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8. LMI in Control Theory

e the positive-real Lemma

e the bounded-real Lemma

e stabilization

e constraints on input

e decay rate

e reachable set with unit-energy inputs

e bound on output energy
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Positive-real lemma

a linear system
*=Ax+ Bu, y=Cx+ Du

is said to be passive if

/T u(t) y(t)dt > 0

for all solutions x(t) with 2(0) = 0.

passivity is equivalent to the transfer matrix H being positive-real:
H(s)+ H(s)* >0, forall Re(s)>0

where
H(s)=C(sI —A)™'B+D
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assume A is stable and (A, B, (') is minimal

the linear system is passive if and only if the LMI

T AT
AP+ PA PB-C <0

P~=0. I'prp_c —(D4+D7| =

Is feasible

if we assume D + DT -~ 0, the above LMl is equivalent to

A"P+ PA+ (PB-CH(D+ D) Y (PB-CH' =0

the LMI is feasible if and only if there exists P > 0 such that

AP+ PA+ (PB-CH(D+ D" Y PB-CHT =0

(just the equality substituted)
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Bounded-real Lemma

a linear system is said to be nonexpansive if

| v < [ uwuoa

for all solutions z(t) with £(0) =0

nonexpansitivity is equivalent to the transfer matrix H is bounded:
H(s)*H(s) < I, forall Re(s)>0

this is sometimes expressed as ||H || < 1 where
| H||so = sup{||H(s)|| | Re(s) > 0}

Is called the H,, norm of the transfer matrix H
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assume A is stable and (A, B, (') is minimal

a linear system is nonexpansive if and only if the LMI

AP+ PA+CTC PB+C'D <0

P-0, BTP + DTC pID—1 | =

is feasible
furthermore, if DTD < I
the LMI is feasible if and only if the ARE
A'P+PA+CTC+ (PB+C'DYI-D'D)y"Y(PB+C'D)l' =0
has a real solution P = P*

(again, substitute the inequality with equality)
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Stabilizability
the pair (A, B) is stabilizable if there exists K such that
A+ BK s stable
the closed-loop system is stable if and only if there exists P > 0
(A+BK)'P+ P(A+BK) <0
or equivalently, there exists () > 0 such that
Q(A+ BK)"' + (A+ BK)Q <0
this is not LMI in (), K but by a change of variable Y = K (), we have
AQ + QAT + BY +YTBT <0
which is an LMl in () and Y
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Holdable ellipsoids

we say that the ellipsoid
E={zcR"|2'Q 'z <1}
is holdable for the system & = Ax + Bu if there exists K such that

& is invariant for the closed-loop system with ©u = Kz

example: existence of a quadratic Lyapunov function that is decreasing:
V() =2t)'Q tz(t) < 2(0)'Q 'x(0), forallt

therefore () from the LMI in page 8-6 characterizes holdable ellipsoids
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Constraints on the control input

design u = Kx by picking (), Y that satisfy the stabilizability condition

in addtion, if 2(0)YQ12(0) < ¢ then xz(t) belongs to the ellipsoid
E={z|2"Q 'z <1}

for all ¢

we will derive LMIs that guarantee a constraint on input norm

e 2-norm

<
max [[u(t)ll2 < p

® OO-nNorm

<
max [u(t)]loe < p
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2-norm constraint on the control input
we can derive the maximum 2-norm of u by

_ —1 < —1
rgggllﬂ(t)\lz r{lggHYQ z(t)]2 < max |[Y Q™ x|z

— \/)\maX(Q—l/2yTYQ—1/2)

note that if A < al then A\.x(A) < «

therefore the constraint ||u||2 < u is enforced for all ¢ if
iC(O)TQ_lx(O) <1, Q—1/2yTYQ—1/2 < M2I

which can be expressed in LMI as

[w<10> x(g)T]iO’ [f? Zj}]”

hold, where (), Y satisfies the stabilizability conditions
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Constraint on magnitude peak of the input

we can derive a bound on oco-norm of u as

o —1
I?Zachu(t)Hoo = rgggcllYQ (1) o

< max||YQ 'zl
xe&

— nax \/(YQ_lyT)iz‘
Recall: the last step follows from the fact that

e let ay,...,al be row vectors of a matrix A
o ||Azx| is maximized over ||z||2 < 1 when x = ay/||ax||

e [ is the index such that ||ax||2 is maximum

e hence max|,|,<1 [|A%||oo = maxy [Jag|l2 = maxy \/(AAT)kk
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therefore, the constraint ||u(t)||co < p for t > 0 if
r(O)TQ12(0), (YQ Y1), <pu?  foralli

which can be represented in LMI as

T
[xl x(())]zo, [X Y]io, Xy < 1

0) @ YtoQ

where () > 0 and Y satisfy the stabilization conditions
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Decay rate

define V = 21’ Pz and if

Viz) < —2aV(x)
for all trajectories, then

V(z(t) < V(@(0)e ™ = [z@)] < e */r(P)]z(0)]

therefore, the decay rate is at least «

the condition V(z) < —2aV () is equivalent to
A"P+ PA+2aP <0
the largest decay rate can be found by solving

maximize «
subjectto P >0
ATP+ PA+2aP <0
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Reachable sets with unit-energy inputs

consider a linear system
= Ax 4+ Bu

and all trajectories that start from x(0) =0

denote R, the set of reachable states with unit-energy input

é{ |/ Hdt < 1, T>0}

we can bound R, by ellipsoids of the form

52{:6|:ETP:C§1}, P=0
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we can show that £ contains the reachable set R,

suppose V (z) = 21 Pz satisfies
V <ulu, forallz,u

integrating both sides gives
T
Vi(z(T)) —V(z(0)) < / w'u dt
0
since V(z(0)) = 0, we have
T
(T Px(T) = V(x(T)) < / wudt <1
0

for every T' > 0 and every input u such that fOT wludt <1
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the condition V < uwTu is equivalent to

T
A*P+PA PB <0

P >0, BT P 72

which can be expressed as an LM| in Q = P!
Q >0, AQ+QA" +BB' <0
for LTI systems, the ellipsoid bound is sharp with P = W ! where

W, £ /OO eAtBBTeATtdt
0

is the controllability Grammian and W, satisfies

AW.+W. A" + BBT =0
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Bounds on output energy

we seek the maximum output energy given a certain initial state

@)
max{ / ylydt
0

where x(0) is given and the maximum is taken over A, C

x = Ax, y:C':E}

suppose there exists V' = 2! Pz such that
P=0, V(z)<-—yly, foreveryz,y

integrating both sides gives

V(@(T)) - V(z(0)) < - / YTyt

since V(z(T)) > 0, then V(x(0)) is an upper bound on the maximum
energy of y
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the condition

P=0, V(z)<-—yly, foreveryz,y

Is equivalent to
P=0, A'P+PA+CTC=0

therefore, we can obtain the best upper bound by solving

minimize  2(0)1 Pxz(0)
subject to P > 0, ATP4+PA+CTC <0

again the bound is sharp for LTI systems and the solution is given by
P=w, W,2 / A tCT Ot
0
and W, satisfies the Lyapunov equation

ATW,+ W,A+CTC =0
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