EE401 (Semester 1) Jitkomut Songsiri

8. Terminology in Random Processes

e definition and specification of RPs
e statistics: pdf, cdf, mean, variance

e statistical properties: independence, correlation, orthogonal, stationarity
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Definition

elements to be considered:

e let © be a random variable (that its outcome, 6 is mapped from a
sample space 5)

e let ¢ be a deterministic value (referred to as 'time') and t € T

definition:

a family (or ensemble) of random variables indexed by ¢
1X(t,0),tel}

is called a random (or stochastic) process

X (t,0) when O is fixed, is called a realization or sample path
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example: random telegraph

signal
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Specifying RPs
consider an RP { X (¢,0),t € T} when © is mapped from a sample space S

we often use the notation X (¢) to refer to an RP (just drop ©)

e if T is a countable set then X (¢,0) is called discrete-time RP
e if T is an uncountable set then X (¢,0) is called continuous-time RP
e if S is a countable set then X (¢,0) is called discrete-valued RP

e if S is an uncountable set then X (¢,©) is called continuous-valued RP

another notation for discrete-time RP is X [n] where n is the time index
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From RV to RP

terms RV RP

cdf FX (ZC) FX(t)(ib)

pdf (continuous-valued) fx(x) fx@ ()

pmf (discrete-valued) p(x p(x)

mean m = E[X] m(t)=E[X(t)]

autocorrelation E[X?] R(t1,t2) = E[X (t1) X (t2)]
variance var|X] var| X (t)]

autocovariance C(t1,t2) = cov[X(t1), X (t2)]
cross-correlation E[XY] Rxvy(t1,t2) = E[X (t1)Y (t2)]
cross-covariance cov(X,Y) Cxy(t1,ta) =cov|[X(t1),Y (t2)]
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Distribution functions of RP (time sampled)

let sampling RP X (¢,0) at times t1,1s,...,tk
X1 = X(t1,0), Xo=X(t2,0),..., X = X(t1,©)

this (X1,..., X%) is a vector RV

cdf of continuous-valued RV
F(Qfl,ZIfQ,...,.CUk) — P[X(tl) < xla'“aX(tk) < xk]

pdf of continuous-valued RV

f(xth,...,ZCk)dZEl dajk =

Plry < X(t1) < x1 +dzxy, ..., 05 < X(tr) < 21 + dog]
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pmf of discrete-valued RV

p(xlax%"'?xk) :P[X(tl) :xla'”?X(tk) :ZCk]

e we have specified distribution functions from any time samples of RV

e the distribution is specified by the collection of kth-order joint
cdf/pdf/pmf

e we have droped notation fx, . x.(1,...,z) tosimply f(x1,...,zk)
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Statistics

the mean function of an RP is defined by

oo

m(t) =BLXW) = [ afxolo)ds

varlX (0] = BI(X() = (@) = [ (@ = m(0)xofede

— OO
e both mean and variance functions are deterministic functions of time

e for discrete-time RV, another notation may be used: m|n] where n is
time index
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the autocorrelation of X (t) is the joint moment of RP at different times

oo

R(t1,t2) = E[X (t1) X (t2)] = / TYFx (1) X (t2) (T, y)dzdy

— 00

the autocovariance of X () is the covariance of X (1) and X (¢2)

C(t1,t2) = B(X(t1) — m(t1))(X (t2) — m(t2))]

relations:
® C(tl, t2) — R(tl, t2) — M(tl)M(tQ)

o var[X(t)] = C(t,1)

another notation for discrete-time RV: R(m,n) or C(m,n) where m,n are
(integer) time indices
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Joint distribution of RPs

let X(¢) and Y (¢) be two RPs

let (¢1,...,tx) and (7q,...,7%) be time samples of X (¢) and Y (), resp.

we specify joint distribution of X (¢) and Y (¢) from all possible time
choices of time samples of two RPs

fXY(xla--kazaylw--ayk)dxl"'dxkdyl”'dyk: =
Plzy < X(t1) < z1+dxy, ..o < X(Eg) < op + dy,

y1 <Y(m) <y +dyr,. ..,y < Y(7%) < yr + dyi]

note that time indices of X (¢) and Y (¢) need not be the same
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Statistics of multiple RPs

the cross-correlation of X (¢) and Y (¢) is defined by
Rxy(t1,t2) = B[X (11)Y ({2)]

(correlation of two RPs at different times)

the cross-covariance of X (¢) and Y (¢) is defined by

Cxy(t1,t2) = E[(X(t1) — mx (1)) (Y (t2) — my (2))]

relation: ny(tl, tg) — ny(tl, tg) — mx(tl)my(tg)
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more definitions:

two RPs X (t) and Y (¢) are said to be

e independent if
their joint cdf can be written as a product of two marginal cdf's

mathematically,

Fxy(zi, .. T, y1, - Yk) = Fx(x1, ..., 26) Fy (Y1, -, Yr)

e uncorrelated if

Cxy(ti1,t2) =0, for all t; and ¢

e orthogonal if
ny(tl,tg) = O, for all tl and tg
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Stationary process

an RP is said to be stationary if the kth-order joint cdf’s of
X(t1),...,X(tr), and X(t1+7),...,X(tx +7)

are the same, for all time shifts 7 and all k£ and all choices of t1,..., %%

in other words, randomness of RP does not change with time

results: a stationary process has the following properties

e the mean is constant and independent of time: m(t) = m for all ¢

e the variance is constant and independent of time
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more results on stationary process:

e the first-order cdf is independent of time

FX(t) (ZC) = FX(t—I—T) (.CC) = FX(ZC), \V/t, T

e the second-order cdf only depends on the time difference between
samples

FX(tl),X(t2)(iC1,iC2) — FX(O),X(tg—tl)(iChZ@), Vii,to

e the autocovariance and autocorrelation can depend only on t5 — t4

R(t1,t2) = R(ta —t1), Cl(t1,ts) = C(ta —t1), Viti,to
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Wide-sense stationary process

if an RP X (¢) has the following two properties:

e the mean is constant: m(t) = m for all ¢

e the autocovariance is a function of t5 — t1 only:
C(t1,t2) = Clt1 — ta), Vi1, ts

then X (t) is said to be wide-sense stationary (WSS)

e all stationary RPs are wide-sense stationary (converse is not true)

e WSS is related to the concept of spectral density (later discussed)
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Independent identically distributed processes

let X [n] be a discrete-time RP and for any time instances nq,...,ng
X1:X[n1],X2:X[n2], Xk:X[nk]

definition: iid RP X[n| consists of a sequence of independent, identically
distributed (iid) random variables

X1, Xo, ..., Xg

with common cdf (in other words, same statistical properties)

this property is commonly assumed in applications for simplicity
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results: an iid process has the following properties

e the joint cdf of any time instances factors to the product of cdf's

F(xy,...,x1) = P X1 <x1,..., X < xp] = F(a1)F(x2) -+ F(xk)

e the mean is constant

mn] = E|X[n]] =m, Vn

e the autocovariance function is a delta function

C(ni,n2) =0, for ny #ne, C(n,n) =02 E[(X[n] —m))?

e the autocorrelation function is given by

R(ni,n2) = C(ny,ng) + m?>
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Independent and stationary increment property

let X (¢) be an RP and consider the interval t; < t5

defitions:

e X(t2) — X(t1) is called the increment of RP in the interval t; <t < t5
e X (t) is said to have independent increments if
X(ta) — X(t1), X(t3) — X(t2),..., X (tx) — X(tx_1)
are independent RV where t; < t5 < --- <t} (non-overlapped times)
e X (1) is said to have stationary increments if
PX(t2) = X(t1) =y = P|X(t2 — t1) =y

the increments in intervals of the same length have the same
distribution regardless of when the interval begins
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results:

e the joint pdf of X (¢1),..., X () is given by the product of pdf of
X (t1) and the marginals of individual increments

we will see this result in the properties of a sum process

Terminology in Random Processes 8-20



Jointly stationary process

X (t) and Y (t) are said to be jointly stationary if the joint cdf’s of
X(tl,...,tk;) and Y(Tl,...,Tk)

do not depend on the time origin for all k£ and all choices of (1,..., )
and (71,...,7k)
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Periodic and Cyclostationary processes

X (t) is called wide-sense periodic if there exists T' > 0,

e m(t)=m(t+T) forall t (mean is periodic)
® C(tla t2) — C(tl + T7 t2) — C(tla t2 + T) — C(tl + T7 t2 + T),

for all ¢1,ts, (covariance is periodic in each of two arguments)
X (t) is called wide-sense cyclostationary if there exists T' > 0,

e m(t)=m(t+T) forall t (mean is periodic)
® C(tl,tg) = C(tl + T, tg + T) for all tl,tg

(covariance is periodic in both of two arguments)
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facts:

e sample functions of a wide-sense periodic RP are periodic with
probability 1
Xt)=X{t+T), forallt

except for a set of outcomes of probability zero

e sample functions of a wide-sense cyclostationary RP need NOT be
periodic

examples:

e sinusoidal signal with random amplitude (page 10-4) is wide-sense
cyclostationary and sample functions are periodic

e PAM signal (page 10-19) is wide-sense cyclostationary but sample
functions are not periodic
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Stochastic periodicity

definition: a continuous-time RP X (¢) is mean-square periodic with
period 1T, if
E[(X(t+T) - X(1))4 = 0

let X (¢) be a wide-sense stationary RP

X (t) is mean-square periodic if and only if
R(t)=R(r+T), forallr

i.€e., Its autocorrelation function is periodic with period T°
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Ergodic random process

the time average of a realization of a WSS RP is defined by

() = Tim — / 2(t)dt

T— o0 2T -T

the time-average autocorrelation function is defined by

(2O (t + 7)) :Tli_{nooziT/_T:v(t)x(t—kT)dt

e if the time average is equal to the ensemble average, we say the RP is
ergodic in mean

e if the time-average autocorrelation is equal to ensemble autocorrelation
then the RP is ergodic in the autocorrelation
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definition: a WSS RP is ergodic if ensemble averages can be calculated
using time averages of any realization of the process

e ergodic in mean: (x(t)) = E[X(t)]

e ergodic in autocorrelation: (z(t)x(t+ 7)) = E[X(¢) X (¢t + 7)]

calculus of random process (derivative, integrals) is discussed in
mean-square sense

see Leon-Garcia, Section 9.7.2-9.7.3
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