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Basic concept

objective: how to build a system description from experimental data
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when we talk about a model

e a dynamical model with input u and output y: ¥y = Gu

e a statistical model with predictor « and response y: y = f(x)

due to uncertainty of measurement or unexplained phenomenon

the output is assumed to be corrupted by noise
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Model usages

estimation of system description can serve for many purposes:

e obtain a mathematical model for controller design

e explain/understand observed phenomena (e.g., machine learning)

e forecast events in the future (e.g., time series analysis in econometrics)
e obtain a model of signal in filter design (e.g., signal processing)

e model inference
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System ldentification for controller design
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e for controller design, the plant is assumed known

e in system identification, we aim to estimate the parameters in a model
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System ldentification for prediction
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estimate generated solar power from measurements of solar irradiance

solar power = f(solar irradiance) = By + B11 + Bol* + - - + B, 1"

e right: forecast the Thai Baht in Apr, May,... ? need a model for prediction
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Model inference
model parameters (or its function) can infer some pattern of data
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e interconnection structure between (y, ) or among the variables
e relevancy of using a set of features to explain the response variables
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Essential elements

users develop a math model to explain data using prior knowledge of applications
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e applicable estimation techniques depend on a selected model

e most model estimation problems require numerical methods to get a numerical
solution
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Models

a description of the system, or a relationshop among observed signals
a model should capture the essential information about the system

types of models

e graph and tables, e.g., bode plots and step response
e mathematical models, e.g., differential and difference equations

e probablilistic models, e.g, probability density function

System identification is a process of obtaining models based on a data set collected
from experiments

input and output signals from the system are recorded and analyzed to infer a model
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System identification methods

e Nonparametric approach

— aim at determining a (time/frequency) response directly without first selecting a
possible set of models
— gives basic information about the sytsem and is useful for validation

— examples are transient analysis, frequency analysis, correlation analysis, and
spectral analysis

e Parametric approach

— require assumptions on a model class/structure

— the search for the best model within the candidate set becomes a problem of
determining the model parameters

— typically more complicated than the nonparametric approach
— results can be further used for controller design, simulation, etc.
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Prior knowledge about uncertainty

a model is estimated in some optimal sense to find a best match to data
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Noise values

noise characteristic is one prior assumption that users can exploit in estimation
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Procedures in System ldentification

prior knowledge —==

¢

choose a class
noise of model

parametrized model

training data
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Parametric estimation

e model class:

SISO/MIMO, linear/nonlinear, time-invariant/time varying, discrete/continuous

e searching the best model within a candidate set becomes a problem of determining
the model parameters

e the selected parameter  from a model class M is optimal in some sense, i.e.,

T = argmin f(z, D),
reM

where f is a measure of goodness of fit (or loss function) and is a function of
information data (D)

e examples of f are quadratic loss, likelihood, entropy function, etc.
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Estimation methods
e linear least-squares method (LS)
simple to compute, no assumption on noise model

e statistical estimation methods, e.g., maximum likelihood, Bayes

use prior knowledge about noise

e instrumental-variable method

a modification of the LS method for correlated noise

e subspace methods

LS and projection framework of estimating state-space models

e prediction-error method

model the noise, applicable to a broad range of models
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Model selection

e Principle of parsimony:

one should pick a model with the smallest possible number of parameters that
can adequately explain the data

e one can trade off between

Goodness of fit vs Complexity

e related to the concept of bias VS variance in statistics

e examples of model selection criterions are FPE, AIC, BIC, etc.
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Example: Polynomial fitting

curve fitting problem of polynomial of order n (true order is n = 3)
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e the error begins to decrease as the model picks up the relevant features

e as the model order increases, the model tends to over fit the data
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Model validation

e a parametric estimation procedure picks out the best model

e a problem of model validation is to verify whether this best model is “good
enough”

e test the estimated model (obtained from training data), with a new set of data
(validation set)

e the tests verify whether the dynamic from the input and the noise model are
adequate
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Numerical Example
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e feed a known input to the system and measure the output

e the input should contain rich information to excite the system
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e fit the measured output to the model

I+ a1q7 4+ ang "My(t) =
(big 4+ bpg ™u(t) F (14 g™t + -+ cng ™e(t)
with unknown parameters aq,...,a,,b1,...,b,,¢1,...,Cp,

e this model is known as Autoregressive Moving Average with Exogenous
input (ARMAX)

e ¢(t) represents the noise that enters to the system
e 1 is the model order, which is selected via model selection

e the parameters are estimated by the prediction-error method (PEM)
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Example of output prediction

n =2, FIT = 71.37 %
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Example of zero-pole location

n = 2

e o: zeros, X: poles
e red: true system, blue: estimated models

e chance of zero-pole cancellation at higher order
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Skills needed for system identification

one should have

e concepts of dynamical systems (description, how to analyze their properties)

e probability and statistics (to understand probablilistic models, estimation methods,
to statistically interpret results)

e linear algebra (many linear models involve matrix analysis)
e optimization (most model estimations are optimization problems)

e programming (for numerical methods to solve estimation problems)
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