EE507 - Computational Techniques for EE Jitkomut Songsiri

6. Cholesky factorization

e triangular matrices

e forward and backward substitution

e the Cholesky factorization

e solving Ax = b with A positive definite
e inverse of a positive definite matrix

e permutation matrices

e sparse Cholesky factorization
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Triangular matrix

a square matrix A is lower triangular if a;; = 0 for j > ¢

ail 0 cee 0 0
a1 a9 cee 0 0
A= s s 0 0
Un—11 Gn—12 -+ Qap—1n—1 0
i An1 An2 T Ap n—1 Ann i

A is upper triangular if a;; = 0 for j < i (A? is lower triangular)

a triangular matrix is unit upper/lower triangular if a;; = 1 for all 4
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Forward substitution

solve Az = b when A is lower triangular with nonzero diagonal elements

aii 0 s 0 I bl
a1 az2 --- O xo | | b2
i ani an2 Ann 1 L Ln | i bn |
algorithm:

L1 p— bl/all
ry = (by— as171)/as2
xr3 = (b3 — asz1rq — &32582)/&33
Lyp = (bn — Ap1l1 — Ap2x2 — =+ — an,n—lxn—l)/ann

cost: 1 +3+5+---+(2n —1) = n? flops

Cholesky factorization
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solve Az = b when

aii

algorithm:

cost: n? flops

Cholesky factorization

Back substitution

A is upper triangular with nonzero diagonal elements

a1,n—1 A1n X1 b1
Un—1,n—1 Qn—1n Ln—1 bn—l
0 Ann, Tn b,,
bn/ann

(bn—l_"@n—lmg%)/an—Ln—l

(bn—2_"@n—ln—1xn—1_"an—ngM)/an—Zn—Q

(bl — 122 — Q133 — *** — alnxn)/all
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Inverse of a triangular matrix

triangular matrix A with nonzero diagonal elements is nonsingular

e Ax = b is solvable via forward /back substitution; hence A has full range

e therefore A has a zero nullspace, is invertible, etc. (see p.4-8)

inverse

e can be computed by solving AX = I column by column

A[Xl X2 Xn}:[el €y - Gn]

e inverse of lower triangular matrix is lower triangular

e inverse of upper triangular matrix is upper triangular
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Cholesky factorization

every positive definite matrix A can be factored as
A=LL"

where L is lower triangular with positive diagonal elements

cost: (1/3)n® flops if A is of order n

e L is called the Cholesky factor of A

e can be interpreted as ‘square root’ of a positive define matrix

Cholesky factorization 6-6



Cholesky factorization algorithm

partition matrices in A = LL' as

aiq Agl _ | l11 0 l11 Lgl
Agl AQQ i L21 L22 0 L%;
_ | G l11 L5,
| l11Lo1  LoiL3y + LooL3,

algorithm

1. determine [;1 and Loq:

1
[11 = v/a11, Loy = Z_A21
11

2. compute Loy from
Aoy — Loy Ly = LooLd,

this is a Cholesky factorization of order n — 1
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proof that the algorithm works for positive definite A of order n

o step 1: if A is positive definite then a1 > 0

o step 2: if A is positive definite, then

1
Agg — Log L, = Aoy — a—A21A§1
11

is positive definite (see page 4-28)
e hence the algorithm works for n = m if it works for n =m — 1

e it obviously works for n = 1; therefore it works for all n
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25
15

15
18

-5 0

e first column of L

25 15

15 18

5 0

—H

0| =

11

—5
0

11

e second column of L

18
0

Cholesky factorization

o1-[ 3]0

9
3 1

Example

lll
121

0
l22

31 32

3 Iy

T

5!
0
0

3

[29
0

l22

I3
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e third column of L: 10 — 1 = I35, i.e., I33 = 3

conclusion:
25 15 —5 | 5 0 0][5 3 —1]
15 18 0 | = 3 3 0 0 3 1
-5 0 11 -1 1 3]0 0 3]
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Solving equations with positive definite A

Az =D (A positive definite of order n)

algorithm

e factor A as A= LLT
e solve LLTxz =10

— forward substitution Lz = b
— back substitution LTx = 2

cost: (1/3)n° flops

e factorization: (1/3)n?®

e forward and backward substitution: 2n?
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Inverse of a positive definite matrix

suppose A is positive definite with Cholesky factorization A = LL*

e L is invertible (its diagonal elements are nonzero)
o X = L TL7!is aright inverse of A:

AX = LL'L 'L ' =LL '=1T

e X = L TL1isaleft inverse of A:

XA=L1r7 'L =L 11" =171

e hence, A is invertible and

A—l — L—TL—l
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Summary

if A is positive definite of order n

e A can be factored as LL"T

e the cost of the factorization is (1/3)n? flops

e Ax = b can be solved in (1/3)n? flops

e A is invertible with inverse: A=! = -7 -1

Cholesky factorization 6-13



Sparse positive definite matrices

e a matrix is sparse if most of its elements are zero

e a matrix is dense if it is not sparse

Cholesky factorization of dense matrices

e (1/3)n3 flops

e on a current PC: a few seconds or less, for n up to a few 1000
Cholesky factorization of sparse matrices

e if A is very sparse, then L is often (but not always) sparse
e if L is sparse, the cost of the factorization is much less than (1/3)n?
e exact cost depends on n, #nonzero elements, sparsity pattern

e very large sets of equations (n ~ 10°) are solved by exploiting sparsity
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Effect of ordering

sparse equation (a is an (n — 1)-vector with ||a|| < 1)

1 al u | |0b
a I v | | c
factorization

1 a’ 1 0 1 al T T
[a 7 ]_[a ng][() L2TQ]WhereI—aa = Loo L5,

factorization with 100% fill-in
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reordered equation

factorization

factorization with zero fill-in

Cholesky factorization
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a permutation matrix is the identity matrix with its rows reordered, e.g.,

e the vector Ax is a permutation of x

Permutation matrices

o = O

_ o O

o O =

o O =

_ o O

O = O

o Az is the inverse permutation applied

o ATA=AAT =1 so A isinvertible and A~1 = AT

Cholesky factorization

O = O

_ o O

o O =

L1
L2
x3

0 1
0 O
1 0
tox

o = O
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Solving Ax = b when A is a permutation matrix

the solution of Ax =bis x = ALb

example i o ) ) )
0 1 0 1 1.5
0 0 1 xo | = | 10.0

1 0 0] | 23 - —2.1 |

solution is z = (—2.1,1.5,10.0)

cost: zero flops
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Sparse Cholesky factorization

if A is sparse and positive definite, it is usually factored as
A=PLL"P*
P a permutation matrix; L lower triangular with positive diagonal elements

interpretation: we permute the rows and columns of A and factor

PYAP = LLT

e choice of P greatly affects the sparsity L

e many heuristic methods (that we don't cover) exist for selecting good
permutation matrices P
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Example

sparsity pattern of A Cholesky factor of A

2501 & s 250

ol

500 500
0

250 500 0 250 500

Cholesky factor of PT AP

0 0
250 250
500 500 '
0 250 500 0 250 500

Cholesky factorization 6-20



Solving sparse positive definite equations

solve Ax = b via factorization A = PLLT PT

algorithm

1. b:= PTb
2. solve Lz = b by forward substitution

3. solve LTy = z by back substitution
4. x:= Py

interpretation: we solve .
(PTAP)y =b

using the Cholesky factorization of PY AP
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