5. Complexity of matrix algorithms

- flop counts
- vector-vector operations
- matrix-vector product
- matrix-matrix product

Flop counts

floating-point operation (flop)

- one floating-point addition, subtraction, multiplication, or division
- other common definition: one multiplication followed by one addition

flop counts of matrix algorithm

- total number of flops is typically a polynomial of the problem dimensions
- usually simplified by ignoring lower-order terms

applications

- a simple, machine-independent measure of algorithm complexity
- not an accurate predictor of computation time on modern computers

Vector-vector operations

- inner product of two n-vectors

$$
x^{T} y=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

n multiplications and $n-1$ additions $=2 n-1$ flops $(2 n$ if $n \gg 1)$

- addition or subtraction of n-vectors: n flops
- scalar multiplication of n-vector : n flops

Matrix-vector product

matrix-vector product with $m \times n$-matrix A :

$$
y=A x
$$

m elements in y; each element requires an inner product of length n :

$$
(2 n-1) m \text { flops }
$$

approximately $2 m n$ for large n

special cases

- $m=n, A$ diagonal: n flops
- $m=n, A$ lower triangular: $n(n+1)$ flops
- A very sparse (lots of zero coefficients): \#flops $\ll 2 m n$

Matrix-matrix product

product of $m \times n$-matrix A and $n \times p$-matrix B :

$$
C=A B
$$

$m p$ elements in C; each element requires an inner product of length n :

$$
m p(2 n-1) \text { flops }
$$

approximately $2 m n p$ for large n

Exercises

1. evaluate $y=A B x$ two ways (A and B are $n \times n, x$ is a vector)

- $y=(A B) x($ MATLAB: $\mathrm{C}=\mathrm{A} * \mathrm{~B} ; \mathrm{y}=\mathrm{C} * \mathrm{x} ;)$
- $y=A(B x)$ (MATLAB: $\mathrm{z}=\mathrm{B} * \mathrm{x} ; \mathrm{y}=\mathrm{A} * \mathrm{z} ;$)
both methods give the same answer, but which method is faster?

2. evaluate $y=\left(I+u v^{T}\right) x$ where u, v, x are n-vectors

- $A=I+u v^{T}$ followed by $y=A x\left(\right.$ MATLAB: $\left.\mathrm{y}=\left(\operatorname{eye}(\mathrm{n})+\mathrm{u} * \mathrm{v}^{\prime}\right) * \mathrm{x}\right)$
- $w=\left(v^{T} x\right) u$ followed by $y=x+w\left(\right.$ MATLAB: $\left.\mathrm{y}=\mathrm{x}+\left(\mathrm{v}^{\prime} * \mathrm{x}\right) * \mathrm{u}\right)$

References

Lecture notes on
Complexity of matrix algorithms, EE103, L. Vandenberhge, UCLA

