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Preface

This handout has been prepared as a teaching material for 2102531 (System Identification) course
which is intended for senior undergraduate and graduate students. The contents provide firstly reviews
on linear algebra, probability, statistics, linear system and random processes, which are fundamental
concepts required for developing ideas in system identification processes. Core estimation techniques
cover least-squares and its variants, instrumental variable, prediction error method, maximum likeli-
hood, maximum a posteriori, minimum mean square, and subspace identification. These topics are
summarized from various textbooks on system identification including L. Ljung, System Identification:
Theory for the User, Soderstrom and P. Stoica, System Identification, P. Van Overschee and De Moor,
Subspace identification for linear systems, R.C. Young, Recursive estimation and time-series analysis,
and some textbooks on statistical learning: James and D. Witten, T. Hastie, and R. Tibshirani, An
Introduction to Statistical Learning with Applications in R.

The handout has been used and revised for six academic years since 2011. After 2015, we decided
to spend less time on nonparametric approach but focus more on parametric methods that find more
explicit examples from applications. In addition to computer problem exercises, we also have had
term projects to allow students to explore more tools and estimation methods that are applicable to
real-world applications. Examples of these projects are described in Chapter 15 where all of them are
listed on http://jitkomut.eng.chula.ac.th/ee531.html. Materials of old topics that are not
currently taught are also available there.

The author would like to thank Prof. Manop Wongsaisuwan for providing useful resources and
comments when I was first assigned to teach this course. My thank also goes to all students in the
past. Their feedback comments and study results have helped me design the content presentation
that is aimed to suit them most.

Jitkomut Songsiri

Department of Electrical Engineering
Faculty of Engineering

Chulalongkorn University

November 12, 2018
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Notation

Notation Description

R set of real numbers

Rn set of real vectors of length n

Rm×n set of real matrices of size m× n

C set of complex numbers

Cn set of complex vectors of length n

Cm×n set of complex matrices of size m× n

Sn set of symmetric matrices of size n× n

var variance of a random variable

cov Covariance matrix

tr Trace operator

E Expectation operator

N (T ) nullspace of linear transformation T

R(T ) range space of linear transformation T

vi



Chapter 1

Introduction

Learning objectives of this chapter are

• to provide basic concepts about system identification,

• to describe pre-requisite skills for this course.
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1. Introduction

• basic concept

• system identification methods

• procedures in system identification

• examples

1-1

Basic concept

objective: how to build a system description from experimental data

System
Input Output

Disturbance

y(t)u(t)

v(t)

estimation of system description can serve for many purposes:

• obtain a mathematical model for controller design

• explain/understand observed phenomena (e.g., machine learning)

• forecast events in the future (e.g., time series analysis in econometrics)

• obtain a model of signal in filter design (e.g., signal processing)
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System Identification for Controller Design

Reference

Controller

Disturbance

Output
Plant

Sensor

noise

+−

• for controller design, the plant is assumed known

• in system identification, we aim to estimate the parameters in a model
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System Idenfitication for prediction
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how to forecast the Thai Baht in Apr, May,... ?

need a model for prediction, e.g. x̂Apr = a1xMar + a2xFeb
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Models

a description of the system, or a relationshop among observed signals

a model should capture the essential information about the system

Types of Models

• graph and tables, e.g., bode plots and step response

• mathematical models, e.g., differential and difference equations

• probablilistic models, e.g, probability density function

System identification is a process of obtaining models based on a data set
collected from experiments

input and output signals from the system are recorded and analyzed to infer a
model
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System identification methods

• Nonparametric approach

– aim at determining a (time/frequency) response directly without first
selecting a possible set of models

– gives basic information about the sytsem and is useful for validation

– examples are transient analysis, frequency analysis, correlation analysis, and
spectral analysis

• Parametric approach

– require assumptions on a model class/structure

– the search for the best model within the candidate set becomes a problem
of determining the model parameters

– typically more complicated than the nonparametric approach

– results can be further used for controller design, simulation, etc.

Introduction 1-6
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Procedures in System Identification

+True Description

Model Class

Model/Complexity

Model FitEstimation

Model selection

Validation

Linear models of order n

AR models of order n

Least−squares

quadratic loss
likelihood

determine n

Time−varying/Time−invariant

Linear/Nonlinear

Validation data

Prediction error method

Model
Accept ?

Yes

No

End

Training data

Noise
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Parametric Estimation

• Model classification:

SISO/MIMO, Linear/Nonlinear, Time-invarian/Time varying,
Discrete/Continuous

• searching the best model within a candidate set becomes a problem of
determining the model parameters

• the selected parameter x̂ from a model class M is optimal in some sense, i.e.,

x̂ = argmin
x∈M

f(x,D),

where f is a measure of goodness of fit (or loss function) and is a function of
information data (D)

• examples of f are quadratic loss, likelihood, entropy function, etc.

Introduction 1-8

Estimation methods

• linear least-squares method (LS)

simple to compute, no assumption on noise model

• statistical estimation methods, e.g., Maximum likelihood, Bayes

use prior knowledge about the noise

• instrumental-variable method

a modification of the LS method for correlated noise

• prediction-error method

model the noise, applicable to a broad range of models

Introduction 1-9

4 1 Introduction



Model selection

• Principle of parsimony:

one should pick a model with the smallest possible number of parameters
that can adequately explain the data

• one can trade off between

Goodness of fit VS Complexity

• related to the concept of bias VS variance in statistics

• examples of model selection criterions are FPE, AIC, BIC, etc.

Introduction 1-10

Example: Polynomial fitting
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• a curve fitting problem of polynomial of order n

• the true order is n = 3
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Example: Trade-off curve
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• shows the minimized loss as a decreasing function of model complexity

• the error begins to decrease as the model picks up the relevant features

• as the model order increases, the model tends to over fit the data

• in practice, the model order is determined by the “knee” in the curve
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Model Validation

• a parametric estimation procedure picks out the best model

• a problem of model validation is to verify whether this best model is “good
enough”

• test the estimated model (obtained from training data), with a new set of
data (validation set)

• The tests verify whether the dynamic from the input and the noise model are
adequate

Introduction 1-13

Numerical Example
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• feed a known input to the system and measure the output

• the input should contain rich information to excite the system
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• fit the measured output to the model

(1 + a1q
−1 + · · ·+ anq

−n)y(t) =

(b1q
−1 + · · ·+ bnq

−n)u(t) + (1 + c1q
−1 + · · ·+ cnq

−n)ν(t)

with unknown parameters a1, . . . , an, b1, . . . , bn, c1, . . . , cn

• this model is known as Autoregressive Moving Average with Exogenous input
(ARMAX)

• ν(t) represents the noise that enters to the system

• n is the model order, which is selected via model selection

• the parameters are estimated by the Prediction-error method (PEM)

Introduction 1-15
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Example of output prediction
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(estimated by PEM and validated on a new data set)
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Example of Zero-Pole location
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• ◦: zeros, ×: poles

• red: true system, blue: estimated models

• chance of zero-pole cancellation at higher order
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Skills needed for System Identification

one should have

• concepts of dynamical systems (description, how to analyze their properties)

• probability and statistics (to understand probablilistic models, estimation
methods, to statistically interpret results)

• linear algebra (many linear models involve matrix analysis)

• optimization (most model estimations are optimization problems)

• programming (for numerical methods to solve estimation problems)

Introduction 1-18
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Chapter 2

Reviews on dynamical systems

Students should review the topics of

• linear time-invariant system description and transfer function,

• properties of wide-sense stationary processes.
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2. Reviews on dynamical systems

• linear systems: state-space equations

• random (stochastic) processes

2-1

Continous-time systems

• an autonomous system

ẋ(t) = Ax(t), y = Cx(t)

• a system with inputs

ẋ(t) = Ax(t) +Bu(t), y = Cx(t) +Du(t)

• x ∈ Rn is the state, y ∈ Rm is the output, and u ∈ Rp is the control input

• A ∈ Rn×n is the dynamic matrix

• B ∈ Rp×n is the input matrix

• C ∈ Rm×n is the output matrix

• D ∈ Rm×p is the direct forward term

Reviews on dynamical systems 2-2

Solution of state-space equations

• an autonomous system

x(t) = eAtx(0), y = CeAtx(0)

eAt is the state-transition matrix; can be computed analytically

• a system with inputs

x(t) = etAx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ,

y(t) = CeAtx(0) + C

∫ t

0

eA(t−τ)Bu(τ)dτ +Du(t)

x(t) consists of zero-input response and zero-state response

Reviews on dynamical systems 2-3
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Discrete-time systems

• an autonomous system

x(t+ 1) = Ax(t), y(t) = Cx(t)

with solution
x(t) = Atx(0)

• a system with inputs

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

with solution

x(t) = Atx(0) +
t−1
∑

τ=0

At−1−τBu(τ)

Reviews on dynamical systems 2-4

Transfer function of linear systems

explains a relationship from u to y

• continuous-time system: Y (s) = H(s)U(s)

H(s) = C(sI −A)−1B +D

• discrete-time system: Y (z) = H(z)U(z)

H(z) = C(zI −A)−1B +D

the inverse Laplace (z-) transform of H is the impulse response, h(t)

Reviews on dynamical systems 2-5

Important concepts of system analysis

• stability: if x(t) → 0 when t → ∞
(eigenvalues of dynamic matrix, Lyapunov theory)

• controllability: how a target state can be acheived by applying a certain input
(explained from A and B)

• observability: how to estimate x(0) from the measurement y
(explained A and C)

Reviews on dynamical systems 2-6
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Stochastic Signals

• stationary processes

• ergodic processes

• correlation and covariance function

• power spectral density

• independent and uncorrelated processes

• Gaussian or normal processes

• white noise

• linear process with stochastic signals

Reviews on dynamical systems 2-7

Stochastic Processes

stochastic process is an entirely family (ensemble) of random time signals

{x(t), t ∈ T}

i.e., for each t in the index set T , x(t) is a random variable

• a signal realization x(t) is called sample function or a sample path

• if T is a countable set, x(t) is called discrete-time stochastic process

• if T is a continuum, x(t) is called continuous-time process

• a process can be either discrete- or continuous-valued

Reviews on dynamical systems 2-8

Joint distribution

let x1, . . . , xn be the n random variables by sampling the process x(t)

x1 = x(t1), x2 = x(t2), . . . , xn = x(tn)

a stochastic process is specified by the collection of joint cdf (depend on time)

F (x1, x2, . . . , xn) = P (x(t1) ≤ x1, x(t2) ≤ x2, . . . , x(tn) ≤ xn)

• continuous-valued process:

f(x1, . . . , xn)dx1 · · · dxn =

P (x1 < x(t1) ≤ x1 + dx1, . . . , xn < x(tn) ≤ xn + dxn)

• discrete-valued process:

p(x1, x2, . . . , xn) = P (x(t1) = x1, x(t2) = x2, . . . , x(tn) = xn)

Reviews on dynamical systems 2-9
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Mean and variance of stochastic process

mean and variance function of a continous-time process are defined by

µ(t) = E[x(t)] =

∫

∞

−∞

xf(x)dx

var[x(t)] =

∫

∞

−∞

(x− µ(t))2f(x)dx

• here f is the pdf of x(t) (depend on time)

• mean and variance are deterministic functions of time

Reviews on dynamical systems 2-10

Correlation and Covariance

suppose X,Y are random variables with means µx and µy respectively

cross correlation

Rxy = E[XY T ]

autocorrelation

R = E[XXT ]

cross covariance

Cxy = E
[

(X − µx)(Y − µy)
T
]

autocovariance

C = E
[

(X − µx)(X − µx)
T
]

correlation = covariance when considering zero mean

Reviews on dynamical systems 2-11

Correlation and Covariance functions

suppose x(t), y(t) are random processes

cross correlation

Rxy(t1, t2) = Ex(t1)y(t2)
T

autocorrelation

R(t1, t2) = Ex(t1)x(t2)
T

cross covariance

Cxy(t1, t2) = E
[

(x(t1)− µx(t1))(y(t2)− µy(t2))
T
]

where µx(t) = Ex(t) and µy(t) = Ey(t)

autocovariance

C(t1, t2) = E
[

(x(t1)− µ(t1))(x(t2)− µ(t2))
T
]

Reviews on dynamical systems 2-12
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Stationary processes

a process is called strictly stationary if the joint cdf of

x(t1), x(t2), . . . , x(tn)

is the same as that of

x(t1 + τ), x(t2 + τ), . . . , x(tn + τ)

for all time shifts τ and for all choices of sample times t1, . . . , tk

• first-order cdf of a stationary process must be independent of time

Fx(t)(x) = Fx(t+τ)(x) = F (x), ∀t, τ

implication: mean and variance are constant and independent of time

Reviews on dynamical systems 2-13

Wide-sense stationary Process

a process is wide-sense stationary if the two conditions hold:

1. E[x(t)] = constant for all t

2. R(t1, t2) = R(t1 − t2) (only depends on the time gap)

the correlation/covariance functions are simplified to

R(τ) = Ex(t+ τ)x(t)T , Rxy(τ) = Ex(t+ τ)y(t)T

C(τ) = Ex(t+ τ)x(t)T − µxµ
T
x , Cxy(τ) = Ex(t+ τ)y(t)T − µxµ

T
y

Reviews on dynamical systems 2-14

Example

determine the mean and the autocorrelation of a random process

x(t) = A cos(ωt+ φ)

where the random variables A and φ are independent and φ is uniform on
(−π, π)

since A and φ are independent, the mean is given by

Ex(t) = E[A]E[cos(ωt+ φ)]

using the uniform distribution in φ, the last term is

E cos(ωt+ φ) =
1

2π

∫ π

−π

cos(ωt+ φ)dφ = 0

therefore, Ex(t) = 0

Reviews on dynamical systems 2-15

14 2 Reviews on dynamical systems



using trigonometric identities, the autocorrelation is determined by

Ex(t1)x(t2) =
1

2
EA2

E[cosω(t1 − t2) + cos(ωt1 + ωt2 + 2φ)]

since

E[cos(ωt1 + ωt2 + 2φ)] =
1

2π

∫ π

−π

cos(ωt1 + ωt2 + 2φ)dφ = 0

we have
R(t1, t2) = (1/2)E[A2] cosω(t1 − t2)

hence, the random process in this example is wide-sense stationary

Reviews on dynamical systems 2-16

Power Spectral Density

Wiener-Khinchin Theorem: if a process is wide-sense stationary, the
autocorrelation function and the power spectral density form a Fourier transform
pair:

S(ω) =

∫

∞

−∞

e−iωτR(τ)dτ continuous

S(ω) =
k=∞
∑

k=−∞

R(k)e−iωk discrete

the autocorrelation function at τ = 0 indicates the average power:

R(0) = E[x(t)x(t)T ] =
1

2π

∫

∞

−∞

S(ω)dω

(similarly, use discrete inverse Fourier transform for discrete systems)

Reviews on dynamical systems 2-17

Properties

• R(−t) = R(t)T (if the process is scalar, then R(−t) = R(t))

• non-negativity: that is for any ai, aj ∈ Rn, with i, j = 1, . . . N , we have

N
∑

i

N
∑

j

aTi R(i− j)aj ≥ 0,

which follows from

N
∑

i

N
∑

j

aTi R(i−j)aj =
N
∑

i

N
∑

j

E[aTi x(i)x(j)
Taj] = E





(

N
∑

i

aTi x(i)

)2


 ≥ 0.

• S(ω) is self-adjoint, i.e., S(ω)∗ = S(ω) for all ω

• diagonals of S(ω) are real-valued

Reviews on dynamical systems 2-18
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Ergodic Processes

a stochastic process is ergodic if

E[x(t)] = lim
T→∞

1

T

∫ T/2

−T/2

x(t)dt (continuous)

E[x(t)] = lim
N→∞

1

N

N
∑

k=1

x(k) (discrete)

(time average = ensemble average)

• one typically gets statistical information from emsemble averaging

• ergodic hypothesis means this information can also be obtained from
averaging a single sample x(t) over time

Reviews on dynamical systems 2-19

with ergodic assumption,

continous time

R(τ) = lim
T→∞

1

T

∫ T/2

−T/2

x(t+ τ)x(t)Tdt

Rxy(τ) = lim
T→∞

1

T

∫ T/2

−T/2

x(t+ τ)y(t)Tdt

discrete time

R(τ) = lim
N→∞

1

N

N
∑

k=1

x(k + τ)x(k)T

Rxy(τ) = lim
N→∞

1

N

N
∑

k=1

x(k + τ)y(k)T

Reviews on dynamical systems 2-20

Independent and Correlated Processes

stationary processes x(t) and y(t) are called independent if

fXY (x, y) = fX(x)fY (y)

(the joint pdf is equal to the product of marginals)

and are called uncorrelated if

Cxy(τ) = 0, ∀τ

• independent processes are always uncorrelated

• the opposite may not be true

Reviews on dynamical systems 2-21
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White noise

a zero-mean process with the following properties:

continuous time

R(τ) = S0δ(τ), S(ω) =

∫

∞

−∞

S0δ(τ)e
−iωτdτ = S0

discrete time

R(k) = S0δ(k) =

{

S0, k = 0

0, k 6= 0
, S(ω) =

∞
∑

k=−∞

S0δ(k)e
−iωk = S0

(constant spectrum)

Reviews on dynamical systems 2-22

Linear systems with random input

let y be the response to input u under a linear causal system H

Facts: if u(t) is a wide-sense stationary process and H is stable then

• y(t) is also a wide-sense stationary process

• spectrum of u and y are related by

Sy(ω) = H(ω)Su(ω)H(ω)∗

where H(ω)∗ is the complex conjugate transpose of H(ω)

Reviews on dynamical systems 2-23

Random walk

a process x(t) is a random walk if

x(t) = x(t− 1) + w(t− 1)

where w(t) is a white noise with covariance Σ

• x(t) obeys a linear (unstable) system with a random input

• with back substitution, we can express x(t) as

x(t) = w(t− 1) + w(t− 2) + · · ·+ w(0)

• x(t) is non-stationary because R(t, t+ τ) depends on t

R(t, t+ τ) = E[x(t)x(t+ τ)T ] = tΣ

Reviews on dynamical systems 2-24
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time plot of random walk and its normalized sample autocorrelation
(correlogram)
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Chapter 3

Reviews on linear algebra

Students should review the following topics in linear algebra.

• Vectors and matrices are extensively used in our analysis. Students should be familiar with
formulating problems in vector or matrix forms. Getting to know various kinds of matrix
structures and understand their properties help us provide in-depth analyses of a problem.

• Methods of solving linear equations and related issues provide a basis for solving linear least-
squares problems, a simple method of system identification that has numerous applications.

• Concepts of norm linear space and inner product space will be used to explain the orthogonality
condition for least-squares problems.

• Different matrix factorization methods are used in solving linear equations or linear least-squares
problems numerically.

• Many system identification problems have matrix variables. Functions of vectors now can be
extended to functions of matrices. Basis calculus such as first and second derivatives and also
the chain rule will be explained.



EE531 - System Identification Jitkomut Songsiri

3. Reviews on Linear algebra

• matrices and vectors

• linear equations

• range and nullspace of matrices

• norm and inner product spaces

• matrix factorizations

• function of vectors, gradient and Hessian

• function of matrices

3-1

Vector notation

n-vector x:

x =









x1

x2
...
xn









• also written as x = (x1, x2, . . . , xn)

• set of n-vectors is denoted Rn (Euclidean space)

• xi: ith element or component or entry of x

• x is also called a column vector

• y =
[

y1 y2 · · · yn
]

is called a row vector

unless stated otherwise, a vector typically means a column vector
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Special vectors

zero vectors: x = (0, 0, . . . , 0)

all-ones vectors: x = (1, 1, · · · , 1) (we will denote it by 1)

standard unit vectors: ek has only 1 at the kth entry and zero otherwise

e1 =





1
0
0



 , e2 =





0
1
0



 , e3 =





0
0
1





(standard unit vectors in R3)

unit vectors: any vector u whose norm (magnitude) is 1, i.e.,

‖u‖ ,

√

u2
1 + u2

2 + · · ·+ u2
n = 1

example: u = (1/
√
2, 2/

√
6,−1/

√
2)
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Inner products

definition: the inner product of two n-vectors x, y is

x1y1 + x2y2 + · · ·+ xnyn

also known as the dot product of vectors x, y

notation: xTy

properties ✎

• (αx)Ty = α(xTy) for scalar α

• (x+ y)Tz = xTz + yTz

• xTy = yTx
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Euclidean norm

‖x‖ =
√

x2
1 + x2

2 + · · ·+ x2
n =

√
xTx

properties

• also written ‖x‖2 to distinguish from other norms

• ‖αx‖ = |α|‖x‖ for scalar α

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

• ‖x‖ ≥ 0 and ‖x‖ = 0 only if x = 0

interpretation

• ‖x‖ measures the magnitude or length of x

• ‖x− y‖ measures the distance between x and y
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Matrix notation

an m× n matrix A is defined as

A =









a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn









, or A = [aij]m×n

• aij are the elements, or coefficients, or entries of A

• set of m× n-matrices is denoted Rm×n

• A has m rows and n columns (m,n are the dimensions)

• the (i, j) entry of A is also commonly denoted by Aij

• A is called a square matrix if m = n
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Special matrices

zero matrix: A = 0

A =









0 0 · · · 0
0 0 · · · 0
... ... . . . 0
0 0 · · · 0









aij = 0, for i = 1, . . . ,m, j = 1, . . . , n

identity matrix: A = I

A =









1 0 · · · 0
0 1 · · · 0
... ... . . . 0
0 0 · · · 1









a square matrix with aii = 1, aij = 0 for i 6= j
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diagonal matrix: a square matrix with aij = 0 for i 6= j

A =









a1 0 · · · 0
0 a2 · · · 0
... ... . . . ...
0 · · · 0 an









triangular matrix:

a square matrix with zero entries in a triangular part

upper triangular lower triangular

A =









a11 a12 · · · a1n
0 a22 · · · a2n
... ... . . .
0 0 · · · ann









A =









a11 0 · · · 0
a21 a22 · · · 0
... ... . . .

an1 an2 · · · ann









aij = 0 for i ≥ j aij = 0 for i ≤ j
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Block matrix notation

example: 2× 2-block matrix A

A =

[

B C
D E

]

for example, if B,C,D,E are defined as

B =

[

2 1
3 8

]

, C =

[

0 1 7
1 9 1

]

, D =
[

0 1
]

, E =
[

−4 1 −1
]

then A is the matrix

A =





2 1 0 1 7
3 8 1 9 1
0 1 −4 1 −1





note: dimensions of the blocks must be compatible
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Column and Row partitions

write an m× n-matrix A in terms of its columns or its rows

A =
[

a1 a2 · · · an
]

=









bT1
bT2
...
bTm









• aj for j = 1, 2, . . . , n are the columns of A

• bTi for i = 1, 2, . . . ,m are the rows of A

example: A =

[

1 2 1
4 9 0

]

a1 =

[

1
4

]

, a2 =

[

2
9

]

, a3 =

[

1
0

]

, bT1 =
[

1 2 1
]

, bT2 =
[

4 9 0
]
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Matrix-vector product

product of m× n-matrix A with n-vector x

Ax =









a11x1 + a12x2 + . . .+ a1nxn

a21x1 + a22x2 + . . .+ a2nxn
...

am1x1 + am2x2 + . . .+ amnxn









• dimensions must be compatible: # columns in A = # elements in x

if A is partitioned as A =
[

a1 a2 · · · an
]

, then

Ax = a1x1 + a2x2 + · · ·+ anxn

• Ax is a linear combination of the column vectors of A

• the coefficients are the entries of x
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Product with standard unit vectors

post-multiply with a column vector

Aek =









a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn

























0
0
...
1
...
0

















=









a1k
a2k
...

amk









= the kth column of A

pre-multiply with a row vector

eTkA =
[

0 0 · · · 1 · · · 0
]









a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn









=
[

ak1 ak2 · · · akn
]

= the kth row of A
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Trace

Definition: trace of a square matrix A is the sum of the diagonal entries in A

tr(A) = a11 + a22 + · · ·+ ann

example:

A =





2 1 4
0 −1 5
3 4 6





trace of A is 2− 1 + 6 = 7

properties ✎

• tr(AT ) = tr(A)

• tr(αA+B) = α tr(A) + tr(B)

• tr(AB) = tr(BA)
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Eigenvalues

λ ∈ C is called an eigenvalue of A ∈ Cn×n if

det(λI −A) = 0

equivalent to:

• there exists nonzero x ∈ Cn s.t. (λI −A)x = 0, i.e.,

Ax = λx

any such x is called an eigenvector of A (associated with eigenvalue λ)

• there exists nonzero w ∈ Cn such that

wTA = λwT

any such w is called a left eigenvector of A
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Computing eigenvalues

• X (λ) = det(λI −A) is called the characteristic polynomial of A

• X (λ) = 0 is called the characteristic equation of A

• eigenvalues of A are the root of characteristic polynomial

Reviews on Linear algebra 3-15
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Properties

• if A is n× n then X (λ) is a polynomial of order n

• if A is n× n then there are n eigenvalues of A

• even when A is real, eigenvalues and eigenvectors can be complex, e.g.,

A =

[

2 −1
1 2

]

, A =





−2 0 1
−6 −2 0
19 5 −4





• if A and λ are real, we can choose the associated eigenvector to be real

• if A is real then eigenvalues must occur in complex conjugate pairs

• if x is an eigenvector of A, so is αx for any α ∈ C, α 6= 0

• an eigenvector of A associated with λ lies in N (λI −A)

Reviews on Linear algebra 3-16

Important facts

denote λ(A) an eigenvalue of A

• λ(αA) = αλ(A) for any α ∈ C

• tr(A) is the sum of eigenvalues of A

• det(A) is the product of eigenvalues of A

• A and AT share the same eigenvalues ✎

• λ(AT ) = λ(A) ✎

• λ(ATA) ≥ 0

• λ(Am) = (λ(A))m for any integer m

• A is invertible if and only if λ = 0 is not an eigenvalue of A ✎
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Eigenvalue decomposition

if A is diagonalizable then A admits the decomposition

A = TDT−1

• D is diagonal containing the eigenvalues of A

• columns of T are the corresponding eigenvectors of A

• note that such decomposition is not unique (up to scaling in T )

recall: A is diagonalizable iff all eigenvectors of A are independent
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Inverse of matrices

Definition:

a square matrix A is called invertible or nonsingular if there exists B s.t.

AB = BA = I

• B is called an inverse of A

• it is also true that B is invertible and A is an inverse of B

• if no such B can be found A is said to be singular

assume A is invertible

• an inverse of A is unique

• the inverse of A is denoted by A−1
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assume A,B are invertible

Facts ✎

• (αA)−1 = α−1A−1 for nonzero α

• AT is also invertible and (AT )−1 = (A−1)T

• AB is invertible and (AB)−1 = B−1A−1

• (A+B)−1 6= A−1 +B−1
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Inverse of 2× 2 matrices

the matrix

A =

[

a b
c d

]

is invertible if and only if
ad− bc 6= 0

and its inverse is given by

A−1 =
1

ad− bc

[

d −b
−c a

]

example:

A =

[

2 1
−1 3

]

, A−1 =
1

7

[

3 −1
1 2

]
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Invertible matrices

✌ Theorem: for a square matrix A, the following statements are equivalent

1. A is invertible

2. Ax = 0 has only the trivial solution (x = 0)

3. the reduced echelon form of A is I

4. A is invertible if and only if det(A) 6= 0
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Inverse of special matrices

diagonal matrix

A =









a1 0 · · · 0
0 a2 · · · 0
... ... . . . ...
0 · · · 0 an









a diagonal matrix is invertible iff the diagonal entries are all nonzero

aii 6= 0, i = 1, 2, . . . , n

the inverse of A is given by

A−1 =









1/a1 0 · · · 0
0 1/a2 · · · 0
... ... . . . ...
0 · · · 0 1/an









the diagonal entries in A−1 are the inverse of the diagonal entries in A
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triangular matrix:

upper triangular lower triangular

A =









a11 a12 · · · a1n
0 a22 · · · a2n
... ... . . .
0 0 · · · ann









A =









a11 0 · · · 0
a21 a22 · · · 0
... ... . . .

an1 an2 · · · ann









aij = 0 for i ≥ j aij = 0 for i ≤ j

a triangular matrix is invertible iff the diagonal entries are all nonzero

aii 6= 0, ∀i = 1, 2, . . . , n

• product of lower (upper) triangular matrices is lower (upper) triangular

• the inverse of a lower (upper) triangular matrix is lower (upper) triangular
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symmetric matrix: A = AT

✎

• for any square matrix A, AAT and ATA are always symmetric

• if A is symmetric and invertible, then A−1 is symmetric

• if A is invertible, then AAT and ATA are also invertible
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Symmetric matrix

A ∈ Rn×n is called symmetric if A = AT

Facts: if A is symmetric

• all eigenvalues of A are real

• all eigenvectors of A are orthogonal

• A admits a decomposition
A = UDUT

where UTU = UUT = I (U is unitary) and D is diagonal

(of course, the diagonals of D are eigenvalues of A)
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Unitary matrix

a matrix U ∈ Rn×n is called unitary if

UTU = UUT = I

example: 1√
2

[

1 −1
1 1

]

,

[

cos θ − sin θ
sin θ cos θ

]

Facts:

• a real unitary matrix is also called orthogonal

• a unitary matrix is always invertible and U−1 = UT

• columns vectors of U are mutually orthogonal

• norm is preserved under a unitary transformation:

y = Ux =⇒ ‖y‖ = ‖x‖
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Idempotent Matrix

A ∈ Rn×n is an idempotent (or projection) matrix if

A2 = A

examples: identity matrix

Facts: Let A be an idempotent matrix

• eigenvalues of A are all equal to 0 or 1

• I −A is idempotent

• if A 6= I , then A is singular
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Projection matrix

a square matrix P is a projection matrix if and only if P 2 = P

• P is a linear transformation from Rn to a subspace of Rn, denoted as S

• columns of P are the projections of standard basis vectors

• S is the range of P

• from P 2 = P , it means if P is applied twice on a vector in S, it gives the
same vector

• examples:

P =

[

1 0
0 0

]

, P =

[

1/2 1/2
1/2 1/2

]
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Orthogonal projection matrix

a projection matrix is called orthogonal if and only if P = P T

• P is bounded, i.e., ‖Px‖ ≤ ‖x‖

‖Px‖22 = xTP TPx = xTP 2x = xTPx ≤ ‖Px‖‖x‖

(by Cauchy-Schwarz inequality – more on this later)

• if P is an orthogonal projection onto a line spanned by a unit vector u,

P = uuT

(we see that rank(P ) = 1 as the dimension of a line is 1)

• another example: P = A(ATA)−1AT for any matrix A
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Nilpotent matrix

A ∈ Rn×n is nilpotent if

Ak = 0, for some positive integer k

Example: any triangular matrices with 0’s along the main diagonal

[

0 1
0 0

]

,









0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1









(shift matrix)

also related to deadbeat control for linear discrete-time systems

Facts:

• the characteristic equation for A is λn = 0

• all eigenvalues are 0
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Positive definite matrix

a symmetric matrix A is positive semidefinite, written as A � 0 if

xTAx ≥ 0, ∀x ∈ Rn

and positive definite, written as A ≻ 0 if

xTAx > 0, for all nonzero x ∈ Rn

Facts: A � 0 if and only if

• all eigenvalues of A are non-negative

• all principle minors of A are non-negative
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example: A =

[

1 −1
−1 2

]

� 0 because

xTAx =
[

x1 x2

]

[

1 −1
−1 2

] [

x1

x2

]

= x2
1 + 2x2

2 − 2x1x2

= (x1 − x2)
2 + x2

2 ≥ 0

or we can check from

• eigenvalues of A are 0.38 and 2.61 (real and positive)

• the principle minors are 1 and

∣

∣

∣

∣

1 −1
−1 2

∣

∣

∣

∣

= 1 (all positive)

note: A � 0 does not mean all entries of A are positive!
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Properties: if A � 0 then

• all the diagonal terms of A are nonnegative

• all the leading blocks of A are positive semidefinite

• BABT � 0 for any B

• if A � 0 and B � 0, then so is A+B

• A has a square root, denoted as a symmetric A1/2 such that

A1/2A1/2 = A
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Schur complement

a consider a symmetric matrix X partitioned as

X =

[

A B
BT C

]

Schur complement of A in X is defined as

S1 = C −BTA−1B, if detA 6= 0

Schur complement of C in X is defined as

S2 = A−BC−1BT , if detC 6= 0

we can show that

detX = detA detS1 = detC detS2
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Schur complement of positive definite matrix

Facts:

• X ≻ 0 if and only if A ≻ 0 and S1 ≻ 0

• if A ≻ 0 then X � 0 if and only if S1 � 0

analogous results for S2

• X ≻ 0 if and only if C ≻ 0 and S2 ≻ 0

• if C ≻ 0 then X � 0 if and only if S2 � 0
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Linear equations

a general linear system of m equations with n variables is described by

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
... = ...

am1x1 + am2x2 + · · ·+ amnxn = bm

where aij, bj are constants and x1, x2, . . . , xn are unknowns

• equations are linear in x1, x2, . . . , xn

• existence and uniqueness of a solution depend on aij and bj
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Linear equation in matrix form

the linear system of m equations in n variables

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
... = ...

am1x1 + am2x2 + · · ·+ amnxn = bm

in matrix form: Ax = b where

A =









a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn









, x =









x1

x2
...
xn









, b =









b1
b2
...
bm








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Three types of linear equations

• square if m = n (A is square)

[

a11 a12
a21 a22

] [

x1

x2

]

=

[

b1
b2

]

• underdetermined if m < n (A is fat)

[

a11 a12 a13
a21 a22 a23

]





x1

x2

x3



 =

[

b1
b2

]

• overdetermined if m > n (A is skinny)





a11 a12
a21 a22
a31 a32





[

x1

x2

]

=





b1
b2
b3




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Existence and uniqueness of solutions

existence:

• no solution

• a solution exists

uniqueness:

– the solution is unique

– there are infinitely many solutions

every system of linear equations has zero, one, or infinitely many solutions

there are no other possibilities
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Nullspace

the nullspace of an m× n matrix is defined as

N (A) = {x ∈ Rn | Ax = 0}

• the set of all vectors that are mapped to zero by f(x) = Ax

• the set of all vectors that are orthogonal to the rows of A

• if Ax = b then A(x+ z) = b for all z ∈ N (A)

• also known as kernel of A

• N (A) is a subspace of Rn
✎
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Zero nullspace matrix

• A has a zero nullspace if N (A) = {0}

• if A has a zero nullspace and Ax = b is solvable, the solution is unique

• columns of A are independent

✌ equivalent conditions: A ∈ Rn×n

• A has a zero nullspace

• A is invertible or nonsingular

• columns of A are a basis for Rn
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Range space

the range of an m× n matrix A is defined as

R(A) = {y ∈ Rm | y = Ax for some x ∈ Rn }

• the set of all m-vectors that can be expressed as Ax

• the set of all linear combinations of the columns of A =
[

a1 · · · an
]

R(A) = {y | y = x1a1 + x2a2 + · · ·+ xnan, x ∈ Rn}

• the set of all vectors b for which Ax = b is solvable

• also known as the column space of A

• R(A) is a subspace of Rm
✎
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Full range matrices

A has a full range if R(A) = Rm

✌ equivalent conditions:

• A has a full range

• columns of A span Rm

• Ax = b is solvable for every b

• N (AT ) = {0}
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Rank and Nullity

rank of a matrix A ∈ Rm×n is defined as

rank(A) = dimR(A)

nullity of a matrix A ∈ Rm×n is

nullity(A) = dimN (A)

Facts ✌

• rank(A) is maximum number of independent columns (or rows) of A

rank(A) ≤ min(m,n)

• rank(A) = rank(AT )
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Full rank matrices

for A ∈ Rm×n we always have rank(A) ≤ min(m,n)

we say A is full rank if rank(A) = min(m,n)

• for square matrices, full rank means nonsingular (invertible)

• for skinny matrices (m ≥ n), full rank means columns are independent

• for fat matrices (m ≤ n), full rank means rows are independent
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Theorems

• Rank-Nullity Theorem: for any A ∈ Rm×n,

rank(A) + dimN (A) = n

• the system Ax = b has a solution if and only if b ∈ R(A)

• the system Ax = b has a unique solution if and only if

b ∈ R(A), and N (A) = {0}
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Vector space

a vector space or linear space (over R) consists of

• a set V

• a vector sum + : V × V → V

• a scalar multiplication : R× V → V

• a distinguished element 0 ∈ V

which satisfy a list of properties
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V is called a vector space over R, denoted by (V ,R)
if elements, called vectors of V satisfy the following main operations:

1. vector addition:
x, y ∈ V ⇒ x+ y ∈ V

2. scalar multiplication:

for any α ∈ R, x ∈ V ⇒ αx ∈ V

• the definition 2 implies that a vector space contains the zero vector

0 ∈ V

• the two conditions can be combined into one operation:

x, y ∈ V , α ∈ R ⇒ αx+ αy ∈ V
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Inner product space

a vector space with an additional structure called inner product

an inner product space is a vector space V over R with a map

〈·, ·〉 : V × V → R

for all x, y, z ∈ V and all scalars a ∈ R, it satisfies

• conjugate symmetry: 〈x, y〉 = 〈y, x〉

• linearity in the first argument:

〈ax, y〉 = a〈x, y〉, 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

• positive definiteness

〈x, x〉 ≥ 0, and 〈x, x〉 = 0 ⇐⇒ x = 0
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Examples of inner product spaces

• Rn

〈x, y〉 = yTx = x1y1 + x2y2 + · · ·+ xnyn

• Rm×n

〈X,Y 〉 = tr(Y TX)

• L2(a, b): space of real functions defined on (a, b) for which its second-power
of the absolute value is Lebesgue integrable, i.e.,

f ∈ L2(a, b) =⇒
√

∫ b

a

|f(t)|2dt < ∞

the inner product of this space is

〈f, g〉 =
∫ b

a

f(t)g(t)dt
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Orthogonality

let (V ,R) be an inner product space

• x and y are orthogonal:

x ⊥ y ⇐⇒ 〈x, y〉 = 0

• orthogonal complement in V of S ⊂ V , denoted by S⊥, is defined by

S⊥ = {x ∈ V | 〈x, s〉 = 0, ∀s ∈ S}

• V admits the orthogonal decomposition:

V = M⊕M⊥

where M is a subspace of V
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Orthonormal basis

{φn, n ≥ 0} ⊂ V is an orthonormal (ON) set if

〈φi, φj〉 =
{

1, i = j

0, i 6= j

and is called an orthonormal basis for V if

1. {φn, n ≥ 0} is an ON set

2. span{φn, n ≥ 0} = V

we can construct an orthonormal basis from the Gram-Schmidt orthogonalization
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Orthogonal expansion

let {φi}ni=1 be an orthonormal basis for a vector V of dimension n

for any x ∈ V , we have the orthogonal expansion:

x =
n
∑

i=1

〈x, φi〉φi

meaning: we can project x into orthogonal subspaces spanned by each φi

the norm of x is given by

‖x‖2 =
n
∑

i=1

|〈x, φi〉|2

can be easily calculated by the sum square of projection coefficients
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Adjoint of a Linear Transformation

let A : V → W be a linear transformation

the adjoint of A, denoted by A∗ is defined by

〈Ax, y〉W = 〈x,A∗y〉V , ∀x ∈ V , y ∈ W

A∗ is a linear transformation from W to V

one can show that

W = R(A)⊕N (A∗)

V = R(A∗)⊕N (A)
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Example

A : Cn → Cm and denote A = {aij}

for x ∈ Cn and y ∈ Cm, and with the usual inner product in Cm, we have

〈Ax, y〉Cm =
m
∑

i=1

(Ax)i yi =
m
∑

i=1





n
∑

j=1

aijxj



 yi

=
n
∑

j=1

xj

(

m
∑

i=1

aijyi

)

=
n
∑

j=1

xj

(

m
∑

i=1

aijyi

)

=

n
∑

j=1

xj

(

A
T
y
)

j
, 〈x,AT

y〉Cn

hence, A∗ = A
T
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Basic properties of A∗

Let A∗ : W → V be the adjoint of A

facts:

• 〈A∗y, x〉 = 〈y, Ax〉 ⇔ (A∗)∗ = A

• A∗ is a linear transformation

• (αA)∗ = αA∗ for α ∈ C

• let A and B be linear transformations, then

(A+B)∗ = A∗ +B∗ and (AB)∗ = B∗A∗
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Normed vector space

a normed vector space is a vector space V over a R with a map

‖ · ‖ : V → R

called norm that satisfies

• homogenity
‖αx‖ = |α|‖x‖, ∀x ∈ V , ∀α ∈ R

• triangular inequality

‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ V

• positive definiteness

‖x‖ ≥ 0, ‖x‖ = 0 ⇐⇒ x = 0, ∀x ∈ V
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Cauchy-Schwarz inequality

for any x, y in an inner product space (V ,R)

|〈x, y〉| ≤ ‖x‖‖y‖

moreover, for y 6= 0,

〈x, y〉 = ‖x‖‖y‖ ⇐⇒ x = αy, ∃α ∈ R

proof. for any scalar α

0 ≤ ‖x+ αy‖2 = ‖x‖2 + α2‖y‖2 + α〈x, y〉+ α〈y, x〉

if y = 0 then the inequality is trivial

if y 6= 0, then we can choose α = −〈x, y〉
‖y‖2

and the C-S inequality follows
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Example of vector and matrix norms

x ∈ Rn and A ∈ Rm×n

• 2-norm

‖x‖2 =
√
xTx =

√

x2
1 + x2

2 + · · ·+ x2
n

‖A‖F =
√

tr(ATA) =

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij|2

• 1-norm

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|, ‖A‖1 =
∑

ij |aij|

• ∞-norm

‖x‖∞ = max
k

{|x1|, |x2|, . . . , |xn|}, ‖A‖∞ = max
ij

|aij|
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Operator norm

matrix operator norm of A ∈ Rm×n is defined as

‖A‖ = max
‖x‖6=0

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖

also often called induced norm

properties:

1. for any x, ‖Ax‖ ≤ ‖A‖‖x‖

2. ‖aA‖ = |a|‖A‖ (scaling)

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality)

4. ‖A‖ = 0 if and only if A = 0 (positiveness)

5. ‖AB‖ ≤ ‖A‖‖B‖ (submultiplicative)
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examples of operator norms

• 2-norm or spectral norm

‖A‖2 , max
‖x‖2=1

‖Ax‖2 =
√

λmax(ATA)

• 1-norm

‖A‖1 , max
‖x‖1=1

‖Ax‖1 = max
j=1,...,n

m
∑

i=1

|aij|

• ∞-norm

‖A‖∞ , max
‖x‖∞=1

‖Ax‖∞ = max
i=1,...,m

n
∑

j=1

|aij|

note that the notation of norms may be duplicative
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Matrix factorizations

• LU factorization

• QR factorization

• singular value decomposition

• Cholesky factorization
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LU factorization

for any n× n matrix A, it admits a decomposition

A = PLU

with row pivoting

• P permutation matrix, L unit lower triangular, U upper triangular

• the decomposition exists if and only if A is nonsingular

• it is obtained from the Gaussian elimination process
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QR factorization

a tall matrix A ∈ Rm×n with m ≥ n is decomposed as

A = QR =
[

Q1 Q2

]

[

R1

0

]

• Q ∈ Rm×n is an orthogonal matrix (QTQ = I)

• R ∈ Rn×n is an upper triangular

• if rank(A) = n, then n columns in Q1 ∈ Rm×n forms an orthonormal basis
for R(A) and that R1 is invertible

• if rank(A) < n then R1 contains a zero in the diagonal

• QR is obtained by many methods, e.g., Gram Schmidt, Householder transform
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Singular value decomposition

ler A ∈ Rm×n with rank(A) = r ≤ min(m,n) then

A = U

[

Σ+ 0
0 0

]

V T , Σ+ =









σ1

σ2
. . .

σr









U =
[

U1 U2

]

, U1 ∈ Rm×r, U2 ∈ Rm×(m−r), UTU = Im

V =
[

V1 V2

]

, V1 ∈ Rn×r, V2 ∈ Rn×(n−r), V TV = In

• the singular values of A:

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0, p = min(m,n)

are the square root of the eigenvalues of ATA
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• columns of U are the eigenvectors of ATA

• columns of V are the eigenvectors of AAT

• the reduced form of SVD is A = U1Σ+V
T
1

• the Frobenious norm of A is ‖A‖F = tr(Σ+)

• ‖A‖2 is the maximum singular value of A

• rank(A) is the number of nonzero singular value of A
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Cholesky factorization

every positive definite matrix A can be factored as

A = LLT

where L is lower triangular with positive diagonal elements

• L is called the Cholesky factor of A

• can be interpreted as ‘square root’ of a positive define matrix
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Derivative and Gradient

Suppose f : Rn → Rm and x ∈ int dom f

the derivative (or Jacobian) of f at x is the matrix Df(x) ∈ Rm×n:

Df(x)ij =
∂fi(x)

∂xj
, i = 1, . . . ,m, j = 1, . . . , n

• when f is scalar-valued (i.e., f : Rn → R), the derivative Df(x) is a row
vector

• its transpose is called the gradient of the function:

∇f(x) = Df(x)T , ∇f(x)i =
∂f(x)

∂xi
, i = 1, . . . , n

which is a column vector in Rn
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Second Derivative

suppose f is a scalar-valued function (i.e., f : Rn → R)

the second derivative or Hessian matrix of f at x, denoted ∇2f(x) is

∇2f(x)ij =
∂2f(x)

∂xi∂xj
, i = 1, . . . , n, j = 1, . . . , n

example: the quadratic function f : Rn → R

f(x) = (1/2)xTPx+ qTx+ r,

where P ∈ Sn, q ∈ Rn, and r ∈ R

• ∇f(x) = Px+ q

• ∇2f(x) = P
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Chain rule

assumptions:

• f : Rn → Rm is differentiable at x ∈ int dom f

• g : Rm → Rp is differentiable at f(x) ∈ int dom g

• define the composition h : Rn → Rp by

h(z) = g(f(z))

then h is differentiable at x, with derivative

Dh(x) = Dg(f(x))Df(x)

special case: f : Rn → R, g : R → R, and h(x) = g(f(x))

∇h(x) = g′(f(x))∇f(x)
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example: h(x) = f(Ax+ b)

Dh(x) = Df(Ax+ b)A ⇒ ∇h(x) = AT∇f(Ax+ b)

example: h(x) = (1/2)(Ax− b)TP (Ax− b)

∇h(x) = ATP (Ax− b)
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Function of matrices

we typically encounter some scalar-valued functions of matrix X ∈ Rm×n

• f(X) = tr(ATX) (linear in X)

• f(X) = tr(XTAX) (quadratic in X)

definition: the derivative of f (scalar-valued function) with respect to X is

∂f

∂X
=













∂f
∂x11

∂f
∂x12

· · · ∂f
∂x1n

∂f
∂x21

∂f
∂x22

· · · ∂f
∂x2n... . . . ...

∂f
∂xm1

∂f
∂xm2

· · · ∂f
∂xmn













note that the differential of f can be generalized to

f(X + dX)− f(X) = 〈 ∂f
∂X

, dX〉+ higher order term
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Derivative of a trace function

let f(X) = tr(ATX)

f(X) =
∑

i

(ATX)ii =
∑

i

∑

k

(AT )kiXki

=
∑

i

∑

k

AkiXki

then we can read that ∂f
∂X = A (by the definition of derivative)

we can also note that

f(X + dX)− f(X) = tr(AT (X + dX))− tr(ATX) = tr(ATdX) = 〈dX,A〉

then we can read that ∂f
∂X = A
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• f(X) = tr(XTAX)

f(X + dX)− f(X) = tr((X + dX)TA(X + dX))− tr(XTAX)

≈ tr(XTAdX) + tr(dXTAX)

= 〈dX,ATX〉+ 〈AX, dX〉

then we can read that ∂f
∂X = ATX +AX

• f(X) = ‖Y −XH‖2F where Y and H are given

f(X + dX) = tr((Y −XH − dXH)T (Y −XH − dXH))

f(X + dX)− f(X) ≈ − tr(HTdXT (Y −XH))− tr((Y −XH)TdXH)

= − tr((Y −XH)HTdXT )− tr(H(Y −XH)TdX)

= −2〈(Y −XH)HT , dX〉

then we identifiy that ∂f
∂X = −2(Y −XH)HT
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Derivative of a log det function

let f : Sn → R be defined by f(X) = log det(X)

log det(X + dX) = log det(X1/2(I +X−1/2dXX−1/2)X1/2)

= log det+ log det(I +X−1/2dXX−1/2)X1/2)

= log detX +
n
∑

i=1

log(1 + λi)

where λi is an eigenvalue of X−1/2dXX−1/2)X1/2

f(X + dX)− f(X) ≈
n
∑

i=1

λi (log x ≈ x, x → 0)

= tr(X−1/2dXX−1/2)

= tr(X−1dX)

we identify that ∂f
∂X = X−1
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Chapter 4

Model Parametrization

In this course, we first consider the class of discrete-time linear time-invariant models. This allows
us to discuss about basic methods of system identification that lead to tractable solutions. In prac-
tice, input/output data are typically measured from sampled-data systems. A stochastic general
model structure in discrete-time is therefore explained. Various time series models typically used
in applications such as Autoregressive Moving Average (ARMA) are special classes of the general
model structure. Another representation of linear time-invariant systems is to use state-space models
that cover a wide range of applications and can be estimated by a common method called subspace
identification.

Learning objectives of this topic are

• to understand a general model structure of linear time-invariant systems in discrete-time,

• to explain time series models and special cases.



EE531 - System Identification Jitkomut Songsiri

4. Model Parametrization

• model classification

• general model structure

• time series models

• state-space models

• uniqueness properties

4-1

Model Classification

• SISO/MIMO models

• linear/nonlinear models

• parametric/nonparametric models

• time-invariant/time-varying models

• time domain/frequency domain models

• lumped/distributed parameter models

• deterministic/stochastic models
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General model structure

M(θ) : y(t) = G(q−1; θ)u(t) +H(q−1; θ)e(t)

Ee(t)e(s)T = Λ(θ)δ(t, s)

• y(t) is ny-dimensional output

• u(t) is nu-dimensional input

• e(t) is an i.i.d. random variable with zero mean (white noise)

• q−1 is backward shift operator

• H,G,Λ are functions of the parameter vector θ

• this model is a genearal linear model in u and e
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Feasible set of parameters

θ takes the values such that

• H−1 and H−1G are asymptotically stable

• G(0; θ) = 0 and H(0; θ) = I

• Λ(θ) � 0
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General SISO model structure

A(q−1)y(t) =
B(q−1)

F (q−1)
u(t) +

C(q−1)

D(q−1)
e(t), E[e(t)e(t)T ] = λ2

where

A(q−1) = 1 + a1q
−1 + · · ·+ apq

−p

B(q−1) = b1q
−1 + b2q

−2 + · · ·+ bnq
−n

C(q−1) = 1 + c1q
−1 + · · ·+ cmq−m

D(q−1) = 1 + d1q
−1 + · · ·+ dsq

−s

F (q−1) = 1 + f1q
−1 + · · ·+ frq

−r

note that B(0) = 0 (causal system)
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Special cases

output error structure

y(t) =
B(q−1)

F (q−1)
u(t) + e(t)

in this case H(q−1; θ) = 1

the output error is the difference between the measurable output y(t) and the
model output B(q−1)/F (q−1)u(t)

if A(q−1) = 1 in the general model structure

y(t) =
B(q−1)

F (q−1)
u(t) +

C(q−1)

D(q−1)
e(t)

• G and H have no common paramater

• possible to estimate G consistently even if choice of H is not appropriate
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Time series models

stationary models

• ARMAX: AutoRegressive Moving Average model with Exogenous inputs

• ARMA: AutoRegressive Moving Average model

• ARX: AutoRegressive model with Exogenous inputs

• AR: AutoRegressive model

• MA: Moving Average model

non-stationary models

• ARIMA: AutoRegressive Integrated Moving Average model

• ARCH, GARCH (not discussed here)
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ARMAX models

an autoregressive moving average model with an exogenous input:

A(q−1)y(t) = B(q−1)u(t) + C(q−1)e(t)

where

A(q−1) = I − (A1q
−1 + · · ·+Apq

−p)

B(q−1) = B1q
−1 + B2q

−2 + · · ·+Bmq−m

C(q−1) = I + C1q
−1 + · · ·+ Crq

−r

and e(t) is white noise with covariance Σ

the parameter vector is

θ = (A1, . . . , Ap, B1, . . . , Bm, C1, . . . , Cr)

(the noise covariance could be a parameter to be estimated too)
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Special cases of ARMAX models

• ARMA: A(q−1)y(t) = C(q−1)e(t)

• AR: A(q−1)y(t) = e(t)

• MA: y(t) = C(q−1)e(t)

• FIR: y(t) = B(q−1)u(t) + e(t)

• ARX: A(q−1)y(t) = B(q−1)u(t) + e(t)
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applying the backward shift operator explicitly

y(t) = A1y(t− 1) + · · ·+Apy(t− p)

+B1u(t− 1) + · · ·+Bmu(t−m)

e(t) + C1e(t− 1) + · · ·+ Cre(t− r)

special cases:

• autoregressive moving average (ARMA) models

y(t) = A1y(t− 1) + · · ·+Apy(t− p) + e(t) + C1e(t− 1) + · · ·+ Cre(t− r)

• autoregressive (AR) models

y(t) = A1y(t− 1) + · · ·+Apy(t− p) + e(t)
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• moving average (MA) models

y(t) = e(t) + C1e(t− 1) + · · ·+ Cre(t− r)

y consists of a finite sum of stationary white noise (e), so y is also stationary

• finite impulse response (FIR) models

y(t) = B1u(t− 1) + · · ·+Bmu(t−m) + e(t)

• autoregressive with exogenous input (ARX) models

y(t) = A1y(t− 1) + · · ·+Apy(t− p) +B1u(t− 1) + · · ·+Bmu(t−m) + e(t)
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Equivalent representation of AR(1)

write the first-order AR model recursively

y(t) = Ay(t− 1) + e(t)

= A(Ay(t− 2) + e(t− 1)) + e(t)

= A2y(t− 2) +Ae(t− 1) + e(t)

= A2(Ay(t− 3) + e(t− 2)) +Ae(t− 1) + e(t)

= A3y(t− 3) +A2e(t− 2) + Ae(t− 1) + e(t)

...

=
∞
∑

k=0

Ake(t− k)

• by assuming that i) t can be extended to negative index and ii) |ρ(A)| < 1

• y can be represented as infinite moving average
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State-space form of AR models

define the state variable

x(t) = (y(t− 1), y(t− 2), . . . , y(t− p))

the state-space form of AR model is

x(t+ 1) =









A1 A2 · · · Ap

I 0 0
... . . . ...
0 0 I 0









x(t) +









I
0
...
0









e(t)

• the characteristic polynomial of the dynamic matrix is

det Ã(z) = det(zp − (A1z
p−1 +A2z

p−2 + · · ·+Ap))

• the AR process is stationary if its dynamic matrix A is stable
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Non-uniqueness of MA models

consider examples of two MA models

y(t) = e(t) + (1/5)e(t− 1), e(t) ∼ N (0, 25)

x(t) = v(t) + 5v(t− 1), v(t) ∼ N (0, 1)

that cannot be distinguished because of normality of the noise

• note that MA and AR processes are the inverse to each other (by swapping
the role of y and e)

y(t) = −(1/5)y(t− 1) + e(t), x(t) = −5x(t− 1) + v(t)

• an MA model is called invertible if it corresponds to a causal infinite AR
representation – e.g., process with coefficient 1/5

Model Parametrization 4-14

Properties of ARMA models

important properties of ARMA model:

A(q−1)y(t) = C(q−1)e(t)

• the process is stationary if the roots of the determinant of

A(z) = I − (A1z +A2z
2 + · · ·+Apz

p)

are outside the unit circle

• the process is said to be causal if it can be written as

y(t) =

∞
∑

k=0

Ψ(k)e(t− k),

∞
∑

k=0

|Ψ(k)| ≤ ∞

(the process cannot depend on the future input)
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• the process is causal if and only if the roots of the determinant of A(z) lie
outside the unit circle

• the process is invertible if the roots of the determinant of

C(z) = I + C1z + · · ·+ Crz
r

lie outside the unit circle
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Non-stationary models

examples of non-stationarity and the use of differencing

• random walk: x(t) = x(t− 1) + w(t)

z(t) , x(t)− x(t− 1) = w(t)

z(t) is white noise which is stationary

• linear static trend: x(t) = a+ bt+ w(t)

z(t) , x(t)− x(t− 1) = b+ w(t)− w(t− 1)

z(t) is a MA process

can we recover the original model from the fitted differenced series ?

Model Parametrization 4-17

Integrated model

denote L a lag operator; a series x(t) is integrated of order d if

(I − L)dx(t)

is stationary (after dth differencing)

• we use I(d) to denote the integrated model of order d

• random walk is the first-order integrated model

• the lag of differencing is used to reduce a series with a trend

• for example, 12-lag of differencing removes additive seasonal effect

Model Parametrization 4-18
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example: y1 is a first-order AR process with coefficient 0.4 and is I(0)

0 200 400 600 800 1000
−5

0

5

time

y1

0 200 400 600 800 1000
−100

0

100

time

y2
0 200 400 600 800 1000

−2

0

2
x 10

4

time
y3

• y2(t) =
∑t

k=0 y1(k) (cumulative sum of y1 is I(1) – no exact reverting)

• y3(t) =
∑t

k=0 y2(k) (cumulative sum of y2 is I(2) – momentum effect)
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ARIMA models

x(t) is an ARIMA process if the dth differences of x(t) is an ARMA(p,r)

A(L)(I − L)dx(t) = C(L)e(t)

and denoted by ARIMA(p, d, r)

examples of scalar ARIMA models

• x(t) = x(t− 1) + e(t) + ce(t− 1) can be arranged as

(1− L)x(t) = (1 + cL)e(t)

which is ARIMA(0,1,1) or sometimes called integrated moving average
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• x(t) = ax(t− 1) + x(t− 1)− ax(t− 2) + w(t) can be arranged as

(1− aL)(1− L)x(t) = w(t)

which is ARIMA(1,1,0)
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example: log of CPI - consumer production index and its first, second differences
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• log CPI shows the momentum type – characteristics of I(2)

• the first difference has no momentum but no mean-reverting

• the second difference seems to be mean-reverting and behaves like white noise
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State-space models

a linear stochastic model:

x(t+ 1) = A(θ)x(t) +B(θ)u(t) + ν(t)

y(t) = C(θ)x(t) + η(t)

ν(t) and η(t) are white noise sequences with zero means and

E

[

ν(t)
η(t)

] [

ν(s)
η(s)

]T

=

[

Q S
ST R

]

δ(t, s)

• ν(t) is the process noise

• η(t) is the measurement noise

• needs to transform to the so-called innovation form to compare with the
standard model
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Uniqueness properties

question: can we describe a system adequately and uniquely ?

define D the set of θ for which

(Ĝ, Ĥ, Λ̂) gives a perfect description of the true system

three possibilities of this set can occur:

• the set D is empty or underparametrization

• the set D contains one point

• the set D consists of several points or overparametrization
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Uniqueness properties for a scalar ARMA model

let the true ARMA model be given by

A(q−1)y(t) = C(q−1)e(t), Ee(t)2 = λ2

D is the set of Â, B̂, Ĉ, λ̂ for which

C(q−1)

A(q−1)
=

Ĉ(q−1)

Â(q−1)
, λ̂2 = λ2

in order for these equalities to have a solution, we must have

deg(Â) ≥ deg(A), deg(Ĉ) ≥ deg(C)

or,

n∗ , min
{

deg(Â)− deg(A), deg(Ĉ)− deg(C)
}

≥ 0
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• A and C have no common factor

• C(q−1)
A(q−1)

and Ĉ(q−1)

Â(q−1)
must have the same poles and zeros

these imply

Â(q−1) = A(q−1)D(q−1), Ĉ(q−1) = C(q−1)D(q−1)

where D(q−1) has arbitrary coefficients

deg(D) = min{deg(Â)− deg(A), deg(Ĉ)− deg(C)} = n∗

• n∗ > 0: infinitely many solutions of Ĉ, Â, λ̂ (by varying D)

• n∗ = 0: this gives D(q−1) = 1, or at least one of Â and Ĉ has the same
degree as the true polynomial
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Non-uniqueness of general state-space models

consider the multivariable model

x(t+ 1) = A(θ)x(t) +B(θ)u(t) + ν(t)

y(t) = C(θ)x(t) + η(t)

ν(t) and η(t) are independent zero-mean white noise with covariance R1, R2

also consider a second model

z(t+ 1) = Ā(θ)z(t) + B̄(θ)u(t) + ν̄(t)

y(t) = C̄(θ)z(t) + η(t)

where E[ν̄(t)ν̄(s)T ] = R̄1δ(t, s) and

Ā = QAQ−1, B̄ = QB, C̄ = CQ−1, R̄1 = QR1Q
T

for some nonsingular matrix Q
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the two models are equivalent:

• they have the same transfer function from u to y

G(q−1) = C̄(qI −A)−1B̄ = CQ−1(qI −QAQ−1)−1QB = C(qI −A)−1B

• the outputs y from the two models have the same second-order properties,
i.e., the spectral densities are the same

Sy(ω) = C̄(eiω − Ā)−1R̄1(e
iω − Ā)−∗C̄∗ +R2

= CQ−1(eiω − Ā)−1QR1Q
∗(eiω − Ā)−∗Q−∗C∗ +R2

= C[Q−1(eiω − Ā)Q]−1R1[Q
∗(eiω − Ā)∗Q−∗]−1C∗ +R2

= C(eiω −A)−1R1(e
iω −A)−∗C∗ +R2

the model is not unique since Q can be chosen arbitrarily
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Choosing a class of model structures

important factors:

• Flexibility: the model structure should describe most of the different system
dynamics expected in the application

• Parsimony: the model should contain the smallest number of free parameters
required to explain the data adequately

• Algorithm complexity: the form of model structure can considerably
influence the computational cost

• Properties of the criterion function: for example, the asymptotic
properties of prediction-error method depends crucially on the criterion
function and the model structure
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Chapter 5

Input Signals

From the input/output relationship (of a linear system), y = Gu, we need to acquire both input and
output signals in order to estimate G. Obviously, applying zero input to the system yields zero output
but this scheme is useless for the purpose of plant estimation. There are various patterns of common
input signals such as step, ramp, square pulses, or sinusoidal inputs that are all easy to synthesize.
Among these choices, we may have the following questions:

• Can any of those input signals be used in system identification?

• If there is a criterion for input signal to be satisfied, should that condition depend on the system
of interest?

Learning objectives of this chapter are

• getting to know common input signals used in system identification such as step input, sum of
sinusoidal waveforms, or pseudo random binary sequence (PRBS),

• to understand the properties of PRBS signal, some of which are similar to those of white noise
input,

• to understand a property of input signals called persistent exciting order which provides infor-
mation about model identifiability when such input is applied.



EE531 - System Identification Jitkomut Songsiri

5. Input signals

• Common input signals in system identification

– step function

– sum of sinusoids

– ARMA sequences

– pseudo random binary sequence (PRBS)

• spectral characteristics

• persistent excitation

5-1

Step function

a step function is given by

u(t) =

{

0, t < 0

u0, t ≥ 0

where the amplitude u0 is arbitrarily chosen

• related to rise time, overshoots, static gain, etc.

• useful for systems with a large signal-to-noise ratio

Input signals 5-2

Sum of sinusoids

the input signal u(t) is given by

u(t) =
m
∑

k=1

ak sin(ωkt+ φk)

where the angular frequencies {ωk} are distinct,

0 ≤ ω1 < ω2 < . . . < ωm ≤ π

and the amplitudes and phases ak, φk are chosen by the user

Input signals 5-3
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Characterization of sinusoids

let SN be the average of a sinusoid over N points

SN =
1

N

N
∑

t=1

a sin(ωt+ φ)

Let µ be the mean of the sinusoidal function

µ = lim
N→∞

SN =

{

a sinφ, ω = 2nπ, n = 0,±1,±2, . . .

0, otherwise

• u(t) =
∑m

k=1 ak sin(ωkt+ φk) has zero mean if ω1 > 0

• WLOG, assume zero mean for u(t) (we can always subtract the mean)
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Spectrum of sinusoidal inputs

the autocorrelation function can be computed by

R(τ) = lim
N→∞

1

N

N
∑

t=1

u(t+ τ)u(t) =
m
∑

k=1

Ck cos(ωkτ)

with Ck = a2k/2 for k = 1, 2, . . . ,m

if ωm = π, the coefficient Cm should be modified by

Cm = a2m sin2 φm

therefore, the spectrum is

S(ω) =
m
∑

k=1

(Ck/2) [δ(ω − ωk) + δ(ω + ωk)]
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Autoregressive Moving Average sequence

let e(t) be a pseudorandom sequence similar to white noise in the sense that

1

N

N
∑

t=1

e(t)e(t+ τ) → 0, as N → ∞

a general input u(t) can be obtained by linear filtering

u(t) + c1u(t− 1) + · · ·+ cpu(t− p) = e(t) + d1e(t− 1) + · · ·+ dqe(t− p)

• u(t) is called ARMA (autoregressive moving average) process

• when all ci = 0 it is called MA (moving average) process

• when all di = 0 it is called AR (autoregressive) process

• the user gets to choose ci, di and the random generator of e(t)

Input signals 5-6
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the transfer function from e(t) to u(t) is

U(z) =
D(z)

C(z)
E(z)

where

C(z) = 1 + c1z
−1 + c2z

−2 + · · · cpz
−p

D(z) = 1 + d1z
−1 + d2z

−2 + · · · dqz
−q

• the distribution of e(t) is often chosen to be Gaussian

• ci, di are chosen such that C(z),D(z) have zeros outside the unit circle

• different choices of ci, di lead to inputs with various spectral characteristics
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Spectrum of ARMA process

let e(t) be a white noise with variance λ2

the spectral density of ARMA process is

S(ω) = λ2
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Pseudorandom Binary Sequence (PRBS)

State State State

Clock

1 2 n
y(t)

a1 a2 an−1 an

x(t+ 1) =









a1 a2 · · · an
1 0 · · · 0
... . . . ...
0 · · · 1 0









x(t)

y(t) =
[

0 . . . 0 1
]

x(t)

state of PRBS satisfies a vector autoregressive equation
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Characteristics of PRBS

• every initial state is allowed except the all-zero states

• the feedback coefficients a1, a2, . . . , an are either 0 or 1

• all additions are modulo-two operations

• the sequences are two-state signals (binary)

• there are possible 2n − 1 different state vectors x (all-zero state is excluded)

• a PRBS of period equal to M = 2n − 1 is called a maximum length PRBS
(ML PRBS)

• for maximum length PRBS, its characteristic resembles white random noise
(pseudorandom)
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Influence of the Feedback Path

let n = 3 and initialize x with x(0) = (1, 0, 0)

• with a = (1, 1, 0), the state vectors x(k), k = 1, 2, . . . are





1
0
0









1
1
0









0
1
1









1
0
1









1
1
0





the sequence has period equal to 3

• with a = (1, 0, 1), the state vectors x(k), k = 1, 2, . . . are





1
0
0









1
1
0









1
1
1









0
1
1









1
0
1









0
1
0









0
0
1









1
0
0





the sequence has period equal to 7 (the maximum period, 23 − 1)
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Maximum length PRBS

denote q−1 the unit delay operator and let

A(q−1) = 1⊕ a1q
−1 ⊕ a2q

−2 ⊕ · · · ⊕ anq
−n

the PRBS y(t) satisfies the homogeneous equation:

A(q−1)y(t) = 0

this equation has only solutions of period M = 2n − 1 if and only if

1. the binary polynomial A(q−1) is irreducible, i.e., there do not exist any two
polynomials A1(q

−1) and A2(q
−1) such that

A(q−1) = A1(q
−1)A2(q

−1)

2. A(q−1) is a factor of 1⊕ q−M but is not a factor of 1⊕ q−p for any p < M

Input signals 5-12
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Generating Maximum length PRBS

examples of polynomials A(z) satisfying the previous two conditions on
page 5-12

n A(z)

3 1⊕ z ⊕ z3 1⊕ z2 ⊕ z3

4 1⊕ z ⊕ z4 1⊕ z3 ⊕ z4

5 1⊕ z2 ⊕ z5 1⊕ z3 ⊕ z5

6 1⊕ z ⊕ z6 1⊕ z5 ⊕ z6

7 1⊕ z ⊕ z7 1⊕ z3 ⊕ z7

8 1⊕ z ⊕ z2 ⊕ z7 ⊕ z8 1⊕ z ⊕ z6 ⊕ z7 ⊕ z8

9 1⊕ z4 ⊕ z9 1⊕ z5 ⊕ z9

10 1⊕ z3 ⊕ z10 1⊕ z7 ⊕ z10
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Properties of maximum length PRBS

let y(t) be an ML PRBS of period M = 2n − 1

• within one period y(t) contains (M + 1)/2 = 2n−1 ones and
(M − 1)/2 = 2n−1 − 1 zeros

• For k = 1, 2, . . . ,M − 1,

y(t)⊕ y(t− k) = y(t− l)

for some l ∈ [1,M − 1] that depends on k

moreover, for any binary variables x, y,

xy =
1

2
(x+ y − (x⊕ y))

these properties will be used to compute the covariance function of maximum
length PRBS

Input signals 5-14

Covariance function of maximum length PRBS

the mean is given by counting the number of outcome 1 in y(t):

m =
1

M

M
∑

t=1

y(t) =
1

M

(

M + 1

2

)

=
1

2
+

1

2M

the mean is slightly greater than 0.5

using y2(t) = y(t), we have the covariance function at lag zero as

C(0) =
1

M

M
∑

t=1

y2(t)−m2 = m−m2 =
M2 − 1

4M2

the variance is therefore slightly less than 1/4
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Covariance function of maximum length PRBS

for τ = 1, 2, . . .,

C(τ) = (1/M)
M
∑

t=1

y(t+ τ)y(t)−m2

=
1

2M

M
∑

t=1

[y(t+ τ) + y(t)− (y(t+ τ)⊕ y(t))]−m2

= m−
1

2M

M
∑

t=1

y(t+ τ − l)−m2 = m/2−m2

= −
M + 1

4M2
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Asymptotic behavior of the covariance function of PRBS

Define ỹ(t) = −1 + 2y(t) so that its outcome is either −1 or 1

if M is large enough,

m̃ = −1 + 2m = 1/M ≈ 0

C̃(0) = 4C(0) = 1− 1/M2 ≈ 1

C̃(τ) = 4C(τ) = −1/M − 1/M2 ≈ −1/M, τ = 1, 2, . . . ,M − 1

with a large period length M

• the covariance function of PRBS has similar properties to a white noise

• however, their spectral density matrices can be drastically different
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Spectral density of PRBS

the output of PRBS sequence is shifted to values −a and a with period M

the autocorrelation function is also periodic and given by

R(τ) =

{

a2, τ = 0,±M,±2M, . . .

−a2

M , otherwise

since R(τ) is periodic with period M , it has a Fourier representation:

R(τ) =
M−1
∑

k=0

Cke
i2πτk/M , with Fourier coefficients Ck

therefore, the spectrum of PRBS is an impulse train:

S(ω) =
M−1
∑

k=0

Ckδ

(

ω −
2πk

M

)
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Spectral density of PRBS

hence, the Fourier coefficients

Ck =
1

M

M−1
∑

τ=0

R(τ)e−i2πτk/M

are also the spectral coefficients of S(ω)

using the expression of R(τ), we have

C0 =
a2

M2
, Ck =

a2

M2
(M + 1), k = 1, 2, . . .

therefore,

S(ω) =
a2

M2

[

δ(ω) + (M + 1)
M−1
∑

k=1

δ(ω − 2πk/M)

]

It does not resemble spectral characteristic of a white noise (flat spectrum)
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Comparison of the covariances between filtered inputs

• define y1(t) as the output of a filter:

y1(t)− ay1(t− 1) = u1(t),

with white noise u(t) of zero mean and variance λ2

• define y2(t) be the output of the same filter:

y2(t)− ay2(t− 1) = u2(t),

where u2(t) is a PRBS of period M and amplitude λ

what can we say about the covariances of y1(t) and y2(t) ?
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Comparison of the correlations between filtered inputs

the correlation function of y1(t) is given by

R1(τ) =

(

λ2

1− a2

)

aτ , τ ≥ 0

the correlation function of y2(t) can be calculated as

R2(τ) =

∫ π

−π

Sy2(ω)e
iωτdω

=

∫ π

−π

Su2(ω)

∣

∣

∣

∣

1

1− aeiω

∣

∣

∣

∣

2

eiτωdω

=
λ2

M

[

1

(1− a)2
+ (M + 1)

M−1
∑

k=1

cos(2πτk/M)

1 + a2 − 2a cos(2πk/M)

]
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Plots of the correlation functions
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• the filter parameter is a = 0.8

• R(τ) of white noise and PRBS inputs are very close when M is large
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Persistent excitation

a signal u(t) is persistently exciting of order n if

1. the following limit exists:

R(τ) = lim
N→∞

1

N

N
∑

t=1

u(t+ τ)u(t)T

2. the following matrix is positive definite

Rn =









R(0) R(1) . . . R(n− 1)
R(−1) R(0) . . . R(n− 2)

... ... . . . ...
R(1− n) R(2− n) . . . R(0)









(if u(t) is from an ergodic stochastic process, then R(n) is the usual covariance
matrix (assume zero mean))
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Examining the order of persistent excitation

• white noise input of zero mean and variance λ2

R(τ) = λ2δ(τ), =⇒ Rn = λ2In

thus, white noise is persistently exciting of all orders

• step input of magnitude λ

R(τ) = λ2, ∀τ =⇒ Rn = λ2
1n

a step function is persistently exciting of order 1

• impulse input: u(t) = 1 for t = 0 and 0 otherwise

R(τ) = 0, ∀τ =⇒ Rn = 0

an impulse is not persistently exciting of any order
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Example 1: FIR models

recall the problem of estimating an FIR model where

h(k) = 0, k ≥ M

the coefficients h(k) are the solution to the following equation









RT
yu(0)

RT
yu(1)
...

RT
yu(M − 1)









=









Ru(0) Ru(1) · · · Ru(M − 1)
Ru(−1) Ru(0) · · · Ru(M − 2)

... ... . . . ...
Ru(1−M) Ru(2−M) · · · Ru(0)

















hT (0)
hT (1)

...
hT (M − 1)









• the equations has a unique solution iff RM is nonsingular

• equivalent condition: u must be persistently exciting of order M

• need more p.e. if the model is more complex
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Example 2: Estimating noisy linear models

consider a least-squares problem of estimating a first-order model

y(t) = ay(t− 1) + bu(t) + e(t)

where u(t) is an input signal, and e(t) is an i.i.d. noise of zero mean

we can show that

• if u(t) is a PRBS or step input, the consistent estimates are obtained, i.e.,

(â, b̂) → (a, b), as N → ∞

• if u(t) is an impulse, â → a but b̂ does not converge to b as N increases

• in loose terms, the impulse input does not provide enough information on y(t)
to estimate b
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Properties of persistently exciting signals

assumptions:

• u(t) is a multivariable ergodic process

• Su(ω) is positive in at least n distinct frequencies within (−π, π)

we have the following two properties

Property 1 u(t) is persistently exciting of order n

Property 2 if H(z) is an asymptotically stable linear filter and detH(z) has no
zero on the unit circle then the filtered signal y(t) = H(q−1)u(t) is
persistently exciting of order n

we can imply an ARMA process is persistently exciting of any finite order
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Examining the order of PRBS

consider a PRBS of period M and magnitude a,−a

the matrix containing n-covariance sequenes (where n ≤ M) is

Rn =









a2 −a2/M . . . −a2/M
−a2/M a2 . . . −a2/M

... ... . . . ...
−a2/M −a2/M . . . a2









for any x ∈ Rn,

xT
Rnx = xT

(

(a2 +
a2

M
)I −

a2

M
11

T

)

x

≥ a2(1 +
1

M
)xTx−

a2

M
xTx1T

1 = a2‖x‖2
(

1 +
(1− n)

M

)

≥ 0

a PRBS with period M is persistently exciting of order M
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Examining the order of sum of sinusoids

consider the signal u(t) =
∑m

k=1 ak sin(ωkt+ φk)

where 0 ≤ ω1 < ω2 < . . . < ωm ≤ π

the spectral density of u is given by

S(ω) =
m
∑

k=1

Ck

2
[δ(ω − ωk) + δ(ω + ωk)]

therefore S(ω) is nonzero (in the interval (−π, π]) in exactly n points where

n =











2m, 0 < ω1, ωm < π

2m− 1, 0 = ω1, or ωm = π

2m− 2, 0 = ω1 and ωm = π

it follows from Property 1 that u(t) is persistently exciting of order n
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Summary

• the choice of input is imposed by the type of identification method

• the input signal should be persistently exciting of a certain order to ensure
that the system of a certain order can be identified

• some often used signals include PRBS and ARMA processes
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Exercises

5.1 Order of persistent excitation. Determine the order of persistent excitation of the following
inputs.

(a) u(t) = (−1)t, t = 0, 1, 2, . . .

(b) u(t) = 1 + (−1)t, t = 0, 1, 2, . . .

Consider the identification of a moving-average process

y(t) = b1u(t− 1) + b2u(t− 2) + · · ·+ bnu(t− n) + ν(t)

using correlation analysis. The parameters b1, b2, . . . , bn are to be determined and ν(t) is zero-
mean noise. Determine for what order n the parameters b1, . . . , bn can be uniquely estimated
when using the following signals.

(a) u(t) = (−1)t, t = 0, 1, 2, . . .

(b) u(t) = 1 + (−1)t, t = 0, 1, 2, . . .

(c) u(t) = sin(ω1t) + 3 sin(ω2t), 0 < ω1 < ω2 < π,

(d) u(t) is a PRBS sequence of order 3,

(e) u(t) is white noise.

5.2 Pseudo random binary sequence.

(a) Write a MATLAB function to generate maximum length PRBS sequences of order n = 3
to n = 10 by using the feedback coefficients given in the following table.

n A(z)

3 1⊕ z ⊕ z3

4 1⊕ z ⊕ z4

5 1⊕ z2 ⊕ z5

6 1⊕ z ⊕ z6

7 1⊕ z ⊕ z7

8 1⊕ z ⊕ z2 ⊕ z7 ⊕ z8

9 1⊕ z4 ⊕ z9

10 1⊕ z3 ⊕ z10

The inputs of the function are the number of state variables (n), an initial state (x(0)),
and the length of PRBS sequence (N). Save the m-file as prbs yourname.m.

(b) Provide an example of state vectors x(k) for k = 0, 1, . . . ,M to show that your code gives
a maximum length PRBS.

(c) Generate a 256-point PRBS sequence of magnitude 1 and −1 using n = 3. Use fft or
periodogram command to plot the empirical spectrum of PSBS signal. Compare the plot
with the closed-form expression of the spectrum. For example, locate where the peaks
occur.



Chapter 6

Linear least-squares

Linear least-squares method or linear regression is one of fundamental methods in statistics and engi-
neering. The regression formulation is based on the assumption that a model is linear in parameters
that are subject to be determined. The method arises from a background in solving a system of linear
equations when the number of equations is greater than the number of unknown variables, often
referred to as over-determined linear equations. When such case occurs, one typically is not able to
solve the questions exactly, so we resort to solve the equations in the least-squares sense. That is, we
allow to have residual errors from each of the equations, but aim to minimize the sum square of those
error, explained as the 2-norm of residual vector, instead. The readers will find that the ingredients
in this chapter require a background on linear algebra given in Chapter 3.

Learning objectives of this chapter are

• to understand a linear least-squares formulation and be able to formulate a regression model
from applications,

• to explain the optimality condition of the solution and derive the closed-form solution of linear
least-squares problem,

• to understand statistical properties of a least-squares estimate when data are generated and
corrupted by noise in a particular setting,

• to understand how to find a numerical least-squares solution, even though we know that this is
a mature technology, i.e., a solution can be computed in a single command in any programming
language.
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6. Linear least-squares

• linear regression

• examples in engineering

• solving linear least-squares

• analysis of least-squares estimate

• computational aspects

6-1

Linear regression

• linear regression is the simplest type of parametric model

• it explains a relationship between variables y and x using a linear function:

y = Ax

where y ∈ Rm, A ∈ Rm×n, x ∈ Rn

• y contains the measurement variables and is called the regressed variable or
regressand

• each row vector aTk in matrix A is called regressor

• the matrix A is sometimes called the design matrix

• x is the parameter vector. Its element xk is often called regression coefficients
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Example 1: a polynomial trend

assume the model is the form of a polynomial of degree n

y(t) = a0 + a1t+ · · ·+ art
n

with unknown coefficients a0, . . . , an

this can be written in the form of linear regression as









y(t1)
y(t2)
...

y(tm)









=









1 t1 . . . tn1
1 t2 . . . tn

2
... ... ... ...
1 tN . . . tnm

















a0
a1
...
an









given the measurements y(ti) for t1, t2, . . . , tm, we want to estimate the
coefficents ak
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Example 2: truncated weighting function

a truncated weighting function model (or FIR model) is given by

y(t) =
M−1
∑

k=0

h(k)u(t− k)

• an input u is known and applied to the system to measure the output y

• the relationship between y and u can be fit into a linear regression as

















y(0)
y(1)
...

y(k)
...

y(N)

















=

















u(0) u(−1) . . . u(−M + 1)
u(1) u(0) . . . u(−M + 2)
... ... ... ...

u(k) u(k − 1) . . . u(k −M + 1)
... ... ... ...

u(m) u(N − 1) . . . u(m−M + 1)

























h(0)
h(1)
...

h(M − 1)








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Solving linear regressions

• the problem is to find an estimate of x from the measurements y and A

• if we choose the number of measurements, m to be equal to n, then x can be
solved by

x = A−1y,

provided that A is invertible

• in practice, in the presence of noise and disturbance, more data should be
collected in order to get a better estimate

• this leads to overdetermined linear equations where an exact solution does not
usually exist

• however, it can be solved by linear least-squares formulation
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Definition of Linear least-squares

Overdetermined linear equations

Ax = y A is m× n with m > n

for most y cannot solve for x

Linear least-squares formulation

minimize ‖Ax− y‖2 =





m
∑

i=1

(
n
∑

j=1

aijxj − yi)
2





1/2

• r = Ax = y is called the residual error

• x with smallest residual norm ‖r‖ is called the least-squares solution

• equivalent to minimizing ‖Ax− y‖2
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Example: Data fitting

fit a function

y = g(t) = x1g1(t) + x2g2(t) + . . .+ xngn(t)

to data (t1, y1), (t2, y2), . . . , (tm, ym), i.e., choose the coefficients xk so that

g(t1) ≈ y1, g(t2) ≈ y2, , g(tm) ≈ ym

• gi(t) : R → R are given functions (basis functions)

• problem variables: the coefficients x1, x2, . . . , xn

• usually m ≫ n, hence no exact solution with g(ti) = yi for all i

• applications: developing simple, approximate model of observed data
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Example: fit a polynomial to f(t) = 1/(1 + 25t2) on [−1, 1]

• pick m = n points ti in [−1, 1] and calculate yi = 1/(1 + 25t2i )

• interpolate by solving Ax = y

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5
n = 5

−1 −0.5 0 0.5 1
−1

0

1

2

3

4

5

6

7

8
n = 15

(blue solid line: f ; red dashed line: polynomial g)

increase n does not improve the overall quality of the fit
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same example by approximation

• pick m = 50 points ti in [−1, 1]

• fit polynomial by minimizing ‖Ax− y‖

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

n = 5

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

n = 15

(blue solid line: f ; red dashed line: polynomial g)

much better fit overall
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Some terminology

from the model y = Ax+ e

variables y and A are commonly known as

y A
endogenous variable exogenous variable
dependent variable independent variable
explained variable explanatory variable
response variable predictor
observable variable regressor

covariates
manipulated variable

Linear least-squares 6-10

Closed-form of least-squares estimate

the zero gradient condition of LS objective is

d

dx
‖Ax− y‖22 = AT (Ax− y) = 0

which is equivalent to the normal equation

ATAx = ATy

if A is full rank:

• least-squares solution can be found by solving the normal equations

• n equations in n variables with a positive definite coefficient matrix

• the closed-form solution is x = (ATA)−1ATy

• (ATA)−1AT is a left inverse of A
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Properties of full rank matrices

suppose A is an m× n matrix; we always have

rank(A) ≤ min(m,n)

if A is full rank with m ≥ n

• rank(A) = n and N (A) = {0} (Ax = 0 ⇔ x = 0)

• ATA is positive definite: for any x 6= 0 then

〈ATAx, x〉 = 〈Ax,Ax〉 = ‖Ax‖2 > 0

similarly, if A is full rank with m ≤ n

• rank(A) = m and N (AT ) = {0}
• AAT is positive definite

Linear least-squares 6-12
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Geometric interpretation of a LS problem

minimize ‖Ax− y‖2

A is m× n with columns a1, a2, . . . am

• ‖Ax− y‖ is the distance of y to the vector

Ax = a1x1 + a2x2 + · · ·+ anxn

• solution xls gives the linear combination of the columns of A closest to y

• Axls is the projection of y to the range of A
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Example: A =





1 −1
1 2
0 0



, y =





1
4
2





a1

a2

y

Axls = 2a1 + a2

least-squares solution xls

Axls =





1
4
0



 , xls =

[

2
1

]
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Orthogonal projection

a2

a1

y

Py

a1x1

a2x2

• Py is the orthogonal projection of y onto R(A) spanned by a1, . . . , an

• the projection satisfies the orthogonality condition

〈Py − y, ak〉 = 0, ∀k

(the optimal residual must be orthogonal to any vector in R(A))
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• Py gives the best approximation; for any ŷ ∈ R(A) and ŷ 6= Py

‖y − Py‖ < ‖y − ŷ‖

• from the orthogonality condition and Py is a linear combination of {ak}

〈y, ak〉 = 〈Py, ak〉 = 〈
n
∑

j=1

ajxj, ak〉 ∀k









〈y, a1〉
〈y, a2〉

...
〈y, an〉









=









〈a1, a1〉 〈a2, a1〉 . . . 〈an, a1〉
〈a1, a2〉 〈a2, a2〉 . . . 〈an, a2〉

... ... . . . ...
〈a1, an〉 〈a2, an〉 . . . 〈an, an〉

















x1

x2

...
xn









• this also leads to the normal equations

ATAx = ATy
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• Axls = Py with
P = A(ATA)−1AT

if A has full rank

Definition: any orthogonal projection operator satisfies

• P = P T

• P 2 = P (Idempotent operator)

from its definition, any orthogonal projection operator obeys

• ‖Px‖ ≤ ‖x‖ for any x (contraction operator)

• I − P � 0

Linear least-squares 6-17

Least-squares estimation

suppose y is generated under the dgp (data generating process)

y = Ax+ e

• x is what we want to estimate or reconstruct

• y is our measurements

• e is an unknown noise or measurement error

• ith row of A characterizes ithe sensor or ith measurement (and A is
deterministic)

Least-squares estimation: choose an estimate x̂ that minimizes

‖Ax̂− y‖

i.e., minimize the deviation between what we actually observed (y), and what we
would observe if x = x̂, and there were no noise (e = 0)

Linear least-squares 6-18
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Example: first-order linear model

estimate the parameters a, b in a linear model

z(t) = az(t− 1) + bu(t− 1) + e(t)

from the measurement z(t) and the input u(t)

• true parameters: a = 0.8, b = 1

• u(t) is a PRBS sequence of magnitude −1,1 with period M = 7

• e(t) is a zero mean white noise with variance 0.1

10 20 30 40 50

−1

−0.5

0

0.5

1

PRBS input
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Estimation: choose â, b̂ that minimizes

N
∑

t=1

‖z(t)− (âz(t− 1) + b̂u(t− 1))‖2 = ‖Ax− b‖2

y =





z(1)
...

z(m)



 , A =





z(0) u(0)
... ...

z(m− 1) u(m− 1)



 , x =

[

â

b̂

]

results:

from one realization of e(t),

â = 0.7485, b̂ = 1.0768

0 10 20 30 40 50
−4

−3

−2

−1

0

1
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actual output
estimate

t

z
(t
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Analysis of the LS estimate (static case)

assumptions:

• e is noise with zero mean and covariance matrix Σ

• the least-square estimate is given by

x̂ = argmin ‖Ax− y‖

• the information matrix A is deterministic

then the following properties hold:

• x̂ is an unbiased estimate of x (Ex̂ = x, or x̂ = x when e = 0)

• the covariance matrix of x̂ is given by

cov(x̂) = E(x̂−Ex̂)(x̂− Ex̂)T = (ATA)−1ATΣA(ATA)−1
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the expression of cov(x̂) = (ATA)−1ATΣA(ATA)−1 suggests that

• if A can be arbitrarily chosen, pick A that the covariance is small

• the covariance of the LS estimate depends on noise covariance

special case: noise covariance is diagonal

• Σ = diag(σ2

1
, . . . , σ2

N) (heteroskedasticity): ei has different variances

• Σ = σ2I (homoskedasticity): ei has uniform variance

for homoskedasticity case, the covariance of the LS estimate reduces to

cov(x̂) = σ2(ATA)−1

Linear least-squares 6-22

BLUE property

under the dgp: y = Ax+ e and homoskedasticity of e, the LS estimator

x̂ = (ATA)−1ATy

is the optimum unbiased linear least-mean-squares estimator of x

assume ẑ = By is any other linear estimator of x

• require BA = I in order for ẑ to be unbiased

• cov(ẑ) = BBT

• cov(x̂) = BA(ATA)−1ATBT (apply BA = I)

Using I − P � 0, we conclude that

cov(ẑ)− cov(x̂) = B(I −A(ATA)−1AT )BT � 0
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suppose the covariance matrix of e is not I , says

EeeT = Σ

scale the equation y = Ax+ e by Σ−1/2

Σ−1/2y = Σ−1/2Ax+ Σ−1/2e

the optimal unbiased linear least-mean-squares estimator of x is

x̂ = (ATΣ−1A)−1ATΣ−1y

this is a special case of weighted least-squares problems

Linear least-squares 6-24
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Weighted least-squares

given W a positive definite matrix and can be factorized as W = LTL

a weighted least-squares problem is

minimize
x

tr(Ax− y)TW (Ax− y)

• equivalent formulation: minimizex ‖L(Ax− y)‖2F
• can be solved from the modified normal equations

ATWAx = ATWy

• Axwls is the orthogonal projection on R(A) w.r.t the new inner product

〈x, y〉W = 〈Wx, y〉

Linear least-squares 6-25

Analysis of the LS estimate (dynamic case)

suppose we apply the LS method to a dynamical system

y(t) = H(t)θ + e(t)

• the observations y(1), y(2), . . . , y(N) are available

• θ is the dynamical model parameter

typically, H(t) contains the past outputs and inputs

y(1), . . . , y(t− 1), u(1), . . . u(t− 1)

(hence H(t) is no longer deterministic)

and e(t) is white noise with covariance Σ
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the LS estimate θ̂N (depending on N) given by

θ̂N =

[

1

N

N
∑

t=1

H(t)TH(t)

]−1 [

1

N

N
∑

t=1

H(t)Ty(t)

]

has the following properties (under some assumptions):

• θ̂N is consistent, i.e., it converges to the true parameter in probability

plim θ̂N = θ ⇐⇒ lim
N→∞

P (|θ̂N − θ| > ǫ) = 0

•
√
N(θ̂ − θ) is asymptotically Gaussian distributed N (0, P ) where

P = Σ−1

x ΣuxΣ
−1

x

Σx involves E[H(t)TH(t)] and Σux involes E[H(t)e(t)e(t)TH(t)T ]
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the consistency results of LS estimate are based on some assumptions

θ̂N − θ =

(

1

N

N
∑

t=1

H(t)TH(t)

)−1{

1

N

N
∑

t=1

H(t)Ty(t)−
(

1

N

N
∑

t=1

H(t)TH(t)

)

θ

}

=

(

1

N

N
∑

t=1

H(t)TH(t)

)−1(

1

N

N
∑

t=1

H(t)Te(t)

)

hence, θ̂N is consistent if

• E[H(t)TH(t)] is nonsingular
satisfied in most cases, except u is not persistently exciting of order n

• E[H(t)Te(t)] = 0
not satisfied in most cases, except e(t) is white noise
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Solving LS via Cholesky factorization

every positive definite B ∈ Sn can be factored as

B = LLT

where L is lower triangular with positive diagonal elements

Fact: for B ≻ 0, a linear equation

Bx = b

can be solved in (1/3)n3 flops

solve the least-squares problem from the normal equations

ATAx = ATy

we have ATA ≻ 0 when A is full rank
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Solving LS via QR factorization

• full QR factorization:

A =
[

Q1 Q2

]

[

R1

0

]

with [Q1 Q2] ∈ Rm×m orthogonal, R1 ∈ Rn×n upper triangular, invertible

• multiplication by orthogonal matrix doesn’t change the norm, so

‖Ax− y‖2 =
∥

∥

∥

∥

[

Q1 Q2

]

[

R1

0

]

x− y

∥

∥

∥

∥

2

=

∥

∥

∥

∥

[

Q1 Q2

]T [
Q1 Q2

]

[

R1

0

]

x−
[

Q1 Q2

]T
y

∥

∥

∥

∥

2
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=

∥

∥

∥

∥

[

R1x−QT
1
y

−QT
2 y

]∥

∥

∥

∥

2

= ‖R1x−QT
1
y‖2 + ‖QT

2
y‖2

• this can be minimized by the choice xls = R−1

1
QT

1 y
(which makes the first term zero)

• residual with optimal x is

Axls − y = −Q2Q
T
2
y

• Q1Q
T
1
gives projection on R(A)

• Q2Q
T
2
gives projection on R(A)⊥
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Summary

• the linear least-squares method can be applied to models that are linear in the
parameters

• a LS solution is unique if there is no colinearity (A is full rank)

• the method is mature, can be solve efficiently and is available in many
softwares

• LS estimate has the BLUE property under the assumption that the noise in
data generating process is homoskedastic

• LS estimate is consistent if the additive noise is uncorrelated with the
regressors and the system is persistently excited
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Exercises

6.1 Least-squares fitting to a linear model. Consider a linear model with additive noise

y(t) = a+ bt+ e(t)

where a, b are constant and e(t) is white noise with zero mean and unit variance. Suppose our
goal is to estimate b only. Of course, one approach is to form a linear least-squares problem to
estimate both a and b. This means we use the model

M1 : y(t) = a+ bt+ ϵ1(t);

where ϵ1(t) is the residual error, for the estimation problem. Alternatively, we can also work
with the difference data. If we define z(t) = y(t)− y(t− 1), we can use the model:

M2 : z(t) = b+ ϵ2(t);

for estimating b as well.

For each model, formulate the problem of estimating b into a linear least-squares problem.
Check whether the estimate is unbiased, i.e., Eb̂ = b. Derive and compare the variances of the
estimate in the two cases. Assume that the data are collected at times t = 1, 2, . . . , N .

Useful formula:
∑n

i=1 i = n(n+ 1)/2,
∑n

i=1 i
2 = n(n+ 1)(2n+ 1)/6.

6.2 Estimation of time series data. Consider a time series shown in the following figure.
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One can see the time series has a decaying trend, so it would be interesting to consider an
exponential model:

y(t) = e−aty(0),

where y(0) and a (time constant) are parameters to be determined.

(a) Formulate an estimation problem for this model and validate the result with the data given
in data-time-series.mat. The file contains two realizations of this data set. You can
use variable y for estimation and use variable z for validation.
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(b) Propose other types of models (at least another two) that could fit to this data set. State
clearly a main difference between the proposed models and the exponential model. Give a
formulation for your estimation problem and compute the numerical values of the estimates
from all the models you consider. Compare the estimation results with the exponential
model (on the validation data set). A criterion you use to make a comparison must be
quantitative and justifiable.

6.3 Multi 2-norm objectives. Consider the problem of minimizing the sum of two objectives.

minimize ∥Ax− b∥22 + ρ∥Cx− d∥22

with variable x ∈ Rn and A ∈ Rm×n, b ∈ Rm, C ∈ Rp×n and d ∈ Rp are given matrices. The
parameter ρ is a given positive scalar. Show that this problem can be (easily) formulated in to
a single 2-norm objective:

minimize ∥Ax− b∥22.

Derive what A and b are.

6.4 Estimation of scalar AR processes. An autoregressive (AR) processes of order p is described
by

y(t) = a1y(t− 1) + a2y(t− 2) + · · ·+ apy(t− p) + c+ ν(t), (6.1)

where ν(t) is white noise. It represents a pure time series model where no input signal is
assumed to be present. The parameters a1, a2, . . . , ap are AR coefficients and c is a constant
that describes a drift term in the model. Suppose a set of measurements y(1), y(2), . . . , y(N)
is available and we wish to fit an AR model to these data. Formulate a least-squares problem
to estimate a1, a2, . . . , ap and c.

(a) A general least-squares formulation is to minimize ∥Ax− b∥. Explain what A and b are,
in this problem.

(b) Fit an AR model of order 3 to the Nikkei stock prices collected daily during Feb 2011 - Feb
2012. Use nikkei feb11 feb12 to find y(1), y(2), . . . , y(N). Plot a graph to compare
the real data y(t) and the estimate ŷ(t) computed from the estimated model. Attach your
MATLAB codes in the work sheet.

(c) Give the estimate values of a1, a2, a3 and c. Discuss the results you found. How does the
stock price from the past dates influence the current price ?

6.5 Navigation from range measurements. Let (x, y) ∈ R2 be the unknown coordinate of a
point in the plane that we would like to track. Let (pi, qi) ∈ R2 be the known coordinates of
a beacon for i = 1, 2, . . . , n. Each of these beacons measures the distance between (x, y) and
the ith beacon which is given by

d(x, y) = ∥(p, q)− (x, y)∥2. (6.2)

Our goal is to make use of the distance measurements from the n beacons to estimate the
unknown position using the least-squares method. Let (x0, y0) ∈ R2 be a point assumed to
be known and close to (x, y). Therefore, the distance in (6.2) can be approximated using the
first-order Taylor expansion about (x0, y0) as

d(x, y) = d(x0 + δy, x0 + δy) ≈ d(x0, y0) +Dd(x0, y0)

[
δx

δy

]
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where Dd(x, y) is the first derivative of the distance function and (δx, δy) = (x, y)− (x0, y0).
If we use the approximate model and formulate as

δd ≜ d(x, y)− d(x0, y0) = A

[
δx

δy

]

then the problem we’re looking at is to choose (δx, δy) so that δd is minimized.

unknown position

beacons

(a) Suppose we have n measurements of distances from n beacons: di(x, y) = ∥(pi, qi) −
(x, y)∥2 for i = 1, . . . , n. Show that the estimation of (x, y) can be cast as a linear
least-squares problem: minimize ∥b − Au∥2 with the variable u = (δx, δy). Write down
what b and A are.

(b) Find the condition for the uniqueness of the least-squares estimate. Describe the conditions
geometrically (i.e., does it depend on the number or locations of beacons?).

(c) Suppose we have n beacons and we place them in a symmetric layout around (x0, y0) as
shown in the figure.
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radial beacon positions
(x0,y0)

These positions can be computed in beacon pos.m where the input is the number of
beacons (n), the known coordinate (x0, y0) and the radius from (x0, y0) to each beacon,
R. Choose a range of n (up to 10) and check the condition you derived in part b). If
z0 = (x0, y0) = (0.4062, 0.2728) and set R = 3, compute the estimate of (x, y) versus n
and write down in the table. Write down your codes and save it as navigation.m

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

x̂

ŷ



Chapter 7

Significance tests for linear
regression

When considering a linear least-squares problem, one usually makes an assumption that the measure-
ment is generated from the so called data generating process, y = Xβ + e, where e is assumed to
be noise having a certain distribution. Solving a linear least-squares problem does not require any
statistical assumption about e, but those properties of e allow us to conclude about properties of the
least-squares estimator, that is yet, for sure also a random entity. In Chapter 6, we have seen that
the least-squares estimator is unbiased and its covariance matrix depends on the regressor matrix,
X. This information should be used to remind us that whenever an estimator is calculated from a
data set, it is never equal to the true value of the parameter (unless the data is generated from a
noise-free model), but we should use statistical properties to explain about confident interval of such
calculated value. One typical question in regression problem is to explore which explanatory variable
is significant through the value of the corresponding regression coefficient. This leads to the test
whether βi is close to zero or not, so that we can infer about the significance of the ith variable to
the model. In applications, if a variable is not significant, then it can be removed to obtain a more
parsimonious model.

Learning objectives of this chapter are

• to review the fundamental concept of hypothesis test in statistics,

• to understand a significance test of regression coefficients and be able to perform such test on
real data.
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7. Significance tests for linear regression

• reviews on hypothesis testing

• regression coefficient test

7-1

Hypothesis tests

elements of statistical tests

• null hypothesis, alternative hypothesis

• test statistics

• rejection region

• type of errors: type I and type II errors

• confidence intervals, p-values

examples of hypothesis tests:

• hypothesis tests for the mean, and for comparing the means

• hypothesis tests for the variance, and for comparing variances

Significance tests for linear regression 7-2

Testing procedures

a test consists of

• providing a statement of the hypotheses (H0 (null) and H1 (alternative))

• giving a rule that dictates if H0 should be rejected or not

the decision rule involves a test statistic calculated on observed data

the Neyman-Pearson methodology partitions the sample space into two regions

the set of values of the test statistic for which:

the null hypothesis is rejected rejection region

we fail to reject the null hypothesis acceptance region

Significance tests for linear regression 7-3
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Test errors

since a test statistic is random, the same test can lead to different conclusions

• type I error: the test leads to reject H0 when it is true

• type II error: the test fails to reject H0 when it is false; sometimes called
false alarm

probabilities of the errors:

• let β be the probability of type II error

• the size of a test is the probability of a type I error and denoted by α

• the power of a test is the probability of rejecting a false H0 or (1− β)

α is known as significance level and typically controlled by an analyst

for a given α, we would like β to be as small as possible

Significance tests for linear regression 7-4

Some common tests

• normal test

• t-test

• F -test

• Chi-square test

e.g. a test is called a t-test if the test statistic follows t-distribution

two approaches of hypothesis test

• critical value approach

• p-value approach

Significance tests for linear regression 7-5

Critical value approach

Definition: the critical value (associated with a significance level α) is the value
of the known distribution of the test statistic such that the probability of type I
error is α

steps involved this test

1. define the null and alternative hypotheses.

2. assume the null hypothesis is true and calculate the value of the test statistic

3. set a small significance level (typically α = 0.01, 0.05, or 0.10) and determine
the corresponding critical value

4. compare the test statistic to the critical value

condition decision
the test statistic is more extreme than the critical value reject H0

the test statistic is less extreme than the critical value accept H0

Significance tests for linear regression 7-6
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example: hypothesis test on the population mean

• samples N = 15, α = 0.05

• the test statistic is t∗ = x̄−µ

s/
√
N

and has t-distribution with N − 1 df

test H0 H1 critical value reject H0 if
right-tail µ = 3 µ > 3 tα,N−1 t∗ ≥ tα,N−1

left-tail µ = 3 µ < 3 −tα,N−1 t∗ ≤ −tα,N−1

two-tail µ = 3 µ 6= 3 −tα/2,N−1, tα/2,N−1 t∗ ≥ tα/2,N−1 or t∗ ≤ −tα/2,N−1
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p-value approach

Definition: the p-value is the probability of observing a more extreme test
statistic in the direction of H1 than the one observed, by assuming that H0 were
true

steps involved this test

1. define the null and alternative hypotheses.

2. assume the null hypothesis is true and calculate the value of the test statistic

3. calculate the p-value using the known distribution of the test statistic

4. set a significance level α (small value such as 0.01, 0.05)

5. compare the p-value to α

condition decision
p-value ≤ α reject H0

p-value ≥ α accept H0

Significance tests for linear regression 7-8

example: hypothesis test on the population mean (same as on page 7-7)

• samples N = 15, α = 0.01 (have only a 1% chance of making a Type I error)

• suppose the test statistic (calculated from data) is t∗ = 2

test H0 H1 p-value expression p-value
right-tail µ = 3 µ > 3 P (t14 ≥ 2) 0.0127
left-tail µ = 3 µ < 3 P (t14 ≤ −2) 0.0127
two-tail µ = 3 µ 6= 3 P (t14 ≥ 2) + P (t14 ≤ −2) 0.0255
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area A area B

= area A + area B

Right tail Left tail Two tails

right-tail/left-tail tests: reject H0, two-tail test: accept H0
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the two approaches assume H0 were true and determine

p-value critical value
the probability of observing a
more extreme test statistic in
the direction of the alternative
hypothesis than the one observed

whether or not the observed test
statistic is more extreme than
would be expected (called critical
value)

the null hypothesis is rejected if

p-value critical value
p− value ≤ α test statistic ≥ critical value

Significance tests for linear regression 7-10

Significance tests for linear regression

• reviews on hypothesis testing

• regression coefficient test

Significance tests for linear regression 7-11

Recap of linear regression

a linear regression model is

y = Xβ + u, X ∈ RN×n

homoskedasticity assumption: ui has the same variance for all i, given by σ2

• prediction (fitted) error: û := ŷ − y = Xβ̂ − y

• residual sum of squares: RSS = ‖û‖22
• a consistent estimate of σ2: s2 = RSS/(N − n)

• (N − n)s2 ∼ χ2(N − n)

• square root of s2 is called standard error of the regression

• Avar(β̂) = s2(XTX)−1 (estimated asymptotic covariance)

Significance tests for linear regression 7-12
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Common tests for linear regression

• testing a hypothesis about a coefficient

H0 : βk = 0 VS H1 : βk 6= 0

we can use both t and F statistics

• testing using the fit of the regression

H0 : reduced model VS H1 : full model

if H0 were true, the reduced model (βk = 0) would lead to smaller prediction
error than that of the full model (βk 6= 0)

Significance tests for linear regression 7-13

Testing a hypothesis about a coefficient

statistics for testing hypotheses:

H0 : βk = 0 VS H1 : βk 6= 0

• β̂k√
s2((XTX)−1)kk

∼ tN−n

• (β̂k)
2√

s2((XTX)−1)kk
∼ F1,N−n

the above statistics are Wald statistics (see derivations in Greene book)

• the term
√

s2((XTX)−1)kk is referred to standard error of the coefficient

• the expression of SE can be simplified or derived in many ways (please check)

• e.g. R use t-statistic (two-tail test)

Significance tests for linear regression 7-14

Testing using the fit of the regression

hypotheses are based on the fitting quality of reduced/full models

H0 : reduced model VS H1 : full model

reduced model: βk = 0 and full model: βk 6= 0

the F -statistic used in this test

(RSSR − RSSF )

RSSF/(N − n)
∼ F (1, N − n)

• RSSR and RSSF are the residual sum squares of reduced and full models

• RSSR cannot be smaller than RSSF , so if H0 were true, then the F statistic
would be zero

• e.g. fitlm in MATLAB use this F statistic, or in ANOVA table

Significance tests for linear regression 7-15
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MATLAB example

perform t-test using α = 0.05 and the true parameter is β = (1, 0,−1, 0.5)

realization 1: N = 100

>> [btrue b SE pvalue2side] =

1.0000 1.0172 0.1087 0.0000

0 0.1675 0.0906 0.0675

-1.0000 -1.0701 0.1046 0.0000

0.5000 0.5328 0.1007 0.0000

• β̂ is close to β

• it’s not clear if β̂2 is zero but the test decides β̂2 = 0

• note that all coefficients have pretty much the same SE

Significance tests for linear regression 7-16

realization 2: N = 10

>> [btrue b SE pvalue2side] =

1.0000 1.0077 0.2894 0.0131

0 0.1282 0.4342 0.7778

-1.0000 -1.5866 0.2989 0.0018

0.5000 0.2145 0.2402 0.4062

realization 3: N = 10

>> [btrue b SE pvalue2side] =

1.0000 0.8008 0.3743 0.0762

0 -0.5641 0.5442 0.3399

-1.0000 -1.1915 0.5117 0.0588

0.5000 0.6932 0.4985 0.2137

• some of β̂ is close to the true value but some is not

• the test 2 decides β̂2 and β̂4 are zero while the test 3 decides all β are zero

• the sample size N affects type II error (fails to reject H0) and we get different
results from different data sets

Significance tests for linear regression 7-17

Summary

• common tests are available in many statistical softwares, e.g, minitab, lm in
R, fitlm in MATLAB,

• one should use with care and interpret results correctly

• an estimator is random; one cannot trust its value calculated based on a data
set

• examining statistical properties of an estimator is preferred

Significance tests for linear regression 7-18
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Chapter 8

Variants of least-squares

A linear least-squares problem is regarded as an unconstrained optimization with a quadratic cost
objective. Most problems in engineering have some physical constraints in the parameters (or design
variables) to be estimated. For example, price, length or width should be nonnegative quanties.
Adding this prior condition to the linear least-squares problem results in a constrained quadratic
optimization problem and the solution may or may not be obtained in a closed-form, as opposed
to the unconstrained least-squares solution. Another important extension of the problem to put a
penalty on the parameters in various forms, known as a regularization method in statistics. This prior
comes from our assumption on the background of the application. For instance, in many applications,
one prefers to obtain a parsimonious model, which means there are only a few number of nonzero
parameters in the model. In such case, we tend to promote most parameters to be zero using a ℓ1
penalty function added to the cost function of the least-squares problem. If we have an assumption
that the model parameters should not be large (in the sum-square average, or a 2-norm sense) then
we can add a ℓ2 penalty function instead. These two instances can also be extended to an estimation
of groups of model where we are interested in a common feature or the differences among those
models. Lastly, we may encounter a least-squares problem when some of the problem parameters
(regressor matrix, or output) are uncertain but we have some information about this uncertainty,
either in deterministic or stochastic sense. This requires a reformulation in a robust sense, called
robust least-squares, meaning that we aim to guarantee that the solution is optimal even if we have
uncertainty in the problem parameters.

Learning objectives of this chapter are

• to formulate physical conditions of parameters as mathematical constraints in the least-squares
problem and solve for numerical solutions using existing optimization methods,

• to understand the regularization methods and explain their connections with statistical estima-
tion methods,

• to be able to numerically solve two basic methods: ℓ1 and ℓ2-regularized least-squares problems
and understand the solution behaviors from those methods,

• to understand how to reformulate a robust least-squares problem when the information about
model uncertainty is given.
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8. Variations on least-squares

• least-squares with constraints

• ℓ2 regularization

• ℓ1 regularization

• generalizations of ℓ1-regularized LS

• robust least-squares

8-1

Least-squares with constraints

minimize ‖Ax− y‖
subject to x ∈ C

C is a convex set (many applications fall into this case)

• used to rule out certain unacceptable approximations of y

• arise as prior knowledge of the vector x to be estimated

• same as determining the projection of y on a set more complicated than a
subspace

• form a convex optimization problem with no analytical solution (typically)

Variations on least-squares 8-2

nonnegativity constraints on variables

C = { x | x � 0 }

• parameter x known to be nonnegative, e.g., powers, rates, etc.

• finding the projection of y onto the cone generated by the columns of A

variable bounds

C = { x | l � x � u }

• vector x known to lie in an interval [l, u]

• finding the projection of y onto the image of a box under the linear mapping
induced by A

Variations on least-squares 8-3
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probability distribution

C = { x | x � 0, 1Tx = 1 }

• arise in estimation of proportions which are nonnegative and sum to one

• approximating y by a convex combination of the columns of A

norm ball constraint

C = { x | ‖x− x0‖ ≤ d }

where x0 and d are problem parameters

• x0 is a prior guess of what x should be

• d is the maximum plausible deviation from our prior guess

• the constraints ‖x− x0‖ ≤ d can denote a trust region. (the linear relation
y = Ax is an approximation and only valid when x is near x0)

Variations on least-squares 8-4

ℓ2-regularized least-squares

adding the 2-norm penalty to the objective function

minimize
x

‖Ax− y‖2
2
+ γ‖x‖2

2

• seek for an approximate solution of Ax ≈ y with small norm

• also called Tikhonov regularized least-squares or ridge regression

• γ > 0 controls the trade off between the fitting error and the size of x

• has the analytical solution for any γ > 0:

x = (ATA+ γI)−1ATy

(no restrictions on shape, rank of A)

• interpreted as a MAP estimation with the log-prior of the Gaussian

Variations on least-squares 8-5

ℓ1-regularized least-squares

Idea: adding |x| to a minimization problem introduces a sparse solution

consider a scalar problem:

minimize
x

f(x) = (1/2)(x− a)2 + γ|x|

to derive the optimal solution, we consider the two cases:

• if x ≥ 0 then f(x) = (1/2)(x− (a− γ))2

x⋆ = a− γ, provided that a ≥ γ

• if x ≤ 0 then f(x) = (1/2)(x− (a+ γ))2

x⋆ = a+ γ, provided that a ≤ −γ

when |a| ≤ γ then x⋆ must be zero

Variations on least-squares 8-6
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the optimal solution to minimization of f(x) = (1/2)(x− a)2 + γ|x| is

x⋆ =

{

(|a| − γ)sign(a), |a| > γ

0, |a| ≤ γ

meaning: if γ is large enough, x∗ will be zero

generalization to vector case: x ∈ Rn

minimize
x

f(x) = (1/2)‖x− a‖2 + γ‖x‖1

the optimal solution has the same form

x⋆ =

{

(|a| − γ)sign(a), |a| > γ

0, |a| ≤ γ

where all operations are done in elementwise

Variations on least-squares 8-7

ℓ1-regularized least-squares

adding the ℓ1-norm penalty to the least-square problem

minimize
x

(1/2)‖Ax− y‖2
2
+ γ‖x‖1 (1)

• a convex heuristic method for finding a sparse x that gives Ax ≈ y

• also called Lasso or basis pursuit

• a nondifferentiable problem due to ‖ · ‖1 term

• no analytical solution, but can be solved efficiently

• interpreted as a MAP estimation with the log-prior of the Laplacian
distribution

Variations on least-squares 8-8

example A ∈ Rm×n, b ∈ Rm with m = 100, n = 500, γ = 0.2
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ℓ2 regularization
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ℓ1 regularization

• solution of ℓ2 regularization is more widely spread

• solution of ℓ1 regularization is concentrated at zero
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Similar form of ℓ1-regularized LS

the ℓ1-norm is an inequality constraint:

minimize
x

‖Ax− y‖2 subject to ‖x‖1 ≤ t (1)

• t is specified by the user

• t serves as a budget of the sum of absolute values of x

• the ℓ1-regularized LS (1) is the Lagrangian form of this problem

• for each t where ‖x‖1 ≤ t is active, there is a corresponding value of γ that
yields the same solution from (1)

Variations on least-squares 8-10

Solution paths of regularized LS

solve the regularized LS when n = 5 and vary γ (penalty parameter)
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ℓ2 regularization

• for lasso, many entries of x are exactly zero as γ varies

• for ridge, many entries of x are nonzero but converging to small values

Variations on least-squares 8-11

Generalizations of ℓ1-regularized LS

many variants are proposed for acheiving particular structures in solutions

• elastic net: for highly correlated variables and lasso doesn’t perform well

• group lasso: for acheiving sparsity in group

• fused lasso: for neighboring variables to be similar

Variations on least-squares 8-12
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Elastic net

a combination between the ℓ1 and ℓ2 regularizations

minimize
x

(1/2)‖Ax− y‖2
2
+ γ

{

(1/2)(1− α)‖x‖2
2
+ α‖x‖1

}

where α ∈ [0, 1] and γ are parameters

• when α = 1 it’s lasso and when α = 0 it’s a ridge regression

• used when we expect groups of very correlated variables (e.g. microarray,
genes)

• strictly convex problem for any α < 1 and λ > 0 (unique solution)

Variations on least-squares 8-13

generate A ∈ R20×5 where a1 and a2 are highly correlated
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α = 1 (lasso)

0 2 4 6 8 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

γ (elastic net)

α = 0.1

• if a1 = a2, the ridge estimate of x1 and x2 will be equal (not obvious)

• the blue and green lines correspond to the variables x1 and x2

• the lasso does not reflect the relative importance of the two variables

• the elastic net selects the estimates of x1 and x2 together

Variations on least-squares 8-14

Group lasso

to have all entries in x within a group become zero simultaneously

let x = (x1, x2, . . . , xK) where xj ∈ Rn

minimize (1/2)‖Ax− y‖2
2
+ γ

K
∑

j=1

‖xj‖2

• the sum of ℓ2 norm is a generalization of ℓ1-like penalty

• as γ is large enough, either xj is entirely zero or all its element is nonzero

• when n = 1, group lasso reduces to the lasso

• a nondifferentiable convex problem but can be solved efficiently

Variations on least-squares 8-15
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generate the problem with x = (x1, x2, . . . , x5) where xi ∈ R4
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• as γ increases, some of partition xi becomes entirely zero

• as the sum of 2-norm is zero, the entire vector x is zero

Variations on least-squares 8-16

Fused lasso

to have neighboring variables similar and sparse

minimize
x∈R

n
(1/2)‖Ax− y‖2

2
+ γ1‖x‖1 + γ2

n
∑

j=2

|xj − xj−1|

• the ℓ1 penalty serves to shrink xi toward zero

• the second penalty is ℓ1-type encouraging some pairs of consecutive entries to
be similar

• also known as total variation denoising in signal processing

• γ1 controls the sparsity of x and γ2 controls the similarity of neighboring
entries

• a nondifferentiable convex problem but can be solved efficiently

Variations on least-squares 8-17

generate A ∈ R100×10 and vary γ2 with two values of γ1
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• as γ2, consecutive entries of x tend to be equal

• for a higher value of γ1, some of the entries of x become zero

Variations on least-squares 8-18
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Robust least-squares

consider the LS problem
minimize

x
‖Ax− b‖2

but A may have variation or some uncertainty

we can treat the uncertainty in A in different ways

• A is deterministic but belongs to a set

• A is stochastic

Variations on least-squares 8-19

Worst-case robust least-squares

describe the uncertainty by a set of possible values for A:

A ∈ A ⊆ Rm×n

the problem is to minimize the worst-case error:

minimize
x

sup
A

{‖Ax− y‖2 | A ∈ A}

• always a convex problem

• its tractablity depends on the description of A

Variations on least-squares 8-20

Stochastic robust least-squares

when A is a random variable, so we can describe A as

A = Ā+ U,

where Ā is the average value of A and U is a random matrix

use the expected value of ‖Ax− y‖ as the objective:

minimize
x

E‖Ax− y‖2
2

expanding the objective gives

E‖Ax− y‖2
2
= (Āx− y)T (Āx− y) +ExTUTUx

= ‖Āx− y‖2
2
+ xTPx

where P = EUTU

Variations on least-squares 8-21
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this problem is equivalent to

minimize
x

‖Āx− y‖2
2
+ ‖P 1/2x‖2

2

with solution
x = (ĀT Ā+ P )−1ĀTy

• a form of a regularized least-squares

• balance making Āx− b small with the desire for a small x
(so that the variation in Ax is small)

• Tikhonov regularization is a special case of robust least-squares:

when U has zero mean and uncorrelated variables, i.e., EUTU = δI

Variations on least-squares 8-22

Summary

• variants of least-squares problems are regarded as optimization problems with
quadratic cost objective

• most of them are convex programs and can be solved by many existing
algorithms

• regularized least-squares are proposed to promote a certain structure in the
solutions

Variations on least-squares 8-23
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Exercises

8.1 Estimation of stable vector autoregressive processes. Consider an n-dimensional autore-
gressive model of order p,

y(t) = A1y(t− 1) +A2y(t− 2) + · · ·+Apy(t− p) + ν(t), (8.1)

where Ak ∈ Rn×n, for k = 1, . . . , p, and ν(t) is zero-mean noise. This is a more general model
than a scalar AR process described in equation (6.1) where we build a model for a group of
variables y1(t), y2(t), . . . , yn(t). In this exercise, we will formulate a least-squares problem to
estimate A1, A2, . . . , Ap with conditions on these parameters.

(a) Given the measurements y(1), y(2), . . . , y(N), we find A1, . . . , Ap such that

N∑
k=p+1

∥y(k)− (A1y(k − 1) +A2y(k − 2) + · · ·+Apy(k − p))∥2F ,

is minimized. Show that the problem can be expressed as

minimize ∥Y −AH∥F , (8.2)

where ∥ · ∥F denotes the Frobenius norm and A =
[
A1 A2 · · ·Ap

]
. Determine Y and

H.

(b) The problem (8.2) is an unconstrained optimization problem with variable A. Derive the
zero-gradient condition and find its closed-form solution. Explain how you would solve for
a numerical solution in MATLAB.

(c) In addition, we are interested in a solution of A1, A2, . . . , Ap that satisfies

(Ak)12 = (Ak)21 = 0, k = 1, 2, . . . , p

(Ak)13 = (Ak)31 = 0, k = 1, 2, . . . , p

(Ak is a matrix of size n×n; (Ak)ij means the (i, j) entry of Ak.) These conditions have a
statistical interpretation. It means the components y2 and y1 have no interaction to each
other, as well as the components y1 and y3. Show that the least-squares formulation (8.2)
including the above constraints is a convex problem.

(d) Load data-vec-ar which contains y(1), y(2), . . . , y(N) in a variable y having size n×N .
Write MATLAB codes in CVX to solve the problem in part c). Use an AR model of order
3. Plot a graph of the first components of y(t) and ŷ(t) computed from the estimate of
AR coefficients. Provide the estimate values of A1, A2, . . . , Ap.

(e) Show that the model (8.1) can be represented in a state-space form:

x(t+ 1) = Ax(t) + Bu(t)

where x(t) = (y(t−1), y(t−2), . . . , y(t−p)) and u(t) is an input of the system. Determine
A (the dynamic matrix). We will neglect how to derive B (the input matrix) for now. It
is known that (8.1) is a stationary process if A is stable; all eigenvalues of A lie inside the
unit disk, i.e.,

|λ(A)| < 1.

Repeat the part d) with a new data set in data-vec-ar-short where we have only a few
samples of y(t). Check whether the estimated model is stable.
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(f) The previous part demonstrates a common problem that may occur in practice when we
have a short sample size. A least-squares estimate does not necessarily yield a stable
model. In this problem, we will develop a stability criterion that will be included as a
constraint in the optimization problem.

• Show that if
ATA ≺ I

then all the eigenvalues of A lie inside the unit disk. Hint. Consider an eigenvalue
problem; Aϕ = λϕ.

• Show that the above condition can be expressed as a linear matrix inequality (LMI),
which is linear in the optimization variables A1, A2, . . . , Ap. Hint. Apply a Schur
complement.

(g) Write a constrained optimization formulation of the least-squares problem of estimating
A1, A2, . . . , Ap, including the constraints in part c) and the stability constraint in f). Write
MATLAB codes in CVX to solve the problem by using the data from data-vec-ar-short.mat.
Verify if the resulting model is stable and provide the estimate values of A1, A2, . . . , Ap.

8.2 Robust Least-squares. In this problem, we solve a least-squares problem

minimize ∥Ax− b∥2.

However, the matrix A has some uncertainty, and we model it as a random variable. The
measurement vector b and the mean of A are given by

b =



2

−3

−1

1

3

−5

5

3


, A = E[A] =



4 3 1 2

5 −1 −5 3

0 −3 −3 2

0 −1 −2 −1

−2 −4 4 1

4 −4 −5 −2

−1 5 −5 3

−4 5 −4 −3


and its variance is given by

E[(aki − aki)(akj − akj)] =

{
4, i = j

−1, |i− j| = 1
, k = 1, 2, . . . ,m

(We denote aij and aij the (i, j)th entries of A and A, respectively.)

(a) Solve the robust least-squares problem

minimize E∥Ax− b∥22.

Explain how you would evaluate the cost objective. Give a numerical solution to this
problem, and denoted it by xrls.

(b) Compare the estimate from part a) with the least-squares problem that use the nominal
value of A.

minimize ∥Āx− b∥2.
Denote the solution to this problem as xno. Compare the fitting error ∥Āx− b∥ between
xrls and xno. Which estimate should yield the smallest error ? and why ?



8 Variants of least-squares 105

(c) Discuss in which scenario the robust least-squares estimate will outperform the nominal
least-squares. Provide a numerical example to show this.

8.3 Least-squares with uncertainty. Consider the least-squares problem: minimize ∥Ax − y∥2
but A has an uncertainty according to

A = Ā+ U

where Ā is the mean of A (deterministic matrix) and U is a zero-mean random matrix. The
components of U , uij ’s are i.i.d. Laplacian random variable with density function

f(u) =
1

2α
e−

|u|
α , −∞ < u < ∞.

(a) Derive the robust least-squares estimate, x̂rls, which minimizes E∥Ax− y∥22.
(b) Use the data in data-robust-LS-laplacian.mat which contains y, Ā, A (the uncertain

matrix where we’re not supposed to know) and x (the true value). Compute the least-
squares estimate, x̂ls and the robust least-squares estimate, x̂rls using α = 1/2. Write
down the numerical values of these estimates.

(c) You can vary the parameter α and discuss how it affects x̂rls. What does it mean when
α is very large?



Chapter 9

Instrumental variable methods

Any estimator including the least-squares estimate is a random variable. One desirable property of
an estimator is the consistency, i.e., whether the estimate converges to the true value in probabilistic
sense, when data samples are large enough. We will see that it requires some restrict conditions
on correlation between the regressor matrix and noise in the generating process, for a least-squares
estimator to be consistent. These conditions are not satisfied in practice, when dynamical models are
estimated. For this reason, the method of instrumental variable is introduced as a remedy for this
issue.

Learning objectives of this chapter are

• to understand the concept of instruments and how to choose one to satisfy the condition for a
consistent estimate,

• to be able to numerically solve for an instrumental estimate in a given problem.



EE531 - System Identification Jitkomut Songsiri

9. Instrumental variable methods (IVM)

• review on the least-squares method

• description of IV methods

• choice of instruments

• extended IV methods

9-1

Revisit the LS method

using linear regression in dynamic models (SISO)

A(q−1)y(t) = B(q−1)u(t) + ν(t)

where ν(t) denotes the equation error

A(q−1) = 1 + a1q
−1 + · · ·+ anaq

−na, B(q−1) = b1q
−1 + · · ·+ bnb

q−nb

we can write the dynamic as

y(t) = H(t)θ + ν(t)

where

H(t) =
[
−y(t− 1) · · · −y(t− na) u(t− 1) · · · u(t− nb)

]

θ =
[
a1 · · · ana b1 · · · bnb

]

Instrumental variable methods (IVM) 9-2

the least-squares solution is the value of θ̂ that minimizes

1

N

N∑

t=1

‖ν(t)‖2

and is given by

θ̂ls =

(

1

N

N∑

t=1

H(t)TH(t)

)−1(

1

N

N∑

t=1

H(t)Ty(t)

)

to examine if θ̂ is consistent (θ̂ → θ as N → ∞), note that

θ̂ls − θ =

(

1

N

N∑

t=1

H(t)TH(t)

)−1{

1

N

N∑

t=1

H(t)Ty(t)−

(

1

N

N∑

t=1

H(t)TH(t)

)

θ

}

=

(

1

N

N∑

t=1

H(t)TH(t)

)−1(

1

N

N∑

t=1

H(t)Tν(t)

)

Instrumental variable methods (IVM) 9-3
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hence, θ̂ls is consistent if

• E[H(t)TH(t)] is nonsingular
satisfied in most cases, except u is not persistently exciting of order n

• E[H(t)Tν(t)] = 0
not satisfied in most cases, except ν(t) is white noise

summary:

• LS method for dynamical models is still certainly simple to use

• consistency is not readily obtained since the information matrix (H) is no
longer deterministic

• it gives consistent estimates under restrictive conditions

to obtain consistency of the estimates, we modify the normal equation so that
the output and the disturbance become uncorrelated

Instrumental variable methods (IVM) 9-4

Solutions:

• PEM (Prediction error methods)

– model the noise

– applicable to general model structures

– generally very good properties of the estimates

– computationally quite demanding

• IVM (Instrumental variable methods)

– do not model the noise

– retain the simple LS structure

– simple and computationally efficient approach

– consistent for correlated noise

– less robust and statistically less effective than PEM

Instrumental variable methods (IVM) 9-5

Description of IVM

define Z(t) ∈ Rnθ with entries uncorrelated with ν(t)

1

N

N∑

t=1

Z(t)Tν(t) =
1

N

N∑

t=1

ZT (t)[y(t)−H(t)θ] = 0

The basic IV estimate of θ is given by

θ̂ =

(

1

N

N∑

t=1

Z(t)TH(t)

)−1(

1

N

N∑

t=1

Z(t)Ty(t)

)

provided that the inverse exists

• Z(t) is called the instrument and is up to user’s choice

• if Z(t) = H(t), the IV estimate reduces to the LS estimate

Instrumental variable methods (IVM) 9-6
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Choice of instruments

the instruments Z(t) have to be chosen such that

• Z(t) is uncorrelated with noise ν(t)

EZ(t)Tν(t) = 0

• the matrix
1

N

N∑

t=1

Z(t)TH(t) → EZ(t)TH(t)

has full rank

in other words, Z(t) and H(t) are correlated

Instrumental variable methods (IVM) 9-7

one possibility is to choose

Z(t) =
[
−η(t− 1) . . . −η(t− na) u(t− 1) . . . u(t− nb)

]

where the signal η(t) is obtained by filtering the input,

C(q−1)η(t) = D(q−1)u(t)

Special choices:

• let C,D be a prior estimates of A and B

• simple choice: pick C(q−1) = 1, D(q−1) = −q−nb

Z(t) =
[
u(t− 1) . . . u(t− na − nb)

]

(with a reordering of Z(t))

note that u(t) and the noise ν(t) are assumed to be independent

Instrumental variable methods (IVM) 9-8

Example via Yule-Walker equations

consider a scalar ARMA process:

A(q−1)y(t) = C(q−1)e(t)

y(t) + a1y(t− 1) + . . .+ apy(t− p) = e(t) + c1e(t− 1) + . . .+ cre(t− r)

where e(t) is white noise with zero mean and variance λ2

define Rk = Ey(t)y(t− k)T , we obtain

Rk + a1Rk−1 + . . .+ apRk−p = 0, k = r + 1, r + 2, . . .

where we have used EC(q−1)e(t)y(t− k)T = 0, k > r

this is referred to as Yule-Walker equations

Instrumental variable methods (IVM) 9-9
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enumerate from k = r + 1, . . . , r +m, where m ≥ p,

the Yule-Walker equations can be fit into a matrix form







Rr Rr−1 . . . Rr+1−p

Rr+1 Rr . . . Rr+2−p
... ... ...

Rr+m−1 Rr+m−2 . . . Rr+m−p













a1
a2
...
ap






= −







Rr+1

Rr+2
...

Rr+m






, Rθ = −r

R and r are typically replaced by their sample esimates:

R̂ =
1

N

N∑

t=1





y(t− r − 1)
...

y(t− r −m)




[
y(t− 1) . . . y(t− p)

]

r̂ =
1

N

N∑

t=1





y(t− r − 1)
...

y(t− r −m)



 y(t)

Instrumental variable methods (IVM) 9-10

hence R̂θ̂ = −r̂ is equivalent to

1

N

N∑

t=1





y(t− r − 1)
...

y(t− r −m)





︸ ︷︷ ︸

Z(t)T

[
−y(t− 1) . . . −y(t− p)

]

︸ ︷︷ ︸

H(t)

=
1

N

N∑

t=1





y(t− r − 1)
...

y(t− r −m)



 y(t)

this is the relationship in basic IVM

1

N

N∑

t=1

Z(t)TH(t)θ =
1

N

N∑

t=1

Z(t)Ty(t)

where we use the delayed output as an instrument

Z(t) =
[
−y(t− r − 1) y(t− r − 2) . . . y(t− r −m)

]T

Instrumental variable methods (IVM) 9-11

Extended IV methods

The extended IV method is to generalize the basic IV in two directions:

• allow Z(t) to have more elements than θ (nz ≥ nθ)

• use prefiltered data

and the extended IV estimate of θ is obtained by

min
θ

∥
∥
∥
∥
∥

N∑

t=1

Z(t)TF (q−1)(y(t)−H(t)θ)

∥
∥
∥
∥
∥

2

W

where ‖x‖2W = xTWx and W ≻ 0 is given

when F (q−1) = I, nz = nθ,W = I , we obtain the basic IV estimate

Instrumental variable methods (IVM) 9-12
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Define

AN =
1

N

N∑

t=1

Z(t)TF (q−1)H(t)

bN =
1

N

N∑

t=1

Z(t)TF (q−1)y(t)

then θ̂ is obtained by
θ̂ = argmin

θ

‖bN −ANθ‖2W

this is a weighted least-squares problem

the solution is given by

θ̂ = (AT
NWAN)−1AT

NWbN

note that this expression is only of theoretical interest

Instrumental variable methods (IVM) 9-13

Theoretical analysis

Assumptions:

1. the system is strictly causal and asymptotically stable

2. the input u(t) is persistently exciting of a sufficiently high order

3. the disturbance ν(t) is a stationary stochastic process with rational spectral
density,

ν(t) = G(q−1)e(t), Ee(t)2 = λ2

4. the input and the disturbance are independent

5. the model and the true system have the same transfer function if and only if
θ̂ = θ (uniqueness)

6. the instruments and the disturbances are uncorrelated

Instrumental variable methods (IVM) 9-14

from the system description

y(t) = H(t)θ + ν(t)

we have

bN =
1

N

N∑

t=1

Z(t)TF (q−1)y(t)

=
1

N

N∑

t=1

Z(t)TF (q−1)H(t)θ +
1

N

N∑

t=1

Z(t)TF (q−1)ν(t)

, ANθ + qN

thus,

θ̂ − θ = (AT
NWAN)−1AT

NWbN − θ = (AT
NWAN)−1AT

NWqN

Instrumental variable methods (IVM) 9-15
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as N → ∞,
(AT

NWAN)−1AT
NWqN → (ATWA)−1ATWq

where

A , lim
N→

AN = E[Z(t)TF (q−1)H(t)]

q , lim
N→

qN = E[Z(t)TF (q−1)ν(t)]

hence, the IV estimate is consistent (limN→∞ θ̂ = θ) if

• A has full rank

• E[Z(t)TF (q−1)ν(t)] = 0

Instrumental variable methods (IVM) 9-16

Numerical example

the true system is given by

(1− 1.5q−1 + 0.7q−2)y(t) = (1.0q−1 + 0.5q−2)u(t) + (1− 1.0q−1 + 0.2q−2)e(t)

• ARMAX model

• u(t) is from an ARMA process, independent of e(t)

• e(t) is white noise withzero mean and variance 1

• N = 250 (number of data points)

estimation

• use ARX model and assume na = 2, nb = 2

• compare the LS method with IVM

Instrumental variable methods (IVM) 9-17
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Example of MATLAB codes

%% Generate the data

close all; clear all;

N = 250; Ts = 1;

a = [1 -1.5 0.7]; b = [0 1 .5]; c = [1 -1 0.2];

Au = [1 -0.1 -0.12]; Bu = [0 1 0.2]; Mu = idpoly(Au,Bu,Ts);

u = sim(Mu,randn(2*N,1)); % u is ARMA process

noise_var = 1; e = randn(2*N,1);

M = idpoly(a,b,c,1,1,noise_var,Ts);

y = sim(M,[u e]);

uv = u(N+1:end); ev = e(N+1:end); yv = y(N+1:end);

u = u(1:N); e = e(1:N); y = y(1:N);

DATe = iddata(y,u,Ts); DATv = iddata(yv,uv,Ts);

%% Identification

na = 2; nb = 2; nc = 2;

theta_iv = iv4(DATe,[na nb 1]); % ARX using iv4

theta_ls = arx(DATe,[na nb 1]); % ARX using LS

Instrumental variable methods (IVM) 9-19

%% Compare the measured output and the model output

[yhat2,fit2] = compare(DATv,theta_iv);

[yhat4,fit4] = compare(DATv,theta_ls);

figure;t = 1:N;

plot(t,yhat2{1}.y(t),’--’,t,yhat4{1}.y(t),’-.’,t,yv(t));

legend(’model (iv)’,’model (LS)’,’measured’)

title(’Comparison on validation data set’,’FontSize’,16);

Instrumental variable methods (IVM) 9-20
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Exercises

9.1 IVM when the system does not belong to the model structure. Consider the system

y(t) = u(t− 1) + u(t− 2) + ν(t) (9.1)

where the input u(t) and ν(t) are mutually independent white noise sequences of zero means
and variances σ2 and λ2, respectively. Assume that the system identified using the model
structure

y(t) + ay(t− 1) = bu(t− 1) + ε(t)

(a) Derive the correlation function between y and u, Ryu(τ) of the system (9.1) for τ =
0, 1, . . ..

(b) Derive the asymptotic (for N → ∞) expression of the basic IV estimate based on the
instrument

Z(t) =
[
u(t− 1) u(t− 2)

]
of the parameters a and b.

(c) Derive the asymptotic expression of the LS estimate of a and b.

(d) Examine the stability properties of the models so obtained.

9.2 Consistency of IV estimate. Consider a scalar ARMAX model.

y(t) + a1y(t− 1) + a2y(t− 2) = u(t− 1) + ν(t) (9.2)

where u(t) and ν(t) are independent zero-mean white noises with variances σ2 and λ2 respec-
tively. The parameters a1 and a2 are such that the system is stable, i.e., the two roots of
s2 + a1s+ a2 = 0 lie inside the unit circle. Assume the model in system identification is of the
form

y(t) + cy(t− 1) = bu(t− 1) + ϵ(t)

where ϵ(t) is the deviation between the model and the true system. The measurements
y(1), y(2), . . . , y(N) are available in data-consistency-iv2.mat

(a) Derive the asymptotic expression of the basic IV estimate of c and b based on the instru-
ment

Z(t) =
[
u(t− 1) u(t− 2)

]
.

(b) Derive the asymptotic expression of the LS estimate of c and b.

(c) Which method give a consistent estimate of b ? i.e., Does b̂ → 1 as N → ∞ ?

(d) Do the estimates from both methods yield a stable model ?

(e) Verify the results in part c) and d) with simulation.



Chapter 10

Prediction Error Methods

The previous chapters on linear least-squares and instrumental variable method have made an im-
portant assumption on the model structure. They are feasible when the residual error between the
measurement and the model output is linear in the model parameters. Such assumptions are not
always satisfied in many model classes, for example, autoregressive moving average (ARMA) time
series model. In this chapter, we introduce a prediction error method (PEM) that is applicable to
a general model structure described in Chapter 4. The user defines a prediction model to compute
the output at time t based on the data available up to time t− 1. The principle of PEM is then to
choose a cost objective as a loss function of prediction error and find the model parameters such that
the loss function is minimized.

Learning objectives of this chapter are

• to understand basic elements of PEM, which are a model structure, a prediction model, and a
criterion of the predictor,

• to derive an optimal prediction model for a given model structure,

• to apply numerical methods to solve a PEM estimator.
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10. Prediction Error Methods (PEM)

• description

• optimal prediction

• Kalman filter

• statistical results

• computational aspects

10-1

Description

idea: determine the model parameter θ such that

e(t, θ) = y(t)− ŷ(t|t− 1; θ)

is small

• ŷ(t|t− 1; θ) is a prediction of y(t) given the data up to and including time
t− 1 and based on θ

general linear predictor:

ŷ(t|t− 1; θ) = L(q−1; θ)y(t) +M(q−1; θ)u(t)

where L and M must contain one pure delay, i.e.,

L(0; θ) = 0,M(0; θ) = 0

Prediction Error Methods (PEM) 10-2

Elements of PEM

one has to make the following choices, in order to define the method

• Choice of model structure: the parametrization of G(q−1; θ),H(q−1; θ)
and Λ(θ) as a function of θ

• Choice of predictor: the choice of filters L,M once the model is specified

• Choice of criterion: define a scalar-valued function of e(t, θ) that will assess
the performance of the predictor

we commonly consider the optimal mean square predictor

the filters L and M are chosen such that the prediction error has small variance

Prediction Error Methods (PEM) 10-3
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Loss function

let N be the number of data points

sample covariance matrix:

R(θ) =
1

N

N
∑

t=1

e(t, θ)eT (t, θ)

R(θ) is a positive semidefinite matrix (and typically pdf when N is large)

loss function: scalar-valued function defined on positive matrices R

f(R(θ))

f must be monotonically increasing, i.e., let X ≻ 0 and for any ∆X � 0

f(X +∆X) ≥ f(X)
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Example 1 f(X) = tr(WX) where W ≻ 0 is a weighting matrix

f(X +∆X) = tr(WX) + tr(W∆X) ≥ f(X)

(tr(W∆X) ≥ 0 because if A � 0, B � 0, then tr(AB) ≥ 0)

Example 2 f(X) = detX

f(X +∆X)− f(X) = det(X1/2(I +X−1/2∆XX−1/2)X1/2)− detX

= detX [det(I +X−1/2∆XX−1/2)− 1]

= detX

[

n
∏

k=1

(1 + λk(X
−1/2∆XX−1/2))− 1

]

≥ 0

the last inequalty follows from X−1/2∆XX−1/2 � 0, so λk ≥ 0 for all k

both examples satisfy f(X +∆X) = f(X) ⇐⇒ ∆X = 0

Prediction Error Methods (PEM) 10-5

Procedures in PEM

1. choose a model structure of the form

y(t) = G(q−1; θ)u(t) +H(q−1; θ)ν(t), Eν(t)ν(t)T = Λ(θ)

2. choose a predictor of the form

ŷ(t|t− 1; θ) = L(q−1; θ)y(t) +M(q−1; θ)u(t)

3. select a criterion function f(R(θ))

4. determine θ̂ that minimizes the loss function f

Prediction Error Methods (PEM) 10-6
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Least-squares method as a PEM

use linear regression in the dynamics of the form

A(q−1)y(t) = B(q−1)u(t) + ε(t)

we can write y(t) = H(t)θ + ε(t) where

H(t) =
[

−y(t− 1) . . . −y(t− p) u(t− 1) . . . u(t− r)
]

θ =
[

a1 . . . ap b1 . . . br
]T

θ̂ that minimizes (1/N)
∑N

t=1
ε2(t) will give a prediction of y(t):

ŷ(t) = H(t)θ̂ = (1− Â(q−1))y(t) + B̂(q−1)u(t)

Prediction Error Methods (PEM) 10-7

hence, the prediction is in the form of

ŷ(t) = L(q−1; θ)y(t) +M(q−1; θ)u(t)

where L(q−1; θ) = 1− Â(q−1) and M(q−1; θ) = B(q−1)

note that L(0; θ) = 0 and M(0; θ) = 0,

so ŷ uses the data up to time t− 1 as required

the loss function in this case is tr(R(θ)) (quadratic in the prediction error)

Prediction Error Methods (PEM) 10-8

Optimal prediction

consider the general linear model

y(t) = G(q−1)u(t) +H(q−1)ν(t), Eν(t)ν(s)T = Λδt,s

(we drop argument θ in G,H,Λ for notational convenience)

assumptions:

• G(0) = 0,H(0) = I

• H−1(q−1) and H−1(q−1)G(q−1) are asymptotically stable

• u(t) and ν(s) are uncorrelated for t < s

Prediction Error Methods (PEM) 10-9
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rewrite y(t) as

y(t) = G(q−1)u(t) + [H(q−1)− I ]ν(t) + ν(t)

= G(q−1)u(t) + [H(q−1)− I ]H−1(q−1)[y(t)−G(q−1)u(t)] + ν(t)

=
{

H−1(q−1)G(q−1)u(t) + [I −H−1(q−1)]y(t)
}

+ ν(t)

, z(t) + ν(t)

• G(0) = 0 and H(0) = I imply z(t) contains u(s), y(s) up to time t− 1

• hence, z(t) and ν(t) are uncorrelated

let ŷ(t) be an arbitrary predictor of y(t)

E[y(t)− ŷ(t)][y(t)− ŷ(t)]T = E[z(t) + ν(t)− ŷ(t)][z(t) + ν(t)− ŷ(t)]T

= E[z(t)− ŷ(t)][z(t)− ŷ(t)]T + Λ ≥ Λ

this gives a lower bound, Λ on the prediction error variance

Prediction Error Methods (PEM) 10-10

the optimal predictor minimizes the prediction error variance

therefore, ŷ(t) = z(t) and is given by

ŷ(t|t− 1) = H−1(q−1)G(q−1)u(t) + [I −H−1(q−1)]y(t)

the corresponding prediction error can be written as

e(t) = y(t)− ŷ(t|t− 1) = ν(t) = H−1(q−1)[y(t)−G(q−1)u(t)]

• from G(0) = 0 and H(0) = I , ŷ(t) depends on past data up to time t− 1

• these expressions suggest asymptotical stability assumptions in H−1G and
H−1

Prediction Error Methods (PEM) 10-11

Optimal predictor for an ARMAX model

consider the model

y(t) + ay(t− 1) = bu(t− 1) + ν(t) + cν(t− 1)

where ν(t) is zero mean white noise with variance λ2

for this particular case,

G(q−1) =
bq−1

1 + aq−1
, H(q−1) =

1 + cq−1

1 + aq−1

then the optimal predictor is given by

ŷ(t|t− 1) =
bq−1

1 + cq−1
u(t) +

(c− a)q−1

1 + cq−1
y(t)

Prediction Error Methods (PEM) 10-12
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for computation, we use the recursion equation

ŷ(t|t− 1) + cŷ(t− 1|t− 2) = (c− a)y(t− 1) + bu(t− 1)

the prediction error is

e(t) =
1 + aq−1

1 + cq−1
y(t)−

b

1 + cq−1
u(t)

and it obeys

e(t) + ce(t− 1) = y(t) + ay(t− 1)− bu(t− 1)

• the recursion equation requires an initial value, i.e., e(0)

• setting e(0) = 0 is equivalent to ŷ(0| − 1) = y(0)

• the transient is not significant for large t

Prediction Error Methods (PEM) 10-13

Kalman Filter

for systems given in a state-space form

x(t+ 1) = Ax(t) +Bu(t) + ν(t)

y(t) = Cx(t) + η(t)

• ν(t), η(t) are mutually uncorrelated white noise

• ν(t) and η(t) have zero means and covariances R1, R2 resp.

the optimal one-step predictor of y(t) is given by the Kalman filter

x̂(t+ 1) = Ax̂(t) +Bu(t) +K[y(t)− Cx̂(t)]

ŷ(t) = Cx̂(t)

where K is called the steady-state Kalman gain

Prediction Error Methods (PEM) 10-14

the Kalman gain is given by

K = APCT (CPCT +R2)
−1

where P is the positive solution to the algebraic Riccati equation:

P = APAT +R1 −APCT (CPCT +R2)
−1CPAT

• the predictor is mean square optimal if the disturbances are Gaussian

• for other distributions, the predictor is the optimal linear predictor

Prediction Error Methods (PEM) 10-15
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Example: Kalman filter of ARMAX model

consider the model

y(t) + ay(t− 1) = bu(t− 1) + ζ(t) + cζ(t− 1)

where |c| < 1 and ζ(t) is zero mean white noise with variance λ2

this model can be written in state-space form as

x(t+ 1) =

[

−a 1
0 0

]

x(t) +

[

b
0

]

u(t) +

[

1
c

]

ζ(t+ 1)

y(t) =
[

1 0
]

x(t)

with ν(t) ,

[

1
c

]

ζ(t+ 1) and then R1 = λ2

[

1 c
c c2

]

, R2 = 0

Prediction Error Methods (PEM) 10-16

solve the riccati equation and we can verify that P has the form

P = λ2

[

1 + α c
c c2

]

where α satisfies

α = (c− a)2 + a2α−
(c− a− aα)2

1 + α

there are two solutions, α = 0 and α = c2 − 1

hence, we pick α = 0 to make P positive definite

the Kalman gain is therefore

K =

[

−a 1
0 0

] [

1 c
c c2

] [

1
0

](

[

1 0
]

[

1 c
c c2

] [

1
0

])

−1

=

[

c− a
0

]
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the one-step optimal predictor of the output is

x̂(t+ 1) =

[

−a 1
0 0

]

x̂(t) +

[

b
0

]

u(t) +

[

c− a
0

]

(y(t)−
[

1 0
]

x̂(t))

=

[

−c 1
0 0

]

x̂(t) +

[

b
0

]

u(t) +

[

c− a
0

]

y(t)

ŷ(t) =
[

1 0
]

x̂(t)

then it follows that

ŷ(t) =
[

1 0
]

[

q + c −1
0 q

]

−1 [

bu(t) + (c− a)y(t)
0

]

=
1

q + c
[bu(t) + (c− a)y(t)]

=
bq−1

1 + cq−1
u(t) +

(c− a)q−1

1 + cq−1
y(t)

same result as in page 10-13

Prediction Error Methods (PEM) 10-18
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Theoretical results

assumptions:

1. the data {u(t), y(t)} are stationary processes

2. the input is persistently exciting

3. the Hessian ∇2f is nonsingular locally around the minimum points of f(θ)

4. the filters G(q−1),H(q−1) are differentiable functions of θ

under these assumptions, the PEM estimate is consistent

θ̂
p

−→ θ, as N → ∞

Prediction Error Methods (PEM) 10-19

Statistical efficiency

for Gaussian disturbances, the PEM method is statistically efficient if

• SISO: f(θ) = tr(R(θ))

• MIMO:

– f(θ) = tr(WR(θ)) and W = Λ−1 (the true covariance of noise)

– f(θ) = det(R(θ))

Prediction Error Methods (PEM) 10-20

Computational aspects

I. Analytical solution exists

if the predictor is a linear function of the parameter

ŷ(t|t− 1) = H(t)θ

and the criterion function f(θ) is simple enough, i.e.,

f(θ) = tr(R(θ)) =
1

N

N
∑

t=1

‖e(t, θ)‖2 =
1

N

N
∑

t=1

‖y(t)−H(t)θ‖2

it is clear that PEM is equivalent to the LS method

this holds for ARX or FIR models (but not for ARMAX and Output error models)

Prediction Error Methods (PEM) 10-21
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II. No analytical solution exists

it involves a nonlinear optimization for

• general criterion functions

• predictors that depend nonlinearly on the data

numerical algorithms: Newton-Ralphson, Gradient based methods, Grid search

typical issues in nonlinear minimization:

• solutions may consist of many local minima

• convergence rate and computational cost

• choice of initialization

Prediction Error Methods (PEM) 10-22

Numerical example

the true system is given by

(1− 1.5q−1 + 0.7q−2)y(t) = (1.0q−1 + 0.5q−2)u(t) + (1− 1.0q−1 + 0.2q−2)ν(t)

• ARMAX model

• u(t) is binary white noise, independent of ν(t)

• ν(t) is white noise with zero mean and variance 1

• N = 250 (number of data points)

estimation

• assume the model structure and model order are known

• use armax command in MATLAB

Prediction Error Methods (PEM) 10-23

0 50 100 150 200 250
−15

−10

−5

0

5

10

15

Comparison on estimation data set

 

 

model

measured

0 50 100 150 200 250
−15

−10

−5

0

5

10

15

Comparison on validation data set

 

 

model

measured

t

t

y
(t
)

y
(t
)

Prediction Error Methods (PEM) 10-24

10 Prediction Error Methods 123



Example of MATLAB codes

%% Generate the data

N = 250; Ts = 1; u_var = 1; noise_var = 1;

a = [1 -1.5 0.7]; b = [0 1 .5]; c = [1 -1 0.2];

u = sign(randn(2*N,1))*sqrt(u_var); v = randn(2*N,1);

M = idpoly(a,b,c,1,1,noise_var,Ts);

y = sim(M,[u v]);

uv = u(N+1:end); vv = v(N+1:end); yv = y(N+1:end);

u = u(1:N); v = v(1:N); y = y(1:N);

DATe = iddata(y,u,Ts); DATv = iddata(yv,uv,Ts);

%% Identification

na = 2; nb = 2; nc = 2;

theta_pem = armax(DATe,[na nb nc 1]); % ARMAX using PEM

%% Compare the measured output and the model output

[yhat1,fit1] = compare(DATe,theta_pem);

[yhat2,fit2] = compare(DATv,theta_pem);
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t = 1:N;

figure;

subplot(2,1,1);plot(t,yhat1{1}.y,’--’,t,y);

legend(’model’,’measured’);

title(’Comparison on estimation data set’,’FontSize’,16);

ylabel(’y’);xlabel(’t’);

subplot(2,1,2);plot(t,yhat2{1}.y,’--’,t,yv);legend(’y2’,’y’);

legend(’model’,’measured’);

title(’Comparison on validation data set’,’FontSize’,16);

ylabel(’y’);xlabel(’t’);

Prediction Error Methods (PEM) 10-26
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Exercises

10.1 Simulation and One-step Prediction. Consider an ARMAX model:

y(t) + a1y(t− 1) + a2y(t− 2) = b1u(t− 1) + b2u(t− 2) + ν(t) + c1ν(t− 1) + c2ν(t− 2)

where u(t) is a known input and ν(t) is noise. Using the prediction error method to estimate
a1, a2, b1, b2, c1, c2. The input and output measurements are available as variables y and u in
data-predicted-simulated.mat Once an estimated model is available, one can use it to
calculate the output of the system. There are two possibilities to implement this. The behavior
of outputs calculated from both choices can be very different and will be illustrated in this
exercise.

From the estimated ARMAX model, it follows that the relationship between input and output
can be described from

y(t) = B(q, θ̂)u(t)−A(q, θ̂)y(t)

where B(q, θ̂) = b̂1q
−1+ b̂2q

−2 and A(q, θ̂) = â1q
−1+ â2q

−2. The one-step predicted output
is calculated by

ŷ(t) = B(q, θ̂)u(t)−A(q, θ̂)y(t).

We have used the delayed outputs (A(q, θ̂)y(t) = â1y(t − 1) + â2y(t − 2)) or the past mea-
surements to predict the output at time t. Alternatively, the past outputs can be replaced by
the simulated values, and we call the output

ŷ(t) = B(q, θ̂)u(t)−A(q, θ̂)ŷ(t)

as simulated output. Suppose a new set of input and output measurements are available as yv
and uv in data-predicted-simulated.mat. Compute the predicted output and simulated
output and compare the plots of the errors. Which error has a shorter transient response ?
Discuss the results.



Chapter 11

Statistical Estimation

We have seen linear least-squares, instrumental variable, and prediction error methods to estimate a
model that best fits a data set. If we assume that the output measurement is generated from a data
generating process, which is usually in the form of

y = f(x, θ) + e

where f(·) is a true description (or true model) of data (could be, in general, nonlinear, and we
never know this description), x is a possible explanatory variable for y, θ is the true parameter of f ,
and e is noise or uncertainty that makes our measurement ambiguous for model estimation. What
these methods have in common is the fact that they do not make use of any statistical property
assumptions about e in the parameter estimation process. They aim to minimize the residual errors
in their own sense but a statistical distribution of the error is not applied as a prior information. In
this chapter, estimation methods requires some statistical assumption about e. For example, we can
assume that e is a normal variable and this certainly reflects in a change in the distribution of y as
we can view y as a transformation of e. As a result, knowing some prior information about y should
help improve estimation results. Statistical methods in this chapter includes mean-square estimation,
maximum likelihood estimation, and maximum a posteriori estimation (MAP). These methods are
used in various applications such as time series model estimation, or linear model with additive noise.

Learning objectives of this chapter are

• to understand the principle of mean-square estimation, maximum likelihood estimation and
maximum a posteriori estimation,

• to apply the three methods to a linear model,

• to understand the importance of Cramer-Rao bound and how to use it to infer about the
estimated covariance matrix.
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11. Statistical Estimation

• conditional expectation

• mean square estimation (MSE)

• maximum likelihood estimation (ML)

• maximum a posteriori estimation (MAP)

11-1

Conditional expectation

let x, y be random variables with a joint density function f(x, y)

the conditional expectation of x given y is

E[x|y] =

∫

xf(x|y)dx

where f(x|y) is the conditional density: f(x|y) = f(x, y)/f(y)

Facts:

• E[x|y] is a function of y

• E[E[x|y]] = E[x]

• for any scalar function g(y) such that E[|g(y)|] < ∞,

E [(x−E[x|y])g(y)] = 0

Statistical Estimation 11-2

Mean square estimation

suppose x, y are random with a joint distribution

problem: find an estimate h(y) that minimizes the mean square error:

E‖x− h(y)‖2

result: the optimal estimate in the mean square is the conditional mean:

h(y) = E[x|y]

Proof. use the fact that x− E[x|y] is uncorrelated with any function of y

E‖x− h(y)‖2 = E ‖x−E[x|y] +E[x|y]− h(y)‖2

= E ‖x−E[x|y]‖2 +E ‖E[x|y]− h(y)‖2

hence, the error is minimized only when h(y) = E[x|y]

Statistical Estimation 11-3
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Gaussian case: x, y are jointly Gaussian: (x, y) ∼ N (µ,C) where

µ =

[

µx

µy

]

, C =

[

Cx Cxy

CT
xy Cy

]

the conditional density function of x given y is also Gaussian with conditional
mean

µx|y = µx + CxyC
−1
y (y − µy),

and conditional covariance matrix

Cx|y = Cx − CxyC
−1
y CT

xy

hence, for Gaussian distribution, the optimal mean square estimate is

E[x|y] = µx + CxyC
−1
y (y − µy),

the optimal estimate is linear in y

Statistical Estimation 11-4

conclusions:

• E[x|y] is called the minimum mean square error (MMSE) estimator

• the MMSE estimator is typically nonlinear in y and is obtained from f(x, y)

• for Gaussian case, the MMSE estimator is linear in y

• the MMSE estimator must satisfy the orthogonal principle:

[(x− x̂mmse)g(y)] = 0

where g is any function of y such that E[|g(y)|2] < ∞

• MMSE estimator can be difficult to evaluate, so one can consider a linear
MMSE estimator

Statistical Estimation 11-5

Linear MMSE estimator

the linear unbiased MMSE estimator takes the affine form:

h(y) = Kỹ +E[x], (with ỹ = y −E[y])

important results: define x̃ = x−E[x]

• the linear MMSE estimator minimizes

E‖x− h(y)‖2 = E‖x̃−Kỹ‖2

• the linear MMSE estimator is

h(y) = CxyC
−1
y (y −E[y]) + E[x]

• the form of linear MMSE requires just covariance matrices of x, y

• it coincides with the optimal mean square estimate for Gaussian RVs

Statistical Estimation 11-6
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Wiener-Hopf equation

the optimal condition for linear MMSE estimator is

Cxy = KCy

and is called the Wiener-Hopf equation

• obtained by differentiating the MSE w.r.t. K

MSE = Etr(x̃−Kỹ)(x̃−Kỹ)T = tr(Cx − CxyK
T −KCyx +KCyK

T )

• also obtained from the condition

E[(x− h(y))yT ] = 0 ⇒ E[(x̃−Kỹ)ỹT ] = 0

(the optimal residual is uncorrelated with the observation y)
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Minimizing the error covariance matrix

for any estimate h(y), the covariance matrix of the corresponding error is

E
[

(x− h(y))(x− h(y))T
]

the problem is to choose h(y) to yield the minimum covariance matrix

(instead of minimizing the mean square norm)

we compare two matrices by

M � N if M −N � 0

or M −N is nonpositive definite

now restrict to the linear case:

h(y) = Ky + c

Statistical Estimation 11-8

the covariance matrix can be written as

(µx − (Kµy + c))(µx − (Kµy + c))T + Cx −KCyx − CxyK
T +KCyK

T

the objective is minimized with respect to c when

c = µx −Kµy

(same as the best unbiased linear estimate of the mean square error)

the covariance matrix of the error is reduced to

f(K) = Cx −KCyx − CxyK
T +KCyK

T

note that f(K) � 0 because we can write f(K) as

f(K) =
[

−I K
]

[

Cx Cxy

CT
xy Cy

] [

−I
KT

]

Statistical Estimation 11-9
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let K0 be a solution to the Wiener-Hopf equation: Cxy = K0Cy

we can verify that

f(K) = f(K0) + (K −K0)Cy(K −K0)
T

so f(K) is minimized when K = K0

the miminum covariance matrix is

f(K0) = Cx − CxyC
−1
y CT

xy

for C =

[

Cx Cxy

CT
xy Cy

]

, note that

• the minimum covariance matrix is the Schur complement of Cx in C

• it is exactly a conditional covariance matrix for Gaussian variables
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Maximum likelihood estimation

• y = (y1, . . . , ym): the observations of random variables

• θ: unknown parameters to be estimated

• f(y|θ): the probability density function of y for a fixed θ

in ML estimation, we assume θ are fixed (and deterministic) parameters

to estimate θ from y, we maximize the density function for a given θ:

θ̂ = argmax
θ

f(y|θ)

• f(y|θ) is called the likelihood function

• θ is chosen so that the observed y becomes “as likely as possible”

Statistical Estimation 11-11

Example 1: estimate the mean and covariance matrix of Gaussian RVs

• observe a sequence of independent random variables: y1, y2, . . . , ym

• each yk is an n-dimensional Gaussian: yk ∼ N (µ,Σ), but µ,Σ are unknown

• the likelihood function of y1, . . . , yN for given µ,Σ is

f(y1, y2, . . . , ym|µ,Σ)

=
1

(2π)mn/2
·

1

|Σ|m/2
· exp−

1

2

m
∑

k=1

(yk − µ)TΣ−1(yk − µ)

• to maximize f , it is convenient to consider the log-likelihood function: (up
to a constant)

L(µ,Σ) = log f =
m

2
log detΣ−1 −

1

2

m
∑

k=1

(yk − µ)TΣ−1(yk − µ)

Statistical Estimation 11-12
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• the log-likelihood is concave in Σ−1, µ, so the ML estimate satisfies the zero
gradient conditions:

∂L

∂Σ−1
=

mΣ

2
−

1

2

m
∑

k=1

(yk − µ)(yk − µ)T = 0

∂L

∂µ
=

m
∑

k=1

Σ−1(yk − µ) = 0

• we obtain the ML estimate of µ,Σ as

µ̂ml =
1

m

m
∑

k=1

yk, Σ̂ml =
1

m

m
∑

k=1

(yk − µ̂ml)(yk − µ̂ml)
T

– µ̂ml is the sample mean

– Σ̂ml is a (biased) sample covariance matrix
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Example 2: linear measurements with i.i.d. noise

consider a linear measurement model

y = Aθ + v

θ ∈ Rn is parameter to be estimated
y ∈ Rm is the measurement
v ∈ Rm is i.i.d. noise

(vi are independent, identically distributed) with density fv

the density function of y −Aθ is therefore the same as v:

f(y|θ) =
m
∏

k=1

fv(yk − aTk θ)

where aTk are the row vectors of A

the ML estimate of θ depends on the noise distribution fv

Statistical Estimation 11-14

suppose vk is Gaussian with zero mean and variance σ

• the log-likelihood function is

L(θ) = log f = −(m/2) log(2πσ2)−
1

2σ2

m
∑

k=1

(yk − aTk θ)
2

(aTk are row vectors of A)

• therefore the ML estimate of θ is

θ̂ = argmin
θ

‖y − Aθ‖22

• the solution of a least-squares problem

what about other distributions of vk ?

Statistical Estimation 11-15
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Maximum a posteriori (MAP) estimation

assumptions:

• assume that θ is a random variable

• θ and y has a joint distribution f(y, θ)

the MAP estimate of θ is given by

θ̂ = argmax
θ

fθ|y(θ|y)

• fθ|y is called the posterior density of θ

• fθ|y represents our knowledge of θ after we observe y

• MAP estimate is the value that maximizes the conditional density of θ, given
the observed y

Statistical Estimation 11-16

from Bayes rule, the MAP estimate is also obtained by

θ̂ = argmax
θ

fy|θ(y|θ)fθ(θ)

taking logarithms, we can express θ̂ as

θ̂ = argmax
θ

log fy|θ(y|θ) + log fθ(θ)

• the only difference between ML and MAP estimate is the term fθ(θ)

• fθ is called the prior density, representing prior knowledge about θ

• log fθ(θ) penalizes choices of θ that are unlikely to happen

under what condition on fθ is the MAP estimate identical to the ML estimate ?
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Example 3: linear measurement with IID noise

use the model in page 11-14 and assume θ has a prior density fθ on Rn

the MAP estimate can be found by solving

maximize log fθ(θ) +
m
∑

k=1

log fv(yk − aTk θ)

suppose θ ∼ N (0, βI) and vk ∼ N (0, σ), the MAP estimation is

maximize −
1

β
‖θ‖22 −

1

σ2
‖Aθ − y‖22

conclusion: MAP estimate with a Guassian prior is the solution to a
least-squares problem with ℓ2 regularization

what if θ has a Laplacian distribution ?

Statistical Estimation 11-18
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Cramér-Rao inequality

for any unbiased estimator θ̂ with the covariance matrix of the error:

cov(θ̂) = E(θ − θ̂)(θ − θ̂)T ,

we always have a lower bound on cov(θ̂):

cov(θ̂) �
[

E(∇θ log f(y|θ))
T (∇θ log f(y|θ))

]−1
= −

[

E∇2
θ log f(y|θ)

]−1

• f(y|θ) is the density function of observations y for a given θ

• the RHS is called the Cramér-Rao lower bound

• provide the minimal covariance matrix over all possible estimators θ̂

• J , E∇2
θ log f(y|θ) is called the Fisher information matrix

• an estimator for which the C-R equality holds is called efficient
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Proof of the Cramér-Rao inequality

since f(y|θ) is a density function and θ̂ is unbiased, we have

1 =

∫

f(y|θ)dy, θ =

∫

θ̂(y)f(y|θ)dy

differentiate the eqs w.r.t. θ and use ∇θ log f(y|θ) =
∇θf(y|θ)

f(y|θ)

0 =

∫

∇θ log f(y|θ)f(y|θ)dy, I =

∫

θ̂(y)∇θ log f(y|θ)f(y|θ)dy

these two identities can be expressed as

E

[

(θ̂(y)− θ)∇θ log f(y|θ)
]

= I

(E is taken w.r.t y, and θ is fixed)
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consider a positive semidefinite matrix

E

[

θ̂(y)− θ
(∇θ log f(y|θ))T

] [

θ̂(y)− θ
(∇θ log f(y|θ))T

]T

� 0

expand the product into the form

[

A I
I D

]

where A = E(θ̂(y)− θ)(θ̂(y)− θ)T and

D = E(∇θ log f(y|θ))
∗(∇θ log f(y|θ))

the Schur complement of the (1, 1) block must be nonnegative:

A− ID−1I � 0

which implies the Cramér Rao inequality

Statistical Estimation 11-21

11 Statistical Estimation 133



now it remains to show that

E(∇θ log f(y|θ))
T (∇θ log f(y|θ)) = −E∇2

θ log f(y|θ)

from the equation

0 =

∫

∇θ log f(y|θ)f(y|θ)dy,

differentiating on both sides gives

0 =

∫

∇2
θ log f(y|θ)f(y|θ)dy +

∫

∇θ log f(y|θ)
T∇θ log f(y|θ)f(y|θ)dy

or
−E[∇2

θ log f(y|θ)] = E[∇θ log f(y|θ)
T∇θ log f(y|θ)]
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Example of computing the Cramér Rao bound

revisit a linear model with correlated Gaussian noise:

y = Aθ + v, v ∼ N (0,Σ), Σ is known

the density function f(y|θ) is given by fv(y −Aθ) which is Gaussian

log f(y|θ) = −
1

2
(y −Aθ)TΣ−1(y −Aθ)−

m

2
log(2π)−

1

2
log detΣ

∇θ log f(y|θ) = ATΣ−1(y − Aθ)

∇2
θ log f(y|θ) = −ATΣ−1A

hence, for any unbiased estimate θ̂,

cov(θ̂) � (ATΣ−1A)−1
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Linear models with additive noise

estimate parameters in a linear model with addtive noise:

y = Aθ + v, v ∼ N (0,Σ), Σ is known

and we explore several estimates from the following approaches

• no use of noise information

– least-squares estimate (LS)

• use information about the noise (Gaussian distribution, Σ)

assume θ is a fixed parameter assume θ ∼ N (0,Λ)
weighted least-squares (WLS) minimum mean square (MMSE)
best linear unbiased (BLUE) maximum a posteriori (MAP)
maximum likelihood (ML)

Statistical Estimation 11-24
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Least-squares: θ̂ls = (ATA)−1ATy and is unbiased

cov(θ̂ls) = cov((ATA)−1ATv) = (ATA)−1ATΣA(ATA)−1

we can verifty that cov(θ̂ls) � (ATΣ−1A)−1

(the error covariance matrix is bigger than the CR bound)

however the bound is tight when the noise covariance is diagonal:

Σ = σ2I

(the noise vk are uncorrelated)
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Weighted least-squares: for a given weight matrix W ≻ 0

θ̂wls = (ATWA)−1ATWy, and is unbiased

cov(θ̂wls) = cov((ATWA)−1ATWv)

= (ATWA)−1ATWΣWA(ATWA)−1

cov(θ̂wls) attains the minimum (the CR bound) when W = Σ−1

θ̂wls = (ATΣ−1A)−1ATΣ−1y

interpretation:

• large Σii means the ith measurement is highly uncertain

• should put less weight on the corresponding ith entry of the residual
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Maximum likelihood

from f(y|θ) = fv(y −Aθ),

log f(y|θ) = −
m

2
log(2π)−

1

2
log detΣ−

1

2
(y −Aθ)TΣ−1(y − Aθ)

the zero gradient condition gives

∇θ log f(y|θ) = ATΣ−1(y −Aθ) = 0

θ̂ml = (ATΣ−1A)−1ATΣ−1y

θ̂ml is also efficient (achieves the minimum covariance matrix)

moreover, we can verify that

θ̂ml = θ̂wls = θ̂blue
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minimum mean square estimate:

• θ is random and independent of v

• θ ∼ N (0,Λ)

hence, θ and y are jointly Gaussian with zero mean and the covariance:

C =

[

Cθ Cθy

CT
θy Cyy

]

=

[

Λ ΛAT

AΛ AΛAT +Σ

]

θ̂mmse is essentially the conditional mean (readily computed for Gaussian)

θ̂mmse = E[θ|y] = CθyC
−1
yy y = ΛAT (AΛAT + Σ)−1y

alternatively, we claim that E[θ|y] is linear in y (because θ, y are Gaussian)

θ̂mmse = θ̂lms = Ky

and K can be computed from the Wiener-Hopf equation
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Maximum a posteriori:

• θ is random and independent of v

• θ ∼ N (0,Λ)

the MAP estimate can be found by solving

θ̂map = argmax
θ

log f(θ|y) = argmax
θ

log f(y|θ) + log f(θ)

without having to solve this problem, it is immediate that

θ̂map = θ̂mmse

since for Gaussian density function, E[θ|y] maximizes f(θ|y)
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nevertheless, we can write down the posteriori density function

log f(y|θ) = −
1

2
log detΣ−

1

2
(y −Aθ)TΣ−1(y −Aθ)

log f(θ) = −
1

2
log detΛ−

1

2
θTΛ−1θ

(these terms are up to a constant)

the MAP estimate satisfies the zero gradient (w.r.t. θ) condition:

−ATΣ−1(y −Aθ) + Λ−1θ = 0

which gives
θ̂map = (ATΣ−1A+ Λ−1)−1ATΣ−1y

• θ̂map is clearly similar to θ̂ml except the extra term Λ−1

• when Λ = ∞ or maximum ignorance, it reduces to ML estimate
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• from θ̂mmse = θ̂map, it is interesting to verify

ΛAT (AΛAT +Σ)−1y = (ATΣ−1A+ Λ−1)−1ATΣ−1y

(see the proof next page - it can be skipped)
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define H = (AΛAT + Σ)−1y and we have

AΛATH +ΣH = y

we start with the expression of θ̂lms

θ̂mmse = ΛAT (AΛAT + Σ)−1y = ΛATH

Aθ̂mmse = AΛATH = y − ΣH

ΛATΣ−1Aθmmse = ΛATΣ−1y − ΛATH

= ΛATΣ−1y − θ̂mmse

(I + ΛATΣ−1A)θ̂mmse = ΛATΣ−1y

(Λ−1 +ATΣ−1A)θ̂mmse = ATΣ−1y

θ̂mmse = (Λ−1 +ATΣ−1A)−1ATΣ−1y , θ̂map
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to compute the covariance matrix of the error, we use θ̂map = E[θ|y]

cov(θ̂map) = E
[

(θ −E[θ|y])(θ −E[θ|y])T
]

use the fact that the optimal residual is uncorrelated with y

cov(θ̂map) = E
[

(θ −E[θ|y])θT
]

next θ̂map = E[θ|y] is a linear function in y

cov(θ̂map) = Cθ −KCyθ = Λ− (ATΣ−1A+ Λ−1)−1ATΣ−1AΛ

= (ATΣ−1A+ Λ−1)−1
[

(ATΣ−1A+ Λ−1)Λ−ATΣ−1AΛ
]

= (ATΣ−1A+ Λ−1)−1 � (ATΣ−1A)−1

θ̂map yields a smaller covariance matrix than θ̂ml as it should be

(ML does not use a prior knowledge about θ)
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Summary

• estimate methods in this section require statistical properties of random
entities in the model

• minimum-mean-square estimate is the conditional mean and typically a
nonlinear function in the measurement data

• a maximum-likelihood estimation is a nonlinear optimization problem; it can
reduce to have a closed-form solution in some special case of noise
distribution (e.g. Gaussian)

• a maximum a posteriori estimation takes model parameters as random
variables; it requires a prior distribution of these parameters
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Exercises

11.1 ML estimation for some common noise densities. Consider a linear measurement model

y = Aθ + v (11.1)

where y ∈ Rm is the measurement, θ ∈ Rn is the parameter to be estimated and v ∈ Rm is
i.i.d noise (vi are independent, identically distributed) with density fv. In class, we learn that
if we assume vi is Gaussian with zero mean and variance σ, then the ML estimate of θ is given
by

θ̂ = argmin
θ

∥Aθ − y∥22

(The ML estimate is identical to the least-squares estimate.) In this problem, we explore the
formulation of the ML problem if we assume vi has other distributions. Formulate the ML
estimation into an optimization problem or some constraints on A, θ, y for the following density
functions.

(a) Laplacian noise. vi are Laplacian with density function p(z) = (1/2a)e−|z|/a where a > 0.

(b) Uniform noise. vi are uniformly distributed on [−a, a] with density function p(z) = 1/(2a)
on [−a, a].

(Your formulation should be simplified enough so that the resulting problem can be readily
solved.)

11.2 MAP estimation of a linear model for some common noise densities. Suppose the
measurement y and parameter x are related by

y = Ax+ v (11.2)

where y ∈ Rm and x ∈ Rn, and vi are i.i.d. with Gaussian distribution of zero mean and
variance σ2. Find the MAP estimates of x when

• xi are independent Gaussian with zero mean and variance λ2.

• xi are independent Laplacian with the density function

p(xi) =
1

2λ
e−|xi|/λ, i = 1, 2, . . . , n, λ > 0.

(a) Show that each of the MAP estimates is a solution of a regularized least-squares problem.

(b) Use the data given in data-map-linmodel.mat with parameter σ = 1, λ = 1 to find the
numerical values of the ML estimate, and the two MAP estimates. Compare the estimate
result with the true value of x given in vector x.

(c) Plot three subgraphs; each of them illustrates a comparison of the estimation result be-
tween the true parameter x and each of the estimates. Use stem command to plot the
values of x and x̂. Discuss the results. Which estimate yields the smallest error ? Compute
∥x− x̂∥.

(d) Plot a histogram of the two MAP estimates by using hist command. What are the main
features you observe from the histograms ? If a sparse estimate of x is favored, which
estimation method would you choose ?
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11.3 Nonlinear and linear estimators of the mean. Consider the observations

y(t) = x+ v(t), t = 1, 2, . . . , N

where x and v are independent real-valued random variables, v(t) is a white-noise Gaussian
process with zero-mean and unit variance, and x takes the values of ±1 with equal probability.
Note that x takes one value for all t but its value is random. In this problem, we are given the
observations y(1), y(2), . . . , y(N) and we would like to find the following estimates of x:

• The least-squares estimate, x̂ls.

• The least-mean-squares (or minimum-mean-square-error) estimate, x̂lms.

• The best linear unbiased estimate (BLUE), x̂blue.

and discuss about their properties. To simplify your analysis, you can write the process in the
vector form as

y = x1+ v

where 1 is the all-one vector (with length N).

(a) Derive and give the closed-form expression of the least-squares estimate of x.

(b) Show that the least-mean-squares (lms) estimate of x is given by

x̂lms = tanh

(
N∑
t=1

y(t)

)
.

Note that the minimum-mean-squared-error (MMSE) and the least-mean-squares esti-
mates are the same. They can be used interchangeably. Hint. tanh(x) = (ex−e−x)/(ex+
e−x).

(c) Derive the BLUE estimate of x.

(d) We provide 100 data sets of measurements y; each of which contains N time points. The
observations y from different data set is generated from different values of x (but one data
set corresponds to one value of x). Write MATLAB codes to compute the LS, LMS and
BLUE estimates of x for each data set. You can load the data from data-nonlinest.mat.
The variables are y,x,N,SAMPLES where

• y has size N×SAMPLES where N = 5 and SAMPLES is the number of data sets, which
is 100.

• x has size 1× SAMPLES, the true values of x.

Save your MATLAB M-file as yourname.m

(e) From each data set compute the following quantities:√√√√ N∑
t=1

(y(t)− x̂)2, and |x− x̂|2

for the three estimates. Plot two figures: (i) ∥y− x̂1∥ versus data set index and the figure
contains three plots from the three estimates, (ii) x̂ versus data set index and the figure
contains four plots from the three estimates and the true value of x. Save the two figures
as resid normy.pdf and xhat.pdf. From above quantities and the plots, discuss and
compare the three estimates. Which one you are going to use ? Justify your answer.
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11.4 Cramér-Rao bound. Consider a problem of estimating the mean a of the process

y(t) = a+ ν(t)

where ν ∼ N (0, a). In this problem, the noise variance is unknown and is assumed to be as
high as the process mean.

(a) Determine âls, the least-squares estimate of a

(b) Determine âml, the maximum likelihood estimate of a. While the noise is Gaussian, why
is âml different from âls in this case ?

(c) Are âml and âls consistent ?, i.e., â → a as N → ∞ ?

(d) Compute the Cramér-Rao bound of any unbiased estimators of a

(e) Is âls efficient ?, i.e., the variance of âls achieves the Cramér-Rao bound ?



Chapter 12

Subspace identification

Subspace identification is a method for estimating the system parameters in a state-space represen-
tation. It applies geometric tools in linear algebra, rather than other statistical estimation methods.
To understand subspace identification, we consider the system of two cases: noiseless case (deter-
ministic) and stochastic case without input. Each of these cases, the estimation consists of two main
steps: to determine state sequences and to compute the system matrices.

To begin with, we review some linear algebra tools that are SVD factorization, orthogonal and
oblique projections. The result of deterministic and stochastic cases are presented. Subsequently, we
explain how to combine the results from both cases to estimate the system in a general setting.

Learning objectives of this chapter are

• to explain the oblique projection which is served as a basis for subspace identification,

• to explain the combination of deterministic and stochastic identification applied to state-space
models,

• to apply existing numerical methods for subspace identification.
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12-1

Introduction

consider a stochastic discrete-time linear system

x(t+ 1) = Ax(t) +Bu(t) + w(t), y(t) = Cx(t) +Du(t) + v(t)

where x ∈ Rn, u ∈ Rm, y ∈ Rl and E

[
w(t)
v(t)

] [
w(t)
v(t)

]T

=

[
Q S
ST R

]

δ(t, s)

problem statement: given input/output data (u(t), y(t)) for t = 0, . . . , N

• find an appropriate order n

• estimate the system matrices (A,B,C,D)

• estimate the noice covariances: Q,R, S
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Basic idea

the algorithm involves two steps:

1. estimation of state sequence:

• obtained from input-output data

• based on linear algebra tools (QR, SVD)

2. least-squares estimation of state-space matrices (once states x̂ are known)

[
Â B̂

Ĉ D̂

]

= minimize
A,B,C,D

∥
∥
∥
∥

[
x̂(t+ 1) x̂(t+ 2) · · · x̂(t+ j)
y(t) y(t+ 1) · · · y(t+ j − 1)

]

−

[
A B
C D

] [
x̂(t) x̂(t+ 1) · · · x̂(t+ j − 1)
u(t) u(t+ 1) · · · u(t+ j − 1)

]∥
∥
∥
∥

2

F

and Q̂, Ŝ, R̂ are estimated from the least-squares residuals
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System related matrices

extended observability matrix

Γi =







C
CA
...

CAi−1






∈ Rli×n, i > n

extended controllability matrix

∆i =
[
Ai−1B Ai−2B · · · AB B

]
∈ Rn×mi

a block Toeplitz

Hi =









D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

... ... ... ...
CAi−2B CAi−3B CAi−4B D









∈ Rli×mi
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Notation and indexing

we use subscript i for time indexing

Xi =
[
xi xi+1 · · · xi+j−2 xi+j−1

]
∈ Rn×j, usually j is large

U0|2i−1 ,















u0 u1 u2 · · · uj−1

u1 u2 u3 · · · uj
... ... ... · · · ...

ui−1 ui ui+1 · · · ui+j−2

ui ui+1 ui+2 · · · ui+j−1

ui+1 ui+2 ui+3 · · · ui+j
... ... ... · · · ...

u2i−1 u2i u2i+1 · · · u2i+j−2















=

[
U0|i−1

Ui|2i−1

]

=

[
Up

Uf

]

• U0|2i−1 has 2i blocks and j columns and usually j is large

• Up contains the past inputs and Uf contains the future inputs

Subspace methods 12-6
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we can shift the index so that the top block contain the row of ui

U0|2i−1 ,















u0 u1 u2 · · · uj−1

u1 u2 u3 · · · uj
... ... ... · · · ...

ui−1 ui ui+1 · · · ui+j−2

ui ui+1 ui+2 · · · ui+j−1

ui+1 ui+2 ui+3 · · · ui+j
... ... ... · · · ...

u2i−1 u2i u2i+1 · · · u2i+j−2















=

[
U0|i

Ui+1|2i−1

]

=

[
U+
p

U−
f

]

• +/− can be used to shift the border between the past and the future block

• U+
p = U0|i and U−

f = Ui+1|2i−1

• the output matrix Y0|2i−1 is defined in the same way

• U0|2i−1 and Y0|2i−1 are block Hankel matrices (same block along
anti-diagonal)
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Row and Column spaces

let A ∈ Rm×n

row space column space

row(A) =
{
y ∈ Rn | y = ATx, x ∈ Rm

}
R(A) = {y ∈ Rm | y = Ax, x ∈ Rn}

zT = uTA z = Au

zT is in row(A) z is in R(A)

Z = BA Z = AB

rows of Z are in row(A) columns of Z are in R(A)

it’s obvious from the definition that

row(A) = R(AT )
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Orthogonal projections

denote P the projections on the row or the column space of B

row(B) R(B)

P (yT ) = yTBT (BBT )−1B P (y) = B(BTB)−1BTy

B =
[

L 0
]




QT

1

QT
2



 B =
[

Q1 Q2

]




R

0





P (yT ) = yTQ1Q
T
1 P (y) = Q1Q

T
1 y

(I − P )(yT ) = yTQ2Q
T
2 (I − P )(y) = Q2Q

T
2 y

A/B = ABT (BBT )−1B A/B = B(BTB)−1BTA

• result for row space is obtained from column space by replacing B with BT

• A/B is the projection of the row(A) onto row(B) (or projection of R(A)
onto R(B))

Subspace methods 12-9
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Projection onto a row space

denote the projection matrices onto row(B) and row(B)⊥

row(B) row(B)⊥

ΠB = BT (BBT )−1B Π⊥
B = I − BT (BBT )−1B

A/B = ABT (BBT )−1B A/B⊥ = A(I −BT (BBT )−1B)

get projections of row(A) onto row(B) or row(B)⊥ from LQ factorization

[
B
A

]

=

[
L11 0
L21 L22

] [
QT

1

QT
2

]

=

[
L11Q

T
1

L21Q
T
1 + L22Q

T
2

]

A/B = (L21Q
T
1 + L22Q

T
2 )Q1Q

T
1 = L21Q

T
1

A/B⊥ = (L21Q
T
1 + L22Q

T
2 )Q2Q

T
2 = L22Q

T
2
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Oblique projection

instead of an orthogonal decomposition A = AΠB +AΠB⊥,
we represent row(A) as a linear combination of

the rows of two non-orthogonal matrices B and C and
of the orthogonal complement of B and C

A/BC is called the oblique projection of row(A) along row(B) into row(C)

Subspace methods 12-11

the oblique projection can be interpreted as follows

1. project row(A) orthogonally into the joint row of B and C that is A/

[
B
C

]

2. decompose the result in part 1) along row(B), denoted as LBB

3. decompose the result in part 1) along row(C), denoted as LCC

4. the orthogonal complement of the result in part 1) is denoted as

LB⊥,C⊥

[
B
C

]⊥

the oblique projection of row(A) along row(B) into row(C) can be
computed as

A/BC = LCC = L32L
−1

22

[
L21 L22

]
[
QT

1

QT
2

]

where 



B
C
A



 =





L11 0 0
L21 L22 0
L31 L32 L33









QT
1

QT
2

QT
3




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the computation of the oblique projection can be derived as follows

• the projection of row(A) into the joint row space of B and C is

A/

[
B
C

]

=
[
L31 L32

]
[
QT

1

QT
2

]

(1)

• this can also written as linear combination of the rows of B and C

A/

[
B
C

]

= LBB + LCC =
[
LB LC

]
[
L11 0
L21 L22

] [
QT

1

QT
2

]

(2)

• equating (1) and (2) gives

[
LB LC

]
=
[
L31 L32

]
[
L11 0
L21 L22

]−1

=
[
L31 L32

]
[

L−1
11 0

−L−1
22 L21L

−1
11 L−1

22

]

Subspace methods 12-13

the oblique projection of row(A) along row(B) into row(C) is then

A/BC = LCC = L32L
−1
22 C = L32L

−1
22 (L21Q

T
1 + L22Q

T
2 ) (3)

(finished the proof)

useful properties: B/BC = 0 and C/BC = C

these can be viewed from constructing the matrices





B
C
B



 =





L11 0 0
L21 L22 0
L11 0 0









QT
1

QT
2

QT
1



 ,





B
C
C



 =





L11 0 0
L21 L22 0
L21 L22 0









QT
1

QT
2

0





and apply the result of oblique projection in (3)
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Equivalent form of oblique projection

the oblique projection of row(A) along row(B) into row(C) can also be
defined as

A/BC = A
[
BT CT

]

([
BBT BCT

CBT CCT

]†
)

last r columns

· C

where C has r rows

using the properties: B/BC = 0 and C/BC = C, we have

corollary: oblique projection can also be defined

A/BC = (A/B⊥) · (C/B⊥)†C

see detail in P.V. Overschee page 22

Subspace methods 12-15
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Deterministic subspace identification

problem statement: estimate A,B,C,D in noiseless case from y, u

x(t+ 1) = Ax(t) + Bu(t), y(t) = Cx(t) +Du(t)

method outline:

1. calculate the state sequence (x)

2. compute the system matrices (A,B,C,D)

it is based on the input-output equation

Y0|i−1 = ΓiX0 +HiU0|i−1

Yi|2i−1 = ΓiXi +HiUi|2i−1

Subspace methods 12-17

Calculating the state sequence

derive future outputs

from state equations we have input/output equations

past: Y0|i−1 = ΓiX0 +HiU0|i−1, future: Yi|2i−1 = ΓiXi +HiUi|2i−1

from state equations, we can write Xi (future) as

Xi = AiX0 +∆iU0|i−1 = Ai(−Γ†
iHiU0|i−1 + Γ†

iY0|i−1) + ∆iU0|i−1

=
[

∆i −AiΓ†
iHi AiΓ†

i

]
[
U0|i−1

Y0|i−1

]

, LpWp

future states = in the row space of past inputs and past outputs

Yi|2i−1 = ΓiLpWp +HiUi|2i−1

Subspace methods 12-18
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find oblique projection of future outputs: onto past data and along the
future inputs

A/BC = (A/B⊥)·(C/B⊥)†C =⇒ Yf/Uf
Wp = (Yi|2i−1/U

⊥
i|2i−1)(Wp/U

⊥
i|2i−1)

†Wp

the oblique projection is defined as Oi and can be derived as

Yi|2i−1 = ΓiLpWp +HiUi|2i−1

Yi|2i−1/U
⊥
i|2i−1 = ΓiLpWp/U

⊥
i|2i−1 + 0

(Yi|2i−1/U
⊥
i|2i−1)(Wp/U

⊥
i|2i−1)

†Wp = ΓiLp (Wp/U
⊥
i|2i−1)(Wp/U

⊥
i|2i−1)

†Wp
︸ ︷︷ ︸

Wp

Oi = ΓiLpWp = ΓiXi

projection = extended observability matrix · future states

we have applied the result of FF †Wp = Wp which is NOT obvious

see Overschee page 41 (up to some assumptions on excitation in u)
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compute the states: from SVD factorization

since Γi has n columns and Xi has n rows, so rank(Oi) = n

Oi =
[
U1 U2

]
[
Σn 0
0 0

] [
V T
1

V T
2

]

= U1ΣnV
T
1

= U1Σ
1/2
n T · T−1Σ1/2

n V T
1 , for some non-singular T

the extended observability is equal to

Γi = U1Σ
1/2
n T

the future states is equal to

Xi = Γ†
iOi = Γ†

i · Yi|2i−1/Ui|2i−1
Wp

future states = inverse of extended observability matrix · projection of future outputs

note that in Overschee use SVD of W1OiW2 for some weight matrices
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Computing the system matrices

from the definition of Oi, we can obtain

Oi−1 = Γi−1Xi+1 =⇒ Xi+1 = Γ†
i−1

Oi−1

(Xi and Xi+1 are calculated using only input-output data)

the system matrices can be solved from

[
Xi+1

Yi|i

]

=

[
A B
C D

] [
Xi

Ui|i

]

in a linear least-squares sense

• options to solve in a single or two steps (solve A,C first then B,D)

• for two-step approach, there are many options: using LS, total LS, stable A

Subspace methods 12-21
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Stochastic subspace identification

problem statement: estimate A,C,Q, S,R from the system without input:

x(t+ 1) = Ax(t) + w(t), y(t) = Cx(t) + v(t)

where Q,S,R are noise covariances (see page 12-2)

method outline:

1. calculate the state sequence (x) from input/output data

2. compute the system matrices (A,C,Q, S,R)

note that classical identification would use Kalman filter that requires system
matrices to estimate the state sequence
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Bank of non-steady state Kalman filter

if the system matrices would be known, x̂i+q would be obtained as follows

X̂0 =
[
0 · · · 0 · · · 0

]

P0 = 0 Kalman filter

Yp





y0 · · · yq · · · yj−1
... ... ...

yi−1 · · · yi+q−1 · · · yi+j−2



 ↓

X̂i

[
x̂i · · · x̂i+q · · · x̂i+j−1

]

• start the filter at time q with the initial 0

• iterate the non-steady state Kalman filte over i time steps (vertical arrow
down)

• note that to get x̂i+q it uses only partial i outputs

• repeat for each of the j columns to obtain a bank of non-steady state KF

Subspace methods 12-24
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Calculation of a state sequence

project the future outputs: onto the past output space

Oi , Yi|2i−1/Y0|i−1 = Yf/Yp

it is shown in Overschee (THM 8, page 74) that

Oi = ΓiX̂i

(product of extended observability matrix and the vector of KF states)

define another projection and we then also obtain

Oi−1 , Yi+1|2i−1/Y0|i = Y −
f /Y +

p

= Γi−1X̂i+1

(proof on page 82 in Overschee)
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compute the state: from SVD factorization

• the system order (n) is the rank of Oi

Oi =
[
U1 U2

]
[
Σn 0
0 0

] [
V T
1

V T
2

]

= U1ΣnV
T
1

• for some non-singular T , and from Oi = ΓiX̂i, we can obtain

Γi = U1Σ
1/2
n T, X̂i = Γ†

iOi

• the shifted state X̂i+1 can be obtained as

X̂i+1 = Γ†
i−1

Oi−1 = (Γi)
†Oi−1

where Γi denotes Γi without the last l rows

• X̂i and X̂i+1 are obtained directly from output data (do not need to know
system matrices)
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Computing the system matrices

system matrices: once X̂i and X̂i+1 are known, we form the equation

[

X̂i+1

Yi|i

]

︸ ︷︷ ︸
known

=

[
A
C

]

X̂i︸︷︷︸
known

+

[
ρw
ρv

]

︸ ︷︷ ︸
residual

• Yi|i is a block Hankel matrix with only one row of outputs

• the residuals (innovation) are uncorrelated with X̂i (regressors) then solving
this equation in the LS sense yields an asymptotically unbiased estimate:

[
Â

Ĉ

]

=

[

X̂i+1

Yi|i

]

X̂†
i
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noise covariances

• the estimated noise covariances are obtained from the residuals

[
Q̂i Ŝi

ŜT
i R̂i

]

= (1/j)

[
ρw
ρv

] [
ρw
ρv

]T

• the index i indicates that these are the non-steady state covariance of the
non-steady state KF

• as i → ∞, which is upon convergence of KF, we have convergence in Q,S,R
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Combined deterministic-stochastic identification

problem statement: estimate A,C,B,D,Q, S,R from the system:

x(t+ 1) = Ax(t) +Bu(t) + w(t), y(t) = Cx(t) +Du(t) + v(t)

(system with both input and noise)

assumptions: (A,C) observable and see page 98 in Overschee

method outline:

1. calculate the state sequence (x) using oblique projection

2. compute the system matrices using least-squares

Subspace methods 12-30
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Calculating a state sequence

project future outputs: into the joint rows of past input/output along future
inputs

define the two oblique projections

Oi = Yf/Uf

[
Up

Yp

]

, Oi−1 = Y −
f /U−

f

[
U+
p

Y +
p

]

important results: the oblique projections are the product of extended
observability matrix and the KF sequences

Oi = ΓiX̃i, Oi−1 = Γi−1X̃i+1

where X̃i is initialized by a particular X̂0 and run the same way as on page 12-24

(see detail and proof on page 108-109 in Overschee)
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compute the state: from SVD factorization

• the system order (n) is the rank of Oi

Oi =
[
U1 U2

]
[
Σn 0
0 0

] [
V T
1

V T
2

]

= U1ΣnV
T
1

• for some non-singular T , and from Oi = ΓiX̂i, we can compute

Γi = U1Σ
1/2
n T, X̃i = Γ†

iOi

• the shifted state X̃i+1 can be obtained as

X̃i+1 = Γ†
i−1

Oi−1 = (Γi)
†Oi−1

where Γi denotes Γi without the last l rows

• X̂i (stochastic) and X̃i (combined) are different by the initial conditions
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Computing the system matrices

system matrices: once X̃i and X̃i+1 are known, we form the equation

[

X̃i+1

Yi|i

]

︸ ︷︷ ︸
known

=

[
A B
C D

] [

X̃i

Ui|i

]

︸ ︷︷ ︸
known

+

[
ρw
ρv

]

︸ ︷︷ ︸
residual

• solve for A,B,C,D in LS sense and the estimated covariances are

[
Q̂i Ŝi

ŜT
i R̂i

]

= (1/j)

[
ρw
ρv

] [
ρw
ρv

]T

(this approach is summarized in a combined algorithm 2 on page 124 of
Overschee)
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properties:

• X̃i and X̂i are different by initial conditions but their difference goes to zero
if either of the followings holds: (page 122 in Overschee)

1. as i → ∞
2. the system if purely deterministic, i.e., no noise in the state equation
3. the deterministic input u(t) is white noise

• the estimated system matrices are hence biased in many practical settings,
e.g., using steps, impulse input

• when at least one of the three conditions is satisfied, the estimate is
asymptotically unbiased
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Summary of combined identification

deterministic (no noise) stochastic (no input) combined

Oi = Yf/Uf

[

Up

Yp

]

Oi = Yf/Yp Oi = Yf/Uf

[

Up

Yp

]

Oi = ΓiXi Oi = ΓiX̂i Oi = ΓiX̃i

states are determined state are estimated state are estimated

X̂0 = 0 X̃0 = X0/Uf
Up

• without input, Oi is the projection of future outputs into past outputs

• with input, Oi should be explained jointly from past input/output data using
the knowledge of inputs that will be presented to the system in the future

• with noise, the state estimates are initialized by the projection of the
deterministic states
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Complexity reduction

goal: to find as low-order model as possible that can predict the future

• reduce the complexity of the amount of information of the past that we need
to keep track of to predict future

• thus we reduce the complexity of Oi (reduce the subspace dimension to n)

minimize
R

‖W1(Oi −R)W2‖
2
F , subject to rank(R) = n

W1,W2 are chosen to determine which part of info in Oi is important to
retain

• then the solution is
R = W−1

1 U1ΣnV
T
1 W †

2

and in existing algorithms, R is used (instead of Oi) to factorize for Γi
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Algorithm variations

many algorithms in the literature start from SVD of W1OiW2

W1OiW2 = U1Σ
1/2
n TT−1Σ1/2

n V T
1

and can be arranged into two classes:

1. obtain the right factor of SVD as the state estimates X̃i to find the system
matrices

2. obtain the left factor of SVD as Γi to determine A,C and B,D,Q, S,R
subsequently

algorithms: n4sid, CVA, MOESP they all use different choices of W1,W2
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Conclusions

• the subspace identification consists of two main steps:

1. estimate the state sequence without knowing the system matrices

2. determine the system matrices once the state estimates are obtained

• the state sequences are estimated based on the oblique projection of future
input

• the projection can be shown to be related with the extended observability
matrix and the state estimates, allowing us to retrieve the states via SVD
factorization

• once the states are estimated, the system matrices are obtained using LS
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Example: DC motor

time response of the second-order DC motor system

ẋ(t) =

[
0 1
0 1/τ

]

x(t) +

[
0

β/τ

]

u(t) +

[
0

γ/τ

]

Tl(t)

y(t) =
[
1 0

]
x(t)

where τ, β, γ are parameters to be estimated
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use n4sid command in MATLAB

z = iddata(y,u,0.1);

m1 = n4sid(z,[1:10],’ssp’,’free’,’ts’,0);
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Select model order in command window

the software let the user choose the model order
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select n = 2 and the result from free parametrization is

A =

[
0.010476 −0.056076
0.76664 −4.0871

]

, B =

[
0.0015657
−0.040694

]

C =

[
116.37 4.6234
4.766 −24.799

]

, D = 0

the structure of A,B,C,D matrices can be specified

As = [0 1; 0 NaN]; Bs = [0; NaN];

Cs = [1 0; 0 1]; Ds = [0; 0];

Ks = [0 0;0 0]; X0s = [0;0];

where NaN is free parameter and we assign this structure to ms model

A = [0 1; 0 -1]; B = [0; 0.28];

C = eye(2); D = zeros(2,1);

ms = idss(A,B,C,D); % nominal model (or initial guess)

setstruc(ms,As,Bs,Cs,Ds,Ks,X0s);

set(ms,’Ts’,0); % Continuous model
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the structured parametrization can be used with pem command

m2 = pem(z,ms,’display’,’on’);

the estimate now has a desired structure

A =

[
0 1
0 −4.0131

]

, B =

[
0

1.0023

]

C =

[
1 0
0 1

]

, D = 0

choosing model order is included in pem command as well

m3 = pem(z,’nx’,1:5,’ssp’,’free’);

pem use the n4sid estimate as an initial guess

Subspace methods 12-42
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compare the fitting from the two models

compare(z,m1,m2);
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Chapter 13

Model selection and model
validation

In model estimation process, a model structure and order are required from the user where a type of
model structure is suitably chosen from a prior knowledge about the application of interest. For many
dynamical systems, the model order can be approximated from some background of the application,
e.g., a DC motor with the motor angle as the output is of second-order. However, there are also
some certain applications that the true model order is unknown, especially for time series models. A
model class consists of many candidates of varied complexities. Therefore, when a model order is not
known, one can consider varying the model complexity and estimate all the models in consideration,
e.g., use a state-space model of order n, and enumerate n = 1, 2, . . . , 10. Intuitively, a model with
a high complexity should capture the system dynamics better than a simple model. If we merely
used a goodness of fit to select the best model then we would typically end up choosing a model of
higher order. We will see later in practice, that as the model complexity varies, the goodness of fit is
not always improved significantly and this is called the issue of over-fitting. This chapter considers
another way to select a good model candidate that takes into account both the model fitting and
model complexity, known as a criterion of model selection. Once we choose a model candidate, other
considerations are needed to validate the model performance. For example, does the model contain
a pole-zero cancellation? (indicating that the model order is still too high). Does the model capture
sufficient dynamics from the input or the noise terms? This process is called a model validation and
is performed last before we decide to use the chosen model.

Learning objectives of this chapter are

• to explain the bias-variance dilemma, and understand the causes of over-fitting problem,

• to apply typical model selection criterions which are AIC, BIC, and FPE,

• to perform typical model validation tests such as cross validation, and residual analysis.
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13. Model Selection and Model Validation

• introduction

• model selection

• model validation

13-1

General aspects of the choice of model structure

1. type of model set

• linear/nonlinear, state-spaces, black-box models

• ARX, ARMAX, OE,...

2. size of the model set

• degrees of polynomials A(q−1), B(q−1), C(q−1), ...

• dimension of state-space models

3. model parametrization

Model Selection and Model Validation 13-2

objective: obtain a good model at a low cost

1. quality of the model: defined by a measure of the goodness, e.g., the
mean-squared error

• MSE consists of a bias and a variance contribution

• to reduce the bias, one has to use more flexible model structures (requiring
more parameters)

• the variance typically increases with the number of estimated parameters

• the best model structure is therefore a trade-off between flexibility and
parsimony

2. price of the model: an estimation method (which typically results in an
optimization problem) highly depends on the model structures, which
influences:

• algorithm complexity
• properties of the loss function

3. intended use of the model

Model Selection and Model Validation 13-3
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Bias-Variance decomposition

assume that the observation Y obeys

Y = f(X) + ν, Eν = 0, cov(ν) = σ2

the mean-squared error of a regression fit f̂(X) at X = x0 is

MSE = E[(Y − f̂(x0))
2|X = x0]

= σ2 + [Ef̂(x0)− f(x0)]
2 +E[f̂(x0)− Ef̂(x0)]

2

= σ2 + Bias2(f̂(x0)) + Var(f̂(x0))

• this relation is known as bias-variance decomposition

• no matter how well we estimate f(x0), σ
2 represents irreducible error

• typically, the more complex we make model f̂ , the lower the bias, but the
higher the variance
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Example

consider a stable first-order AR process

y(t) + ay(t− 1) = ν(t)

where ν(t) is white noise with zero mean and variance λ2

consider the following two models:

M1 : y(t) + a1y(t− 1) = e(t)

M2 : y(t) + c1y(t− 1) + c2y(t− 2) = e(t)

let â1, ĉ1, ĉ2 be the LS estimates of each model

we can show that
var(a1) < var(c1)

(the simpler model has less variance)
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apply a linear regression to the dynamical models

y(t) = H(t)θ + ν(t)

it asymptotically holds that

cov(θ̂) = λ2[EH(t)TH(t)]−1

for model M1, we have H(t) = −y(t− 1), so

cov(â1) = λ2/Ry(0)

for model M2, we have H(t) = −
[

y(t− 1) y(t− 2)
]

and

cov

(

ĉ1
ĉ2

)

= λ2

[

Ry(0) Ry(1)
Ry(1) Ry(0)

]

−1

Model Selection and Model Validation 13-6
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to compute Ry(τ), we use the relationship

Ry(τ) = (−a)τRy(0),

where Ry(0) is solved from a Riccati equation and the solution is

Ry(0) =
λ2

1− a2

apply this result, we can show that

cov(ĉ1) =
λ2Ry(0)

Ry(0)2 − Ry(1)2
=

λ2

Ry(0)(1− a2)

while

cov(â1) =
λ2

Ry(0)

since |a| < 1, we can claim that cov(â1) < cov(ĉ1)

Model Selection and Model Validation 13-7

Schematic of the behavior of bias and variance

(T. Hastie et.al. The Elements of Statistical Learning, Springer, 2010 page 225)
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Model selection

• simple approach: enumerate a number of different models and to compare
the resulting models

• what to compare ? how well the model is capable of reproducing these data

• how to compare ? comparing models on fresh data set: cross-validation

• model selection criterions

– Akaike Information Criterion (AIC)

– Baysian Information Criterion (BIC)

– Minimum Description Length (MDL)

Model Selection and Model Validation 13-9
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Overfitting

we will explain by an example of AR model with white noise ν

y(t) + a1y(t− 1) + . . . apy(t− p) = ν(t)

• true AR model has order p = 5

• the parameters to be estimated are θ = (a1, a2, . . . , ap) with p unknown

• question: how to choose a proper value of p ?

• define a quadratic loss function

f(θ) =
N
∑

t=p+1

|y(t)− (a1y(t− 1) + . . .+ apy(t− p))|2

and obtain θ̂ by using the LS method:

θ̂ = (â1, â2, . . . , âp) = argmin
θ

f(θ)

Model Selection and Model Validation 13-10
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• the minimized loss is a decreasing function of the model structure

• f begins to decreases as the model picks up the relevant features

• as p increases, the model tends to over fit the data

• in practice, we look for the “knee” in the curve (around p = 5)
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Parsimony Principle

idea: among competing models which all explain the data well, the model with
the smallest number of parameters should be chosen

In the previous example on page 13-11, how to determine model order p ?

• a trade-off curve between the loss function and the model order

• model selection criterions

a model selction criterion consists of two parts:

Loss function+Model complexity

• the first term is to assess the quality of the model, e.g., quadratic loss,
likelihood function

• the second term is to penalize the model order and grows as the number of
parameters increases

Model Selection and Model Validation 13-12
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Examples of model selection criterions

Akaike Information Criterion (AIC)

AIC = −2L+ 2d

Bayesian Information Criterion (BIC)

BIC = −2L+ d logN

Akaike’s Final Prediction-Error Criterion (FPE)

FPE =

(

1

N

N
∑

t=1

e2(t, θ)

)

1 + d/N

1− d/N

• L is the loglikelihood function

• d is the number of effective parameters

• e(t, θ) is the prediction error

Model Selection and Model Validation 13-13

Some known properties:

• BIC tends to penalize complex models more heavily (due to the term logN)

• BIC is asymptotically consistent

(the probability that BIC will select the correct model approaches one as the
sample size N → ∞)

• AIC and FPE tends to choose models which are too complex as N → ∞

Model Selection and Model Validation 13-14

AIC and BIC for Gaussian innovation

the ML method can be interpreted as PEM if the noise is Gaussian

in this case, the loglikelihood function (up to a constant) is

L = logL(θ) = −N

2
log detR(θ)

where R(θ) = 1

N

∑N

t=1
e(t, θ)e(t, θ)T is the sample covariance matrix

for scalar case, substituting L in AIC and BIC gives

AIC = −2L+ 2d = N log

(

1

N

N
∑

t=1

e2(t, θ)

)

+ 2d

BIC = −2L+ d logN = N log

(

1

N

N
∑

t=1

e2(t, θ)

)

+ d logN

Model Selection and Model Validation 13-15
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Example
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• the true system is AR model of order 4 with white noise of variance 1

• generate data of 100 points and estimate θ using LS

Model Selection and Model Validation 13-16

another realization
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• AIC an FPE pick model of order 9 (too high)

• BIC still choose the correct model order (4)

• the estimates from AIC and FPE are not consistent

• BIC yields estimates that are consistent
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Model validation

the parameter estimation procedure picks out the best model

a problem of model validation is to verify whether this best model is “good
enough”

general aspects of model validation

• validation with respect to the purpose of the modeling

• feasibility of physical parameters

• consistency of model input-output behavior

• model reduction

• parameter confidence intervals

• simulation and prediction

Model Selection and Model Validation 13-18
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Comparing model structures

use k-step ahead model predictions as a basis of the comparisons

ŷk(t|m) denotes the k-step predictor based on model m and

u(t− 1), . . . u(1), y(t− k), . . . , y(1)

for a linear model y = Ĝu+ Ĥν, common choices are

• ŷ1(t|m) is the standard mean square optimal predictor

ŷ1(t|m) = ŷ(t|t− 1) = Ĥ−1(q−1)Ĝ(q−1)u(t) + (1− Ĥ−1(q−1))y(t)

• ŷ∞(t|m) is based on past inputs only (referred to as a pure simulation)

ŷ∞(t|m) = Ĝ(q−1)u(t)
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the models can be compared via a scalar measure of goodness:

J(m) =
1

N

N
∑

t=1

‖y(t)− ŷk(t|m)‖2

the normalized measure, R, is given by detrending y and computing

R2 = 1− J(m)

(1/N)
∑N

t=1
‖y(t)‖2

R represents part of the output variation that is explained by the model

• J(m) depends on the realization of the data used in the comparison

• it is natural to consider the expected value of this measure:

J̄(m) = EJ(m)

which gives a quality measure for the given model

Model Selection and Model Validation 13-20

Cross validation

• a model structure that is “too rich” to describe the system will also partly
model the disturbances that are present in the actual data set

• this is called an “overfit” of the data

• using a fresh dataset that was not included in the identification experiment
for model validation is called “cross validation”

• cross validation is a nice and simple way to compare models and to detect
“overfitted” models

• cross validation requires a large amount of data, the validation data cannot
be used in the identification

Model Selection and Model Validation 13-21
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K-fold cross-validation

• a simple and widely used method for estimating prediction error

• used when data are often scarce, then we split the data into K equal-sized
parts

• for the kth part, we fit the model to the other K − 1 parts of the data

• then compute J(m) on the kth part of the data

• repeat this step for k = 1, 2, . . . ,K

• the cross-validation estimate of J(m) is

CV(m) =
1

K

K
∑

i=1

Jk(m)

• if K = N , it is known as leave-one-out cross-validation
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Residual Analysis

the prediction error evaluated at θ̂ is called the residuals

e(t) = e(t, θ̂) = y(t)− ŷ(t; θ̂)

• represents part of the data that the model could not reproduce

• if θ̂ is the true value, then e(t) is white

a pragmatic view starting point is to use the basis statistics:

S1 = max
t

|e(t)|, S2 =
1

N

N
∑

t=1

e2(t)

to asses the quality of the model

the use of these statistics has an implicit invariance assumption

the residuals do not depend on the particular input

Model Selection and Model Validation 13-23

• the covariance between the residuals and past inputs

Reu(τ) =
1

N

N
∑

t=τ

e(t)u(t− τ)

should be small if the model has picked up the essential part of the dynamics
from u to y

• it also indicates that the residual is invariant to various inputs

• if

Re(τ) =
1

N

N
∑

t=τ

e(t)e(t− τ)

is not small for τ 6= 0, then part of e(t) could have been predicted from past
data

• this means y(t) could have been better predicted

Model Selection and Model Validation 13-24
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Whiteness test

if the model is accurately describing the observed data,

then the residuals e(t) should be white, i.e.,

its covariance function Re(τ) is zero except at τ = 0

a way to validate the model is to test the hypotheses

H0 : e(t) is a white sequence

H1 : e(t) is not a white sequence

this can be done via autocorrelation test

Model Selection and Model Validation 13-25

Autocorrelation test

the autocovariance of the residuals is estimated as:

R̂e(τ) =
1

N

N
∑

t=τ

e(t)e(t− τ)

if H0 holds, then the squared covariance estimate is asymptotically χ2

distributed:

N

∑m

k=1
R̂2

e(k)

R̂2
e(0)

→ χ2(m)

furthermore, the normalized autocovariance estimate is asymptotically Gaussian
distributed √

N
R̂e(τ)

R̂e(0)
→ N (0, 1)
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a typical way of using the first test statistics for validation is as follows

let x denote a random variable which is χ2−distributed with m degrees of
freedom

furthermore, define χ2
α(m) by

α = P (x > χ2
α(m))

for some given α (typically between 0.01 and 0.1)

then if

N

∑m

k=1
R̂2

e(k)

R̂2
e(0)

> χ2
α(m) reject H0

N

∑m

k=1
R̂2

e(k)

R̂2
e(0)

< χ2
α(m) accept H0

(m is often chosen from 5 up to N/4)

Model Selection and Model Validation 13-27
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Cross Correlation test

the input and the residuals should be uncorrelated (no unmodeled dynamics)

Reu(τ) = Ee(t)u(t− τ) = 0

• if the model is not an accurate representation of the system, one can expect
Reu(τ) for τ ≥ 0 is far from zero

• indication of possible feedback in the input

• if Reu(τ) 6= 0 for τ < 0 then there is output feedback in the input

• use the normalized test quantity

xτ =
R̂eu(τ)

2

R̂e(τ)R̂u(0)

for checking wheter the input and the residual are uncorrelated
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for this purpose, introduce

R̂u =
1

N

N
∑

t=m+1





u(t− 1)
...

u(t−m)





[

u(t− 1) · · · u(t−m)
]

r =
1

N

N
∑

t=1





u(t− τ − 1)
...

u(t− τ −m)



 e(t)

where τ is a given integer and assume that u(t) = 0 for t ≤ 0

then we have
NrT [R̂e(0)R̂u]

−1r −→ χ2(m)

which can be used to design a hypothesis test
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Numerical examples

the system that we will identify is given by

(1− 1.5q−1 + 0.7q−2)y(t) = (1.0q−1 + 0.5q−2)u(t) + (1− 1.0q−1 + 0.2q−2)ν(t)

• u(t) is binary white noise, independent of the white noise ν(t)

• generate two sets of data, one for estimation and one for validation

• each data set contains data points of N = 250

Estimation:

• fitting ARX model of order n using the LS method

• fitting ARMAX model of order n using PEM

and vary n from 1 to 6

Model Selection and Model Validation 13-30
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Example of residual analysis
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(Left. LS method Right. PEM)

• the significant correlation of e shows that e cannot be seen as white noise, or
the noise model H is not adequate

• the significant correlation between e and u shows the dynamics G is not
adequate
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Example of model selection scores
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• AIC and FPE mostly pick higher models (n = 4, 6)

• BIC picks the simplest model

• all these scores decrease significantly at n = 2
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Example of output prediction
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(estimated by the LS method and validated on a new data set)
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Example of zero-pole location
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• estimated by PEM, ◦: zeros, ×: poles

• red: true system, blue: estimated models

• chance of zero-pole cancellation at higher order
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Example of MATLAB commands

let theta be an idobject obtained by using System Identification toolbox

• armax: estimate ARMAX models using PEM

• iv4: estimate ARX models using IVM

• arx: estimate ARX models using the LS method

• resid: residual analysis

• compare: compare the prediction with the measurement

• zpplot: plots of zeros and poles

• theta.EstimationInfo.LossFcn: value of loss function

• theta.EstimationInfo.FPE: value of FPE
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Exercises

13.1 Bias and Variance of constrained LS estimate. Consider a linear model

y = Ax+ ν,

where y ∈ Rm is the measurement data, x ∈ Rn is the parameter to be estimated, A ∈ Rm×n

is the information matrix which is given, and νi is i.i.d. noise with zero mean and unit variance.
In this problem, we investigate some properties of two estimates. Let xls be the least-squares
estimate of x. Suppose, we have some prior information that the first component of x should
be zero (x1 = 0). Then we can let z be the least-squares estimate of x under a condition that
z1 = 0, i.e.,

z = argmin ∥Az − y∥2 subject to z1 = 0 (13.1)

In what follows, we will explore statistical properties of xls and z.

(a) Find the closed-form expression of the mean and covariance of xls.

(b) Explain how you can find the closed-form expression of z. Hint. Write Az as a linear
combination of column vectors of A.

(c) Derive the closed-form expression of the mean and covariance of z.

(d) Are the two estimates unbiased ? Can you compare the biases of x and z ? Which one is
smaller (in a norm sense) ? Does the result make sense to you ?

(e) Let cov(xls) and cov(z) be the covariance matrices of xls and z, respectively. Compare
cov(xls) and cov(z). Which estimate has a smaller covariance ? Explain if the result you
found in part (d) and (e) agree with the concept of bias and variance. Recall that we say
A ⪰ B (in a matrix sense) if and only if A − B is positive semidefinite. Hint. You will
find the following result on the inverse of block matrix useful.

Suppose

X =

[
A BT

B D

]
≻ 0.

Then it can be shown that[
A BT

B D

]−1

−

[
0 0

0 D−1

]
=

[
I

−D−1B

]
S−1

[
I −BTD−1

]
⪰ 0,

where S = A−BTD−1B is the Schur complement of A in X.

(f) (3 points.) From the closed-form expressions of mean and covariance of xls and z in part
(a) and (c), we will verify if their empirical estimates are close to the true values. In the
data file, data-cmp-var-bias-sparseLS.mat, we have provided A and 100 instances of
y and the true value of x, in variables A, y, x0, respectively. To compute the empirical
mean and covariance of xls and z, check out the mean and cov commands. Write down
E[xls],E[z], cov(xls), and cov(z) (theoretical values) and write down the empirical values
of these four quantities. Discuss the results.

(g) (3 points.) Compare the biases of xls and z and compare cov(xls) and cov(z) (check if
cov(xls)− cov(z) ⪰ 0.) Does the result agree with your argument in part (d) and (e) ?
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13.2 Selecting the model order using BIC. Consider a scalar autoregressive model described by

y(t) = a1y(t− 1) + a2y(t− 2) + · · ·+ apy(t− p) + ν(t),

where ν(t) is i.i.d. noise with zero mean and variance σ2. The measurements y(1), y(2), . . . , y(N)
are available in data-modelsel-ar. In this problem, we will estimate ten AR models with order
p = 1, 2, . . . , 10, and we apply the Bayes information criterion (BIC) to select the best model.
The BIC score is defined by

BIC = −2L+ d logN

where L is the log-likelihood function of a model, d is the number of parameters in the model,
and N is the number of data points used in the estimation.

(a) If the model order is given (p is known), derive a (conditional) maximum likelihood formu-
lation for estimating a1, a2, . . . , ap and σ2 (we assume y(1), y(2), . . . , y(p) are known).
Explain how you can compute the maximum likelihood estimate.

(b) Explain how you can compute each term in the BIC score. Vary p from 1 to 10 and
complete the following table.

order L d logN BIC

1

2

3

4

5

6

7

8

9

10

(c) Explain which term in the BIC score i) indicates the goodness of fit of the model ii) refers
to the model complexity. Discuss how the goodness of fit and the complexity of the model
change as p increases.

(d) Which model is selected by the BIC score ? Write down the estimate of a1, a2, . . . , ap.

13.3 Residual test for ARX estimation. Consider a model of a mass-spring-damper system in
discrete-time be given by

x(t) =

[
1 0.5

−0.5 0.5

]
x(t− 1) +

[
0

0.5

]
u(t− 1)

y(t) =
[
1 0

]
x(t) + ν(t),

(13.2)

where ν(t) is measurement noise. However, we assume we do not know the true model of this
system given in (13.2). In the experiment, the input signal u(t) is a PRBS signal. By using the
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least-squares method, we estimate three ARX models which are the transfer functions from u
to y:

G1(q) =
0.28q−2

1− 1.33q−1 + 0.62q−2
, G2(q) =

0.074q−1

1− 1.45q−1 + 0.71
, G3(q) =

0.10

1− 0.89q−1
.

We have validated these models on a new data set. For each model, the correlation function of
residuals (top), and the cross correlation between input and residuals (bottom) are plotted in
the figures below. Without a knowledge of the true system described in (13.2), can you match
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(c)

each of the three estimated models to one of the three plots of residual test ? Which model is
likely to agree with the result from the residual test in (a), (b), and (c) ? Justify your answer.



Chapter 14

Recursive identification

The procedures of model selection and validation described in chapter 13 provide us a model ready
to be used for a particular purpose: controller design, forecasting, or others. All the estimation
methods have one property in common that as the sample size of data in the model training process
is increased, the estimation result is improved in many senses, for instance, the mean-square error
is reduced or the estimator becomes consistent. In practice, acquiring a huge amount of data is
not typical in some applications due to several factors: cost of operations or sensor problems, etc.
Therefore, we generally obtain a model with a certain performance, provided all the data we have
for training at the moment. However, we can collect more data as time progresses. Hence, it is
generally interesting to cooperate new arrival measurement to improve the model estimation process
in an adaptive manner. In control application, an adaptive estimation is also useful when the physical
system is time-varying. For these reasons, this chapter describes basic recursive estimation methods
where the principle underlying these is that the adaptive rule of parameter is derived from the offline
expression of optimal estimator, or from the optimality condition, but with the consideration of new
measurement is added to data set.

Learning objectives of this chapter are:

• to understand the effect of forgetting factors,

• to apply the recursive least-squares and recursive instrumental variable methods with forgetting
factor,

• to explain the recursive prediction error method.
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14. Recursive Identification Methods

• introduction

• recursive least-squares method

• recursive instrumental variable method

• recursive prediction error method

14-1

Introduction

features of recursive (online) identification

• θ̂(t) is computed by some ’simple modification’ of θ̂(t− 1)

• used in central part of adaptive systems

• not all data are stored, so a small requirement on memory

• easily modified into real-time algorithms

• used in fault detection, to find out if the system has changed significantly

How to estimate time-varying parameters

• update the model regularly

• make use of previous calculations in an efficient manner

• the basic procedure is to modify the corresponding off-line method

Recursive Identification Methods 14-2

Desirable properties of recursive algorithms

• fast convergence

• consistent estimates (time-invariant case)

• good tracking (time-varying case)

• computationally simple

Trade-offs

• convergence vs tracking

• computational complexity vs accuracy

Recursive Identification Methods 14-3
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Recursive least-squares method (RLS)

Recursive estimation of a constant: Consider the model

y(t) = b+ ν(t), ν(t) is a disturbance of variance λ2

the least-squares estimate of b is the arithmetic mean:

θ̂(t) =
1

t

t
∑

k=1

y(k)

this expression can be reformulated as

θ̂(t) = θ̂(t− 1) +
1

t
[y(t)− θ̂(t− 1)]

• the current estimate is equal to the previous estimate plus a correction

• the correction term is the deviation of the predicted value from what is
actually observed

Recursive Identification Methods 14-4

RLS algorithm for a general linear model

y(t) = H(t)θ + ν(t)

The recursive least-squares algorithm is given by

e(t) = y(t)−H(t)θ̂(t− 1)

P (t) = P (t− 1)− P (t− 1)HT (t)[I +H(t)P (t− 1)H(t)T ]−1H(t)P (t− 1)

K(t) = P (t)H(t)T = P (t− 1)H(t)T [I +H(t)P (t− 1)H(t)T ]−1

θ̂(t) = θ̂(t− 1) +K(t)e(t)

• interprete e(t) as a prediction error and K(t) as a gain factor

• the update rule in P (t) has an efficient matrix inversion for scalar case

Recursive Identification Methods 14-5

Proof of the update formula the least-square estimate is given by

θ̂(t) =

(

t
∑

k=1

H(k)TH(k)

)

−1(
t
∑

k=1

H(k)Ty(k)

)

denote P (t) as

P (t) =

(

t
∑

k=1

H(k)TH(k)

)

−1

=⇒ P−1(t) = P−1(t− 1) +H(t)TH(t)

then it follows that

θ̂(t) = P (t)

[

t−1
∑

k=1

H(k)Ty(k) +H(t)Ty(t)

]

= P (t)
[

P−1(t− 1)θ̂(t− 1) +H(t)Ty(t)
]

Recursive Identification Methods 14-6
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θ̂(t) = P (t)
[

(P−1(t)−H(t)TH(t))θ̂(t− 1) +H(t)Ty(t)
]

= θ̂(t− 1) + P (t)H(t)T
[

y(t)−H(t)θ̂(t− 1)
]

to obtain the update rule for P (t), we apply the matrix inversion lemma:

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1

to
P−1(t) = P−1(t− 1) +H(t)TH(t)

where we use

A = P−1(t− 1), B = H(t)T , C = I D = H(t)

Recursive Identification Methods 14-7

Initial conditions

• θ̂(0) is the initial parameter estimate

• P (0) is an estimate of the covariance matrix of the initial parameter

• if P (0) is small then K(t) will be small and θ̂(t) will not change much

• if P (0) is large, θ̂(t) will quickly jump away from θ̂(0)

• it is common in practice to choose

θ̂(0) = 0, P (0) = ρI

where ρ is a constant

• using a large ρ is good if the initial estimate θ̂(0) is uncertain

Recursive Identification Methods 14-8

Effect of the initial values

we simulate the following system

y(t)− 0.9y(t− 1) = 1.0u(t− 1) + ν(t)

• u(t) is binary white noise

• ν(t) is white noise of zero mean and variance 1

• identify the system using RLS with 250 points of data

• the parameters are initialized by

θ̂(0) = 0, P (0) = ρ

[

1 0
0 1

]

for ρ = 0.01, 0.1, 1, 10

Recursive Identification Methods 14-9
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the graphs show the influence of the initial values
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• large and moderate values of ρ (i.e., ρ = 1, 10) lead to similar results

• for large ρ, little confidence is given to θ̂(0), so quick transient response

• a small value of ρ leads to a small K(t), so it gives a slower convergence

Recursive Identification Methods 14-10

Forgetting factor

the loss function in the least-squares method is modified as

f(θ) =
t
∑

k=1

λt−k‖y(k)−H(k)θ‖2
2

• λ is called the forgetting factor and take values in (0, 1)

• the smaller the value of λ, the quicker the previous info will be forgotten

• the parameters are adapted to describe the newest data

Update rule for RLS with a forgetting factor

P (t) =
1

λ

{

P (t− 1)− P (t− 1)H(t)T [λI +H(t)P (t− 1)H(t)T ]−1H(t)P (t− 1)
}

K(t) = P (t)H(t)T = P (t− 1)H(t)T [λI +H(t)P (t− 1)H(t)T ]−1

θ̂(t) = θ̂(t− 1) +K(t)[y(t)−H(t)θ̂(t− 1)]

Recursive Identification Methods 14-11

the solution θ̂(t) that minimizes f(θ) is given by

θ̂(t) =

(

t
∑

k=1

λt−kH(k)TH(k)

)

−1(
t
∑

k=1

λt−kH(k)Ty(k)

)

the update formula follow analogously to RLS by introducing

P (t) =

(

t
∑

k=1

λt−kH(k)TH(k)

)

−1

the choice of λ is a trade-off between convergence and tracking performance

• λ small =⇒ old data is forgotten fast, hence good tracking

• λ close to 1 =⇒ good convergence and small variances of the estimates

Recursive Identification Methods 14-12
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Effect of the forgetting factor

consider the problem of tracking a time-varying system

y(t)− 0.9y(t− 1) = b0u(t) + ν(t), b0 =

{

1.5 t ≤ N/2

0.5 t > N/2

• u(t) is binary white noise

• ν(t) is white noise of zero mean and variance 1

• identify the system using RLS with 250 points of data

• the parameters are initialized by

θ̂(0) = 0, P (0) =

[

1 0
0 1

]

• the forgetting factors are varied by these values λ = 1, 0.99, 0.95

Recursive Identification Methods 14-13

graphs show the influence of the forgetting factors
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a decrease in the forgetting factor leads to two effects:

• the estimates approach the true value more rapidly

• the algorithm becomes more sensitive to noise

as λ decreases, the oscillations become larger

Recursive Identification Methods 14-14

summary:

• one must have λ = 1 to get convergence

• if λ < 1 the parameter estimate can change quickly, and the algorithm
becomes more sensitive to noise

for this reason, it is often to allow the forgetting factor to vary with time

a typical choice is to let λ(t) tends exponentially to 1

λ(t) = 1− λt

0
(1− λ(0))

this can be easily implemented via a recursion

λ(t) = λ0λ(t− 1) + (1− λ0)

typical values for λ0 = 0.99 (|λ0| must be less than 1) and λ(0) = 0.95

Recursive Identification Methods 14-15
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Kalman Filter interpretation

consider a state-space of a time-varying system

x(t+ 1) = A(t)x(t) +Bu(t) + ν(t)

y(t) = C(t)x(t) + η(t)

where ν(t), η(t) are independent white noise with covariances R1, R2

Kalman filter:

x̂(t+ 1) = A(t)x̂(t) +B(t)u(t) +K(t)[y(t) − C(t)x̂(t)]

K(t) = A(t)P (t)C(t)T [C(t)P (t)C(t)T + R2]
−1

P (t+ 1) = A(t)P (t)A(t)T +R1

−A(t)P (t)C(t)T [C(t)P (t)C(t)T + R2]
−1C(t)P (t)A(t)T

Recursive Identification Methods 14-16

the linear regression model

y(t) = H(t)θ + ν(t)

can be written as a state-space equation

θ(t+ 1) = θ(t) (= θ)

y(t) = H(t)θ(t) + ν(t)

apply the Kalman filter to the state-space equation with

A(t) = I, B(t) = 0, C(t) = H(t), R1 = 0

when R2 = I , it will give precisely the basic RLS algorithm in page 14-5

the tracking capability is affected by R2

Recursive Identification Methods 14-17

Recursive instrument variable method

the IV estimate of a scalar linear system

y(t) = H(t)θ + ν(t)

is given by

θ̂(t) =

[

t
∑

k=1

Z(k)TH(k)

]

−1 [
t
∑

k=1

Z(k)Ty(k)

]

the IV estimate can be computed recursively as

θ̂(t) = θ̂(t− 1) +K(t)[y(t)−H(t)θ̂(t− 1)]

K(t) = P (t)Z(t)T = P (t− 1)Z(t)T [I +H(t)P (t− 1)Z(t)T ]

P (t) = P (t− 1)− P (t− 1)Z(t)T [I +H(t)P (t− 1)Z(t)T ]−1H(t)P (t− 1)

(analogous proof to RLS by using P (t) = (
∑t

k=1
Z(k)TH(k))−1)

Recursive Identification Methods 14-18

180 14 Recursive identification



Recursive prediction error method

we will use the cost function

f(t, θ) =
1

2

t
∑

k=1

λt−ke(k, θ)TWe(k, θ)

where W ≻ 0 is a weighting matrix

• for λ = 1, f(θ) = tr(WR(θ)) where R(θ) = 1

2

∑t

k=1
e(k, θ)e(k, θ)T

• the off-line estimate of θ̂ cannot be found analytically (except for the LS case)

• it is not possible to derive an exact recursive algorithm

• some approximation must be used, and they hold exactly for the LS case

Recursive Identification Methods 14-19

main idea: assume that

• θ̂(t− 1) minimizes f(t− 1, θ)

• the minimum point of f(t, θ) is close to θ̂(t− 1)

using a second-order Taylor series approximation around θ̂(t− 1) gives

f(t, θ) ≈ f(t, θ̂(t− 1)) +∇f(t, θ̂(t− 1))T (θ − θ̂(t− 1))

+
1

2
[θ − θ̂(t− 1)]T∇2f(t, θ̂(t− 1))[θ − θ̂(t− 1)]

minimize the RHS w.r.t. θ and let the minimizer be θ̂(t):

θ̂(t) = θ̂(t− 1)− [∇2f(t, θ̂(t− 1))]−1∇f(t, θ̂(t− 1))

(Newton-Raphson step)

we must find ∇f(t, θ̂(t− 1)) and P (t) = [∇2f(t, θ̂(t− 1))]−1

Recursive Identification Methods 14-20

details: to proceed, the gradients of f(t, θ) w.r.t θ are needed

f(t, θ) = λf(t− 1, θ) +
1

2
e(t, θ)TWe(t, θ)

∇f(t, θ) = λ∇f(t− 1, θ) + e(t, θ)TW∇e(t, θ)

∇2f(t, θ) = λ∇2f(t− 1, θ) +∇e(t, θ)TW∇e(t, θ) + e(t, θ)TW∇2e(t, θ)

first approximations:

• ∇f(t− 1, θ̂(t− 1)) = 0 (θ̂(t− 1) minimizes f(t− 1, θ)

• ∇2f(t− 1, θ̂(t− 1)) = ∇2f(t− 1, θ̂(t− 2)) (∇2f varies slowly with θ)

• e(t, θ)TW∇2e(t, θ) is negligible

after inserting the above equations to

θ̂(t) = θ̂(t− 1)− [∇2f(t, θ̂(t− 1))]−1∇f(t, θ̂(t− 1))

Recursive Identification Methods 14-21
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we will have

θ̂(t) = θ̂(t− 1)− [∇2f(t, θ̂(t− 1)]−1[e(t, θ̂(t− 1))TW∇e(t, θ̂)(t− 1)]

∇2f(t, θ̂(t− 1)) = λ∇2f(t− 1, θ̂(t− 2)) +∇e(t, θ̂(t− 1))TW∇e(t, θ̂(t− 1))

(still not suited well as an online algorithm due to the term e(t, θ̂(t− 1))

second approximations: let

e(t) ≈ e(t, θ̂(t− 1)), H(t) ≈ −∇e(t, θ̂(t− 1))

(the actual way of computing these depends on model structures), then

θ̂(t) = θ̂(t− 1) + P (t)HT (t)We(t)

where we denote P (t) = [∇2f(t, θ̂(t− 1))]−1 which satisfies

P−1(t) = λP−1(t− 1) +H(t)TWH(t)

Recursive Identification Methods 14-22

apply the matrix inversion lemma to the recursive formula of P−1(t)

we arrive at recursive prediction error method (RPEM)

algorithm:

θ̂(t) = θ̂(t− 1) +K(t)e(t)

K(t) = P (t)H(t)T

P (t) =
1

λ

{

P (t− 1)− P (t− 1)H(t)T [λW−1 +H(t)P (t− 1)H(t)T ]−1P (t− 1)
}

where the approximations

e(t) ≈ e(t, θ̂(t− 1)), H(t) ≈ −∇e(t, θ̂(t− 1))

depend on the model structure

Recursive Identification Methods 14-23

Example of RPEM: ARMAX models

consider the scalar ARMAX model

A(q−1)y(t) = B(q−1)u(t) + C(q−1)ν(t)

where all the polynomials have the same order

A(q−1) = 1 + a1q
−1 + · · ·+ anq

−n

B(q−1) = b1q
−1 + · · ·+ bnq

−n

C(q−1) = 1 + c1q
−1 + · · ·+ cnq

−n

Recursive Identification Methods 14-24
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define

ỹ(t, θ) =
1

C(q−1)
y(t), ũ(t, θ) =

1

C(q−1)
u(t), ẽ(t, θ) =

1

C(q−1)
e(t)

we can derive the following relations

e(t, θ) =
A(q−1)y(t)−B(q−1)u(t)

C(q−1)

∇e(t, θ) = (ỹ(t− 1, θ), . . . , ỹ(t− n, θ),−ũ(t− 1, θ), . . . ,−ũ(t− n, θ),

− ẽ(t− 1, θ), . . . ,−ẽ(t− n, θ))

to compute e(t, θ), we need to process all data up to time t

Recursive Identification Methods 14-25

we use the following approximations

e(t, θ) ≈ e(t) = y(t) + â1(t− 1)y(t− 1) + · · ·+ ân(t− 1)y(t− n)

− b̂1(t− 1)u(t− 1)− · · · − b̂n(t− 1)u(t− n)

− ĉ1(t− 1)e(t− 1)− · · · − ĉn(t− 1)e(t− n)

−∇e(t, θ) ≈ H(t) = (−ȳ(t− 1), . . . ,−ȳ(t− n),

ū(t− 1), . . . , ū(t− n), ē(t− 1), . . . , ē(t− n))

where

ȳ(t) = y(t)− ĉ1(t)ȳ(t− 1)− · · · − ĉn(t)ȳ(t− n)

ū(t) = u(t)− ĉ1(t)ū(t− 1)− · · · − ĉn(t)ū(t− n)

ē(t) = e(t)− ĉ1(t)ē(t− 1)− · · · − ĉn(t)ē(t− n)
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Comparison of recursive algorithms

we simulate the following system

y(t) =
1.0q−1

1− 0.9q−1
u(t) + ν(t)

• u(t), ν(t) are indepentdent white noise with zero mean and variance 1

• we use RLS,RIV, RPEM to identify the system

model structure for RLS and RIV:

y(t) + ay(t− 1) = bu(t− 1) + ν(t), θ = (a, b)

model structure for RPEM:

y(t) + ay(t− 1) = bu(t− 1) + ν(t) + cν(t− 1), θ = (a, b, c)

Recursive Identification Methods 14-27
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Numerical results
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• RLS does not give consistent estimates for systems with correlated noise

• this is because RLS is equivalent to an off-line LS algorithm

• in contrast to RLS, RIV gives consistent estimates

• this result follows from that RIV is equivalent to an off-line IV method
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• RPEM gives consistent estimates of a, b, c

• the estimates â and b̂ converge more quickly than ĉ
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Common problems for recursive identification

• excitation

• estimator windup

• P (t) becomes indefinite

excitation it is important that the input is persistently excitation of sufficiently
high order

Recursive Identification Methods 14-30
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Estimator windup

some periods of an identification experiment exhibit poor excitation

consider when H(t) = 0 in the RLS algorithm, then

θ̂(t) = θ̂(t− 1), P (t) =
1

λ
P (t− 1)

• θ̂ becomes constant as t increases

• P increases exponentially with time for λ < 1

• when the system is excited again (H(t) 6= 0), the gain

K(t) = P (t)H(t)T

will be very large and causes an abrupt change in θ̂

Recursive Identification Methods 14-31

• this is referred to as estimator windup

Solution: do not update P (t) if we have poor excitation

Recursive Identification Methods 14-32

Indefinite P (t)

P (t) represents a covariance matrix

therefore, it must be symmetric and positive definite

rounding error may accumulate and make P (t) indefinite

this will make the estimate diverge

the solution is to note that any positive definite matrix can be factorized as

P (t) = S(t)S(t)T

and rewrite the algorithm to update S(t) instead

Recursive Identification Methods 14-33
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T. Söderström and P. Stoica, System Identification, Prentice Hall, 1989

Chapter 11 in
L. Ljung, System Identification: Theory for the User, 2nd edition, Prentice Hall,
1999

Lecture on
Recursive Identification Methods, System Identification (1TT875), Uppsala
University, http://www.it.uu.se/edu/course/homepage/systemid/vt05

Recursive Identification Methods 14-34

186 14 Recursive identification



14 Recursive identification 187

Exercises

14.1 Update rule for recursive instrument variable method. The instrument variable estimate
of a linear model

y(t) = H(t)θ + ν(t)

where y(1), y(2), . . . , y(t) are measured, is given by

θ̂(t) =

[
t∑

k=1

Z(k)TH(k)

]−1 [ t∑
k=1

Z(k)T y(k)

]
. (14.1)

Define

P (t) =

(
t∑

k=1

Z(k)TH(k)

)−1

.

Show that the recursive formula of the IV method is

θ̂(t) = θ̂(t− 1) +K(t)[y(t)−H(t)θ̂(t− 1)]

K(t) = P (t)Z(t)T = P (t− 1)Z(t)T [I +H(t)P (t− 1)Z(t)T ]

P (t) = P (t− 1)− P (t− 1)Z(t)T [I +H(t)P (t− 1)Z(t)T ]−1H(t)P (t− 1)

14.2 Recursive least-squares with a forgetting factor. Use a simple first-order scalar model

y(t) = ay(t− 1) + bu(t− 1) + ν(t)

to describe the input/output data given in data-rls-ff. Determine a and b by using recursive
least-squares update rule with two forgetting factors λ = 1 and λ = 0.9. Compare tracking
performance of the estimates â and b̂ between the two values of λ. The initial estimate is set
to zero and the initial covariance matrix of the error is P (0) = I. Can you guess if there is a
time-varying parameter in the model ? You must write your own MATLAB codes for recursive
least-squares. Using the built-in command rarx in the system identification toolbox is not
allowed. But you can verify the result with rarx command. Plot the convergence of θ(t) and
attach your MATLAB codes in the work sheet. Provide the final values of the estimate â and
b̂.



Chapter 15

Applications of system identification

Since 2015, we have initiated a term project in this course where students can propose or choose a
real-world problem that applies a technique of model estimation. In this chapter, we provide short
descriptions of some term projects during 2015-2017 collected from student reports.

15.1 Rainfall Grid Interpolation from Rain Gauge and Rainfall
Predicted from Satellite Data

Contributors of this work:

• Petchakrit Pinyopawasutthi

• Pongsorn Keadtipod

• Tanut Aranchayanont

• Piyatida Hoisungwan (co-advisor from Dept. of Water Resource)

Rain fall is conventionally collected by a rain gauge on stations which is accurate but scarcely
available in spatial domain. In order to improve an interpolation of rainfall between stations, rainfall
data predicted from satellite is introduced. Both data set are merged by a linear estimator to inter-
polate a rainfall map and the matrix coefficients of each term are chosen in the least-squares sense
with constraints from prior structures of those matrices.

15.2 Parameter estimation of Gumbel distribution for flood
peak data

Contributors of this work

• Jitin Khemwong

• Tiwat Boonyawiwat

• Piyatida Hoisungwan (co-advisor from Dept. of Water Resource)
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Figure 15.1: Rainfall from ground station (top) and rainfall from satellite station (bottom), displayed
in form of grid matrix.

This project focuses on fitting Gumbel distribution to flood peak data of Chao Phraya river which
depends on four rivers Ping, Wang, Yom, and Nan. First, the marginal probabilities of the river is
obtained by fitting the old flood peak data with the Gumbel distribution where the parameters are
estimated by using Maximum likelihood and Method of moments technique. Second, the relationship
between the Chao Phraya river and others is investigated by considering the return period of bivariate
Gumbel distribution. Third, multivariate Gumble distribution is being considered since it can describe
the joint probability density function of flood peaks of all five rivers. Although the multivariate
Gumbel distribution is expected to provide better information about the rivers, the formulation is too
complicated, so this we focus solely on univariate and bivariate Gumbel distribution.

15.3 Solar Forecasting using Time Series Models

Contributors of this work

• Maxime Facquet

• Supachai Suksamosorn

• Veenakorn Suphatsatienkul

• Vichaya Layanun
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Figure 15.2: Thailand river map. Courtesy of http://geothai.net

Figure 15.3: Comparison of an hour ahead solar irradiance prediction using different time series models

The improvement of technologies in renewable energies is crucial to its proper development. The
accuracy of solar forecasting allows a higher efficiency in for solar grids. In this study we forecast global
solar irradiance in Bangkok with data of the past 4 years. A modern time series analysis is used, more
specifically an auto regressive moving average model including differential term (ARIMA). We conduct
experiments to consider several models with different orders. Different model selection criteria are
used in order to choose what seems to be the best fitting models, such as AIC, ACF behavior and
prediction error. We found that a seasonal component in the model has to be considered. The best
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model will be a seasonal ARIMA(2, 2, 2)(0, 1, 1)16 which will be in our view point the best trade of
among AIC, simplicity and prediction error.

15.4 An Identification of Building Temperature System

Contributors of this work

• Chanthawit Anuntasethakul

• Natthapol Techaphanngam

• Natdanai Sontrapornpol

Figure 15.4: Building temperature system.

In this project, we aim to estimate the system matrices of a state-space model of a building
temperature system via system identification. Only one-dimensional heat transfer and change in an
internal energy have been concerned while neglecting effects caused by humidity, solar irradiance,
and air leakage. Temperature data and air-conditioners input energy data can be obtained via the
Chulalongkorn University Building Energy Management System (CUBEMS). Since the temperature
data and energy input data can be measured, we choose a least-squares estimation. The results show
that the dynamic matrix obtained via least-squares method is stable. The input matrix is forced to
have a same structure as a state-space equation we have derived. In addition, we validate our model
with the new data set. The results show that the system matrices we estimated still provide a good
fitting performance calibrated by using mean-squares errors.

15.5 Modeling of Photovoltaic System

Contributor of this work: Janenarong Klomklao
Power forecasting of photovoltaic (PV) system using weather data is an important factor for

planning the maintenance operations. This project presents nonlinear power prediction model based
on a single-diode model with series resistance. The model required irradiance and cell temperature
as inputs in order to identify model parameters. The method used to estimate the model parameters
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is nonlinear least square method with constraints. The initial guess for this optimization problem was
obtained from analysis of derived model equation and specification values provided by manufacturers
documentation. The proposed model were compared to two polynomial models and an artificial
neural network (ANN) model in terms of mean squared error (MSE). The results indicated that the
nonlinear model provided the least MSE compared to other models.

Figure 15.5: Fitting results of converted solar powers using PV conversion models.
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