Model selection and cross validation

Jitkomut Songsiri
Department of Electrical Engineering
Faculty of Engineering
Chulalongkorn University
CUEE

January 24, 2023

Outline

1 Model selection

2 Resampling method: Cross validation

3 Resampling method: Bootstrap

Contents

- model selection aspects
- bias and variance
- model selection
- model selection scores (AIC, AICc, BIC)
- cross-validation (as a resampling method)

Model selection

Factors in model selection

objective: obtain a good model at a low cost
1 quality of the model: defined by a measure of the goodness, e.g., the mean-squared error, log-likelihood

- MSE consists of a bias and a variance contribution
- a complex model has small bias but higher variance (than a simple model)
- the best model structure is therefore a trade-off between flexibility and parsimony

2 price of the model: an estimation method (which typically results in an optimization problem) highly depends on the model structures, which influences:

- algorithm complexity
- properties of the loss function

3 intended use of the model: prediction, controller design, inference

Bias-variance decomposition

assume that the observation Y obeys

$$
Y=f(X)+\nu, \quad \mathbf{E} \nu=0, \quad \operatorname{cov}(\nu)=\sigma^{2}
$$

the mean-squared error of a regression fit $\hat{f}(X)$ at $X=x_{0}$ is

$$
\begin{aligned}
\mathrm{MSE} & =\mathbf{E}\left[\left(Y-\hat{f}\left(x_{0}\right)\right)^{2} \mid X=x_{0}\right] \\
& =\sigma^{2}+\left[\mathbf{E} \hat{f}\left(x_{0}\right)-f\left(x_{0}\right)\right]^{2}+\mathbf{E}\left[\hat{f}\left(x_{0}\right)-\mathbf{E} \hat{f}\left(x_{0}\right)\right]^{2} \\
& =\sigma^{2}+\operatorname{Bias}^{2}\left(\hat{f}\left(x_{0}\right)\right)+\operatorname{Var}\left(\hat{f}\left(x_{0}\right)\right)
\end{aligned}
$$

- this relation is known as bias-variance decomposition
- no matter how well we estimate $f\left(x_{0}\right), \sigma^{2}$ represents irreducible error
- typically, the more complex we make model \hat{f}, the lower the bias, but the higher the variance

Proof of bias-variance decomposition

note that

- the true f is deterministic
- $\operatorname{var}(Y \mid X=x)=\sigma^{2}$ and $\mathbf{E}[Y \mid X=x]=f(x)$
- $\hat{f}(x)$ is random
we will omit the notation of conditioning on $X=x$

$$
\begin{aligned}
\mathbf{E}\left[(Y-\hat{f}(X))^{2}\right] & =\mathbf{E}\left[Y^{2}\right]+\mathbf{E}\left[\hat{f}(x)^{2}\right]-\mathbf{E}[2 Y \hat{f}(x)] \\
& =\operatorname{var}(Y)+\mathbf{E}[Y]^{2}+\operatorname{var} \hat{f}(x)+\mathbf{E}[\hat{f}(x)]^{2}-2 f(x) \mathbf{E}[\hat{f}(x)] \\
& =\operatorname{var}(Y)+f(x)^{2}+\operatorname{var} \hat{f}(x)+\mathbf{E}[\hat{f}(x)]^{2}-2 f(x) \mathbf{E}[\hat{f}(x)] \\
& =\sigma^{2}+\operatorname{var} \hat{f}(x)+(f(x)-\mathbf{E}[\hat{f}(x)])^{2} \\
& =\sigma^{2}+\operatorname{var} \hat{f}(x)+(\mathbf{E}[f(x)-\hat{f}(x)])^{2} \\
& =\sigma^{2}+\operatorname{var} \hat{f}(x)+[\operatorname{Bias}(\hat{f}(x))]^{2}
\end{aligned}
$$

Bias and variance in linear models

two nested linear regression models: predictor X in \mathcal{M}_{1} is also contained in \mathcal{M}_{2}

$$
\mathcal{M}_{1}: y=X \beta \quad \text { VS } \quad \mathcal{M}_{2}: y=\left[\begin{array}{ll}
X & \tilde{x}
\end{array}\right]\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right] \triangleq Z_{\gamma}
$$

setting: two models are estimated by LS method, denoted by $\hat{\beta}$ and $\hat{\gamma}$
$1 \mathcal{M}_{2}$ has lower MSE in predicting y than the MSE of \mathcal{M}_{1}
$2 \operatorname{cov}(\hat{\beta})$ of \mathcal{M}_{2} is larger than $\operatorname{cov}(\hat{\beta})$ of \mathcal{M}_{1}
3 variance of \hat{y} from \mathcal{M}_{2} is higher than that of \mathcal{M}_{1}
\mathcal{M}_{2} (complex model) has less bias but more variance both in estimator and prediction our proof will use subscript 1 for \mathcal{M}_{1} and and 2 for \mathcal{M}_{2}

Inverse of block matrices

the inverse of a block matrix

$$
X=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right] \succ 0
$$

can be obtained in block using Schur complement: $S=\left(D-C A^{-1} B\right)^{-1} \succ 0$

$$
X^{-1}=\left[\begin{array}{cc}
A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \tag{1}\\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]
$$

we often encounter the difference of two quadratic forms

$$
\left[\begin{array}{l}
u \tag{2}\\
v
\end{array}\right]^{T}\left[\begin{array}{cc}
A & B \\
B^{T} & D
\end{array}\right]^{-1}\left[\begin{array}{l}
u \\
v
\end{array}\right]-u^{T} A^{-1} u=\left(v-B^{T} A^{-1} u\right)^{T} S^{-1}\left(v-B^{T} A^{-1} u\right) \geq 0
$$

which is always non-negative

proof of $\mathrm{MSE}_{2} \leq \mathrm{MSE}_{1}$

- let P_{1} and P_{2} be orthogonal projection of y onto $\mathcal{R}(X)$ and $\mathcal{R}(Z)$, resp
- it can be shown that $\mathrm{MSE}_{1}=\|y\|_{2}^{2}-y^{T} P_{1} y$ and $\mathrm{MSE}_{2}=\|y\|_{2}^{2}-y^{T} P_{2} y$
- it is left to show that $y^{T} P_{2} y \geq y^{T} P_{1} y$

$$
P_{2}=Z\left(Z^{T} Z\right)^{-1} Z^{T}=\left[\begin{array}{ll}
X & \tilde{x}
\end{array}\right]\left[\begin{array}{cc}
X^{T} X & X^{T} \tilde{x} \\
\tilde{x}^{T} X & \tilde{x}^{T} \tilde{x}
\end{array}\right]^{-1}\left[\begin{array}{c}
X^{T} \\
\tilde{x}^{T}
\end{array}\right], \quad P_{1}=X\left(X^{T} X\right)^{-1} X^{T}
$$

- apply the inverse of block matrix

$$
P_{2}-P_{1}=\left(\tilde{x}-X\left(X^{T} X\right)^{-1} X^{T} \tilde{x}\right) S^{-1}\left(\tilde{x}-X\left(X^{T} X\right)^{-1} X^{T} \tilde{x}\right)^{T} \succeq 0
$$

where $S=\tilde{x}^{T} \tilde{x}-\tilde{x}^{T} X\left(X^{T} X\right)^{-1} X^{T} \tilde{x}$

proof of $\boldsymbol{\operatorname { c o v }}\left(\hat{\beta}_{2}\right) \succeq \boldsymbol{\operatorname { c o v }}\left(\hat{\beta}_{1}\right)$

- $\boldsymbol{\operatorname { c o v }}\left(\hat{\beta}_{2}\right)$ is the leading $(1,1)$ block of $\boldsymbol{\operatorname { c o v }}(\hat{\gamma})$, while $\boldsymbol{\operatorname { c o v }}\left(\hat{\beta}_{1}\right)=\left(X^{T} X\right)^{-1}$
- use $\operatorname{cov}(\hat{\gamma})=\left(Z^{T} Z\right)^{-1}$ and the inverse of block matrix

$$
\left(Z^{T} Z\right)^{-1}=\left[\begin{array}{cc}
X^{T} X & X^{T} \tilde{x} \\
\tilde{x}^{T} X & \tilde{x}^{T} \tilde{x}
\end{array}\right]^{-1} \triangleq\left[\begin{array}{cc}
A & B \\
B^{T} & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1}+A^{-1} B S^{-1} B^{T} A^{-1} & \times \\
\times & \times
\end{array}\right]
$$

where $S=D-B^{T} A^{-1} B \succeq 0$

- $\boldsymbol{\operatorname { c o v }}\left(\hat{\beta}_{2}\right)$ is bigger than $\boldsymbol{\operatorname { c o v }}\left(\hat{\beta}_{1}\right)$ because

$$
\operatorname{cov}\left(\hat{\beta}_{2}\right)-\operatorname{cov}\left(\hat{\beta}_{1}\right)=A^{-1}+A^{-1} B S^{-1} B^{T} A^{-1}-A^{-1}=A^{-1} B S^{-1} B^{T} A^{-1} \succeq 0
$$

proof of $\operatorname{var}\left(\hat{y}_{2}\right) \geq \operatorname{var}\left(\hat{y}_{1}\right)$

- suppose $\hat{y}_{1}=u^{T} \hat{\beta}$ and $\hat{y}_{2}=w^{T} \hat{\gamma}$ where $w=(u, v)$

■ we test prediction of y from new regressors u and (u, v)

- since the model is simply linear, the variance can be obtained by

$$
\begin{aligned}
\operatorname{var}\left(\hat{y}_{2}\right)-\operatorname{var}\left(\hat{y}_{1}\right) & =w^{T} \operatorname{cov}(\gamma) w-u^{T} \operatorname{cov}(\beta) u \\
& =\left[\begin{array}{l}
u \\
v
\end{array}\right]^{T}\left[\begin{array}{cc}
X^{T} X & X^{T} \tilde{x} \\
\tilde{x}^{T} X & \tilde{x}^{T} \tilde{x}
\end{array}\right]^{-1}\left[\begin{array}{l}
u \\
v
\end{array}\right]-u^{T}\left(X^{T} X\right)^{-1} u
\end{aligned}
$$

- the difference is non-negative (using result on page 9)

Model properties

consider bias and variance of model with different structures

(T. Hastie et.al. The Elements of Statistical Learning, Springer, 2010 page 225) a simple model has less flexibility (more bias) but easy to interpret and has less variance

U-shape of generalization error

models are estimated on training data set and evaluated on test set (unseen data)

- training errors always decrease as model complexity increase
- generalization error initially decreases as model picks up relevant features of data

■ however, if the model complexity exceeds a certain degree, the generalization error can rise up again - this is when we observe overfitting

Observe overfitting on test error

- too complex models cannot generalize well on test (unseen) data
- overfitting occurs when MSE on test set decreases but starts to rise again

Does overfitting always occur?

- when the true description is highly nonlinear, test MSE does not significantly increase
- overfitting is apparent when the estimated model is more complex (than it should be) in order to explain a simpler ground-truth model

Model selection criterion

parsimony principle: among competing models which all explain the data well, the model with the smallest number of parameters should be chosen
a model selction criterion consists of two parts:
loss function + model complexity

- the first term is to assess the quality of the model, e.g., likelihood function, RSS, MSE, Fit Percent $\left(1-\frac{\|y-\hat{y}\|}{\|y-\bar{y}\|}\right) \times 100 \%$
- the second term is to penalize the model order and grows as the number of parameters increases
- we choose the best model as the one with the lowest model selection score

Model selection scores

model quality: \mathcal{L} : log-likelihood, V : loss function
model complexity: d : effective number of parameters

- Akaike information criterion (AIC): $\operatorname{AIC}(\alpha)=-2 \mathcal{L}(\alpha)+2 d$
- corrected Akaike information (AICc): $\operatorname{AICc}(\alpha)=-2 \mathcal{L}(\alpha)+2 d+\frac{2 d(d+1)}{N-d-1}$
- Bayesian information criterion (BIC): $\operatorname{BIC}(\alpha)=-2 \mathcal{L}(\alpha)+d \log N$
- Akaike's final prediction-error criterion (FPE): $\operatorname{FPE}(\alpha)=V(\hat{\theta})\left(\frac{1+d / N}{1-d / N}\right)$

■ Mallow's $C_{p}: C_{p}(\alpha)=\frac{1}{N}\left[\operatorname{RSS}(\alpha)+2 d \hat{\sigma}^{2}\right]$

- adjusted $R^{2}: 1-\frac{\operatorname{RSS}(\alpha) /(N-d-1)}{\operatorname{TSS} /(N-1)}$

Variable selection in linear regression

model: $\hat{y}=\sum_{k=1}^{n} a_{k} \cos (k x)+b_{k} \sin (k x)$ for $n=1,2, \ldots, 20$ and $N=50$

- aim to choose the number of basis function (n)
- set the effective number of parameters $d=2 n$ (the number of $\sin (k x), \cos (k x)$)
- compute $\triangle \mathrm{AIC}, \Delta \mathrm{AICc}, \Delta \mathrm{BIC}$ (subtracted by its minimum), C_{p}, adjusted R^{2}

- AIC and adjusted R^{2} chose a complex model, while AICc and BIC picked 4 basis functions (simpler), and C_{p} chose 7 basis functions
- train MSE always decreases, as well as, R^{2} always increases but the curves have a knee around $n=4$

Choosing AR lag order

fitting AR model of order $p=1,2, \ldots, 20$ to unemployment rate time series


```
p-order autoregressive (AR) model \(y(t)=a_{1} y(t-1)+a_{2} y(t-2)+\cdots+a_{p} y(t-p)+e(t)\)
parameter: \(\beta=\left(a_{1}, a_{2}, \ldots, a_{p}\right)\) fitting: least-squares
- the effective number of parameters is chosen as \(d=p\)
- compute \(\triangle \mathrm{AIC}, \triangle \mathrm{AICc}, \triangle \mathrm{BIC}, \mathrm{FPE}\), train MSE, and Fit Percent
- data samples: \(N=245\), examine two cases: (i) use all data (ii) use only half
```

left: use all data right: use half of data

- left: AIC, AICc and FPE tend to choose a higher order model $(p=13)$ but BIC prefers a simpler model $(p=2)$
■ right: AICc chose a lower order model when N is halved (sample size was corrected)
- both train MSE and Fit Percent are not good indicators for model selection

Log-likelihood based scores (AIC, AICc)

AIC, AICc, BIC use negative log-likelihood to indicate model quality

$$
\begin{aligned}
\operatorname{AIC}(\alpha) & =-2 \mathcal{L}(\alpha)+2 d \\
\operatorname{AICc}(\alpha) & =-2 \mathcal{L}(\alpha)+2 d+\frac{2 d(d+1)}{N-d-1} \\
\operatorname{BIC}(\alpha) & =-2 \mathcal{L}(\alpha)+d \log N
\end{aligned}
$$

- AIC is an approximation of Kullback-Leibler (KL) divergence between the true density $(f(x)$ and the model $(g(x \mid \hat{\theta}))$

$$
\begin{aligned}
I(f, g) & =\int f(x) \log (f(x) / g(x \mid \theta)) d x \\
-\mathcal{L}(\hat{\theta})+d & \approx \mathbf{E}_{\hat{\theta}}[I(f(x), g(x \mid \hat{\theta}))]+\mathrm{constant}
\end{aligned}
$$

- AICc penalizes more on complexity for small N (as quadratic term in d); it approaches AIC for large samples (large N)

Log-likelihood based score (BIC)

- BIC penalizes more on complexity than AIC (as indicated by $\log N>2$)
- when model candidates contain a true model, BIC is consistent (probability of choosing the correct model $\rightarrow 1$ as $N \rightarrow \infty$)
■ model with minimum BIC \Leftrightarrow model with highest posterior density

$$
\text { posterior odds }=\frac{P\left(\mathcal{M}_{m} \mid \text { data }\right)}{P\left(\mathcal{M}_{l} \mid \text { data }\right)}=\underbrace{\frac{P\left(\mathcal{M}_{m}\right)}{P\left(\mathcal{M}_{l}\right)}}_{\text {prior }} \cdot \underbrace{\frac{P\left(\text { data } \mid \mathcal{M}_{m}\right)}{P\left(\text { data } \mid \mathcal{M}_{l}\right)}}_{\text {Bayes factor }}
$$

model prior tells which model is more likely to be preferred (by users)

- when prior is not available (all models have equal probabilities), Bayes factor directly affects the posterior odds
- BIC (with -2 factor) is an approximate of Bayes factor (see Hastie et al. book)

■ for nested models \mathcal{M}_{1} (complex), \mathcal{M}_{2} (simple) with $d\left(\mathcal{M}_{1}\right)=d\left(\mathcal{M}_{2}\right)+m$

- AIC picks complex model if $\mathcal{L}\left(\mathcal{M}_{1}\right)-\mathcal{L}\left(\mathcal{M}_{2}\right)>2 m$ (it's worth to use complex model since model quality improved much more)
- BIC picks complex model if $\mathcal{L}\left(\mathcal{M}_{1}\right)-\mathcal{L}\left(\mathcal{M}_{2}\right)>m \log N$
- improved gap of log-likelihood required by AIC is less than that of BIC; hence, AIC is prone to choosing a complex model more easily than BIC
- for LR (log-likelihood ratio) test, with test statistic

$$
2\left(\mathcal{L}\left(\mathcal{M}_{1}\right)-\mathcal{L}\left(\mathcal{M}_{2}\right)\right) \sim \mathcal{X}^{2}(m)
$$

- LR test picks \mathcal{M}_{1} (complex) if $2 \mathcal{L}\left(\mathcal{M}_{1}\right)>2 \mathcal{L}\left(\mathcal{M}_{2}\right)$ by $\mathcal{X}_{0.05}^{2}(m)$
- for $m<7$, we have $2 m<\mathcal{X}_{0.05}^{2}(m)$; hence, AIC tends to pick a complex model more easily than LR test in this case

Akaike's final prediction (FPE)

denote $V(\hat{\theta})$ a loss function used in prediction error method (e.g., det or trace of error covariance)

$$
\operatorname{FPE}(\alpha)=V(\hat{\theta})\left(\frac{1+d / N}{1-d / N}\right)
$$

- model complexity is cooperated in multiplicative form (as compared to additive form in AIC, BIC)
- when model output is scalar, $V(\hat{\theta})$ is simply MSE and FPE reduces to

$$
\mathrm{FPE}=\frac{1}{N} \sum_{t=1} \varepsilon^{2}(t, \hat{\theta}) \cdot \frac{1+d / N}{1-d / N}
$$

■ it was shown in Ljung book that FPE is a way to approximate of $\lim _{N \rightarrow \infty} \mathbf{E}[V(\theta)]$ (population), which can be estimated using $V(\hat{\theta})$ evaluated on estimation data

Mallow's C_{p}

C_{p} is mostly used in linear regression with d predictors and homoskedastic noise

$$
C_{p}(\alpha)=\frac{1}{N}\left[\operatorname{RSS}(\alpha)+2 d \hat{\sigma}^{2}\right]
$$

- C_{p} uses quadratic loss to measure model quality
- $\hat{\sigma}^{2}$ is an estimate of noise variance using full model
- RSS $/ N$ always decreases when d increases; penalty on complexity is put on $2 d \hat{\sigma}^{2}$

■ in Hastie et al. book, it showed that C_{p} is an estimate of test MSE
■ other form of C_{p} exists: $C_{p}=\mathrm{RSS} / \hat{\sigma}^{2}+2 d-N$ but result in choosing the same d

Adjusted R^{2}

R^{2} (coefficient of determination) is based on the decomposition:

$$
\underbrace{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}_{\text {TSS }}=\underbrace{\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}}_{\text {RSS }}+\underbrace{\sum_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2}}_{\text {ESS }}+\underbrace{2 \sum_{i}\left(y_{i}-\hat{y}_{i}\right)\left(\hat{y}_{i}-\bar{y}\right)}_{\text {zero if model has a constant }}
$$

R^{2} is the proportion of the total variation in Y that can be linearly predicted by X

$$
R^{2}=1-\frac{\operatorname{RSS}}{\operatorname{TSS}}, \quad \text { adjusted } R^{2}=1-\frac{\operatorname{RSS}(\alpha) /(N-d-1)}{\operatorname{TSS} /(N-1)}
$$

■ for linear model, $0 \leq R^{2} \leq 1$ and always increases for larger models
■ the presence of d penalizes the criterion for the number of predictor variables
$■$ adjusted R^{2} increases if the added predictor variables decrease RSS enough to compensate for the increase in d

References

1 T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second edition, Springer, 2009
2 G.James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning, Springer, 2013
3 T. Söderström and P. Stoica, Chapter 11: System Identification, Prentice Hall, 1989

4 L. Ljung, Chapter 16: System Identification: Theory for the User, 2nd edition, Prentice Hall, 1999

5 K.P. Burnham and D.R. Anderson, Model selection and multimodel inference: a practical information-theoretic approach, Springer, 2002

Resampling method: Cross validation

Resampling methods

■ a process of repeatedly drawing samples from a training set and refitting a model on each sample
■ we seek for information that would not be obtained from fitting the model only once using the original training sample

- resampling approaches can be computationally expensive but with nowaday technology, it becomes less prohibitive
- cross-valiation: used in estimation of test error or model flexibility

■ bootstrap: a measure of accuracy of a parameter estimate

Cross validation

- training error rate: the average error that results from using a trained model (or method) back on the training data set
- test error rate: the average error that results from using a statistical learning method to predict the response on a new observation
- training error can be quite different from the test error rate
- cross validation can be used to estimate test error rate using available data: split into training and validation sets
- validation set approach
- leave-one-out cross validation
- k-fold cross validation

Splitting data

- training set: used for fitting a model

■ validation set: used for predicting the response from the fitted model

- validation set approach or hold out (left): randomly split data
- leave-one-out or LOOCV (middle): leave 1 sample for validation set

■ k-fold (right): randomly split data into k folds; leave 1 fold for validation

- repeat k times where each time a different fold is regarded as validation set and compute $\mathrm{MSE}_{1}, \mathrm{MSE}_{2}, \ldots, \mathrm{MSE}_{k}$
- the test error rate is estimated by averaging the k MSE's

Cross validation on polynomial order

$N=500$, show 7 runs of holdout, and 5-fold

- result of holdout has high variation since it depends on random splitting
- 5-fold results has less variation because MSE is averaged over k folds

■ LOOCV requires N loops (high computation cost); MSE_{i} 's are highly correlated

Estimate a true test MSE by CV

accuracy of test error rate (on simulation data set): using model of smoothing splines

compute the true test MSE (assume to know true f) as a function of complexity

- (left): cv estimates have the correct general U shape but underestimate test MSE

■ (center): cv gives overestimate of test MSE at high flexibility

- (right): the true test MSE and the cv estimates are almost identical

Usage of cross-validation

most of the times we may perform cv on

- a number of statistical methods: and to see which method has the lowest test MSE
- a single statistical method but different flexibilities: and to see which model complexity yield the lowest test MSE
though sometimes cv method underestimate the true test MSE, they can select the correct level of flexibility

Trade-off for k-fold

examine the unbiasedness and variance of test MSE

method	validation set	loocv	k-fold
computation	less	high	feasible
training samples	ratio e.g. 70:30	$n-1$	$(k-1) n / k$
unbiasedness	low	approximately unbiased	intermediate
variance		high	less

- test MSE is calculated by taking the average of many MSE's:
- most of MSE's from loocv are highly correlated while MSE's of k-fold are less correlated (since loocv uses more overlapped data in training - hence, fitted models are almost identical)
- fact: the sample mean of highly correlated entries has more variance than the sample mean of less correlated entries
conclusion: trade-off between bias and variance when choosing k in k-fold

Resampling method: Bootstrap

Bootstrap

a scheme of obtaining distinct data sets by repeatedly sampling with replacement from the original data set

use each of new sampled data set to compute a new estimate of α (a quantity)

Illustrated example of the Bootstrap

suppose $\alpha, 1-\alpha$ are fractions of investment we put in yield returns of X and Y
■ we want to minimize $\operatorname{var}(\alpha X+(1-\alpha) Y)$

- one can show that the solution α that minimizes the variance is given by

$$
\alpha=\frac{\sigma_{Y}^{2}-\sigma_{X Y}}{\sigma_{X}^{2}+\sigma_{Y}^{2}-2 \sigma_{X Y}}
$$

■ we estimate the value of α by using $\hat{\sigma}_{Y}^{2}, \hat{\sigma}_{X}^{2}, \hat{\sigma}_{X Y}$
■ we generate 100 paired observations of X and Y and repeat 1000 times to get

$$
\hat{\alpha}^{(1)}, \hat{\alpha}^{(2)}, \ldots, \hat{\alpha}^{(1000)}
$$

(so we have 1,000 data sets from population)

Example

1,000 data sets from population VS 1,000 bootstrap samples

■ histograms of $\hat{\alpha}$ from two approaches are similar and the sample means are close

- standard deviations of $\hat{\alpha}$ are 0.083 (1,000 data sets) and 0.087 (bootstrap)
- the box plots of $\hat{\alpha}$ are also quite similar (true α is 0.6)
- we can use bootstrap when we cannot generate new samples from population

MATLAB example

boostrap for estimating the histogram and SE of correlation
■ we have only 15 samples of GPA and LSAT scores of law-school students
■ we want to compute the correlation between GPA and LSAT

```
load lawdata
rng default % For reproducibility
[bootstat,bootsam] = bootstrp(1000,@corr,lsat,gpa);
figure
histogram(bootstat)
se = std(bootstat)
    0.1285
% 1000 is the number of bootstrap samples -- specified by
%
```


References

some figures and examples are taken from
1 Chapter 5 in G.James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: with Applications in R, Springer
2 Chapter 7 in T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edition, Springer, 2009

