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8. Hypothesis Testing

• introduction

• Wald test

• likelihood-based tests

• significance test for linear regression
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Introduction

elements of statistical tests

• null hypothesis, alternative hypothesis

• test statistics

• rejection region

• type of errors: type I and type II errors

• confidence intervals, p-values

examples of hypothesis tests:

• hypothesis tests for the mean, and for comparing the means

• hypothesis tests for the variance, and for comparing variances
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Testing procedures

a test consists of

• providing a statement of the hypotheses (H0 (null) and H1 (alternative))

• giving a rule that dictates if H0 should be rejected or not

the decision rule involves a test statistic calculated on observed data

the Neyman-Pearson methodology partitions the sample space into two regions

the set of values of the test statistic for which:

the null hypothesis is rejected rejection region
we fail to reject the null hypothesis acceptance region
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Test errors

since a test statistic is random, the same test can lead to different conclusions

• type I error: the test leads to reject H0 when it is true

• type II error: the test fails to reject H0 when it is false; sometimes called
false alarm

probabilities of the errors:

• let β be the probability of type II error

• the size of a test is the probability of a type I error and denoted by α

• the power of a test is the probability of rejecting a false H0 or (1− β)

α is known as significance level and typically controlled by an analyst

for a given α, we would like β to be as small as possible
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Some common tests

• normal test

• t-test

• F -test

• Chi-square test

e.g. a test is called a t-test if the test statistic follows t-distribution

two approaches of hypothesis test

• critical value approach

• p-value approach
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Critical value approach

Definition: the critical value (associated with a significance level α) is the value
of the known distribution of the test statistic such that the probability of type I
error is α

steps involved this test

1. define the null and alternative hypotheses.

2. assume the null hypothesis is true and calculate the value of the test statistic

3. set a small significance level (typically α = 0.01, 0.05, or 0.10) and determine
the corresponding critical value

4. compare the test statistic to the critical value

condition decision
the test statistic is more extreme than the critical value reject H0

the test statistic is less extreme than the critical value accept H0
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example: hypothesis test on the population mean

• samples N = 15, α = 0.05

• the test statistic is t∗ = x̄−µ

s/
√
N

and has t-distribution with N − 1 df

test H0 H1 critical value reject H0 if
right-tail µ = 3 µ > 3 tα,N−1 t∗ ≥ tα,N−1

left-tail µ = 3 µ < 3 −tα,N−1 t∗ ≤ −tα,N−1

two-tail µ = 3 µ ̸= 3 −tα/2,N−1, tα/2,N−1 t∗ ≥ tα/2,N−1 or t∗ ≤ −tα/2,N−1
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p-value approach

Definition: the p-value is the probability that we observe a more extreme test
statistic in the direction of H1

steps involved this test

1. define the null and alternative hypotheses.

2. assume the null hypothesis is true and calculate the value of the test statistic

3. calculate the p-value using the known distribution of the test statistic

4. set a significance level α (small value such as 0.01, 0.05)

5. compare the p-value to α

condition decision
p-value ≤ α reject H0

p-value ≥ α accept H0
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example: hypothesis test on the population mean (same as on page 8-7)

• samples N = 15, α = 0.01 (have only a 1% chance of making a Type I error)

• suppose the test statistic (calculated from data) is t∗ = 2

test H0 H1 p-value expression p-value
right-tail µ = 3 µ > 3 P (t14 ≥ 2) 0.0127
left-tail µ = 3 µ < 3 P (t14 ≤ −2) 0.0127
two-tail µ = 3 µ ̸= 3 P (t14 ≥ 2) + P (t14 ≤ −2) 0.0255
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= area A + area B

Right tail Left tail Two tails

right-tail/left-tail tests: reject H0, two-tail test: accept H0
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the two approaches assume H0 were true and determine

p-value critical value
the probability of observing a
more extreme test statistic in
the direction of the alternative
hypothesis than the one observed

whether or not the observed test
statistic is more extreme than
would be expected (called critical
value)

the null hypothesis is rejected if

p-value critical value
p− value ≤ α test statistic ≥ critical value
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Hypothesis testing

in this chapter, we discuss about the following tests

• Wald test

• likelihood ratio test

• Lagrange multiplier (or score) test
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Wald test

requires estimation of the unrestricted model

• linear hypotheses in linear models

• some Wald test statistics

• examples
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Linear hypotheses in linear models

a generalization of tests for linear strictions in the linear regression model

null and alternative hypotheses for a two-sided test of linear restrictions on the
regression parameters in the model: y = Xβ + u are

H0 : Rβ⋆ − b = 0

H1 : Rβ⋆ − b ̸= 0

where R ∈ Rm×n of full rank m, β ∈ Rn and m ≤ n

for example, one can test β1 = 1 and β2 − β3 = 2

the Wald test of Rβ⋆ − b = 0 is a test of closeness to zero of the sample
analogue Rβ̂ − b where β̂ is the unrestricted OLS estimator
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assumption: suppose u ∼ N (0, σ2I) then

β̂ ∼ N (β⋆, σ2(XTX)−1) ⇒ Rβ̂ − b ∼ N (0, σ2R(XTX)−1RT )

under H0 where Rβ⋆ − b = 0

define

û = y −Xβ̂ls, RSS =
N∑
i=1

û2
i , s2 = RSS/(N − n) = (N − n)−1

N∑
i=1

û2
i

Facts:

• s2 is an unbiased estimate for σ2

• (N − n)s2/σ2 ∼ χ2(N − n)
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Some Wald test statistics on linear models

• known variance σ2 (cannot be calculated in practice)

W1 = (Rβ̂ − b)T (σ2R(XTX)−1RT )−1(Rβ̂ − b) ∼ χ2(m) under H0

• replace σ2 by any consistent estimate s2 (not necessarily s2 on page 8-14)

W2 = (Rβ̂ − b)T (s2R(XTX)−1RT )−1(Rβ̂ − b)
a∼ χ2(m) under H0

• use s2 = (N − n)−1
∑

i û
2
i

W3 = (1/m)(Rβ̂−b)T (s2R(XTX)−1RT )−1(Rβ̂−b) ∼ F (m,N−n) under H0
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simple proof:

• W1 is in the form of zTA−1z where cov(z) = A, then

W1 = (A−1/2z)T (A−1/2z) ≜ quadratic form of standard Gaussian vector

use the result on page 3-51: quadratic form of Gaussian is Chi-square

• W2 = (σ2/s2)W1 and plim(σ2/s2) = 1, so W2 converges to a Chi-square
asymptotically (use Tranformation theorem on page 4-15)

• we can write W3 as a ratio between two scaled Chi-square RVs

W3 =
W1/m

s2/σ2
=

W1/m

((N − n)s2/σ2)/(N − n)
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Wald test of one restriction

for a test of one restriction on linear regression model:

y = Xβ + u, u ∼ N (0, σ2I) homoskedasticity and X is deterministic

the hypotheses are

H0 : a
Tβ − b = 0, H1 : a

Tβ − b ̸= 0

where a ∈ Rn and b ∈ R

for the LS estimate, it’s easy to show that aT β̂ − b is Gaussian with

E[aT β̂ − b] = 0, cov(aT β̂ − b) = aTσ2(XTX)−1a

under H0
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therefore, we can propose two Wald statistics

• Wald z-test statistic:

W4 =
aT β̂ − b√

aTσ2(XTX)−1a
∼ N (0, 1)

• Wald t-test statistic: use s2 = RSS/(N − n)

W5 =
aT β̂ − b√

aTs2(XTX)−1a
∼ tN−n

we can write W5 a ratio of standard normal to sqrt of scaled Chi-square:

W5 =
aT β̂ − b√

aTs2(XTX)−1a
=

aT β̂−b√
aTσ2(XTX)−1a√

(N−n)s2

σ2

(N−n)

∼ tN−n
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Example on one exclusion restriction

consider the exclusion restriction that β1 is zero: a = (1, 0, . . . , 0), b = 0

suppose we use s2 = RSS/(N − n) so that

Âvar(β̂) = s2(XTX)−1, Âvar(β̂1) =
(
s2(XTX)−1

)
11

Wald test statistics for exclusion restriction are

W3 =
β̂2
1

Âvar(β̂1)
∼ F (1, N − n)

W5 =
β̂1√

Âvar(β̂1)

∼ tN−n

W2 =
β̂2
1

Âvar(β̂1)

a∼ χ2(1) if another consistent s2 is used
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Nonlinear hypotheses

consider hypothesis tests of m restriction that are nonlinear in θ

let θ ∈ Rn and r(θ) : Rn → Rm be restriction function

the null and alternative hypotheses for a two-sided tests are

H0 : r(θ
⋆) = 0, H1 : r(θ

⋆) ̸= 0

examples: r(θ) = θ2 = 0 or r(θ) = θ1
θ2

− 1 = 0

assumptions:

• the Jacobian matrix of r: R(θ) = Dr(θ) ∈ Rm×n is full rank m at θ⋆

• parameters are not at the boundary of Θ under H0, e.g., we rule out

H0 : θ1 = 0 if the model requires θ1 ≥ 0
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Wald test statistic for nonlinear restriction

intuition: obtain θ̂ w/o imposing restrictions and see if r(θ̂) ≈ 0

the Wald test statistic

W = r(θ̂)T [R(θ̂)Âvar(θ̂)R(θ̂)T ]−1r(θ̂)

is asymptotically χ2(m) distributed under H0

two equivalent conditions in testing:

• H0 is rejected against H1 at significance level α if W > χ2
α(m)

• H0 is rejected at level α if the p-value: P (χ2(m) > W ) < α
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Example of nonlinear restriction

let θ ∈ Rn and consider a test of single nonlinear restriction

H0 : r(θ) = θ1/θ2 − 1 = 0

then R(θ) ∈ R1×n and given by

R(θ) =
[
1/θ2 −θ1/θ

2
2 0 · · · 0

]
let aij be (i, j) entry of Âvar(θ̂)

W =

(
θ1
θ2

− 1

)2

[ 1
θ2

−θ1
θ22

0
]a11 a12 · · ·

a21 a22 · · ·
... ... . . .




1
θ2

−θ1
θ22
0




−1

= [θ2(θ1 − θ2)]
2
(
θ22a11 − 2θ1θ2a12 + θ21a22

)−1 a∼ χ2(1)

(θ is evaluated at θ̂ and the sample size N is hidden in aij)
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Derivation of the Wald statistic

assumption: θ̂ has a normal limit distribution:

√
N(θ̂ − θ⋆)

d→ N (0, P )

proof: starting from the first-order Taylor expansion of r under H0

• expand r around θ⋆

r(θ̂) = r(θ⋆) +∇r(ζ)(θ̂ − θ⋆), ζ is between θ̂ and θ⋆

• write
√
N(r(θ̂)− r(θ⋆)) = R(ζ)

√
N(θ̂ − θ⋆) and note that

R(ζ)
p→ R(θ⋆),

√
N(θ̂ − θ⋆)

d→ N (0, P )

(use that R is continuous, apply Slustky and sandwich theorems)
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• by Product Limit Normal Rule on page 4-16

√
N(r(θ̂)− r(θ⋆))

d→ N (0, R(θ⋆)PR(θ⋆)T )

• under H0: r(θ
⋆) = 0 and use Avar(θ̂) = P/N , we can write

r(θ̂)
d→ N (0, R(θ⋆)Avar(θ̂)R(θ⋆)T )

• a quadratic form of standard Gaussian is a chi-square (on page 3-51)

r(θ̂)T
[
R(θ⋆)Avar(θ̂)R(θ⋆)T

]−1

r(θ̂)
a∼ χ2(m)

• the Wald test statistic is obtained by using estimates of R(θ⋆) and Avar(θ̂)

R(θ̂), Âvar(θ̂) = P̂ /N
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Likelihood-based tests

hypothesis testings when the likelihood function is known

• Wald test

• likelihood ratio (LR) test

• Lagrange multiplier (or score) test

we denote

• L(θ) = f(y1, . . . , yN |x1, . . . , xN , θ) – likelihood function

• r(θ) : Rn → Rm restriction function with H0 : r(θ) = 0

• θ̂u: unrestricted MLE which maximizes L

• θ̂r: restricted MLE which maximizes the Lagrangian logL(θ)− λTr(θ)
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Likelihood ratio test

idea: if H0 is true, the unconstrained and constrained maximization of logL
should be the same

it can be shown that the likelihood ratio test statistic:

LR = −2[logL(θ̂r)− logL(θ̂u)]

is asymptotically chi-square distributed under H0 with degree of freedom m

• if H0 is true, r(θ̂u) should be close to zero

• note that logL(θ̂u) is always greater than logL(θ̂r)

• LR test requires both θ̂u and θ̂r

• m is the number of restriction equations
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Wald test

idea: if H0 is true, θ̂u should satisfy r(θ̂u) ≈ 0

• specifically for MLE, the estimate covariance satisfies CR bound and IM
equality:

Avar(θ̂u) = IN(θ)−1 = −
(
E[∇2 logL(θ⋆)]

)−1 ≜ P/N

• this leads to the Wald test statistic

W = r(θ̂u)
T
[
R(θ̂u)Âvar(θ̂u)R(θ̂u)

T
]−1

r(θ̂u)
a∼ χ2(m)

where Âvar(θ̂u) is an estimated asymptotic covariance of θ̂u

• the advantage over LR test is that only θ̂u is required

Hypothesis Testing 8-27



Lagrange multiplier (or score) test

ideas:

• we know that ∇ logL(θ̂u) = 0 (because it’s an unconstrained maximization)

• if H0 is true, then maximum should also occur at θ̂r: ∇ logL(θ̂r) ≈ 0

• LM test is called score test because ∇ logL(θ) is the score vector

maximizing the Lagrangian: logL(θ)− λTr(θ) implies that

∇ logL(θ̂r) = ∇r(θ̂r)
Tλ

tests based on λ are equivalent to tests based on ∇ logL(θ̂r) because we assume
∇r(θ) to be full rank
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the LM test requires the asymptotic distribution of logL(θ̂r)

note that the asymptotic covariance of ∇ logL(θ̂r) is the information matrix

this leads to the Lagrange multiplier test or score test statistic

LM = (∇ logL(θ̂r))
T [IN(θ̂r)]

−1(∇ logL(θ̂r))

which is asymptotically chi-square with m degree of freedoms
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Graphical interpretation of loglikelihood based tests

Wald

Lagrange
multiplier

0

Likelihood
ratio

W.H. Greene, Econometric Analysis, Prentice Hall, 2008

• Wald test checks if r(θ̂u) ≈ 0

• LR test checks the difference between
logL(θ̂u) and logL(θ̂r)

• LM test checks that the slope of log-
likelihood at the restricted estimator
should be near zero
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Gaussian example

consider i.i.d. example with yi ∈ N (µ⋆, 1) with hypothesis

H0 : µ
⋆ = µ0, (µ0 is just a constant value, and given)

therefore, µ̂u = ȳ and µ̂r = µ0 (restricted solution)

logL(µ) = −(N/2) log 2π − (1/2)
∑
i

(yi − µ)2

∇µ logL(µ) =
∑
i

(yi − µ)

• LR test: with some algebra, we can write that

LR = 2[logL(ȳ)− logL(µ0)] = N(ȳ − µ0)
2

• Wald test: we check if ȳ − µ0 ≈ 0

Hypothesis Testing 8-31



– under H0, the true mean of yi is µ0, so E[ȳ] = µ0 and var(ȳ) = 1/N
– hence, (ȳ − µ0) ∼ N (0, 1/N)

W = (ȳ − µ0)(1/N)−1(ȳ − µ0) = N(ȳ − µ0)
2

• LM test: check if ∇ logL(µ0) = N(ȳ − µ0) ≈ 0

∇ logL(µ0) =
∑
i

(yi − µ0) = N(ȳ − µ0)

LM is just a rescaling of (ȳ − µ0), so LM = W

in conclusion, the three statistics are equivalent aysmptotically

LM = W = LR

but they differ in finite samples
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MATLAB example

the example is based on estimating the mean of a Gaussian model

N = 50; mu = 2; y = mu + randn(N,1); ybar = mean(y); mu0 = mu;

dof = 1; % number of restrictions

% Wald

rw = ybar-mu0; Rw = 1; EstCov = 1/N;

[h,pValue,stat,cValue] = waldtest(rw,Rw,EstCov)

% LR

uLL = -(1/2)*sum((y-ybar).^2);rLL = -(1/2)*sum((y-mu0).^2);

[h,pValue] = lratiotest(uLL,rLL,dof)

% LM

score = N*(ybar-mu0);EstCov = 1/N; % I_N(\theta) = N

[h,pValue] = lmtest(score,EstCov,dof)
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the three tests are the same and the result is

ybar =

1.9770

h =

0

pValue =

0.8711

stat =

0.0263

cValue =

3.8415

the p-value is greater than α = 0.05 (default value), so H0 is accepted
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Poisson regression example

consider the log-likelihood function in the Poisson regression model

logL(β) =

N∑
i=1

[−ex
T
i β + yix

T
i β − log yi!]

suppose β = (β1, β2) and H0 : r(β) = β2 = 0

the first and second derivatives of logL(β) are

∇ logL(β) =
∑
i

(yi − ex
T
i β)xi, ∇2 logL(β) = −

∑
i

ex
T
i βxix

T
i

• unrestricted MLE, β̂u = (β̂u1, β̂u2), satisfies ∇ logL(β) = 0

• restricted MLE, β̂r = (β̂r1, 0) where β̂r1 solves
∑

i(yi − ex
T
i1β1)xi1 = 0
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all the there statistics can be derived as

• LR test: calculate the fitted log-likelihood of β̂u and β̂r

• Wald test:

– compute the asympototic covariance of β̂u and its estimate

Avar(β̂u) = IN(β)−1 = −E[∇2 logL(β)]−1 =

(
E[
∑
i

ex
T
i βxix

T
i ]

)−1

Âvar(β̂u) =

(∑
i

ex
T
i β̂uxix

T
i

)−1

– from r(β) = β̂2 and R(β) =
[
0 I

]
, Wald statistic is

W = β̂T
u2

(
Âvar(β̂u)22

)−1

β̂u2
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where Âvar(β̂u)22 denotes the (2, 2) block of Âvar(β̂u)

• LM test:

– it is based on ∇ logL(β̂r)

∇ logL(β̂r) =
∑
i

(yi − ex
T
i β̂r)xi =

∑
i

xiûi where ûi = yi − ex
T
i1β̂r1

– the LM statistic is

LM =

[∑
i

xiûi

]T [∑
i

ex
T
i1β̂r1xix

T
i

]−1 [∑
i

xiûi

]

– some further simplification is possible since
∑

i xi1ûi = 0 (from first-order
condition)

– LM test here is based on the correlation between the omitted regressors
and the residual, û
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MATLAB example

data generation and solve for unrestricted and restricted MLE estimates

% Data generation

beta = [1 0]’; % The true value

x = randn(N,2); y = zeros(N,1);

lambda = zeros(N,1);

for k=1:N,

lambda(k) = exp(x(k,:)*beta);

y(k) = poissrnd(lambda(k)); % generate samples of y

end

% minimization of -Loglikelihood function (change the sign of LogL)

negLogFun = @(beta) -sum(-exp( sum(x.*repmat(beta’,N,1),2) ) ...

+y.*sum(x.*repmat(beta’,N,1),2) );

beta0 = [2 2]’; % initial value

[beta_u,uLogL] = fminunc(negLogFun,beta0);

uLogL = -uLogL; % change back the sign of LogL
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% solving for restricted MLE

negLogFun_r = @(beta) -sum(-exp( sum(x(:,1).*repmat(beta(1),N,1),2))...

+y.*sum(x(:,1).*repmat(beta(1),N,1),2) ); % when beta2 = 0

[beta_r1,rLogL] = fminunc(negLogFun_r,beta0(1))

rLogL = -rLogL; beta_r = [beta_r1 0]’;

The two estimates are

beta_u =

1.0533

0.0847

beta_r =

1.0611

0
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Wald test

TMP = 0;

for ii=1:N,

TMP = TMP + exp(x(ii,:)*beta_u)*x(ii,:)’*x(ii,:);

end

rw = beta_u(2); Rw = [0 1]; EstCovw = TMP\eye(2)

[h,pValue,stat,cValue] = waldtest(rw,Rw,EstCovw)

h =

0

pValue =

0.4718

stat =

0.5177

cValue =

3.8415

accept H0 since p-value is greater than α = 0.05
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LR test

LR = 2*(uLogL - rLogL)

[h,pValue,stat,cValue] = lratiotest(uLogL,rLogL,dof)

LR =

0.5074

h =

0

pValue =

0.4763

stat =

0.5074

cValue =

3.8415
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LM test

uhat = y - exp(sum(x.*repmat(beta_r’,N,1),2)) ;

scorei = x.*repmat(uhat,1,2) ; scorei = scorei’;

score = sum(scorei,2);

% expect of outer product of gradient of LogL

EstCovlm1 = scorei*scorei’;

EstCovlm2 = 0; % expectation of Hessian of LogL

for ii=1:N,

EstCovlm2 = EstCovlm2 + exp(x(ii,:)*beta_r)*x(ii,:)’*x(ii,:);

end

% note that EstCovlm1 and EstCovlm2 should be close to each other

% choose to use EstCovlm2

EstCovlm = EstCovlm2\eye(2); % covariance matrix of parameters

[h,pValue,stat,cValue] = lmtest(score,EstCovlm,dof)
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h =

0

pValue =

0.4727

stat =

0.5157

cValue =

3.8415

all the three tests agree what we should accept H0 since p-value is greater than α
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if we change the true value to β = (1,−1) then

β̂u = (1.0954,−1.0916), β̂r = (1.3942, 0)

we found that all the three tests reject H0, i.e., β2 is not close to zero
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Summary

the three tests are asymptotically equivalent under H0 but they can behave
rather differently in a small sample

• LR test requires calculation of both restricted and unrestricted estimators

• Wald test requires only unrestricted estimator

• LM test requires only restricted estimator

the choice among them typically depends on the ease of computation

Hypothesis Testing 8-45



Hypothesis Testing

• introduction

• Wald test

• likelihood-based tests

• significance test for linear regression
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Recap of linear regression

a linear regression model is
y = Xβ + u

homoskedasticity assumption: ui has the same variance for all i, given by σ2

• prediction (fitted) error: û := ŷ − y = Xβ̂ − y

• residual sum of squares: RSS = ∥û∥22

• a consistent estimate of σ2: s2 = RSS/(N − n)

• (N − n)s2 ∼ χ2(N − n)

• square root of s2 is called standard error of the regression

• Avar(β̂) = s2(XTX)−1 (can replace s2 by any consistent σ̂2)
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Common tests for linear regression

• testing a hypothesis about a coefficient

H0 : βk = 0 VS H1 : βk ̸= 0

we can use both t and F statistics

• testing using the fit of the regression

H0 : reduced model VS H1 : full model

if H0 were true, the reduced model (βk = 0) would lead to smaller prediction
error than that of the full model (βk ̸= 0)
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Testing a hypothesis about a coefficient

statistics for testing hypotheses:

H0 : βk = 0 VS H1 : βk ̸= 0

• β̂k√
s2((XTX)−1)kk

∼ tN−n

• (β̂k)
2√

s2((XTX)−1)kk
∼ F1,N−n

the above statistics are Wald statistics derived on page 8-17 through 8-19

• the term
√
s2((XTX)−1)kk is referred to standard error of the coefficient

• the expression of SE can be simplified or derived in many ways (please check)

• e.g. R use t-statistic (two-tail test)
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Testing using the fit of the regression

hypotheses are based on the fitting quality of reduced/full models

H0 : reduced model VS H1 : full model

reduced model: βk = 0 and full model: βk ̸= 0

the F -statistic used in this test

(RSSR − RSSF )

RSSF/(N − n)
∼ F (1, N − n)

• RSSR and RSSF are the residual sum squares of reduced and full models

• RSSR cannot be smaller than RSSF , so if H0 were true, then the F statistic
would be zero

• e.g. fitlm in MATLAB use this F statistic, or in ANOVA table
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MATLAB example

perform t-test using α = 0.05 and the true parameter is β = (1, 0,−1, 0.5)

realization 1: N = 100

>> [btrue b SE pvalue2side] =

1.0000 1.0172 0.1087 0.0000

0 0.1675 0.0906 0.0675

-1.0000 -1.0701 0.1046 0.0000

0.5000 0.5328 0.1007 0.0000

• β̂ is close to β

• it’s not clear if β̂2 is zero but the test decides β̂2 = 0

• note that all coefficients have pretty much the same SE
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realization 2: N = 10

>> [btrue b SE pvalue2side] =

1.0000 1.0077 0.2894 0.0131

0 0.1282 0.4342 0.7778

-1.0000 -1.5866 0.2989 0.0018

0.5000 0.2145 0.2402 0.4062

realization 3: N = 10

>> [btrue b SE pvalue2side] =

1.0000 0.8008 0.3743 0.0762

0 -0.5641 0.5442 0.3399

-1.0000 -1.1915 0.5117 0.0588

0.5000 0.6932 0.4985 0.2137

• some of β̂ is close to the true value but some is not

• the test 2 decides β̂2 and β̂4 are zero while the test 3 decides all β are zero

• the sample size N affects type II error (fails to reject H0) and we get different
results from different data sets
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Summary

• common tests are available in many statistical softwares, e.g, minitab, lm in
R, fitlm in MATLAB,

• one should use with care and interpret results correctly

• an estimator is random; one cannot trust its value calculated based on a data
set

• examining statistical properties of an estimator is preferred
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