
EE507 - Computational Techniques for EE Jitkomut Songsiri

6. Cholesky factorization

• triangular matrices

• forward and backward substitution

• the Cholesky factorization

• solving Ax = b with A positive definite

• inverse of a positive definite matrix

• permutation matrices

• sparse Cholesky factorization
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Triangular matrix

a square matrix A is lower triangular if aij = 0 for j > i

A =













a11 0 · · · 0 0
a21 a22 · · · 0 0
... ... . . . 0 0

an−1,1 an−1,2 · · · an−1,n−1 0
an1 an2 · · · an,n−1 ann













A is upper triangular if aij = 0 for j < i (AT is lower triangular)

a triangular matrix is unit upper/lower triangular if aii = 1 for all i
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Forward substitution

solve Ax = b when A is lower triangular with nonzero diagonal elements









a11 0 · · · 0
a21 a22 · · · 0
... ... . . . ...

an1 an2 · · · ann

















x1

x2

...
xn









=









b1
b2
...
bn









algorithm:

x1 := b1/a11

x2 := (b2 − a21x1)/a22

x3 := (b3 − a31x1 − a32x2)/a33
...

xn := (bn − an1x1 − an2x2 − · · · − an,n−1xn−1)/ann

cost: 1 + 3 + 5 + · · ·+ (2n− 1) = n2 flops
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Back substitution

solve Ax = b when A is upper triangular with nonzero diagonal elements









a11 · · · a1,n−1 a1n
... . . . ... ...
0 · · · an−1,n−1 an−1,n

0 · · · 0 ann

















x1

...
xn−1

xn









=









b1
...

bn−1

bn









algorithm:

xn := bn/ann

xn−1 := (bn−1 − an−1,nxn)/an−1,n−1

xn−2 := (bn−2 − an−2,n−1xn−1 − an−2,nxn)/an−2,n−2

...

x1 := (b1 − a12x2 − a13x3 − · · · − a1nxn)/a11

cost: n2 flops
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Inverse of a triangular matrix

triangular matrix A with nonzero diagonal elements is nonsingular

• Ax = b is solvable via forward/back substitution; hence A has full range

• therefore A has a zero nullspace, is invertible, etc. (see p.4-8)

inverse

• can be computed by solving AX = I column by column

A
[

X1 X2 · · · Xn

]

=
[

e1 e2 · · · en
]

• inverse of lower triangular matrix is lower triangular

• inverse of upper triangular matrix is upper triangular
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Cholesky factorization

every positive definite matrix A can be factored as

A = LLT

where L is lower triangular with positive diagonal elements

cost: (1/3)n3 flops if A is of order n

• L is called the Cholesky factor of A

• can be interpreted as ‘square root’ of a positive define matrix

Cholesky factorization 6-6



Cholesky factorization algorithm

partition matrices in A = LLT as

[

a11 AT
21

A21 A22

]

=

[

l11 0
L21 L22

] [

l11 LT
21

0 LT
22

]

=

[

l2
11

l11L
T
21

l11L21 L21L
T
21

+ L22L
T
22

]

algorithm

1. determine l11 and L21:

l11 =
√
a11, L21 =

1

l11
A21

2. compute L22 from
A22 − L21L

T
21

= L22L
T
22

this is a Cholesky factorization of order n− 1
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proof that the algorithm works for positive definite A of order n

• step 1: if A is positive definite then a11 > 0

• step 2: if A is positive definite, then

A22 − L21L
T
21

= A22 −
1

a11
A21A

T
21

is positive definite (see page 4-28)

• hence the algorithm works for n = m if it works for n = m− 1

• it obviously works for n = 1; therefore it works for all n
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Example





25 15 −5
15 18 0
−5 0 11



 =





l11 0 0
l21 l22 0
l31 l32 l33









l11 l21 l31
0 l22 l32
0 0 l33





• first column of L




25 15 −5
15 18 0
−5 0 11



 =





5 0 0
3 l22 0

−1 l32 l33









5 3 −1
0 l22 l32
0 0 l33





• second column of L
[

18 0
0 11

]

−
[

3
−1

]

[

3 −1
]

=

[

l22 0
l32 l33

] [

l22 l32
0 l33

]

[

9 3
3 10

]

=

[

3 0
1 l33

] [

3 1
0 l33

]
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• third column of L: 10− 1 = l2
33
, i.e., l33 = 3

conclusion:





25 15 −5
15 18 0
−5 0 11



 =





5 0 0
3 3 0

−1 1 3









5 3 −1
0 3 1
0 0 3




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Solving equations with positive definite A

Ax = b (A positive definite of order n)

algorithm

• factor A as A = LLT

• solve LLTx = b

– forward substitution Lz = b
– back substitution LTx = z

cost: (1/3)n3 flops

• factorization: (1/3)n3

• forward and backward substitution: 2n2
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Inverse of a positive definite matrix

suppose A is positive definite with Cholesky factorization A = LLT

• L is invertible (its diagonal elements are nonzero)

• X = L−TL−1 is a right inverse of A:

AX = LLTL−TL−1 = LL−1 = I

• X = L−TL−1 is a left inverse of A:

XA = L−TL−1LLT = L−TLT = I

• hence, A is invertible and

A−1 = L−TL−1
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Summary

if A is positive definite of order n

• A can be factored as LLT

• the cost of the factorization is (1/3)n3 flops

• Ax = b can be solved in (1/3)n3 flops

• A is invertible with inverse: A−1 = L−TL−1
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Sparse positive definite matrices

• a matrix is sparse if most of its elements are zero

• a matrix is dense if it is not sparse

Cholesky factorization of dense matrices

• (1/3)n3 flops

• on a current PC: a few seconds or less, for n up to a few 1000

Cholesky factorization of sparse matrices

• if A is very sparse, then L is often (but not always) sparse

• if L is sparse, the cost of the factorization is much less than (1/3)n3

• exact cost depends on n, #nonzero elements, sparsity pattern

• very large sets of equations (n ∼ 106) are solved by exploiting sparsity
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Effect of ordering

sparse equation (a is an (n− 1)-vector with ‖a‖ < 1)

[

1 aT

a I

] [

u
v

]

=

[

b
c

]

factorization
[

1 aT

a I

]

=

[

1 0
a L22

] [

1 aT

0 LT
22

]

where I − aaT = L22L
T
22

= ×

factorization with 100% fill-in
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reordered equation

[

I a
aT 1

] [

v
u

]

=

[

c
b

]

factorization

[

I a
aT 1

]

=

[

I 0

aT
√
1− aTa

] [

I a

0
√
1− aTa

]

= ×

factorization with zero fill-in
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Permutation matrices

a permutation matrix is the identity matrix with its rows reordered, e.g.,





0 1 0
1 0 0
0 0 1



 ,





0 1 0
0 0 1
1 0 0





• the vector Ax is a permutation of x





0 1 0
0 0 1
1 0 0









x1

x2

x3



 =





x2

x3

x1





• ATx is the inverse permutation applied to x





0 0 1
1 0 0
0 1 0









x1

x2

x3



 =





x3

x1

x2





• ATA = AAT = I , so A is invertible and A−1 = AT
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Solving Ax = b when A is a permutation matrix

the solution of Ax = b is x = AT b

example




0 1 0
0 0 1
1 0 0









x1

x2

x3



 =





1.5
10.0
−2.1





solution is x = (−2.1, 1.5, 10.0)

cost: zero flops

Cholesky factorization 6-18



Sparse Cholesky factorization

if A is sparse and positive definite, it is usually factored as

A = PLLTP T

P a permutation matrix; L lower triangular with positive diagonal elements

interpretation: we permute the rows and columns of A and factor

P TAP = LLT

• choice of P greatly affects the sparsity L

• many heuristic methods (that we don’t cover) exist for selecting good
permutation matrices P
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Example

sparsity pattern of A Cholesky factor of A

pattern of P TAP Cholesky factor of P TAP
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Solving sparse positive definite equations

solve Ax = b via factorization A = PLLTP T

algorithm

1. b̃ := P Tb

2. solve Lz = b̃ by forward substitution

3. solve LTy = z by back substitution

4. x := Py

interpretation: we solve
(P TAP ) y = b̃

using the Cholesky factorization of P TAP
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