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8. LMI in Control Theory

• the positive-real Lemma

• the bounded-real Lemma

• stabilization

• constraints on input

• decay rate

• reachable set with unit-energy inputs

• bound on output energy
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Positive-real lemma

a linear system
ẋ = Ax+ Bu, y = Cx+Du

is said to be passive if

∫ T

0

u(t)Ty(t)dt ≥ 0

for all solutions x(t) with x(0) = 0.

passivity is equivalent to the transfer matrix H being positive-real:

H(s) +H(s)∗ ≥ 0, for all Re(s) > 0

where
H(s) = C(sI −A)−1B +D
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assume A is stable and (A,B,C) is minimal

the linear system is passive if and only if the LMI

P ≻ 0,

[

ATP + PA PB − CT

BTP − C −(D +DT )

]

� 0

is feasible

if we assume D +DT ≻ 0, the above LMI is equivalent to

ATP + PA+ (PB − CT )(D +DT )−1(PB − CT )T � 0

the LMI is feasible if and only if there exists P ≻ 0 such that

ATP + PA+ (PB − CT )(D +DT )−1(PB − CT )T = 0

(just the equality substituted)
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Bounded-real Lemma

a linear system is said to be nonexpansive if

∫ T

0

y(t)Ty(t)dt ≤

∫ T

0

u(t)Tu(t)dt

for all solutions x(t) with x(0) = 0

nonexpansitivity is equivalent to the transfer matrix H is bounded :

H(s)∗H(s) ≤ I, for all Re(s) > 0

this is sometimes expressed as ‖H‖∞ ≤ 1 where

‖H‖∞ , sup{‖H(s)‖ | Re(s) > 0}

is called the H∞ norm of the transfer matrix H
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assume A is stable and (A,B,C) is minimal

a linear system is nonexpansive if and only if the LMI

P ≻ 0,

[

ATP + PA+ CTC PB + CTD
BTP +DTC DTD − I

]

� 0

is feasible

furthermore, if DTD ≺ I

the LMI is feasible if and only if the ARE

ATP + PA+ CTC + (PB + CTD)(I −DTD)−1(PB + CTD)T = 0

has a real solution P = P T

(again, substitute the inequality with equality)
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Stabilizability

the pair (A,B) is stabilizable if there exists K such that

A+BK is stable

the closed-loop system is stable if and only if there exists P ≻ 0

(A+BK)TP + P (A+BK) ≺ 0

or equivalently, there exists Q ≻ 0 such that

Q(A+BK)T + (A+BK)Q ≺ 0

this is not LMI in Q,K but by a change of variable Y = KQ, we have

AQ+QAT +BY + Y TBT ≺ 0

which is an LMI in Q and Y
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Holdable ellipsoids

we say that the ellipsoid

E = {x ∈ Rn | xTQ−1x ≤ 1}

is holdable for the system ẋ = Ax+ Bu if there exists K such that

E is invariant for the closed-loop system with u = Kx

example: existence of a quadratic Lyapunov function that is decreasing:

V (t) = x(t)TQ−1x(t) ≤ x(0)TQ−1x(0), for all t

therefore Q from the LMI in page 8-6 characterizes holdable ellipsoids
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Constraints on the control input

design u = Kx by picking Q, Y that satisfy the stabilizability condition

in addtion, if x(0)TQ−1x(0) ≤ q then x(t) belongs to the ellipsoid

E =
{

x | xTQ−1x ≤ 1
}

for all t

we will derive LMIs that guarantee a constraint on input norm

• 2-norm
max
t≥0

‖u(t)‖2 ≤ µ

• ∞-norm
max
t≥0

‖u(t)‖∞ ≤ µ
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2-norm constraint on the control input

we can derive the maximum 2-norm of u by

max
t≥0

‖u(t)‖2 = max
t≥0

‖Y Q−1x(t)‖2 ≤ max
x∈E

‖Y Q−1x‖2

=
√

λmax(Q−1/2Y TY Q−1/2)

note that if A � αI then λmax(A) ≤ α

therefore the constraint ‖u‖2 ≤ µ is enforced for all t if

x(0)TQ−1x(0) ≤ 1, Q−1/2Y TY Q−1/2 � µ2I

which can be expressed in LMI as

[

1 x(0)T

x(0) Q

]

� 0,

[

Q Y T

Y µ2I

]

� 0

hold, where Q, Y satisfies the stabilizability conditions
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Constraint on magnitude peak of the input

we can derive a bound on ∞-norm of u as

max
t≥0

‖u(t)‖∞ = max
t≥0

‖Y Q−1x(t)‖∞

≤ max
x∈E

‖Y Q−1x‖∞

= max
i

√

(Y Q−1Y T )ii

Recall: the last step follows from the fact that

• let a1, . . . , a
T
n be row vectors of a matrix A

• ‖Ax‖∞ is maximized over ‖x‖2 ≤ 1 when x = ak/‖ak‖

• k is the index such that ‖ak‖2 is maximum

• hence max‖x‖2≤1 ‖Ax‖∞ = maxk ‖ak‖2 = maxk
√

(AAT )kk
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therefore, the constraint ‖u(t)‖∞ ≤ µ for t ≥ 0 if

x(0)TQ−1x(0), (Y Q−1Y T )ii ≤ µ2, for all i

which can be represented in LMI as

[

1 x(0)T

x(0) Q

]

� 0,

[

X Y
Y T Q

]

� 0, Xii ≤ µ2

where Q ≻ 0 and Y satisfy the stabilization conditions
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Decay rate

define V = zTPz and if

V̇ (x) ≤ −2αV (x)

for all trajectories, then

V (x(t)) ≤ V (x(0))e−2αt =⇒ ‖x(t)‖ ≤ e−αt
√

κ(P )‖x(0)‖

therefore, the decay rate is at least α

the condition V̇ (x) ≤ −2αV (x) is equivalent to

ATP + PA+ 2αP � 0

the largest decay rate can be found by solving

maximize α
subject to P ≻ 0

ATP + PA+ 2αP � 0

LMI in Control Theory 8-12



Reachable sets with unit-energy inputs

consider a linear system
ẋ = Ax+Bu

and all trajectories that start from x(0) = 0

denote Ru the set of reachable states with unit-energy input

Ru ,

{

x(T )

∣

∣

∣

∣

∣

∫ T

0

u(t)Tu(t)dt ≤ 1, T ≥ 0

}

we can bound Ru by ellipsoids of the form

E =
{

x | xTPx ≤ 1
}

, P ≻ 0
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we can show that E contains the reachable set Ru

suppose V (z) = zTPz satisfies

V̇ ≤ uTu, for all x, u

integrating both sides gives

V (x(T ))− V (x(0)) ≤

∫ T

0

uTu dt

since V (x(0)) = 0, we have

x(T )TPx(T ) = V (x(T )) ≤

∫ T

0

uTu dt ≤ 1

for every T ≥ 0 and every input u such that
∫ T

0
uTu dt ≤ 1
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the condition V̇ ≤ uTu is equivalent to

P ≻ 0,

[

ATP + PA PB
BTP −I

]

� 0

which can be expressed as an LMI in Q = P−1

Q ≻ 0, AQ+QAT +BBT � 0

for LTI systems, the ellipsoid bound is sharp with P = W−1

c where

Wc ,

∫ ∞

0

eAtBBTeA
T tdt

is the controllability Grammian and Wc satisfies

AWc +WcA
T +BBT = 0
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Bounds on output energy

we seek the maximum output energy given a certain initial state

max

{
∫ ∞

0

yTydt

∣

∣

∣

∣

ẋ = Ax, y = Cx

}

where x(0) is given and the maximum is taken over A,C

suppose there exists V = zTPz such that

P ≻ 0, V̇ (x) ≤ −yTy, for every x, y

integrating both sides gives

V (x(T ))− V (x(0)) ≤ −

∫ T

0

yTydt

since V (x(T )) ≥ 0, then V (x(0)) is an upper bound on the maximum
energy of y
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the condition

P ≻ 0, V̇ (x) ≤ −yTy, for every x, y

is equivalent to
P ≻ 0, ATP + PA+ CTC � 0

therefore, we can obtain the best upper bound by solving

minimize x(0)TPx(0)
subject to P ≻ 0, ATP + PA+ CTC � 0

again the bound is sharp for LTI systems and the solution is given by

P = Wo, Wo ,

∫ ∞

0

eA
T tCTCeAtdt

and Wo satisfies the Lyapunov equation

ATWo +WoA+ CTC = 0

LMI in Control Theory 8-17



References

S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix

Inequalities in System and Control Theory, 1994.

LMI in Control Theory 8-18


