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7. LU factorization

e factor-solve method

e LU factorization

e solving Az = b with A nonsingular
e the inverse of a nonsingular matrix
e LU factorization algorithm

e effect of rounding error

e sparse LU factorization
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Factor-solve approach
to solve Ax = b, first write A as a product of ‘simple’ matrices
A= A1Ay- - Ag
then solve (A1 A5 --- Ap)x = b by solving k equations

Aiz1 = b, Aszg = 21, ..., Ap_12p—1 = Zk—2, Apr = 25,1

examples

e Cholesky factorization (for positive definite A)

k=2, A=LLT

e sparse Cholesky factorization (for sparse positive definite A)

k=4, A=PLLTP

LU factorization
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Complexity of factor-solve method

#flops = f + s

e f is cost of factoring A as A = A As--- Ay (factorization step)
e s is cost of solving the k equations for z1, 2o, . . . zx_1,  (solve step)

e usually f>s

example: positive definite equations using the Cholesky factorization

f=(1/3)n7, 5 = 2n?
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Multiple right-hand sides
two equations with the same matrix but different right-hand sides
Az =b,  Ai=b

e factor A once (f flops)
e solve with right-hand side b (s flops)

e solve with right-hand side b (s flops)

cost: f + 2s instead of 2(f + s) if we solve second equation from scratch

conclusion: if f > s, we can solve the two equations at the cost of one
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LU factorization
LU factorization without pivoting
A=LU

e [ unit lower triangular, U upper triangular

e does not always exist (even if A is nonsingular)
LU factorization (with row pivoting)
A=PLU

e P permutation matrix, L unit lower triangular, U upper triangular

e exists if and only if A is nonsingular (see later)

cost: (2/3)n® if A has order n

LU factorization
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Solving linear equations by LU factorization

solve Az = b with A nonsingular of order n

factor-solve method using LU factorization

1. factor A as A= PLU ((2/3)n? flops)
2. solve (PLU)x = b in three steps

e permutation: z; = P71 (0 flops)
e forward substitution: solve Lzy = 21 (n? flops)
e back substitution: solve Uz = 23 (n? flops)

total cost: (2/3)n” + 2n? flops, or roughly (2/3)n?
this is the standard method for solving Ax = b

LU factorization
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Multiple right-hand sides

two equations with the same matrix A (nonsingular and n x n):
Az =b,  Ai=b

e factor A once
e forward/back substitution to get x

e forward/back substitution to get &
cost: (2/3)n3 + 4n? or roughly (2/3)n3
exercise: propose an efficient method for solving

Az =0, ATE =1

LU factorization
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Inverse of a nonsingular matrix

suppose A is nonsingular of order n, with LU factorization

A=PLU

e inverse from LU factorization

At=(pPLU) ' =Uu"tL Pt

e gives interpretation of solve step: evaluate
xr=A""=U"L"'P"b
in three steps

z1 = PTb, 2o = L_lzl, r=U 1z
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Computing the inverse
solve AX = I by solving n equations

AXl = €1, AX2:€2, P AXnZEZn

X; i1s the 7th column of X; e; is the 7th unit vector of size n

e one LU factorization of A: 2n3/3 flops

e 1 solve steps: 2n° flops

total: (8/3)n’ flops

conclusion: do not solve Az = b by multiplying A= with b

LU factorization
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LU factorization without pivoting

partition A, L, U as block matrices:

a11  Aio 1 0 uip  Ujo
A= . L= L U=
[ A Ao ] [ Loy Log ] [ 0 Uz ]

® a11 and wuy1 are scalars

e [o5 unit lower-triangular, Uy upper triangular of order n — 1

determine L and U from A = LU, 1i.e.,

ai; Az _ 1 0 uir  Urs
Agp Az | Lo1 Lo 0 Uz
_ [ un Uiz
| u11lor  Lo1Uss + LaoUszg
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recursive algorithm:

e determine first row of U and first column of L

U] = a1y, Uiz = Ajo, Loy = (1/a11) Ao

e factor the (n — 1) x (n — 1)-matrix Ay — Lo1Ujo as
Ago — Loy1Uja = LagUso

this is an LU factorization (without pivoting) of order n — 1

cost: (2/3)n? flops (no proof)

LU factorization
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Example

LU factorization (without pivoting) of

A =

8
4
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O = O

write as A = LU with L unit lower triangular, U upper triangular

A =
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e first row of U, first column of L:

8 2 9 | 1 0 0 8 2 9
4 9 4 /2 1 0 0 wu9s U93
_679_ _3/4 l32 1__0 O U33_
e second row of U, second column of L:
9 4 o 1/2 [ 2 9 7 . 1 0 U292 U253
79 3/4 o e 1 0 uss
g8 —1/2 1 1 0 8 —1/2
11/2 9/4 | o ] 11/16 1 0 w33
e third row of U: usgs =9/4 4+ 11/32 = 83/32
conclusion:
8 2 9] 1 0o o0][8 2 9 |
A=14 9 4| =1 1/2 1 0 0 8 —1/2
6 7 9 ] 3/4 11/16 1 1 L0 0 83/32 ]

LU factorization
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Not every nonsingular A can be factored as A = LU

1 0 0 1 0 0 | U111 U112 Uis
A= 0 O 2 = l21 1 0 0 U292 U253
] 0 1 —1 i ] l31 l32 1 1 L 0 0 uss i
e first row of U, first column of L:
1 0 o] [1 o0 Oofl[1 o0 0]
0O O 2 — 0 1 0 0 U292 U233
i 0 1 —1 i ] 0 132 1 1 L 0 0 uss |

e second row of U, second column of L:
o 2] | 1 O U22  U23
1 —1 | | I35 1 0 w33
UQQIO, UQ3:2, l320:17
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LU factorization (with row pivoting)

if A is n x n and nonsingular, then it can be factored as
A= PLU

P is a permutation matrix, L is unit lower triangular, U is upper triangular

e not unique; there may be several possible choices for P, L, U
e interpretation: permute the rows of A and factor P14 as P'A = LU

e also known as Gaussian elimination with partial pivoting (GEPP)

e cost: (2/3)n? flops
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Proof: by induction; show that if every nonsingular (n — 1) x (n — 1)
matrix has an LU factorization then the same is true for nonsingular
n X n-matrices

e if A is nonsingular, A cannot have an entirely zero column

e if a1y is zero, one can permute the rows of A such that

i pT 4 _ |0n 14:112
A_PlA_[A21 AQJ

where Ay has size (n — 1) x (n — 1) and @11 # 0

e the Schur complement of a7 in Als

. 1 ~ -
A22_~_A21A12

aii

and we know that it is nonsingular if Ais nonsingular
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e by assumption, this matrix can be factorized as

. 1 - -
Agg — — A1 A19 = PoLosUss
aii

e this provides the LU factorization of A:

(a1 Arg
A = P - N
" A A2J

_ p 1 O] au Ay

— Y0 B |PfAy, PLA,

_ p |1 0] [ au Aps ]
1 0 PQ_ _PgAQl L22U22+(1/&11)P2TA21A12

_ p 0| I 0][@11 A12]
L0 Py| [(1/a11)PdAsy Log| | 0 Us
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e so if we define

P=P1[1 0 1 o]) .

) L= ~ A
0 Pz] [(1/CL11)P2TA21 Lo

1
S
—
b—l
I
b—l
(\@)

| I

e then P is permutation matrix, L is unit lower triangular, U is upper
triangular and A = PLU
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Effect of rounding error

REEFTY

o !
~1-105 T 1_-10°

exact solution:

X1

let us solve the equations using LU factorization, rounding intermediate
results to 4 significant decimal digits

we will do this for the two possible permutation matrices:
1 0 0 1
P‘[o1] o P‘[1o]
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first choice of P: P = I (no pivoting)

107° 1] I 0 10~° 1
1 1| | 10° 1 0 1—10°

L, U rounded to 4 decimal significant digits

1 0 107° 1
L‘[105 1]’ U‘[ 0 —105]

forward substitution
1 0 21 .
10° 1 2o |

back substitution

107° 1 T 1
[ 0 —105”:1:;]:[—105] —  n=0, rp=1

error in z1 is 100%

(1) ] — z1 =1, 2z9= —105
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second choice of P: interchange rows
[1 1]_[1 0”1 1 ]
107° 1| | 107° 1 0 1—-10""°
L, U rounded to 4 decimal significant digits
L:[101—5 (” U:[(l) ”
forward substitution

o 1[5

backward substitution

1 1 I o 0 . o
oa]ln]=l] = e e

error in x1, xo is about 107°

LU factorization 7-22



Sparse linear equations

if A is sparse, it is usually factored as
A= P, LUP;
P; and P, are permutation matrices

e interpretation: permute rows and columns of A and factor A = PTAPS

A=TLU

e choice of P, and P greatly affects the sparsity of L and U: many
heuristic methods exist for selecting good permutations

e in practice: #flops < (2/3)n?; exact value is a complicated function of
n, number of nonzero elements, sparsity pattern
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Conclusion

different levels of understanding how linear equation solvers work:

highest level: x = A\b costs (2/3)n?; more efficient than x = inv(A)*b
intermediate level: factorization step A = PLU followed by solve step

lowest level: details of factorization A = PLU

e for most applications, level 1 is sufficient
e in some situations (e.g., multiple right-hand sides) level 2 is useful

e level 3 is important only for experts who write numerical libraries
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