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Introduction

a nonlinear estimator is one that is a nonlinear function of the dependent variable

θ̂ = f (y), f is nonlinear

e.g., θ̂ is the conditional mean

• statistical results in small samples may be limited for nonlinear estimators

• the asymptotical theory has two major treatments derived from linear model:

– alternative methods of proof are needed since there is no direct formula for most
nonlinear estimators

– asymptotic distribution is obtained under the weakest distributional assumptions
possible
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in a nonlinear regression model we have

• y (dependent variables)

• x (explanatory variables)

• y is a function of x and they have a joint distribution

fact: the best estimate of y given x is the conditional mean: E[y|x]

objective: we would like to model E[y|x] as a function of x

to this end, we define a parametric model for E[y|x]:

m(x, θ)

• x ∈ Rn is explanatory variable

• θ ∈ Rp is parameter vector (and p can be greater or less than n)
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examples of nonlinear regression functions:

• exponential regression function: useful model whenever y ≥ 0

m(x, θ) = exp(xTθ)

• logistic function: when y is restricted in (0, 1)

m(x, θ) =
ex

Tθ

1 + exTθ

these examples are nonlinear functions in θ

if we have a correctly specified model for E[y|x], meaning

∃θ⋆ such that E[y|x] = m(x, θ⋆)

then we would like to estimate for θ given we know y
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Examples of nonlinear estimators

a Poisson regression model for y having nonnegative integer values 0, 1, . . .

aside: Poisson probability mass function:

f (y|λ) = e−λλy/y!, y = 0, 1, . . . , E[y] = λ, var(y) = λ

objective: determine λ from y

• assumption: λ varies across regressors x and parameter vector β

• propose to use the model λ = ex
Tβ to guarantee λ > 0

• based on one sample of y, x, the density of Poisson regression model is

f (y|x, β) = e−exp(xTβ)exp(xTβ)y/y!
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suppose we have many indenpendent samples: (yi, xi), i = 1, 2, . . . , N

each ith sample obyes the joint density (take the log )

log f (yi|xi, β) = −exp(xT
i β) + yix

T
i β − log yi!

objective: choose β that maximizes the joint density

log f (y1, . . . , yN |x1, . . . , xN , β) =
1

N

N∑
i=1

(
−exp(xT

i β) + yix
T
i β − log yi

)
(where we apply that all samples are independent)

• choosing β this way is called maximum likelihood estimation

• no explicit solution for β̂, but requires numerical methods to solve

• once we obtain β, we can determine λ
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Estimate model of conditional expectation

a typical model for estimating conditional expectation is

y = m(x, θ) + u, E[u|x] = 0

where u is an additive, unobservable error with a zero conditional mean

• define the error u = y −m(x, θ)

• when y is restricted on some range, u and x cannot be independent, e.g.

y ≥ 0 ⇒ u ≥ −m(x, θ)

• it is too strong to assume that ui and xi are independent
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Nonlinear least squares (NLS)

let Θ ⊂ Rp be the parameter space

assumptions: for some θ⋆ ∈ Θ, E[y|x] = m(x, θ⋆)

we seek for θ that solves the population problem

minimize
θ∈Θ

E{[y −m(x, θ)]2}

where the expectation is taken over the joint distribution of (x, y)

we can show that

E{[y −m(x, θ)]2} ≥ E{[y −m(x, θ⋆)]2}, ∀θ ∈ Θ

conclusion: θ⋆ indexing E[y|x] in fact minimizes the expected square error
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the nonlinear least-squares estimation is the problem:

minimize
θ∈Θ

1

2N

N∑
i=1

[yi −m(xi, θ)]
2

• it is the sample analogue problem, when samples of yi and xi are drawn from the
population

• θ̂ minimizes the sum of squared residuals

• the factor 1/2 simplifies the subsequent analysis

• can be solved by deriving the optimality condition: zero gradient condition

• no explicit solution

• the distribution of the NLS estimator depends on the dgp
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m-estimator

more generally, we define an m-estimator θ̂ of θ as

θ̂ = argmax
θ

QN(θ) :=
1

N

N∑
i=1

q(yi, xi, θ)

where

• q(·) is a scalar-valued function (but mapped from vector variables)

• QN is a sample average of q where N does not affect the minimization problem

• it is the sample analogue problem, as opposed to the population problem:

minimize
θ∈Θ

E[q(y, x, θ)]
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examples:

• NLS is a special case of m-estimator where q is the quadratic function:

q(y, x, θ) = (y −m(x, θ))2

• Poisson maximum likelihood estimation:

q(y, x, β) = −ex
Tβ + yxTβ − log y!

• the term m-estimator stands for maximum-likelihood estimation where

q(y, x, θ) = − log f (y|x, θ) called loglikelihood function

(-negative log of joint distribution of y given x and parameter θ)
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Properties of m-estimator

• identification

• consistency

• limit normal distribution

details in Cameron 2005, chapter 5.3
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Identification of the true value

recall that if for some θ⋆ ∈ Θ

E[y|x] = m(x, θ⋆)

then we say we have a correctly specified model for the conditional mean

and often we say that θ⋆ is called the true parameter value of θ

• when the model is correctly specified, θ⋆ is the unique solution to

minimize
θ∈Θ

E[q(y, x, θ)]

• identification requires that θ⋆ be the unique solution:

E[q(y, x, θ⋆)] < E[q(y, x, θ)], ∀θ ∈ Θ, θ ̸= θ⋆
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Consistency of m-estimator

consistency is established in the following manners

• suppose QN(θ)
p→ Q⋆(θ) as N → ∞ (or other sense of convergence)

• let θ⋆ be the solution that minimizes Q⋆(θ)

• let θ̂ be the solution that minimizes QN(θ)

• a consistency result is established to conclude if θ̂ p→ θ⋆

formal statements can be further read in Cameron 2005, chapter 5.3
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Limit normal distribution

we consider the behaviour of
√
N (θ̂ − θ⋆) as N → ∞

under appropriate assumptions this yields the limit distribution of an m-estimator

√
N (θ̂ − θ⋆)

d→ N (0, A−1BA−1)

where

• A is the probability limit of the term involving the Hessian of q

• B is the probability limit of the term involving the gradient of q
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Asymptotic Normality of m-estimators

define z = (x, y) (or data samples), so q(z, θ) denote q(y, x, θ)

notation: all derivatives here are w.r.t. θ

assumptions:

• θ⋆ is in the interior of Θ

• ∇q(z, ·) is continuously differentiable on the interior of Θ

• each element of ∇2q(z, θ) is bounded in absolute value by b(z) where
E[b(z)] < ∞

• A = E[∇2q(z, θ⋆)] is positive definite

• E[∇q(z, θ⋆)] = 0

• each element of ∇q(z, θ⋆) has finite second moment
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under the given assumptions plus the conditions for consistency and identification,
then we have √

N (θ̂ − θ⋆)
d→ N (0, A−1BA−1)

where

A = E[∇2q(z, θ⋆)], B = E[∇q(z, θ⋆)∇q(z, θ⋆)T ] ≜ cov(∇q(z, θ⋆))

thus the asymptotic covariance is given by

Avar(θ̂) = A−1BA−1/N
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Maximum Likelihood (ML) Estimation

a special case of m-estimator

• likelihood function

• ML estimator

• examples

• distribution of ML estimator
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Likelihood function

let f (y, x|θ) be the joint probability mass/density function

log-likelihood function is defined as

LN(θ) = log f (y, x|θ)

• because f (y, x|θ) can be viewed as a function of θ given x, y

• y and x denote the data from N samples, hence L depends on N

the likelihood principle: choose the value of θ that maximize LN(θ)

e.g.,LN(θ1) = 0.001, LN(θ2) = 0.003

θ2 gives a higher probability of the observed data occuring, hence is a better estimator
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Conditional likelihood

a likelihood function can be rewritten as

f (y, x|θ) = f (y|x, θ)f (x|θ)

which requires both conditional density of y given x and the marginal of x

• the goal of regression is to model the behavior of y given x

• so estimation is usually based on the conditional likelihood function:

LN(θ) = log f (y|x, θ)

(using that log is an increasing function)

• we can view x as nonrandom vectors that are set ahead of time and appear in the
unconditional distribution of y
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if the observations (yi, xi) are independent over i then the joint conditional density
is

f (y1, y2, . . . , yN |x1, x2, . . . , xN , θ) =

N∏
i=1

f (yi|xi, θ)

this leads to the conditional log-likelihood function

QN(θ) = (1/N )LN(θ) =
1

N

N∑
i=1

log f (yi|xi, θ)

where we divide by N so that the objective function is an average
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example 1 (Bernoulli RVs): let y1, . . . , yN be random samples from a Bernoulli
distribution

assume that the probability of success is given by p, a parameter to be estimated

the density function of Bernoulli distribution is

f (yi|p) = pyi(1− p)1−yi

if we assume yi’s are i.i.d. samples, the joint density function is

f (y1, y2, . . . , yN |p) =
N∏
i=1

pyi(1− p)1−yi

the likelihood function is

QN(θ)(1/N ) log f (y1, y2, . . . , yN |p) = (1/N )

N∑
i=1

yi log p + (1− yi) log(1− p)
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example 2 (Probit): suppose the observation value of y is binary

y = sign(xθ + e), e ∼ N (0, 1)

where sign(·) is the sign function, i.e., sign(y) = 1 if y ≥ 0 and 0 otherwise

to derive the conditional density of y, we first compute

P (y = 1|x, θ) = P (xθ + e > 0|x, θ) = P (e > −xθ|x, θ)
= 1− Φ(−xθ) = Φ(xθ)

P (y = 0|x, θ) = 1− Φ(xθ)

where Φ(·) denotes the standard normal CDF

therefore, the dentity of y given x and θ is

f (y|x, θ) = [Φ(xθ)]y[1− Φ(xθ)]1−y, y = 0, 1

and that f (y|x, θ) = 0 when y /∈ {0, 1}
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suppose i.i.d. N samples of observations are drawn: y1, y2, . . . , yN

the conditional density of yi given xi and θ is

f (yi|xi, θ) = [Φ(xiθ)]
yi[1− Φ(xiθ)]

1−yi, y = 0, 1

hence, the joint conditional density function is

f (y1, . . . , yN |x1, . . . , xN , θ) =

N∏
i=1

[Φ(xiθ)]
yi[1− Φ(xiθ)]

1−yi

the conditional loglikelihood function is

QN(θ) =
1

N

N∑
i=1

{yi log(Φ(xiθ)) + (1− yi) log(1− Φ(xiθ))}
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example 3 (Poisson regression): from page 9-4

• determine λ, the mean of the poisson distribution from observations yi, xi

• propose to use the model λ = ex
Tβ to guarantee λ > 0

• based on one sample of y, x, the density of Poisson regression model is

f (y|x, β) = e−exp(xTβ)exp(xTβ)y/y!

• when all samples are i.i.d., the conditional loglikelihod function is

QN(θ) =
1

N

N∑
i=1

log f (yi|xi, β) = (1/N )

N∑
i=1

−exp(xT
i β) + yix

T
i β − log yi!
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example 4 (Gaussian vectors): estimate the mean and covariance matrix of
Gaussian RVs

• observe a sequence of independent random vectors: y1, y2, . . . , yN
• each yk is an n-dimensional Gaussian: yk ∼ N (µ,Σ), but µ,Σ are unknown

the likelihood function of y1, . . . , yN given µ,Σ is

f (y1, . . . , yN |µ,Σ) = 1

(2π)Nn/2
· 1

|Σ|N/2
· exp − 1

2

N∑
k=1

(yk − µ)TΣ−1(yk − µ)

the conditional log-likelihood function is

QN(µ,Σ) = (1/N )L(µ,Σ)

= (n/2) log(2π) + (1/2) log detΣ−1 − (1/2N )

N∑
k=1

(yk − µ)TΣ−1(yk − µ)
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Maximum likelihood estimator (MLE)

the MLE is the estimator that maximizes the log-likelihood function

θ̂ = argmax
θ

log f (y, x|θ)

or maximizes the conditional log-likelihood function

θ̂ = argmax
θ

log f (y|x, θ)

• MLE is a special case of extremum estimators since it solves an optimization
problem, which typically has no analytical solution

• usually MLE is a local maximum that solves the zero gradient condition:

∂LN(θ)

∂θ
= 0
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the score of the loglikelihood for observation i is defined as

si(θ) =
∂ log f (yi|xi, θ)

∂θ
=

1

f (yi|xi, θ)
∇θf (yi|xi, θ)

• if θ ∈ Rn then si is the gradient vector of size n× 1

• the zero gradient condition for solving MLE is then described as

∂LN(θ)

∂θ
=

N∑
i=1

si(θ) =

N∑
i=1

1

f (yi|xi, θ)
∇θf (yi|xi, θ)

(the sum of the first derivatives of the log density)

• the gradient vector ∂LN (θ)
∂θ is called the score vector

• when the score is evaluated at θ⋆, it is called the efficient score
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Some ML estimators have closed-form expression

example 1 (Bernoulli): characterize the score likelihood

si(p) = yi
1

p
− (1− yi)

1

1− p

the zero gradient condition for solving MLE is

0 =

N∑
i=1

si(p) =
1

p

N∑
i=1

yi −
1

1− p

N∑
i=1

(1− yi)

with some algebra, we can solve that

p̂ =
1

N

N∑
i=1

yi

MLE of probability of success is in fact the portion of success from N samples
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example 4 (Gaussian): rewrite the relevant term in conditional likelihood

QN(Σ, µ) = log detΣ−1 − (1/N )

N∑
k=1

(yk − µ)TΣ−1(yk − µ)

two parameters to be estimated, but we can maximize over µ first

the gradient w.r.t. µ is set to zero

∂QN

∂µ
=

N∑
k=1

Σ−1(yk − µ) = 0 ⇒ µ̂ = (1/N )

N∑
k=1

yk

the likelihood function evaluated at µ̂ can be expressed as

QN(Σ, µ̂) = log detΣ−1 − tr(CΣ−1) ≜ log detX − tr(CX)

where C = (1/N )
∑N

k=1(yk − µ̂)(yk − µ̂)T is the sample covariance matrix
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taking the derivative w.r.t. X gives

∂QN

∂X
= X−1 − C ⇒ X = C−1

in conclusion, the ML estimators of Σ and µ are

µ̂ = (1/N )

N∑
k=1

yk,

Σ̂ = (1/N )

N∑
k=1

(yk − µ̂)(yk − µ̂)T

the sample mean and sample covariance matrix we already knew
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Most ML estimations require numerical algorithms

example 2 (Probit): the zero gradient condition of the likelihood function is

∂QN

∂θ
=

N∑
i=1

xiyif (xiθ)

Φ(xiθ)
+
(1− yi)(−fi(xiθ))xi

(1− Φ(xiθ))
= 0

(using Φ′(x) = f (x))

example 3 (Poisson): the zero gradient condition is

∂QN

∂β
=

N∑
i=1

(−xie
xT
i β + yixi) = 0

• the zero gradient (or first-order) condition is a nonlinear equation in θ

• numerically solving MLE involves nonlinear optimization such as Newton-Raphson
method
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Distribution of ML estimators

to derive asymptotic distributin of ML estimators, we discuss

• regularity condition

• Fisher information matrix

• theorem of asymptotic distribution
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Regularity conditions

the ML regularity conditions are that

1. the score vector has expected value zero:

E [∇θ log f (y|x, θ)] =
∫

∇θ log f (y|x, θ)f (y|x, θ)dy = 0

2. the expected Hessian is the expected outer product of the gradient

−E
[
∇2

θ log f (y|x, θ)
]
= E

[
(∇θ log f (y|x, θ))(∇θ log f (y|x, θ))T

]
when evalued at θ = θ⋆ it is known as the unconditional information matrix
equality (UIME)

the regularity conditions hold when the expectation is w.r.t f (y|x, θ)
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Fisher information matrix

the Fisher information matrix for θ contained in y (1 sample) is defined as

I(θ) = E
[
(∇θ log f (y, |x, θ))(∇θ log f (y|x, θ))T

]
the expectation of the outer product of the score vector

the Fisher information matrix for θ contained in y1, y2, . . . , yN is

IN(θ) = E
[
(∇θLN(θ))(∇θLN(θ))T

]
since y1, y2, . . . , yN are identical samples drawn from the same distribution

IN(θ) = NI(θ)
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• I(θ is a positive semidefinite matrix

• since the score vector has mean zero, IN(θ) is the variance of ∇θLN(θ)

• large IN(θ) means small changes in θ lead to larger change in LN

• the second regularity condition implies that

I(θ) = −E
[
∇2

θ log f (y|x, θ)
]

when evaluated at θ⋆ this is called the information matrix (IM) equality

• we will see later that I gives the quality of an estimator
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Distribution of ML estimator

assumptions:

1. the dgp is the conditional density f (yi|xi, θ) used to defined the likelihood
2. the density f (·) satisfies f (y, θ) = f (y, α) iff θ = α

3. the following matrix exists and is finite nonsingular

P = −E
[
1

N
∇2LN(θ⋆)

]

4. the order of differentiation and integration of L can be reversed

then the ML estimator θ̂ml is consistent for θ⋆ and
√
N (θ̂ml − θ⋆)

d→ N (0, P−1)
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• condition 1: the conditional density is correctly specified
• condition 1&2: ensure that θ⋆ is identified
• condition 3: analogous to the assumption on plimN−1XTX for OLS estimator
• condition 4: necessary for the regularity conditions to hold
• if (yi, xi) are identical for all i, then

E[∇2LN(θ⋆)] = E[

N∑
i=1

∇2 log f (yi|xi, θ
⋆)] = NE[∇2 log f (y|x, θ⋆)]

P is replaced by evaluation based on one sample of (y, x)

P = −E[∇2
θ log f (y|x, θ⋆)]

• asymptotic normality is obtained from the result on page 9-16 with A = −B

• P is essentially the Fisher information matrix, I(θ)
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Estimating the asymptotic covariance

asymptotic normality of ML:

θ̂ml
d→ N (θ⋆, P−1/N )

where the asymptotic covariance can be also expressed as

Avar(θ̂ml) = P−1/N = I(θ)−1/N = IN(θ)−1

at least three possible estimators of I converges to −E[∇2 log f (y|x, θ⋆)]

−(1/N )

N∑
i=1

∇2 log f (yi|θ), (1/N )

N∑
i=1

∇ log f (yi|θ)∇ log f (yi|θ)T

−(1/N )

N∑
i=1

Ey|x[∇2 log f (yi|xi, θ)]
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thus Âvar(θ̂ml) = ÎN(θ) = Î(θ)−1

N can be taken to be any of the three matrices

[
−

N∑
i=1

∇2 log f (yi|θ̂)
]−1

,

[
N∑
i=1

∇ log f (yi|θ̂))∇ log f (yi|θ̂))T
]−1

[
−

N∑
i=1

Ey|x[∇2 log f (yi|xi, θ̂))]

]−1
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example 1 (Bernoulli): the loglikelihood based on one sample is

log f (y|p) = y log p + (1− y) log(1− p)

the gradient and the Hessian of the loglikelihood (w.r.t. p) is given by

∇ log(y|p) = y

p
− 1− y

1− p
, ∇2 log(y|p) = − y

p2
+

1− y

(1− p)2

the Fisher information matrix (based on 1 sample) is

P = I(θ) = −E[∇2 log(y|p)] = −
(
p

p2
+

1− p

(1− p)2

)
=

1

p(1− p)
> 0

hence, I−1(θ) = p(1− p) and the asymptotic distribution is

√
N (p̂ml − p⋆)

d→ N (0, p(1− p))
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example 2 (Probit): consider the gradient of loglikelihood based on 1 sample

∇ log f (y|x, θ) = xyf (xθ)

Φ(xθ)
− (1− y)xf (xθ)

1− Φ(xθ)
=

xf (xθ)(y − Φ(xθ))

Φ(xθ)(1− Φ(xθ))

I(θ) = −E[∇2 log f ] = E[∇ log f · ∇ log fT ] = Ey|x

[
x2f 2(xθ)(y − Φ(xθ))2

Φ2(xθ)(1− Φ(xθ))2

]
=

x2f 2(xθ)

Φ2(xθ)(1− Φ(xθ))2
Ey|x[(y − Φ(xθ))2]

note that y is Bernoulli with mean p = Φ(xθ) and variance Φ(xθ)(1− Φ(xθ))

I(θ) = x2f 2(xθ) · Φ(xθ)(1− Φ(xθ))

Φ2(xθ)(1− Φ(xθ))2
=

x2f 2(xθ)

Φ(xθ)(1− Φ(xθ))

Âvar(θ̂) =
(

N∑
i=1

x2
if

2(xiθ)

Φ(xiθ)(1− Φ(xiθ))

)−1
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example 3 (Poisson): the gradient of loglikelihood based on 1 sample is

∇ log f (y|x, β) = −xex
Tβ + yx

it follows that

∇2 log f (y|x, β) = −xxTex
Tβ

I(θ) = −Ey|x[∇2 log f (y|x, β)] = xxTex
Tβ ≻ 0

the estimate of asymptotic covariance is

Âvar(β̂) =
[

N∑
i=1

ex
T
i β̂xix

T
i

]−1

Nonlinear estimators 9-43



example 4 (scalar Gaussian): here θ = (d, µ) where d = σ2 > 0

log f (y|θ) = −(1/2) log(d)− (1/2)(y − µ)2/d

∇ log f = (1/2)

[
−1/d + (y − µ)2/d2

2(y − µ)/d

]
∇2 log f = (1/2)

[
1/d2 − 2(y − µ)2/d3 −2(y − µ)/d2

−2(y − µ)/d2 −2/d

]
I(θ) = −E[∇2 log f ] = −(1/2)

[
1/d2 − 2/d2 0

0 −2/d

]
I(θ)−1 =

[
2d2 0
0 d

]
≻ 0

Âvar(σ̂2) = 2σ̂4/N

Âvar(µ̂) = σ̂2/N
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Cramér-Rao inequality

for any unbiased estimator θ̂ with the covariance matrix of the error:

cov(θ̂) = E(θ − θ̂)(θ − θ̂)T ,

we always have a lower bound on cov(θ̂):

cov(θ̂) ⪰ IN(θ)−1

• the RHS is called the Cramér-Rao lower bound, and also equal to I(θ)−1/N

• provide the minimal covariance matrix over all possible estimators θ̂
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• a consistent asymptotically normal estimator θ̂ of θ is said to be asymptotically
efficient if

Avar(θ̂) = I(θ)−1/N

• ML estimator has the smallest asymptotic variance among root-N consistent
estimators (requiring the correctly specified conditional density)
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Example of CR bound

estimating λ in exponential RVs: f (x) = λe−λx

log f (x|λ) = logλ− λx, ∇ log f (x|λ) = 1

λ
− x, ∇2 log f (x|λ) = − 1

λ2

therefore, I(λ) = 1/λ2 and CR bound is var(λ̂) ≥ λ2/N

estimating θ in Bernoulli RVs: p(x) = θx(1− θ)1−x

log p(x|θ) = x log θ + (1− x) log(1− θ), ∇ log p(x|θ) = x

θ
− (1− x)

(1− θ)
,

∇2 log p(x|θ) = − x

θ2
− (1− x)

(1− θ)2
, E[∇2 log p(x|θ)] = − θ

θ2
− 1− θ

(1− θ)2

therefore, I(θ) = 1
θ(1−θ) and CR bound is var(θ) ≥ θ(1− θ)/N
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Important proofs

• derivation of regularity conditions

• proof of Cramér-Rao bound
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Derivation of regularity conditions

• from
∫
f (y|θ)dy = 1, differentiate both sides w.r.t θ gives ∇θ

∫
f (y|θ)dy = 0

• if the range of integration does not depend on θ, by Leibniz integral rule∫
∇θf (y|θ)dy = 0

• from the derivative of log(·) function,

∇θf (y|θ) = ∇θ log f (y|θ) · f (y|θ)

• substitute into the previous equation∫
∇θ log f (y|θ) · f (y|θ)dy = 0 ⇒ E[∇θ log f (y|θ)] = 0

this is the regularity condition (1) w.r.t. to the density f (y|θ)
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• from
∫
∇θ log f (y|θ) · f (y|θ)dy = 0, differentiate both sides w.r.t. θ∫ {

∇2
θ log f (y|θ)f (y|θ) + (∇θ log f (y|θ))(∇θf (y|θ))T

}
dy = 0

• substitute ∇θf (y|θ) = ∇θ log f (y|θ) · f (y|θ) to the previous equation∫ {
∇2

θ log f (y|θ)f (y|θ) + (∇θ log f (y|θ))(∇θ log f (y|θ))Tf (y|θ)
}
dy = 0

• this is equivalent to

E[∇2
θ log f (y|θ)] = −E[(∇θ log f (y|θ))(∇θ log f (y|θ))T ]

when the expectation is w.r.t. the density f (y|θ)

this is the regularity condition (2)
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Proof of the Cramér-Rao inequality

with abuse of notation, we mean y = (y1, y2, . . . , yN) and f (y|θ) is a joint pdf

• since θ̂ is unbiased, we have θ =
∫
θ̂(y)f (y|θ)dy

• differentiate both sides w.r.t. θ and use ∇θ log f (y|θ) = ∇f (y|θ)/f (y|θ)

I =

∫
θ̂(y)∇ log f (y|θ)f (y|θ)dy = E[θ̂(y)∇ log f (y|θ)]

• from regularity condition (1), E[∇ log f (y|θ)] = 0 we have

E
[
(θ̂(y)− θ)∇ log f (y|θ)

]
= I

(E is taken w.r.t y, and θ is fixed)

Nonlinear estimators 9-51



consider a positive semidefinite matrix

E
[

θ̂(y)− θ
∇θ log f (y|θ)

] [
θ̂(y)− θ

∇θ log f (y|θ)

]T
⪰ 0

expand the product into the form [
A I
I D

]
where A = E(θ̂(y)− θ)(θ̂(y)− θ)T and

D = E[∇ log f (y|θ) · (∇ log f (y|θ))T ] = IN(θ)

the Schur complement of the (1, 1) block must be nonnegative:

A− ID−1I ⪰ 0

which implies the Cramér Rao inequality
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Nonlinear Least Squares

• nonlinear least squares (NLS) estimator

• optimality condition

• examples

• distribution of NLS estimator
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Nonlinear regression model

define the scalar dependent variable y to have conditional mean

E[y|x] = g(x, β)

• g is a scalar-valued specified function

• x is a vector of explantory variables

• β is a parameter vector

• for linear case, g(x, β) = xTβ
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Exponential regression example

the nonlinear model is
y = ex

Tβ + u

to study household income with sociodemographic variables

• y: household income

• x: age, age2, education, female, female · education, age · education
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The Box-Cox transformation

the Box-cox transformation for a fixed λ is

z(λ) = (zλ − 1)/λ

• when λ = 1 the transformation is linear

• when λ = 0, it is a log transformation – by L’Hopital)

a regression model can be generalized by using Box-cox transformation

y = β0 +

n∑
k=1

βkx
(λ)
k + u

• if λ is fixed, the regression is linear in βk’s

• if λ is also a parameter, the regression is nonlinear
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NLS estimator

the nonlinear least-squares estimation is the problem

minimize
β

QN(β) :=
1

2N

N∑
i=1

(yi − g(xi, β))
2

• given the samples (y1, x1), . . . , (yN , xN) are available

• ith is the sample index

• β̂nls minimizes the sum of squared residuals

• the factor 1/2 is added for simplifying the analysis
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Solving NLS

matrix notation: let

y = (y1, y2, . . . , yN), g(x, β) = (g(x1, β), g(x2, β), . . . , g(xN , β))

the NLS problem can be written in a vector form as

minimize
β

(1/2)∥y − g(x, β)∥22

so the optimality condition is

∇βQN(β) = Dg(x, β)T (y − g(x, β)) =
N∑
i=1

∇βg(xi, β)(yi − g(xi, β)) = 0

• no explicit solution for β̂nls satisfying the zero gradient condition

• one uses iterative methods (nonlinear optimization techniques) in solving NLS
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Exponential regression example

suppose y given x has exponential conditional mean: E[y|x] = ex
Tβ

the model of nonlinear regression is

y = ex
Tβ + u

• u is the error term

• the conditional mean is nonlinear in β, parameter to be estimated

• the NLS estimator must satisfy the zero gradient condition:

N∑
i=1

xie
xT
i β(yi − ex

T
i β) = 0
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Data-generating process in NLS

the dgp can be written as
yi = g(xi, β

⋆) + ui

• ui is additive error term

• β⋆ is the true value of parameter

• the conditional mean is correctly specified if

E[y|x] = g(x, β⋆)

meaning the error must satisfy E[u|x] = 0
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Distribution of NLS estimator

assumptions:

1. the model is yi = g(xi, β
⋆) + ui

2. in the dgp E[ui|xi] = 0 and E[uuT |x] = Λ

3. g(·) satisfies g(x, β) = g(x, α) iff β = α

4. the following matrix exists and is finite nonsingular

F (x, β) = (∇g(x1, β)
T , . . . ,∇g(xN , β)T ) ∈ RN×n

A = plim 1

N
F (x, β⋆)TF (x, β⋆)

= plim 1

N

N∑
i=1

∇g(xi, β
⋆)∇g(xi, β

⋆)T
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5. (1/
√
N )
∑N

i=1∇g(xi, β
⋆)ui

d→ N (0, B) where

B = plim 1

N
FT (x, β⋆)ΛF (x, β⋆)

= plim 1

N

N∑
i=1

σ2
i∇g(xi, β

⋆)∇g(xi, β
⋆)T

then the NLS estimator β̂nls defined to be a root of

∇βQN(β) = 0

is consistent for β⋆ and

√
N (β̂nls − β⋆)

d→ N (0, A−1BA−1)
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• condition 1-3: the regression is correctly specified and the regressors are
uncorrelated with the errors and that β⋆ is specified

• the errors can be heteroskedastic

• condition 4-5: assume the relevant limit results necessary for application of
theorem on page 9-16

special case: spherical errors with Λ = σ2I

• this implies B = σ2A and A−1BA−1 = σ2A−1

• nonlinear least-squares is then asymptotically efficient among LS estimators
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Variance matrix estimation for NLS

from page 9-61, the asymptotic distribution of NLS estimators is

β̂nls ∼ N (β⋆, (FTF )−1FTΛF (FTF )−1)

where F := F (x, β⋆) defined on page 9-61

• we consider independent errors with heteroskedasticity of unknown
functional form

• we provide estimates of A,B and the asymptotic covariance matrix
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let β̂ be a consistent estimate of β and define

û = y − g(x, β̂)

• estimate of A: Â = (1/N )FT (x, β̂)F (x, β̂)

• estimate of Λ: Λ̂ = diag(û2) (squared element-wise)

• estimate of B: B = (1/N )FT (x, β̂)Λ̂F (x, β̂)

these lead to the heteroskedastic-consistent estimate of the asymptotic variance
matrix of the NLS estimator:

Âvar(β̂nls) = (FTF )−1FT Λ̂F (FTF )−1

(note that now F := F (x, β̂); evaluated at β̂)
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Exponential regression example

the model is
y = ex

Tβ + u

where u has E[u|x] = 0 and u is potentially heteroskedastic

• g(x, β) = ex
Tβ, and ∇g(x, β) = xex

Tβ

• FTF := FT (x, β̂)F (x, β̂) =
∑N

i=1 xix
T
i e

2xT
i β̂

• Λ̂ = diag(û2) where û = y − ex
T β̂

• the heteroskedastic-robust estimate is

Âvar(β̂nls) =

(
N∑
i=1

xix
T
i e

2xT
i β̂

)−1( N∑
i=1

û2
ixix

T
i e

2xT
i β̂

)(
N∑
i=1

xix
T
i e

2xT
i β̂

)−1

Nonlinear estimators 9-66



References

Chapter 12-13 in
J.M. Wooldridge, Econometric Analysis of Cross Section and Panel Data, the MIT
press, 2010

Chapter 7 in
A.C. Cameron and P.K. Trivedi, Microeconometircs: Methods and Applications,
Cambridge, 2005

Chapter 7,14 in
W.H. Greene, Econometric Analysis, Prentice Hall, 2008

Nonlinear estimators 9-67


