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Outline

1 Model selection

2 Resampling method: Cross validation

3 Resampling method: Bootstrap
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Contents

model selection aspects
bias and variance
model selection

model selection scores (AIC, AICc, BIC)
cross-validation (as a resampling method)
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Statistical inference and modeling Jitkomut Songsiri Model selection 4 / 43



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Factors in model selection

objective: obtain a good model at a low cost
1 quality of the model: defined by a measure of the goodness, e.g., the

mean-squared error, log-likelihood
MSE consists of a bias and a variance contribution
a complex model has small bias but higher variance (than a simple model)
the best model structure is therefore a trade-off between flexibility and parsimony

2 price of the model: an estimation method (which typically results in an
optimization problem) highly depends on the model structures, which influences:

algorithm complexity
properties of the loss function

3 intended use of the model: prediction, controller design, inference
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Bias-variance decomposition
assume that the observation Y obeys

Y = f(X) + ν, Eν = 0, cov(ν) = σ2

the mean-squared error of a regression fit f̂(X) at X = x0 is

MSE = E[(Y − f̂(x0))
2|X = x0]

= σ2 + [Ef̂(x0)− f(x0)]
2 +E[f̂(x0)−Ef̂(x0)]

2

= σ2 + Bias2(f̂(x0)) + Var(f̂(x0))

this relation is known as bias-variance decomposition
no matter how well we estimate f(x0), σ2 represents irreducible error
typically, the more complex we make model f̂ , the lower the bias, but the higher
the variance
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Proof of bias-variance decomposition
note that

the true f is deterministic
var(Y |X = x) = σ2 and E[Y |X = x] = f(x)

f̂(x) is random
we will omit the notation of conditioning on X = x

E[(Y − f̂(X))2] = E[Y 2] +E[f̂(x)2]−E[2Y f̂(x)]

= var(Y ) +E[Y ]2 + var f̂(x) +E[f̂(x)]2 − 2f(x)E[f̂(x)]

= var(Y ) + f(x)2 + var f̂(x) +E[f̂(x)]2 − 2f(x)E[f̂(x)]

= σ2 + var f̂(x) + (f(x)−E[f̂(x)])2

= σ2 + var f̂(x) + (E[f(x)− f̂(x)])2

= σ2 + var f̂(x) + [Bias(f̂(x))]2
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Bias and variance in linear models

two nested linear regression models: predictor X in M1 is also contained in M2

M1 : y = Xβ VS M2 : y =
[
X x̃

] [β
α

]
≜ Zγ

setting: two models are estimated by LS method, denoted by β̂ and γ̂

1 M2 has lower MSE in predicting y than the MSE of M1

2 cov(β̂) of M2 is larger than cov(β̂) of M1

3 variance of ŷ from M2 is higher than that of M1

M2 (complex model) has less bias but more variance both in estimator and prediction

our proof will use subscript 1 for M1 and and 2 for M2
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Inverse of block matrices

the inverse of a block matrix
X =

[
A B
C D

]
≻ 0

can be obtained in block using Schur complement: S = (D − CA−1B)−1 ≻ 0

X−1 =

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
(1)

we often encounter the difference of two quadratic forms[
u
v

]T [
A B
BT D

]−1 [
u
v

]
− uTA−1u = (v −BTA−1u)TS−1(v −BTA−1u) ≥ 0 (2)

which is always non-negative
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proof of MSE2 ≤ MSE1

let P1 and P2 be orthogonal projection of y onto R(X) and R(Z), resp
it can be shown that MSE1 = ∥y∥22 − yTP1y and MSE2 = ∥y∥22 − yTP2y

it is left to show that yTP2y ≥ yTP1y

P2 = Z(ZTZ)−1ZT =
[
X x̃

] [XTX XT x̃
x̃TX x̃T x̃

]−1 [
XT

x̃T

]
, P1 = X(XTX)−1XT

apply the inverse of block matrix

P2 − P1 = (x̃−X(XTX)−1XT x̃)S−1(x̃−X(XTX)−1XT x̃)T ⪰ 0

where S = x̃T x̃− x̃TX(XTX)−1XT x̃
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proof of cov(β̂2) ⪰ cov(β̂1)

cov(β̂2) is the leading (1,1) block of cov(γ̂), while cov(β̂1) = (XTX)−1

use cov(γ̂) = (ZTZ)−1 and the inverse of block matrix

(ZTZ)−1 =

[
XTX XT x̃
x̃TX x̃T x̃

]−1

≜
[
A B
BT D

]−1

=

[
A−1 +A−1BS−1BTA−1 ×

× ×

]
where S = D −BTA−1B ⪰ 0

cov(β̂2) is bigger than cov(β̂1) because

cov(β̂2)− cov(β̂1) = A−1 +A−1BS−1BTA−1 −A−1 = A−1BS−1BTA−1 ⪰ 0
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proof of var(ŷ2) ≥ var(ŷ1)

suppose ŷ1 = uT β̂ and ŷ2 = wT γ̂ where w = (u, v)

we test prediction of y from new regressors u and (u, v)

since the model is simply linear, the variance can be obtained by

var(ŷ2)− var(ŷ1) = wT cov(γ)w − uT cov(β)u

=

[
u
v

]T [
XTX XT x̃
x̃TX x̃T x̃

]−1 [
u
v

]
− uT (XTX)−1u

the difference is non-negative (using result on page 9)
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Model properties
consider bias and variance of model with different structures

restrictive

,
linear models

= C lasso ) linear models=

§ Cleast-squares)
I Generalized
E- additive models

I
§ nonlinear

models

( neural net )

Flexibility

(T. Hastie et.al. The Elements of Statistical Learning, Springer, 2010 page 225)
a simple model has less flexibility (more bias) but easy to interpret and has less variance

Statistical inference and modeling Jitkomut Songsiri 13 / 43



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

U-shape of generalization error
models are estimated on training data set and evaluated on test set (unseen data)

training errors always decrease as model complexity increase
generalization error initially decreases as model picks up relevant features of data
however, if the model complexity exceeds a certain degree, the generalization error
can rise up again – this is when we observe overfitting

Statistical inference and modeling Jitkomut Songsiri 14 / 43
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Observe overfitting on test error

0 0.5 1 1.5 2
0.6

0.8

1

1.2

1.4

1.6

Estimation data

-0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
Test data

0 2 4 6 8 10

Model complexity

0.02

0.04

0.06

0.08

M
S

E

Polynomial models

0 5 10 15 20

Model complexity

0

0.02

0.04

0.06

0.08

0.1

M
S

E

Smoothing splines

Estimation

Test

too complex models cannot generalize well on test (unseen) data
overfitting occurs when MSE on test set decreases but starts to rise again

Statistical inference and modeling Jitkomut Songsiri 15 / 43



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Does overfitting always occur?

-1 0 1 2 3

0

0.5

1

1.5

2

1 2 3

Model complexity

0

0.1

0.2

0.3

M
S

E

MSE

Estimation

Test

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1 2 3

Model complexity

0.02

0.04

0.06

0.08

M
S

E

MSE

when the true description is highly nonlinear, test MSE does not significantly
increase
overfitting is apparent when the estimated model is more complex (than it should
be) in order to explain a simpler ground-truth model
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Model selection criterion

parsimony principle: among competing models which all explain the data well, the
model with the smallest number of parameters should be chosen

a model selction criterion consists of two parts:

loss function + model complexity

the first term is to assess the quality of the model, e.g., likelihood function, RSS,
MSE, Fit Percent (1− ∥y−ŷ∥

∥y−ȳ∥)× 100%

the second term is to penalize the model order and grows as the number of
parameters increases
we choose the best model as the one with the lowest model selection score

Statistical inference and modeling Jitkomut Songsiri 17 / 43
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Model selection scores

model quality: L: log-likelihood, V : loss function

model complexity: d: effective number of parameters

Akaike information criterion (AIC): AIC(α) = −2L(α) + 2d

corrected Akaike information (AICc): AICc(α) = −2L(α) + 2d+ 2d(d+1)
N−d−1

Bayesian information criterion (BIC): BIC(α) = −2L(α) + d logN

Akaike’s final prediction-error criterion (FPE): FPE(α) = V (θ̂)
(
1+d/N
1−d/N

)
Mallow’s Cp: Cp(α) =

1
N

[
RSS(α) + 2dσ̂2

]
adjusted R2: 1− RSS(α)/(N−d−1)

TSS/(N−1)
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Variable selection in linear regression
model: ŷ =

∑n
k=1 ak cos(kx) + bk sin(kx) for n = 1, 2, . . . , 20 and N = 50

-3 -2 -1 0 1 2 3
-1

0

1

2

3

aim to choose the number of basis function (n)

set the effective number of parameters d = 2n (the number of sin(kx), cos(kx))
compute ∆AIC, ∆AICc, ∆BIC (subtracted by its minimum), Cp, adjusted R2
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AIC and adjusted R2 chose a complex model, while AICc and BIC picked 4 basis
functions (simpler), and Cp chose 7 basis functions
train MSE always decreases, as well as, R2 always increases but the curves have a
knee around n = 4
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Choosing AR lag order
fitting AR model of order p = 1, 2, . . . , 20 to unemployment rate time series

1950 1960 1970 1980 1990 2000
Date

2

4

6

8

10

12

Pe
rc

en
t

Unemployment Rate

p-order autoregressive (AR) model

y(t) = a1y(t−1)+a2y(t−2)+· · ·+apy(t−p)+e(t)

parameter: β = (a1, a2, . . . , ap)
fitting: least-squares

the effective number of parameters is chosen as d = p

compute ∆AIC, ∆AICc, ∆BIC, FPE, train MSE, and Fit Percent
data samples: N = 245, examine two cases: (i) use all data (ii) use only half

Statistical inference and modeling Jitkomut Songsiri 21 / 43



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

left: use all data right: use half of data
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left: AIC, AICc and FPE tend to choose a higher order model (p = 13) but BIC
prefers a simpler model (p = 2)

right: AICc chose a lower order model when N is halved (sample size was
corrected)
both train MSE and Fit Percent are not good indicators for model selection
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Log-likelihood based scores (AIC, AICc)
AIC, AICc, BIC use negative log-likelihood to indicate model quality

AIC(α) = −2L(α) + 2d

AICc(α) = −2L(α) + 2d+
2d(d+ 1)

N − d− 1
BIC(α) = −2L(α) + d logN

AIC is an approximation of Kullback-Leibler (KL) divergence between the true
density (f(x) and the model (g(x|θ̂))

I(f, g) =

∫
f(x) log(f(x)/g(x|θ))dx

−L(θ̂) + d ≈ Eθ̂[I(f(x), g(x|θ̂))] + constant

AICc penalizes more on complexity for small N (as quadratic term in d); it
approaches AIC for large samples (large N)
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Log-likelihood based score (BIC)

BIC penalizes more on complexity than AIC (as indicated by logN > 2)
when model candidates contain a true model, BIC is consistent (probability of
choosing the correct model → 1 as N → ∞)
model with minimum BIC ⇔ model with highest posterior density

posterior odds = P (Mm|data)
P (Ml|data) =

P (Mm)

P (Ml)︸ ︷︷ ︸
prior

· P (data|Mm)

P (data|Ml)︸ ︷︷ ︸
Bayes factor

model prior tells which model is more likely to be preferred (by users)
when prior is not available (all models have equal probabilities), Bayes factor
directly affects the posterior odds
BIC (with −2 factor) is an approximate of Bayes factor (see Hastie et al. book)
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for nested models M1 (complex), M2 (simple) with d(M1) = d(M2) +m

AIC picks complex model if L(M1)− L(M2) > 2m (it’s worth to use complex
model since model quality improved much more)
BIC picks complex model if L(M1)− L(M2) > m logN

improved gap of log-likelihood required by AIC is less than that of BIC; hence,
AIC is prone to choosing a complex model more easily than BIC
for LR (log-likelihood ratio) test, with test statistic

2(L(M1)− L(M2)) ∼ X 2(m)

LR test picks M1 (complex) if 2L(M1) > 2L(M2) by X 2
0.05(m)

for m < 7, we have 2m < X 2
0.05(m); hence, AIC tends to pick a complex model

more easily than LR test in this case
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Akaike’s final prediction (FPE)
denote V (θ̂) a loss function used in prediction error method (e.g., det or trace of error
covariance)

FPE(α) = V (θ̂)

(
1 + d/N

1− d/N

)

model complexity is cooperated in multiplicative form (as compared to additive
form in AIC, BIC)
when model output is scalar, V (θ̂) is simply MSE and FPE reduces to

FPE =
1

N

∑
t=1

ε2(t, θ̂) · 1 + d/N

1− d/N

it was shown in Ljung book that FPE is a way to approximate of limN→∞E[V (θ)]
(population), which can be estimated using V (θ̂) evaluated on estimation data
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Mallow’s Cp

Cp is mostly used in linear regression with d predictors and homoskedastic noise

Cp(α) =
1

N

[
RSS(α) + 2dσ̂2

]

Cp uses quadratic loss to measure model quality
σ̂2 is an estimate of noise variance using full model
RSS/N always decreases when d increases; penalty on complexity is put on 2dσ̂2

in Hastie et al. book, it showed that Cp is an estimate of test MSE
other form of Cp exists: Cp = RSS/σ̂2+2d−N but result in choosing the same d
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Adjusted R2

R2 (coefficient of determination) is based on the decomposition:∑
i

(yi − ȳ)2︸ ︷︷ ︸
TSS

=
∑
i

(yi − ŷi)
2

︸ ︷︷ ︸
RSS

+
∑
i

(ŷi − ȳ)2︸ ︷︷ ︸
ESS

+ 2
∑
i

(yi − ŷi)(ŷi − ȳ)︸ ︷︷ ︸
zero if model has a constant

R2 is the proportion of the total variation in Y that can be linearly predicted by X

R2 = 1− RSS

TSS
, adjusted R2 = 1− RSS(α)/(N − d− 1)

TSS/(N − 1)

for linear model, 0 ≤ R2 ≤ 1 and always increases for larger models
the presence of d penalizes the criterion for the number of predictor variables
adjusted R2 increases if the added predictor variables decrease RSS enough to
compensate for the increase in d
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Resampling methods

a process of repeatedly drawing samples from a training set and refitting a model
on each sample
we seek for information that would not be obtained from fitting the model only
once using the original training sample
resampling approaches can be computationally expensive but with nowaday
technology, it becomes less prohibitive

cross-valiation: used in estimation of test error or model flexibility
bootstrap: a measure of accuracy of a parameter estimate
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Cross validation

training error rate: the average error that results from using a trained model (or
method) back on the training data set
test error rate: the average error that results from using a statistical learning
method to predict the response on a new observation
training error can be quite different from the test error rate
cross validation can be used to estimate test error rate using available data: split
into training and validation sets

validation set approach
leave-one-out cross validation
k-fold cross validation
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Splitting data

training set: used for fitting a model
validation set: used for predicting the response from the fitted model

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

%!!""!! #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!& !

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

%!

%!

%!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

validation set approach or hold out (left): randomly split data
leave-one-out or LOOCV (middle): leave 1 sample for validation set
k-fold (right): randomly split data into k folds; leave 1 fold for validation

repeat k times where each time a different fold is regarded as validation set and
compute MSE1, MSE2, . . . , MSEk

the test error rate is estimated by averaging the k MSE’s
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Cross validation on polynomial order
N = 500, show 7 runs of holdout, and 5-fold
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Holdout (7 seperate runs)
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5-fold CV (7 seperate runs)
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Polynomial order

0.2
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0.4
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0.6

0.7

C
V

LOOCV

result of holdout has high variation since it depends on random splitting
5-fold results has less variation because MSE is averaged over k folds
LOOCV requires N loops (high computation cost); MSEi’s are highly correlated
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Estimate a true test MSE by CV
accuracy of test error rate (on simulation data set): using model of smoothing splines

compute the true test MSE (assume to know true f) as a function of complexity
(left): cv estimates have the correct general U shape but underestimate test MSE
(center): cv gives overestimate of test MSE at high flexibility
(right): the true test MSE and the cv estimates are almost identical
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Usage of cross-validation

most of the times we may perform cv on
a number of statistical methods: and to see which method has the lowest test
MSE
a single statistical method but different flexibilities: and to see which model
complexity yield the lowest test MSE

though sometimes cv method underestimate the true test MSE, they can select the
correct level of flexibility
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Trade-off for k-fold
examine the unbiasedness and variance of test MSE

method validation set loocv k-fold
computation less high feasible
training samples ratio e.g. 70:30 n− 1 (k − 1)n/k
unbiasedness low approximately unbiased intermediate
variance high less

test MSE is calculated by taking the average of many MSE’s:
most of MSE’s from loocv are highly correlated while MSE’s of k-fold are less
correlated (since loocv uses more overlapped data in training – hence, fitted
models are almost identical)
fact: the sample mean of highly correlated entries has more variance than the
sample mean of less correlated entries

conclusion: trade-off between bias and variance when choosing k in k-fold
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Resampling method: Bootstrap
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Bootstrap
a scheme of obtaining distinct data sets by repeatedly sampling with replacement
from the original data set

2.8 5.3 3 

1.1 2.1 2 

2.4 4.3 1 

Y X Obs 

2.8 5.3 3 

2.4 4.3 1 

2.8 5.3 3 

Y X Obs 

2.4 4.3 1 

2.8 5.3 3 

1.1 2.1 2 

Y X Obs 

2.4 4.3 1 

1.1 2.1 2 

1.1 2.1 2 

Y X Obs 

Original Data (Z) 

1*Z

2*Z

Z
*B

1*
α̂

2*
α̂

α̂
*B

sampling with replacement

use each of new sampled data set to compute a new estimate of α (a quantity)
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Illustrated example of the Bootstrap

suppose α, 1− α are fractions of investment we put in yield returns of X and Y

we want to minimize var(αX + (1− α)Y )

one can show that the solution α that minimizes the variance is given by

α =
σ2
Y − σXY

σ2
X + σ2

Y − 2σXY

we estimate the value of α by using σ̂2
Y , σ̂

2
X , σ̂XY

we generate 100 paired observations of X and Y and repeat 1000 times to get

α̂(1), α̂(2), . . . , α̂(1000)

(so we have 1, 000 data sets from population)
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Example
1,000 data sets from population VS 1,000 bootstrap samples
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��

�

1000 data sets 

from population

1,000 bootstrap

samples

histograms of α̂ from two approaches are similar and the sample means are close
standard deviations of α̂ are 0.083 (1,000 data sets) and 0.087 (bootstrap)
the box plots of α̂ are also quite similar (true α is 0.6)
we can use bootstrap when we cannot generate new samples from population

Statistical inference and modeling Jitkomut Songsiri 41 / 43



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

MATLAB example

boostrap for estimating the histogram and SE of correlation
we have only 15 samples of GPA and LSAT scores of law-school students
we want to compute the correlation between GPA and LSAT

load lawdata
rng default % For reproducibility
[bootstat,bootsam] = bootstrp(1000,@corr,lsat,gpa);
figure
histogram(bootstat)
se = std(bootstat)

0.1285

% 1000 is the number of bootstrap samples -- specified by user
%

figure shows the histogram of cor-
relation coefficient between LSAT
and GPA
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