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Abstract

Since functional magnetic resonance imaging (fMRI) technique has been discovered for a few
decades, this allows human to capture the activity in brain via a signal from blood flow, known as
BOLD signal. The exploring of relationship among regions inside the human brain using fMRI data
is challenging and still opening for several topics. Structural equation modeling (SEM) is one of the
techniques that can be used to explore relationship structure among variables. Since SEM has been
developed long time ago, there are several commercial software such as LISREL, S-PLUS or M-PLUS

that can be used to explore causal structures from data we have. In this work, we focus on exploring
the brain connectivity using SEM based on path analysis. This problem can be expressed as nonlinear
optimization problem which may provide us the local solution. Therefore We propose to formulate
this problem to convex optimization problem which has only one optimal point and this point can
be regarded as global solution. We compare the result solved by our convex problem and LISREL

commercial software. From our experiment, we have a hypothesis that, under some conditions, the
solution solved by our convex problem and and LISREL are same. We do our experiment on various
sets of fMRI data and find the best brain connectivity structure using BIC criterion. This work is a
part of 2102531 System Identification term project, semester 1 of academic year 2015.

1 Introduction

Functional magnetic resonance imaging or fMRI is a technique for measuring brain function activities
using a neuroimaging technology, and is nowadays dominating the brain mapping research field since it
does not have requirement of surgery, substances ingesting, ionising radiation exposing, etc. Structural
equation modeling (SEM) is then one of the most popular tools for brain network modeling for fMRI
data. SEM focuses only on instantaneous effects, neglecting all the time-delay lagging effects. Path
analysis is one of common methods in SEM used to explore the effective connectivity which can be ana-
lyzed by many well-known commercial softwares such as LISREL [1], S-PLUS [2], M-PLUS [3], and EQS [4].
Most commercial softwares use maximum likelihood estimation which results in a nonlinear formulation
having not less than one minimum point, therefore, solving with numerical methods may not obtain the
global optimal solution. Moreover, the free version of commercial softwares mostly have restriction on
the number of model’s parameter and may not be fully functional.

In this work, we explore the mathematical description of the problem in section 2 and then the
formulation in section 3 which we proposed a convex formulation. Once our problem turns into a convex
problem, the optimal solution which we obtain from solving this problem can be regarded as a global
optimal solution. In section 4, we look into examples of fMRI data set. In section 5, we explain how to
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get brain connectivities in terms of path coefficient matrices from commercial software and our convex
problem. We compare the result from both methods for verification and then we provides the conclusion
in section 6.

2 Problem description

By the use of SEM only based on path analyses to explore the effective connectivity, it can be generally
expressed in the form of n-dimensional linear equation as

Y = c+AY + ε, (1)

where Y ∈ Rn denotes observed values from n regions of interest (ROIs), or voxels, in the brain, c ∈ Rn

denotes the baseline of Y , A ∈ Rn×n denotes the path matrix which is to be estimated and aij , the (i,j)
entry of A, is known as a path coefficient representing a causal relationship from region j to i. ε ∈ Rn

denotes the error from modeling and noise on each voxel which is assumed to be zero mean white noise.
As seen from (1), it is a linear static model, therefore, this fMRI study neglects the effect of time and
treat one time point as one sample.

Let S denote a sample or empirical covariance matrix of Y and let Σ denote covariance matrix of Y
as derived from (1) as

Σ = (I −A)−1Ψ(I −A)−T . (2)

And let us assume that Y is normally distributed. If we need to estimate the model parameters in sense
of minimizing a distance between S and Σ, we can choose the Kullback-Leibler divergence function (see
more detail in Appendix) as the fit function given by

d(S,Σ) = log det Σ + tr(SΣ−1)− log detS − n, (3)

where n denotes the dimension of data. This leads to an optimization problem and it can be expressed
as follows.

minimize
Σ,A,Ψ

log det Σ + tr(SΣ−1)− log detS − n,

subject to Σ = (I −A)−1Ψ(I −A)−T ,

diag(A) = 0.,

(4)

The constraint diag(A) = 0 , i.e., Aii = 0, for i = 1, 2, 3, ..., n means that the link from region i to i
must be zero or we can say that each voxel has no effect to itself. From (4), S and n are given from data
so that the last two terms in the cost function can be neglected. We can make a change of variables by
letting X = Σ−1. Therefore the problem (4) becomes

minimize
X,A,Ψ

− log detX + tr(SX)

subject to X = (I −A)T Ψ−1(I −A),

diag(A) = 0,

(5)

with variables X ∈ Sn, A ∈ Rn×n and Ψ ∈ Sn.

3 Problem formulation

Nonlinear optimization problem has one or more than one minimum point, therefore, solving nonlinear
optimization problem may provide the local minimum point. However, if the problem is convex, solving
convex optimization provides only a minimum point and this point can be regarded as a global minimum
point. The problem (5) is a nonlinear optimization problem due to the quadratic equation constraint:

X = (I −A)T Ψ−1(I −A)

We propose to relax the above constraint to

X � (I −A)T Ψ−1(I −A)
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which is equivalent to [
X (I −A)T

I −A Ψ

]
� 0 (6)

by the property of Schur complement (see more detail in Appendix). The constraint (6) is now linear in
X,A and Ψ and it can be considered as a linear matrix inequality (LMI). Moreover, to prevent trivial
solutions and to control the noise covariance in estimation, we can add a constraint on Ψ by Ψ � αI,
meaning that Ψ is bounded by αI. This leads to the final problem formulation expressed by

minimize
X,A,Ψ

− log detX + tr(SX)

subject to

[
X (I −A)T

I −A Ψ

]
� 0

Ψ � αI,
diag(A) = 0,

(7)

with variables X ∈ Sn, A ∈ Rn×n and Ψ ∈ Sn. The problem (7) has completely turned into a convex
problem in the class of semidefinite programing (SDP) (the proof is provided in Appendix). Therefore
there are several efficient algorithms to solve it.

4 fMRI data

4.1 Data acquisition

The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast which is the change
in magnetization between oxygen-rich and oxygen-poor blood. The data is acquired as image intensity
versus time at each voxel which can be referred as 3D-coordinate in the brain. For an example, Figure
1 shows a time plot of a data set at the voxel with coordinate (46,64,37) in the brain.

Figure 1: A plot between the intensity of the image at voxel vi and time points [5].
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4.2 Data analysis

Using brain network modeling tools such as Vector autoregression (VAR) and SEM [6] with acquisition of
fMRI data set can provide us a brain mapping. In contrast to SEM, VAR focuses on time-delay lagging
effects and can be solved using least-square formulation. Groups of voxels can also be defined as regions
of interest (ROIs). An example of brain mapping that show the relations between the ROIs is shown in
Figure 2.

Figure 2: A brain mapping shows the relations between ROIs [7].

4.3 StarPlus fMRI data

StarPlus fMRI data is one of the free accessible raw fMRI data have collected by Marcel Just and his
colleagues in Carnegie Mellon University’s CCBI [8]. The experiment consists of a set of trials, and the
data is partitioned into trials. For some of these intervals, subject simply rested or gazed at a fixation
point on the screen. Images were collected every 500 ms. Only a fraction of the brain of each subject was
imaged. The data is marked up with 25-30 ROIs. Figure 3 shows examples of resting-state StarPlus

fMRI time series from 5 voxels. The image intensity is normalized to percentage above average signal
value during control baseline (fixation trials). We will use these resting-state data in the following section.
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Figure 3: Examples of StarPlus fMRI time series from 5 voxels.

5 Solving estimating problem in SEM

5.1 Commercial softwares

There are several available software packages for solving SEM problem, for instance, LISREL [1], EQS [4],
M-PLUS [3], and S-PLUS [2]. Here we would like to introduce LISREL for solving SEM problem. LISREL

that we use in this work is a student version, therefore, it has some restrictions such as the restriction
on the number of variables. From the beginning, when we need to perform SEM analysis using this
software, it has many options to be chosen. For example, we can solve SEM problem with programming
or drawing the path diagram as shown in Figure 4 and 5.

LISREL also allows user to choose an estimation method, for example, maximum likelihood estimation
and weight least-squares estimation. Figure 6 shows estimation method selection window in LISREL.
Three estimation methods which commonly used are unweighted least square (ULS), generalized least
squares (GLS), and maximum likelihood (ML). Cost functions of these estimation methods are defined
[9] as

ULS = tr(S − Σ)T (S − Σ)

GLS = tr(S − Σ)TS−TS−1(S − Σ)

ML = log det Σ− log detS + tr(SΣ−1).

The proposed formulation (7) is an ML estimation with constraints, thus, we used ML estimator.
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Figure 4: The LISREL syntax window which can be generated manually by using text editor or automat-
ically generated from a path diagram.

Figure 5: The path diagram window in LISREL.

In this work, we try to solve SEM using fMRI data. This problem is based on path analysis, therefore,
we prefer to use LISREL with a path diagram to find the parameters. Firstly, we have to define our
assumption about the causal relationship among all the ROIs as shown in the Figure 7. Xi denotes the
region i in the brain.

From StarPlus fMRI data, we randomly pick 5 voxels (defined as X1 to X5). One time point is
treated as one sample, and we have 50 time points of Xi meanning that we have 50 samples. We
compute the sample covariance matrix of X by MATLAB (cov(X) command) and then import to LISREL.
In this step we can solve this problem and the result is shown in Figure 8.
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Figure 6: The estimation method selection window in LISREL.

Figure 7: A presumed path diagram for 5 observed variables.

In Figure 8, df stand for degrees of freedom, RMSEA stands for root mean square error of approx-
imation, and Chi-Square is the likelihood ratio chi-square (χ2). Since the test statistic of maximum
likelihood estimation is χ2 distributed, in hypothesis testing, a non-significant χ2 implies that there is
no significant discrepancy between the estimated covariance matrix and the empirical covariance matrix.
Therefore, a non-significant χ2 indicates that the model fits with the data [9].
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Figure 8: The solved path diagram from the sampled fMRI data.

Once we obtain the path coefficient that minimize the distance between cov(X) and its sample co-
variance, we try to use MATLAB to express the above picture in 3 dimensions with real coordinates of the
chosen voxels, and the result is shown in Figure 9.

Figure 9: The 3D-diagram model of SEM analysis using StarPlus fMRI data. The line weight represents
the connections strength between voxels.
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5.2 Convex program

To solve the convex problem from (7), we use CVX [10, 11]. CVX is a MATLAB-based modeling system for
convex optimization. CVX turns MATLAB into a modeling language, allowing constraints and objectives to
be specified using standard MATLAB expression syntax. From StarPlus fMRI data, we randomly pick 5
voxels (defined as X1 to X5). One time point is treated as one sample, and we have 55 time points of
Xi meaning that we have 55 samples. We try to solve the problem with n = 5, α = 1, and S is sample
covarince matrix of 5 voxels. S and the result of A are shown below.

S =


13.1776 −0.8818 −0.8368 −1.6614 −0.7553
−0.8818 3.5246 −0.1580 −0.7471 0.2329
−0.8368 −0.1580 3.0973 0.1068 1.4363
−1.6614 −0.7471 −0.1068 5.9328 0.1014
−0.7553 0.2329 1.4363 0.1014 5.3736



A =


0 −0.3046 −0.2384 −0.2938 −0.0507

−0.0636 0 −0.0740 −0.1107 0.0447
−0.0365 −0.0543 0 −0.0070 0.1835
−0.1194 −0.2155 −0.0187 0 0.0138
−0.0168 0.0709 0.3974 0.0113 0


The CVX code for solving convex problem is as follows.

cvx_begin sdp

variables X(n,n) A1(n,n) Phi(n,n)

minimize -log_det(X)+trace(S*X)

subject to

[X , (eye(n)-A1)’ ; (eye(n)-A1) , Phi ] >= 0;

%constraint on Phi

Phi <= alpha*eye(n);

%constraint on A

diag(A1) == 0;

cvx_end

5.3 Comparison of solving methods

As LISREL needs at least one independent variable and can not explore all possibility of paths between
observed variables, we start from using X5 as an independent variable and X1, X2, X3 and X4 as depen-
dent variables. Because we try to confirm the result from CVX, then, we need to fix diagonal covariance
of the error of prediction matrix, denotes as diag(Ψl), to 1 as same as the constraint in convex problem
from previous experiment. As seen in Figure 10, LISREL shows us that this structure has 15 degrees
of freedom, that means we can construct at most 15 paths. After that, we construct 13 paths between
variables as shown in Figure 11 and then we get the result as shown in Figure 12.

The estimated path coefficient can be seen from the output file. It can be shown in matrix form as
Al.

Al =


0 −0.305 −0.250 −0.294 −0.055

−0.064 0 −0.092 −0.111 0.061
0 0 0 0.008 0.267

−0.120 −0.214 −0.011 0 0
0 0 0 0 0

 (8)
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Figure 10: The degree of freedom of this structure is 15 which imply that we can construct at most 15
paths.

Figure 11: A presumed path diagram that contains 13 paths.
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Figure 12: A result of path diagram solved by LISREL.
L

After that, we estimate the path coefficient matrix by using CVX, Am. In order to make Am comparable
to Al, we add new constraints on Am by setting some of its entries to be zero as same as Al. In this
case, the new constraints are a31, a32, a45, a51, a52, a53, a54 = 0. The result is shown below.

Am =


0 −0.3047 −0.2498 −0.2937 −0.0550

−0.0635 0 −0.0923 −0.1109 0.0612
0 0 0 0.0077 0.2671

−0.1198 −0.2141 −0.0114 0 0
0 0 0 0 0

 (9)

It can be seen that when α = diag(Ψl) = 1, Am and Al are very close. Subsequently, we vary the value
of α and Ψ at the same time to show that Am and Al are still close. The result is shown as a norm of
the difference of Am and Al.

α, diag(Ψl) ‖Am −Al‖
0.25λmin(S) 8.2559× 10−4

0.5λmin(S) 8.2734× 10−4

0.75λmin(S) 7.1767× 10−4

λmin(S) 8.6710× 10−4

Table 1: Norm of the difference of Am and Al using different value of α and diag(Ψl)

From the result of the simulation, we have a hypothesis that for α ≤ λmin(S), the path coefficient
matrix obtained from LISREL and CVX are quite equal.
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5.4 Model selection with BIC score

From the last section, we have seen from our several simulations that if we choose α ≤ λmin(S), then the
path coefficient matrices, A, from LISREL and CVX can have similar structures. Therefore, we can use
CVX to solve the exploring connectivity problem if we choose the suitable value of α. This leads to the
reason that we will choose α = λmin(S) for other experiments.

In this section we explore the brain connectivity from 3 fMRI data sets by using CVX solving to find
the path coefficient matrix A. In our experiment, we set α = λmin(S) and n = 5. Then we obtain 3
dependence structures from 3 data sets as shown below.

A1 =


0 −0.2985 −0.2420 −0.2776 −0.0487

−0.0327 0 −0.0561 −0.0656 0.0293
−0.0136 −0.0288 0 −0.0016 0.0910
−0.0918 −0.1976 −0.0097 0 0.0125
−0.0119 0.0651 0.3930 0.0092 0



A2 =


0 0.2443 0.2640 0.0078 −0.1234

0.0080 0 −0.0491 −0.0358 −0.0038
0.0403 −0.2278 0 −0.016 0.0305
0.0164 −0.2286 −0.0221 0 0.0270
−0.0381 −0.0355 0.0618 0.0397 0



A3 =


0 −0.2133 −0.0827 0.1729 0.2284

−0.0174 0 −0.0276 0.0610 −0.0023
−0.0168 −0.0686 0 −0.0038 0.0991
0.0334 0.1442 −0.0036 0 −0.0535
0.0506 −0.0063 0.1080 −0.0614 0


where Ai denotes the path coefficient from model i. Once we obtain A from each model, all of the
matrices A are dense and they do not imply the significant dependence structure. Then we would like to
make it sparser by setting some entries of A to be zero. For each A, we have normalized all the entries
in A to be in range [−1, 1] and choose the value called threshold. If absolute value of some entries in A
is lower than threshold, then those entries are eliminated by setting them to be zero. For example, we
choose the threshold to be 0.1 and it can be expressed as mathematical equation below

aij =

{
0 if |aij | < 0.1

aij otherwise

From this step, we have 3 sparser dependence structures from 3 data sets as shown below

A1 =


0 −0.2985 −0.2420 −0.2776 −0.0487
0 0 −0.0561 −0.0656 0.0293
0 0 0 0 0.0910

−.0918 −0.1976 0 0 0
−0.0119 0.0651 0.3930 0.0092 0



A2 =


0 0.2443 0.2640 0.0078 −0.1234
0 0 −0.0491 −0.0358 0

0.0403 −0.2278 0 0 0.0305
0 −0.2286 0 0 0.0270

−0.0381 −0.0355 0.0618 0.0397 0



A3 =


0 −0.2133 −0.0827 0.1729 0.2284
0 0 −0.0276 0.0610 0
0 −0.0686 0 0 0.0991

0.0334 0.1442 0 0 −0.0535
0.0506 0 0.1080 −0.0614 0
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In our experiment, to see the effect of threshold parameter and the sparsity pattern of the path
matrices, A, from 3 data sets, we vary this threshold parameter to be 0.1, 0.2, 0.3, 0.4 and 0.5 sequentially.
From this step, we will have many different structures. In this case, BIC score plays important role for
selecting the most suitable model from all models of each data set. It is suggested to use BIC score
because it performs well for selecting the correct number of factor in exploratory factor analysis when
the number of factor is small [12]. The BIC score for SEM is given by

BICi = Ĝi + di logN (10)

where
Ĝi = (N − 1)(log det Σ̂ + tr(SΣ̂−1)− log detS − n),
di : the number of effective parameters of model i,
N : the number of sample data.

The result of our simulation of each data set with varying threshold parameters as mentioned above
is shown in the Table 2.

threshold
BICi = Ĝi + di logN

data set 1 data set 2 data set 3
0.1 254.8017 315.7840 143.2459
0.2 240.4732 285.8395 135.5335
0.3 236.1721 279.2249 121.0622
0.4 236.1721 279.2249 114.2358
0.5 236.1721 277.7280 109.1742

Table 2: BIC score at different selection threshold for each data set

From Table 2, we would like to reasonably choose the minimal BIC score from each data set to select
the best model to use. The data set 1 we obtain minimal BIC score is 236.1721 at threshold 0.3, data set
2 BIC score is 277.7280 at threshold 0.5 and data set 3 BIC score is 109.1742 at threshold 0.5. The best
models with sparse structure in the sense of minimum BIC score for each data set are shown in Figure
13.

6 Conclusion

A convex formulation of SEM in fMRI study has been proposed and the global optimal solution of path
coefficient matrix, thus, can certainly be obtained using numerical methods. Experiments have been
introduced, using both proposed formulation and well known LISREL software, then, compared together
for verification. From our simulation, the requirement for validity of proposed formulation is that noise
covariance must be bounded by the lowest eigenvalue of sample covariance matrix of observed fMRI data
set i.e., α ≤ λmin(S). Obtained path coefficient matrices are then made sparser by eliminating all entries
in A which have the absolute value lower than threshold value after they are normalized to be in range
[−1, 1]. To select the suitable model, we use the BIC score as our criterion and choose the one that has
the minimum BIC score as our best model for each data set.
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(a)

(b)

(c)

Figure 13: The dependence structures of the best model in the sense of minimum BIC score from a) data
set 1, b) data set 2 and c) data set 3
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7 Appendix

7.1 Convex problem

An optimization problem is said to be convex obtimization if

1. Cost function is a convex function

2. Constraint set is convex

Let us recall the problem (7) again as follows.

minimize
X,A,Ψ

− log detX + tr(SX)

subject to

[
X (I −A)T

I −A Ψ

]
� 0,

Ψ � αI,
diag(A) = 0,

with variables X ∈ Sn, A ∈ Rn×n and Ψ ∈ Sn. In this section, we would like to show that the above
problem is a convex optimization problem by showing the cost function is a convex function and all of
three constraint are convex. Let us define cost function, g(x) = f(X) +h(X), where f(X) = − log detX
and h(X) = tr(SX).

Proof : f(x) = − log detX is a convex function.
Definition : f : Rn → R is convex if and only if the function g : R→ R,

g(t) = f(x+ tv), domg = {t|x+ tv ∈ domf}

is convex in t for any x ∈ domf, v ∈ Rn.

For f(X) = − log detX, domX = Sn
++.

g(t) = − log det (X + tV ) = − log(det (X) det (X−1/2(X + tV )X−1/2))

= − log det (X)− log det (I + tX−1/2V X−1/2)

= − log det (X)−
n∑

i=1

log (1 + tλi)

where λi are the eigenvalues of X−1/2V X−1/2.

This is a sum of constant and convex function (negative logarithm function); hence g(t) is convex. So
f(X) is convex.

Proof : h(X) = tr(SX) is a convex function.
Definition : f : Rn → R is convex if domf is convex set and

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)

for all x1, x2 ∈ domf, 0 ≤ θ ≤ 1.

For h(X) = tr(SX), S is a constant positive definite, and domX = Sn
++ which is convex set

h(X) = tr(SX)

h(θX1 + (1− θ)X2) = tr(θSX1 + (1− θ)SX2)

= tr(θSX1) + tr((1− θ)SX2)

= θtr(SX1) + tr(SX2)− θtr(SX2)

h(θX1 + (1− θ)X2) = θh(X1) + (1− θ)h(X2)

Therefore h(X) is a convex function.
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Proof : f(X) + h(X) is a convex function.

For f(X) and h(X) are convex functions.

(f + h)(θX1 + (1− θ)X2) = f(θX1 + (1− θ)X2) + h(θX1 + (1− θ)X2)

≤ θf(X1) + (1− θ)f(X2) + θh(X1) + (1− θ)h(X2)

≤ θ(f + h)(X1) + (1− θ)(f + h)(X2)

Therefore f(X) + h(X) is a convex function.

Proof : The constraints of problem (7) are convex.

Consider the constraints [
X (I −A)T

I −A Ψ

]
� 0, (11)

Ψ � αI
αI −Ψ � 0,

(12)

diag(A) = 0. (13)

(11) and (12) are inequality constraints, and for all solutions of cost function (X,A,Ψ) these constraints
are sets of positive definite matrix; hence (11) and (12) are convex. (13) is a linear equality constraint;
hence (13) is convex.

Because the cost function and the constraints are a convex function and convex sets, respectively,
this problem has completely turned into the convex optimization problem.

7.2 Schur complement of matrix

In the theory of matrices, there is the use of Schur complements in several contexts and they also appear
in various important theorems. Let us define a matrix M ∈ Sn which is partitioned by

M =

[
A B
BT C

]
,

where A ∈ Sk. If A is invertible, then the matrix

S = C −BTA−1B,

is called the Schur complment of A in M . An important property of the Shur complement is positive
definiteness and positive semidefiniteness property in which they are explained by

M � 0 ⇐⇒ A � 0 and C −BTA−1B � 0,

and
If A � 0, then M � 0 ⇐⇒ C −BTA−1B � 0.

7.3 Kullback-Leibler divergence

In probability theory, the Kullback-Leibler divergence function is a well-known distance function for
measuring the difference between two probability distribution. Let f1(x) and f2(x) be continuous distri-
bution, then by definition, the Kullback-Leibler divergence is defined as

d(f1(x), f2(x)) =

∫
[log

(
f1(x)

f2(x)

)
]f1(x)dx. (14)
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From this definition, we can show that the Kullback-Leibler divergence between two multivariate Gaus-
sian distributions f1(x) and f2(x), with mean µ1 and µ2 and covariance matrices Σ1 and Σ2, is given
by

d(f1(x), f2(x)) =
1

2
{log

det(Σ2)

det(Σ1)
− n+ tr(Σ1

2Σ1) + (µ1 − µ2)T Σ−1
2 (µ1 − µ2), (15)

where n denotes the dimension of variable. Let us start with the definition of Kullback-Leibler divergence
from (14)

d(f1(x), f2(x)) =

∫
[log

(
f1(x)

f2(x)

)
]f1(x)dx,

=

∫
[log(f1(x))− log(f2(x))]f1(x)dx,

=

∫
1

2
[log

det(Σ2)

det(Σ1)
− (x− µ1)T Σ−1

1 (x− µ1) + (x− µ2)T Σ−1
2 (x− µ2)]f1(x)dx,

=E

[
1

2
[log

det(Σ2)

det(Σ1)
− (x− µ1)T Σ−1

1 (x− µ1) + (x− µ2)T Σ−1
2 (x− µ2)]

]
,

d(f1(x), f2(x)) =
1

2

[
log

det(Σ2)

det(Σ1)
−E[(x− µ1)T Σ−1

1 (x− µ1)] + E[(x− µ2)T Σ−1
2 (x− µ2)]

]
.

If we consider the term E[(x− µ1)T Σ−1
1 (x− µ1)] and E[(x− µ2)T Σ−1

2 (x− µ2)], we can write them as

E[(x− µ1)T Σ−1
1 (x− µ1)] = E[tr((x− µ1)(x− µ1)T Σ−1

1 )] = E[tr(In)] = n,

and
E[(x− µ2)T Σ−1

2 (x− µ2)] = (µ1 − µ2)T Σ2(µ1 − µ2) + tr(Σ1Σ−1
2 ).

Therefore

d(f1(x), f2(x)) =
1

2

[
log

det(Σ2)

det(Σ1)
− n+ tr(Σ1Σ−1

2 ) + (µ1 − µ2)T Σ2(µ1 − µ2)

]
,

which shows our statement in (15). Note that, from our proof, we have used some properties from
section 8 of The Matrix Cookbook [13]. For another example, it can be shown that the Kullback-Leibler
divergence of two Bernoulli random variables p and q is given by

d(f(k; p), f(k; q)) = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
,

where f(k; p) denotes the probability mass function of Bernoulli distribution over possible outcomes k.
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