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Introduction

consider a stochastic discrete-time linear system

x(t+ 1) = Ax(t) +Bu(t) + w(t), y(t) = Cx(t) +Du(t) + v(t)

where x ∈ Rn, u ∈ Rm, y ∈ Rl and E

[
w(t)
v(t)

] [
w(t)
v(t)

]T

=

[
Q S
ST R

]

δt,s

problem statement: given input/output data (u(t), y(t)) for t = 0, . . . , N

• find an appropriate order n

• estimate the system matrices (A,B,C,D)

• estimate the noice covariances: Q,R, S
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Basic idea

the algorithm involves two steps:

1. estimation of state sequence:

• obtained from input-output data

• based on linear algebra tools (QR, SVD)

2. least-squares estimation of state-space matrices (once states x̂ are known)

[
Â B̂

Ĉ D̂

]

= minimize
A,B,C,D

∥
∥
∥
∥

[
x̂(t+ 1) x̂(t+ 2) · · · x̂(t+ j)
y(t) y(t+ 1) · · · y(t+ j − 1)

]

−

[
A B
C D

] [
x̂(t) x̂(t+ 1) · · · x̂(t+ j − 1)
u(t) u(t+ 1) · · · u(t+ j − 1)

]∥
∥
∥
∥

2

F

and Q̂, Ŝ, R̂ are estimated from the least-squares residuals
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Geometric tools

• notation and system related matrices

• row and column spaces

• orthogonal projections

• oblique projections
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System related matrices

extended observability matrix

Γi =







C
CA
...

CAi−1






∈ Rli×n, i > n

extended controllability matrix

∆i =
[
Ai−1B Ai−2B · · · AB B

]
∈ Rn×mi

a block Toeplitz

Hi =









D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

... ... ... ...
CAi−2B CAi−3B CAi−4B D









∈ Rli×mi
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Notation and indexing

we use subscript i for time indexing

Xi =
[
xi xi+1 · · · xi+j−2 xi+j−1

]
∈ Rn×j, usually j is large

U0|2i−1 ,















u0 u1 u2 · · · uj−1

u1 u2 u3 · · · uj
... ... ... · · · ...

ui−1 ui ui+1 · · · ui+j−2

ui ui+1 ui+2 · · · ui+j−1

ui+1 ui+2 ui+3 · · · ui+j
... ... ... · · · ...

u2i−1 u2i u2i+1 · · · u2i+j−2















=

[
U0|i−1

Ui|2i−1

]

=

[
Up

Uf

]

• U0|2i−1 has 2i blocks and j columns and usually j is large

• Up contains the past inputs and Uf contains the future inputs
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we can shift the index so that the top block contain the row of ui

U0|2i−1 ,















u0 u1 u2 · · · uj−1

u1 u2 u3 · · · uj
... ... ... · · · ...

ui−1 ui ui+1 · · · ui+j−2

ui ui+1 ui+2 · · · ui+j−1

ui+1 ui+2 ui+3 · · · ui+j
... ... ... · · · ...

u2i−1 u2i u2i+1 · · · u2i+j−2















=

[
U0|i

Ui+1|2i−1

]

=

[
U+
p

U−
f

]

• +/− can be used to shift the border between the past and the future block

• U+
p = U0|i and U−

f = Ui+1|2i−1

• the output matrix Y0|2i−1 is defined in the same way

• U0|2i−1 and Y0|2i−1 are block Hankel matrices (same block along
anti-diagonal)
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Row and Column spaces

let A ∈ Rm×n

row space column space

row(A) =
{
y ∈ Rn | y = ATx, x ∈ Rm

}
R(A) = {y ∈ Rm | y = Ax, x ∈ Rn}

zT = uTA z = Au

zT is in row(A) z is in R(A)

Z = BA Z = AB

rows of Z are in row(A) columns of Z are in R(A)

it’s obvious from the definition that

row(A) = R(AT )
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Orthogonal projections

denote P the projections on the row or the column space of B

row(B) R(B)

P (yT ) = yTBT (BBT )−1B P (y) = B(BTB)−1BTy

B =
[

L 0
]




QT

1

QT
2



 B =
[

Q1 Q2

]




R

0





P (yT ) = yTQ1Q
T
1 P (y) = Q1Q

T
1 y

(I − P )(yT ) = yTQ2Q
T
2 (I − P )(y) = Q2Q

T
2 y

A/B = ABT (BBT )−1B A/B = B(BTB)−1BTA

• result for row space is obtained from column space by replacing B with BT

• A/B is the projection of the row(A) onto row(B) (or projection of R(A)
onto R(B))
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Projection onto a row space

denote the projection matrices onto row(B) and row(B)⊥

row(B) row(B)⊥

ΠB = BT (BBT )−1B Π⊥
B = I − BT (BBT )−1B

A/B = ABT (BBT )−1B A/B⊥ = A(I −BT (BBT )−1B)

get projections of row(A) onto row(B) or row(B)⊥ from LQ factorization

[
B
A

]

=

[
L11 0
L21 L22

] [
QT

1

QT
2

]

=

[
L11Q

T
1

L21Q
T
1 + L22Q

T
2

]

A/B = (L21Q
T
1 + L22Q

T
2 )Q2Q

T
1 = L21Q

T
1

A/B⊥ = (L21Q
T
1 + L22Q

T
2 )Q2Q

T
2 = L22Q

T
2
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Oblique projection

instead of an orthogonal decomposition A = AΠB +AΠB⊥,
we represent row(A) as a linear combination of

the rows of two non-orthogonal matrices B and C and
of the orthogonal complement of B and C

A/BC is called the oblique projection of row(A) along row(B) into row(C)
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the oblique projection can be interpreted as follows

1. project row(A) orthogonally into the joint row of B and C that is A/

[
B
C

]

2. decompose the result in part 1) along row(B), denoted as LBB

3. decompose the result in part 1) along row(C), denoted as LCC

4. the orthogonal complement of the result in part 1) is denoted as

LB⊥,C⊥

[
B
C

]⊥

the oblique projection of row(A) along row(B) into row(C) can be
computed as

A/BC = LCC = L32L
−1

22

[
L21 L22

]
[
QT

1

QT
2

]

where 



B
C
A



 =





L11 0 0
L21 L22 0
L31 L32 L33









QT
1

QT
2

QT
3




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the computation of the oblique projection can be derived as follows

• the projection of row(A) into the joint row space of B and C is

A/

[
B
C

]

=
[
L31 L32

]
[
QT

1

QT
2

]

(1)

• this can also written as linear combination of the rows of Band C

A/

[
B
C

]

= LBB + LCC =
[
LB LC

]
[
L11 0
L21 L22

] [
QT

1

QT
2

]

(2)

• equating (1) and (2) gives

[
LB LC

]
=

[
L11 0
L21 L22

]−1
[
L31 L32

]
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Equivalent form of oblique projection

the oblique projection of row(A) along row(B) into row(C) can also be
defined as

A/BC = A
[
BT CT

]

([
BBT BCT

CBT CCT

]†
)

last r columns

· C

where C has r rows

using the properties: B/BC = 0 and C/BC = 0, we have

corollary: oblique projection can also be defined

A/BC = (A/B⊥) · (C/B⊥)†C

see detail in P.V. Overschee page 22
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Deterministic subspace identification

problem statement: estimate A,B,C,D in noiseless case from y, u

x(t+ 1) = Ax(t) + Bu(t), y(t) = Cx(t) +Du(t)

method outline:

1. calculate the state sequence (x)

2. compute the system matrices (A,B,C,D)

it is based on the input-output equation

Y0|i−1 = ΓiX0 +HiU0|i−1 (1)

Yi|2i−1 = ΓiXi +HiUi|2i−1 (2)
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Calculating the state sequence

derive future outputs

from state equations we have input/output equations

past: Y0|i−1 = ΓiX0 +HiU0|i−1, future: Yi|2i−1 = ΓiXi +HiUi|2i−1

from state equations, we can write Xi (future) as

Xi = AiX0 +∆iU0|i−1 = Ai(−Γ†
iHiU0|i−1 + Γ†

iY0|i−1) + ∆iU0|i−1

=
[

∆i −AiΓ†
iHi AiΓ†

i

]
[
U0|i−1

Y0|i−1

]

, LpWp

future states = in the row space of past inputs and past outputs

Yi|2i−1 = ΓiLpWp +HiUi|2i−1
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find oblique projection of future outputs: onto past data and along the
future inputs

A/BC = (A/B⊥)·(C/B⊥)†C =⇒ Yf/Uf
Wp = (Yi|2i−1/U

⊥
i|2i−1)(Wp/U

⊥
i|2i−1)

†Wp

the oblique projection is defined as Oi and can be derived as

Yi|2i−1 = ΓiLpWp +HiUi|2i−1

Yi|2i−1/U
⊥
i|2i−1 = ΓiLpWp/U

⊥
i|2i−1 + 0

(Yi|2i−1/U
⊥
i|2i−1)(Wp/U

⊥
i|2i−1)

†Wp = ΓiLp (Wp/U
⊥
i|2i−1)(Wp/U

⊥
i|2i−1)

†Wp
︸ ︷︷ ︸

Wp

Oi = ΓiLpWp = ΓiXi

projection = extended observability matrix · future states

we have applied the result of FF †Wp = Wp which is NOT obvious

see Overschee page 41 (up to some assumptions on excitation in u)
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compute the states: from SVD factorization

since Γi has n columns and Xi has n rows, so rank(Oi) = n

Oi =
[
U1 U2

]
[
Σn 0
0 0

]

V T

[
V T
1

V T
2

]

= U1ΣnV
T
1

= U1Σ
1/2
n T · T−1Σ1/2

n V T
1 , for some non-singular T

the extended observability is equal to

Γi = U1Σ
1/2
n T

the future states is equal to

Xi = Γ†
iOi = Γ†

i · Yi|2i−1/Ui|2i−1
Wp

future states = inverse of extended observability matrix · projection of future outputs

note that in Overschee use SVD of W1OiW2 for some weight matrices
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Computing the system matrices

from the definition of Oi, we can obtain

Oi−1 = Γi−1Xi+1 =⇒ Xi+1 = Γ†
i−1

Oi−1

(Xi and Xi+1 are calculated using only input-output data)

the system matrices can be solved from

[
Xi+1

Yi|i

]

=

[
A B
C D

] [
Xi

Ui|i

]

in a linear least-squares sense

• options to solve in a single or two steps (solve A,C first then B,D)

• for two-step approach, there are many options: using LS, total LS, stable A
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Stochastic subspace identification

problem statement: estimate A,C,Q, S,R from the system without input:

x(t+ 1) = Ax(t) + w(t), y(t) = Cx(t) + v(t)

where Q,S,R are noise covariances (see page 12-2)

method outline:

1. calculate the state sequence (x) from input/output data

2. compute the system matrices (A,C,Q, S,R)

note that classical identification would use Kalman filter that requires system
matrices to estimate the state sequence
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Bank of non-steady state Kalman filter

if the system matrices would be known, x̂i+q would be obtained as follows

X̂0 =
[
0 · · · 0 · · · 0

]

P0 = 0 Kalman filter

Yp





y0 · · · yq · · · yj−1
... ... ...

yi−1 · · · yi+q−1 · · · yi+j−2



 ↓

X̂i

[
x̂i · · · x̂i+q · · · x̂i+j−1

]

• start the filter at time q with the initial 0

• iterate the non-steady state Kalman filte over i time steps (vertical arrow
down)

• note that to get x̂i+q it uses only partial i outputs

• repeat for each of the j columns to obtain a bank of non-steady state KF
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Calculation of a state sequence

project the future outputs: onto the past output space

Oi , Yi|2i−1/Y0|i−1 = Yf/Yp

it is shown in Overschee (THM 8, page 74) that

Oi = ΓiX̂i

(product of extended observability matrix and the vector of KF states)

define another projection and we then also obtain

Oi−1 , Yi+1|2i−1/Y0|i = Y −
f /Y +

p

= Γi−1X̂i+1

(proof on page 82 in Overschee)

Subspace methods 12-24



compute the state: from SVD factorization

• the system order (n) is the rank of Oi

Oi =
[
U1 U2

]
[
Σn 0
0 0

]

V T

[
V T
1

V T
2

]

= U1ΣnV
T
1

• for some non-singular T , and from Oi = ΓiX̂i, we can obtain

Γi = U1Σ
1/2
n T, X̂i = Γ†

iOi

• the shifted state X̂i+1 can be obtained as

X̂i+1 = Γ†
i−1

Oi−1 = (Γi)
†Oi−1

where Γi denotes Γi without the last l rows

• X̂i and X̂i+1 are obtained directly from output data (do not need to know
system matrices)
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Computing the system matrices

system matrices: once X̂i and X̂i+1 are known, we form the equation

[

X̂i+1

Yi|i

]

︸ ︷︷ ︸
known

=

[
A
C

]

X̂i︸︷︷︸
known

+

[
ρw
ρv

]

︸ ︷︷ ︸
residual

• Yi|i is a block Hankel matrix with only one row of outputs

• the residuals (innovation) are uncorrelated with X̂i (regressors) then solving
this equation in the LS sense yields an asymptotically unbiased estimate:

[
Â

Ĉ

]

=

[

X̂i+1

Yi|i

]

X̂†
i
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noise covariances

• the estimated noise covariances are obtained from the residuals

[
Q̂i Ŝi

ŜT
i R̂i

]

= (1/j)

[
ρw
ρv

] [
ρw
ρv

]T

• the index i indicates that these are the non-steady state covariance of the
non-steady state KF

• as i → ∞, which is upon convergence of KF, we have convergence in Q,S,R
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Combined deterministic-stochastic identification

problem statement: estimate A,C,B,D,Q, S,R from the system:

x(t+ 1) = Ax(t) +Bu(t) + w(t), y(t) = Cx(t) +Du(t) + v(t)

(system with both input and noise)

assumptions: (A,C) observable and see page 98 in Overschee

method outline:

1. calculate the state sequence (x) using oblique projection

2. compute the system matrices using least-squares
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Calculating a state sequence

project future outputs: into the joint rows of past input/output along future
inputs

define the two oblique projections

Oi = Yf/Uf

[
Up

Yp

]

, Oi−1 = Y −
f /U−

f

[
U+
p

Y +
p

]

important results: the oblique projections are the product of extended
observability matrix and the KF sequences

Oi = ΓiX̃i, Oi−1 = Γi−1X̃i+1

where X̃i is initialized by a particular X̂0 and run the same way as on page 12-23

(see detail and proof on page 108-109 in Overschee)
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compute the state: from SVD factorization

• the system order (n) is the rank of Oi

Oi =
[
U1 U2

]
[
Σn 0
0 0

]

V T

[
V T
1

V T
2

]

= U1ΣnV
T
1

• for some non-singular T , and from Oi = ΓiX̂i, we can compute

Γi = U1Σ
1/2
n T, X̃i = Γ†

iOi

• the shifted state X̃i+1 can be obtained as

X̃i+1 = Γ†
i−1

Oi−1 = (Γi)
†Oi−1

where Γi denotes Γi without the last l rows

• X̂i (stochastic) and X̃i (combined) are different by the initial conditions

Subspace methods 12-31



Computing the system matrices

system matrices: once X̃i and X̃i+1 are known, we form the equation

[

X̃i+1

Yi|i

]

︸ ︷︷ ︸
known

=

[
A B
C D

] [

X̃i

Ui|i

]

︸ ︷︷ ︸
known

+

[
ρw
ρv

]

︸ ︷︷ ︸
residual

• solve for A,B,C,D in LS sense and the estimated covariances are

[
Q̂i Ŝi

ŜT
i R̂i

]

= (1/j)

[
ρw
ρv

] [
ρw
ρv

]T

(this approach is summarized in a combined algorithm 2 on page 124 of
Overschee)
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properties:

• X̃i and X̂i are different by initial conditions but their difference goes to zero
if either of the followings holds: (page 122 in Overschee)

1. as i → ∞
2. the system if purely deterministic, i.e., no noise in the state equation
3. the deterministic input u(t) is white noise

• the estimated system matrices are hence biased in many practical settings,
e.g., using steps, impulse input

• when at least one of the three conditions is satisfied, the estimate is
asymptotically unbiased
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Summary of combined identification

deterministic (no noise) stochastic (no input) combined

Oi = Yf/Uf

[

Up

Yp

]

Oi = Yf/Yp Oi = Yf/Uf

[

Up

Yp

]

Oi = ΓiXi Oi = ΓiX̂i Oi = ΓiX̃i

states are determined state are estimated state are estimated

X̂0 = 0 X̃0 = X0/Uf
Up

• without input, Oi is the projection of future outputs into past outputs

• with input, Oi should be explained jointly from past input/output data using
the knowledge of inputs that will be presented to the system in the future

• with noise, the state estimates are initialized by the projection of the
deterministic states
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Complexity reduction

goal: to find as low-order model as possible that can predict the future

• reduce the complexity of the amount of information of the past that we need
to keep track of to predict future

• thus we reduce the complexity of Oi (reduce the subspace dimension to n)

minimize
R

‖W1(Oi −R)W2‖
2
F , subject to rank(R) = n

W1,W2 are chosen to determine which part of info in Oi is important to
retain

• then the solution is
R = W−1

1 U1ΣnV
T
1 W †

2

and in existing algorithms, R is used (instead of Oi) to factorize for Γi

Subspace methods 12-35



Algorithm variations

many algorithms in the literature start from SVD of W1OiW2

W1OiW2 = U1Σ
1/2
n TT−1Σ1/2

n V T
1

and can be arranged into two classes:

1. obtain the right factor of SVD as the state estimates X̃i to find the system
matrices

2. obtain the left factor of SVD as Γi to determine A,C and B,D,Q, S,R
subsequently

algorithms: n4sid, CVA, MOESP they all use different choices of W1,W2

Subspace methods 12-36



Conclusions

• the subspace identification consists of two main steps:

1. estimate the state sequence without knowing the system matrices

2. determine the system matrices once the state estimates are obtained

• the state sequences are estimated based on the oblique projection of future
input

• the projection can be shown to be related with the extended observability
matrix and the state estimates, allowing us to retrieve the states via SVD
factorization

• once the states are estimated, the system matrices are obtained using LS
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Example: DC motor

time response of the second-order DC motor system

ẋ(t) =

[
0 1
0 1/τ

]

x(t) +

[
0

β/τ

]

u(t) +

[
0

γ/τ

]

Tl(t)

y(t) =
[
1 0

]
x(t)

where τ, β, γ are parameters to be estimated
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use n4sid command in MATLAB

z = iddata(y,u,0.1);

m1 = n4sid(z,[1:10],’ssp’,’free’,’ts’,0);
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Select model order in command window

the software let the user choose the model order
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select n = 2 and the result from free parametrization is

A =

[
0.010476 −0.056076
0.76664 −4.0871

]

, B =

[
0.0015657
−0.040694

]

C =

[
116.37 4.6234
4.766 −24.799

]

, D = 0

the structure of A,B,C,D matrices can be specified

As = [0 1; 0 NaN]; Bs = [0; NaN];

Cs = [1 0; 0 1]; Ds = [0; 0];

Ks = [0 0;0 0]; X0s = [0;0];

where NaN is free parameter and we assign this structure to ms model

A = [0 1; 0 -1]; B = [0; 0.28];

C = eye(2); D = zeros(2,1);

ms = idss(A,B,C,D); % nominal model (or initial guess)

setstruc(ms,As,Bs,Cs,Ds,Ks,X0s);

set(ms,’Ts’,0); % Continuous model
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the structured parametrization can be used with pem command

m2 = pem(z,ms,’display’,’on’);

the estimate now has a desired structure

A =

[
0 1
0 −4.0131

]

, B =

[
0

1.0023

]

C =

[
1 0
0 1

]

, D = 0

choosing model order is included in pem command as well

m3 = pem(z,’nx’,1:5,’ssp’,’free’);

pem use the n4sid estimate as an initial guess
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compare the fitting from the two models

compare(z,m1,m2);
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