, ...,yn) and f(y|0) is a joint pdf

e since 0 is unbiased, we have 0 = fé(y)f(y\@)dy

e differentiate both sides w.r.t. 6 and use Vylog f(y|0) = Vf(y|0)/f(y|0)

. / 0(y)V log £(510) £ (y16)dy = Elb(y)V log f(419)

e from regularity condition (1), E|V log f(y|0)] = 0 we have

E |(0(y) — 0)Vlog f(yl6)| = 1
(E is taken w.r.t y, and 6 is fixed)

Nonlinear estimators
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consider a positive semidefinite matrix

= [orve )] [svva ] =

expand the product into the form
)
I D
where A = E(0(y) — 0)(0(y) — 6)T and
D =E[Vlog f(y|6) - (Vlog f(y]6))"] = In(6)
the Schur complement of the (1, 1) block must be nonnegative:
A—ID'I =0

which implies the Cramér Rao inequality

Nonlinear estimators
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Nonlinear Least Squares

e nonlinear least squares (NLS) estimator
e optimality condition
e examples

e distribution of NLS estimator
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Nonlinear regression model

define the scalar dependent variable y to have conditional mean

Ely|z| = g(z, B)

® ¢ is a scalar-valued specified function
e T is a vector of explantory variables
e (3 is a parameter vector

e for linear case, g(x, ) = 21 3
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Exponential regression example

the nonlinear model is
z ! I5]
y=e + u

to study household income with sociodemographic variables

e 1: household income

e 1: age, age’, education, female, female - education, age - education

Household Income

0.12 —

Probability
o e o
o o o ©
S o ) -

e
o
(™}

b

0 0.5 1 1.5 2 2.5 3
Income (x 10,000)

o
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The Box-Cox transformation

the Box-cox transformation for a fixed \ is
2N = (A —1)/x

e when A\ = 1 the transformation is linear

e when A =0, it is a log transformation — by L'Hopital)

a regression model can be generalized by using Box-cox transformation
n
A
y=06+ > Brxy +u
k=1

o if \is fixed, the regression is linear in 8;'s

e if )\ is also a parameter, the regression is nonlinear
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NLS estimator

the nonlinear least-squares estimation is the problem

N
o 1 2
mlmﬁmlze An(B) = ON ;(yz — g(z;, B))
e given the samples (y1,x1),...,(yn,xN) are available

e ith is the sample index
e (3. minimizes the sum of squared residuals

e the factor 1/2 is added for simplifying the analysis
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Solving NLS

matrix notation: let

Yy = (y1?y27 s 7yN>7 g<$,5> — <g<x1,6>,g<$2,6), R

the NLS problem can be written in a vector form as

minimize (1/2)]y - g(z. B3

so the optimality condition is

VsQn(B) = Dg(z, 8)" (y — gl Z Vag(i, B

7g<xN75>>

o g(x’wﬁ)) =0

e no explicit solution for Bnls satisfying the zero gradient condition

e one uses iterative methods (nonlinear optimization techniques) in solving NLS
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Exponential regression example
suppose ¥ given x has exponential conditional mean: E[y|z] = e B
the model of nonlinear regression is
Yy = ewTﬁ +u

e u is the error term
e the conditional mean is nonlinear in 3, parameter to be estimated

e the NLS estimator must satisfy the zero gradient condition:

N T T
> wie" Py, — e ) =0
1=1
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Data-generating process in NLS

the dgp can be written as
yi = g(, 87) + u

e 1w, is additive error term
e (3™ is the true value of parameter

e the conditional mean is correctly specified if

Ely|z| = g(z, 8%)

meaning the error must satisfy E[u|z] =0
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Distribution of NLS estimator

assumptions:

1. the model is y; = g(x;, B*) + u;

2. in the dgp E[u;|z;] = 0 and E[uu?|z] = A

3. g(-) satisfies g(x, 8) = g(z, a) iff B = «

4. the following matrix exists and is finite nonsingular

F(:I?,ﬁ’) = (Vg(x1,5>T, e VQ(ZUN,ﬁ)T) c RV xn

A = plim %F(m, BN F(z, B*)

| N
= plim N Z Vy(xi, 85)Vg(a:, )"

1=1
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5. (1/V/N) 20, Vg(as, 5%)u; = N(0, B) where
B — plim %FT@:, B*)AF(z, 57)

N
. 1 2 * *\ T

then the NLS estimator Bnls defined to be a root of

VQn(B) =0

is consistent for 5* and

VN(Bus — B*) 5 N(0,A1BA™Y)
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e condition 1-3: the regression is correctly specified and the regressors are
uncorrelated with the errors and that 5 is specified

e the errors can be heteroskedastic

e condition 4-5: assume the relevant limit results necessary for application of
theorem on page 9-16

special case: spherical errors with A = o1

e this implies B = 0?4 and A7'!BA~! = ¢?A4~!

e nonlinear least-squares is then asymptotically efficient among LS estimators
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Variance matrix estimation for NLS
from page 9-61, the asymptotic distribution of NLS estimators is
Bus ~ N (8%, (FTF)"'FTAF(F'F)™)

where F' := F(x, 3*) defined on page 9-61

e we consider independent errors with heteroskedasticity of unknown
functional form

e we provide estimates of A, B and the asymptotic covariance matrix
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let B be a consistent estimate of 5 and define

AN

ﬁ:y_g<$76>

e estimate of A: A = (1/N)FT(z, B)F(z, )
e estimate of A: A = diag(t?) (squared element-wise)

e estimate of B: B = (I/N)FT(w,B)AF<$>B>

these lead to the heteroskedastic-consistent estimate of the asymptotic variance
matrix of the NLS estimator:

Avar(Bus) = (FTF) ' FTAF(FTF)™!

(note that now F' := F(at,B); evaluated at B)
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Exponential regression example

the model is
wTB

y=e +u

where u has E[u|x] = 0 and u is potentially heteroskedastic
T T

o g, 8) = e*'?, and Vg(z, §) = wev’?
o [I'TF .= FT(x,5)F(x,B) = Z,fvl zix] e i B
o A = diag(u?) where 4 = y — e B

e the heteroskedastic-robust estimate is

~1
Avar 5nls = <Z:€ ] e’ 6) (Zu rix; e’ B) (Zx ] e B)

Nonlinear estimators 9-66



References

Chapter 12-13 in

J.M. Wooldridge, Econometric Analysis of Cross Section and Panel Data, the MIT
press, 2010

Chapter 7 in

A.C. Cameron and P.K. Trivedi, Microeconometircs: Methods and Applications,
Cambridge, 2005

Chapter 7,14 in
W.H. Greene, Econometric Analysis, Prentice Hall, 2008

Nonlinear estimators 9-67



