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8. Logistic regression
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e |ogistic model
e estimating coefficients

e simulation example
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Overview

in classification problems, one labels a number to the response variable, Y

( 1, if stroke;

Y =42, if drug overdose ;

|3, if epileptic seizure.

these three conditions can be related to predictors, X
e though least-squares can be used to fit Y, there is no clear reasons to convert the
difference between qualitative conditions into quantitative ordering

e even for binary classification, Y € {0, 1}, if we perform least-squares, Y could lie
outside |0, 1] and it's not clear how to interpret the results

e logistic model is a model that is suitable for qualitative response variable
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Binary classification

consider the problem of classifying data into two classes: Y € {0, 1}

setting:

e we have data (Y, X)) where Y is the response variable and X is the predictor
e example: defaults on credit card payment

— X = (X1, X9, X3) contains balance, income, student status
— Y is default status; Y =1is 'yes' and Y =0 is 'no’

goal: find a model that provides P(Y =1 | X = x)

P(default = yes | balance = 10,000baht, income = 200kbaht, student =
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Logistic model

a logistic function is used to gives output between 0 and 1

1 e”

:1%-6—"’0:14—69J

f(x) has S-shape

(this is a nominal form of logistic, aka. sigmoid function)

a logistic model uses the logistic function to explain Y from predictors thru:
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Logistic regression

problem: fitting the logistic model

GﬁTX
P(Y =1|X) =

14 ef'X

from data set {(y;, ;)}.¥, to find parameters 3

e the linear predictor termis 31X = By + B1 X1 + -+ - + BpXp
e if an intercept 3, is needed, we assume X} must contain 1
e estimation method: maximum likelihood estimation (more on this later)

o for new X =z, if P(Y = 1|X) > 0.5 we classify that this data belong to class
'1', and '0’ otherwise (the threshold 0.5 is up to the user)
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e the following quantitiy, called odds,

PY =1|X) ST x
=€
- PY = 1|X)

€ (0,00)

indicates the ratio of the chance that class '1’ occurs to class '0’

e the log of odds, called logit

P(Y =1|X) -
log (1 " P(Y = 1|X)> =04

provides a link function between the probability and the linear regression expression
e if X} is one-unit changed

— in linear regression, the average in Y is changed by 5y,
— in logistic regression, the log odds change by Sy
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Estimating regression coefficients

denote the logistic function: p(z) = eBT‘”/(l + eﬁT‘”’;)

By, B are chosen to maximize the likelihood function

cB) = 1] plx) ] @ - plaw)

i:yizl k:yk:()
T
o 1 4 efli 14 ef'zk
1:y;=1 k:yp=0

since log(+) is increasing, it is the same as maximizing the log-likelihood

log £(8) = Z 65Tazz' _ Zlog(l 4+ 65Txk)

1y, =1 k

this is a nonlinear unconstrained optimization problem (can be solved by
Newton /Quasi-Newton)
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Derivation of loglikelihood
suppose {(y;, z;)}I, are available where y; = 0,1
e wecanwrite P(Y =y | X =x;8) = p(z)Y(1 — p(x))} ™Y

e if we have n independent observations, the likelihood function is expressed as

n

Ll vyn | 2:8) = [T PO =i | @i 8) = [[ ol (1 = plai))'

1=1

log L(y1,- - yn | :8) = > yslogpla) + (1 — y;) log(1 — p(;))
1=1

—zn: 1 e +(1—y)l :

e substitute y; = 1 for some 7 and y; = 0 otherwise; this gives log £ on page 8-7
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Default on credit card payment

example of running logistic regression for the default data on page 8-3

Coefficient Std. error Z-statistic = P-value

Intercept —10.8690 0.4923 —22.08 <0.0001
balance 0.0057 0.0002 24.74 <0.0001
income 0.0030 0.0082 0.37 0.7115
student [Yes] —0.6468 0.2362 —2.74 0.0062

prediction: use B from the table we can make an estimate of Y

e student/non-student with balance of 1,500 dollars and income of 40, 000

student  p(Y = 1| X = (1500,40000,1)) = 0.068
non-student p(Y =1 | X = (1500,40000,0)) = 0.105

e with the same balance and income, a non-student is more likely to default
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Correlated predictors

compare the results between one predictor (student status) and three predictors

Coefficient Std. error Z-statistic  P-value

Intercept —10.8690 0.4923 —22.08 <0.0001

balance 0.0057 0.0002 24.74 <0.0001 Coefficient Std. error Z-statistic ~ P-value
income 0.0030 0.0082 0.37 0.7115 Intercept —3.5041 0.0707 —49.55 <0.0001
student [Yes] —0.6468 0.2362 —2.74 0.0062 student| Yes] 0.4049 0.1150 3.52 0.0004

e the coefficient of student status is negative (left) and positive (right)

e negative coefficient of student status indicates that students are less likely to
default (than non-students) — here we can contradictory results ?
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observations:

e in multiple regression (left table), negative coefficient for student indicates that for
a fixed value of balance and income, a student is less likely to default than a
non-student (confirmed by that the orange line is lower than the blue line)

e the horizontal lines show the default rates that are averaged over all values of
balance and income — but here the orange line is higher than the blue line

e the box plots suggest that students tend to have higher credit card balance —
associated with high default rates

explanations:

e 'student status’ and 'balance’ are correlated (students tend to have higher debt)

e an individual student with a given balance tends to have a lower chance of default,
while students on the whole tend to have higher credit card balance which further
tend to have a higher default rate
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conclusions:

e a student is riskier than a non-student if no information about credit card balance
is available

e a student is less risky than a non-student with the same credit card balance

e a confounding problem: a result obtained from one predictor is different from using
multiple predictors when there is correlation among the predictors
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K-label classification
the logistic regression can be extended to classify data into K categories
e define the response as indicator variable: Y = (Y1,Y5, ..., Yk ) where
Y, =1 if the response fall into kth category and Y; =0, Vj#k
e.g. three medical conditions:

((1,0,0), if stroke;
Y =1<(0,1,0), if drug overdose ;

((0,0,1), if epileptic seizure.

e the choice of multinomial distribution is suitable; 7y is the probability of Y = 1

1
Y1'yo! - - yK!

Y192 YK
7"'1 7'('2 ﬂ-K

P(Y = (y1,...,yk)) =
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Multinomial logistic model

denote GG the variable indicating the group:

Y:(0,0,...,,kih,,(),...,()) — G=k

the response belongs to kth category iff G = k

e model: log-odd of each response is linear function of predictors

P(G=1| X) _

b= e
P(G=2| X

log mra=x Tx) = B X
P(G=K—-1|X) _

log —pa=rx) = Br 1 X

e the choice of last class as the denominator is arbitrary

Logistic regression
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e the conditional probabilities can be expressed as

(G=k|X)= o k K
P(G = X =1,2,..., K — 1,
1+ S e X
1
PG=K | X chosen to be referenced class
G =K IX)= =g )

(the sum of K probabilities is one)
e denote pi(x;B) = P(G =k |x)

e the log-likelihood function of (y, x) is expressed from multinomial distribution

log ply | Zyz log pi(x; B) — log(y'ya! - - - y )

entries of y = (y1,...,yx) are either 0 or 1 — the last term on RHS is zero
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Estimation of multinomial logistic coefficients

suppose data {(y'¥), z(9)}" . are available (independent samples)

the log-likelihood function to be maximized is

log £(8) = > logp(y™ | 2'); B)
i=1
n K . '
=3y logpi(a?; B)
i=1 1=1
note that the term in Z{il reduces to pi(x?; B) if ¥ belongs to k class

[ can be solved numerically from iterative procedure like Newton-Raphson

multinom in R and mnrfit in MATLAB
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