

Outline

1 Vector space

Linear algebra and applications Jitkomut Songsiri 2 / 41

101181121121 2 990

How to read this handout

- 1 the note is used with lecture in EE205 (you cannot master this topic just by reading this note) – class activities include
	- **graphical concepts, math derivation of details/steps in between**
	- computer codes to illustrate examples
- 2 always read 'textbooks' after lecture
- 3 pay attention to the symbol S; you should be able to prove such S result
- 4 each chapter has a list of references; find more formal details/proofs from in-text citations
- 5 almost all results in this note can be Googled; readers are encouraged to 'stimulate neurons' in your brain by proving results without seeking help from the Internet first
- 6 typos and mistakes can be reported to jitkomut@gmail.com

Vector space

Outline

- **definition**
- linear independence
- **basis and dimension**
- coordinate and change of basis
- **n** range space and null space
- **n** rank and nullity

Elements of vector space

- a vector space or linear space (over **R**) consists of
	- \blacksquare a set $\mathcal V$
	- **a** vector sum + : $\mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$
	- **a** scalar multiplication : $\mathbf{R} \times \mathcal{V} \rightarrow \mathcal{V}$
	- a distinguished element 0 *∈ V*

which satisfy a list of properties

properties under addition

$$
\blacksquare \ x + y \in \mathcal{V} \quad \forall x, y \in \mathcal{V}
$$

-
- $(x + y) + z = x + (y + z)$, $\forall x, y, z \in \mathcal{V}$ (+ is associative)
-
- $\forall x \in \mathcal{V} \exists (-x) \in \mathcal{V} \text{ s.t. } x + (-x) = 0$ **(existence of additive inverse)**

properties under scalar multiplication

-
-
-
-
-

 $(closed under addition)$ **a** $x + y = y + x$, $\forall x, y \in \mathcal{V}$ (+ is commutative) **■** $0 + x = x$, $\forall x \in V$ (0 is additive identity)

■ $\alpha x \in V$ for any $\alpha \in \mathbf{R}$ (closed under scalar multiplication) $(αβ)x = α(βx)$, $∀α, β ∈ **R** ∀x ∈ V$ (scalar multiplication is associative) *a* $\alpha(x + y) = \alpha x + \alpha y, \forall \alpha \in \mathbb{R} \ \forall x, y \in \mathcal{V}$ (right distributive rule) $(α + β)x = αx + αy, ∀α, β ∈ **R** ∀x ∈ V$ (left distributive rule) **1** $x = x, \forall x \in \mathcal{V}$ **(1 is multiplicative identity)**

Linear algebra and applications Jitkomut Songsiri 7 / 41

. .

notation

- (*V,* **R**) denotes a vector space *V* over **R**
- an element in V is called a **vector**

Theorem: let *u* be a vector in *V* and *k* a scalar; then

- **0** $u = 0$ (multiplication with zero gives the zero vector)
- $k0 = 0$ (multiplication with the zero vector gives the zero vector)
- (*−*1)*u* = *−u* (multiplication with *−*1 gives the additive inverse)
- if $ku = 0$, then $k = 0$ or $u = 0$

roughly speaking, a vector space must satisfy the following operations

1 **vector addition**

$$
x, y \in \mathcal{V} \quad \Rightarrow \quad x + y \in \mathcal{V}
$$

2 **scalar multiplication**

for any $\alpha \in \mathbf{R}, x \in \mathcal{V} \Rightarrow \alpha x \in \mathcal{V}$

the second condition implies that a vector space contains the **zero vector**

 $0 \in \mathcal{V}$

in other words, if $\mathcal V$ is a vector space then $0 \in \mathcal V$

(but the converse is *not true*)

Linear algebra and applications **Algebra** and applications **Jitkomut Songsiri**

Examples

the following sets are vector spaces (over **R**)

- **R** *n*
- *{*0*}*
- **R** *m×n*
- $C^{m \times n}$: set of $m \times n$ -complex matrices
- **P***n*: set of polynomials of degree *≤ n*

$$
\mathbf{P}_n = \{p(t) \mid p(t) = a_0 + a_1 t + \dots + a_n t^n\}
$$

- **S** *n* : set of symmetric matrices of size *n*
- *C*(*−∞, ∞*): set of real-valued continuous functions on (*−∞, ∞*)
- *C n* (*−∞, ∞*): set of real-valued functions with continuous *n*th derivatives on (*−∞, ∞*)

✎ check whether any of the following sets is a vector space (over **R**)

- *{*0*,* 1*,* 2*,* 3*, . . .}*
- \int [1] 2] *,* [*−*1 0] *,* $\lceil 0 \rceil$ 0]}
- $\sqrt{ }$ $x \in \mathbb{R}^2$ | $x =$ $\lceil x_1 \rceil$ 0] *, x*¹ *∈* **R** \mathcal{L}
- $\{p(x) \in \mathbf{P}_2 \mid p(x) = a_1x + a_2x^2 \text{ for some } a_1, a_2 \in \mathbf{R}\}\$

Subspace

- a **subspace** of a vector space is a *subset* of a vector space which is itself a vector space
- a subspace is closed under vector addition and scalar multiplication

examples:

- $\{0\}$ is a subspace of \mathbb{R}^n
- $\mathbf{R}^{m \times n}$ is a subspace of $\mathbf{C}^{m \times n}$
- $\{x \in \mathbb{R}^2 \mid x_1 = 0\}$ is a subspace of \mathbb{R}^2
- $\{x \in \mathbb{R}^2 \mid x_2 = 1\}$ is not a subspace of \mathbb{R}^2
- $\left\{ \begin{bmatrix} 1 & 4 \\ -3 & 2 \end{bmatrix}, \right.$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is not a subspace of $\mathbf{R}^{2\times 2}$
- the solution set $\{x \in \mathbf{R}^n \mid Ax = b\}$ for $b \neq 0$ is a not subspace of \mathbf{R}^n

Examples of subspace

two hyperplanes; one is a subspace but the other one is not

 $2x_1 - 3x_2 + x_3 = 0$ (yellow), $2x_1 - 3x_2 + x_3 = 20$ (grey)

x = (*−*3*, −*2*,* 0) and *y* = (1*, −*1*, −*5) are on the yellow plane, and so is *x* + *y x* = (*−*3*, −*2*,* 20) and *y* = (1*, −*1*,* 15) are on the grey plane, but *x* + *y* is not

Linear Independence

Definition: a set of vectors $\{v_1, v_2, \ldots, v_n\}$ is **linearly independent** if

 $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n = 0 \Longrightarrow \alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$

equivalent conditions:

 \blacksquare coefficients of $\alpha_1v_1 + \alpha_2v_2 + \cdots + \alpha_nv_n$ are uniquely determined, i.e.,

 $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n = \beta_1 v_1 + \beta_2 v_2 + \cdots + \beta_n v_n$

implies $\alpha_k = \beta_k$ for $k = 1, 2, \ldots, n$

 \blacksquare no vector v_i can be expressed as a linear combination of the other vectors

Examples

Linear span

Definition: the linear span of a set of vectors

*{v*1*, v*2*, . . . , vn}*

is the set of all linear combinations of v_1, \ldots, v_n

$$
span\{v_1, v_2, \dots, v_n\} = \{a_1v_1 + a_2v_2 + \dots + a_nv_n \mid a_1, \dots, a_n \in \mathbf{R}\}\
$$

example:

 $\text{span}\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \right.$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ is the set of 2 × 2 symmetric matrices

Fact: if v_1, \ldots, v_n are vectors in V , $\text{span}\{v_1, \ldots, v_n\}$ is a subspace of V

Basis and dimension

definition: set of vectors $\{v_1, v_2, \cdots, v_n\}$ is a **basis** for a vector space V if

- \bullet $\{v_1, v_2, \ldots, v_n\}$ is linearly independent
- $V =$ span $\{v_1, v_2, \ldots, v_n\}$

equivalent condition: *every* $v \in V$ can be *uniquely* expressed as

 $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$

definition: the **dimension** of V , denoted $\dim(V)$, is the number of vectors in a basis for *V*

Theorem: the number of vectors in *any* basis for *V* is the same

(we assign $\dim\{0\} = 0$)

Examples

Example

let $\mathcal{V} = \{p \in \mathbf{P}_2 \mid p(2) = 0 \}$ find a basis for \mathcal{V}

- \blacksquare \cong verify that $\mathcal V$ is a subspace for $\mathsf P_2$
- characterize the space $\mathcal V$

$$
p(t) = a_0 + a_1t + a_2t^2, \quad p(2) = a_0 + 2a_1 + 4a_2 = 0
$$

therefore, any $p(t) \in \mathcal{V}$ takes the form

$$
p(t) = -2a_1 - 4a_2 + a_1t + a_2t^2 = a_1(t-2) + a_2(t^2 - 4), \quad a_1, a_2 \in \mathbf{R}
$$

- we have shown that $p(t) \in \text{span}\{t-2, t^2-4\}$
- we can verify that $\{t-2, t^2-4\}$ is LI
- therefore ${t-2, t^2-4}$ is a basis for V and $\dim({t-2, t^2-4}) = 2$

Standard basis for **S** 3

any $A \in \mathbf{S}^3$ can be expressed as

$$
A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} = a_{11} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{12} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{13} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}
$$

$$
+ a_{23} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} + a_{33} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

$$
\triangleq a_{11}E_{11} + a_{12}E_{12} + a_{13}E_{13} + a_{23}E_{23} + a_{33}E_{33}
$$

- we have shown that $A \in \text{span}\{E_{11}, E_{12}, E_{13}, E_{23}, E_{33}\}$
- verify that ${E_{11}, E_{12}, E_{13}, E_{23}, E_{33}}$ is LI
- hence, $\{E_{11}, E_{12}, E_{13}, E_{23}, E_{33}\}$ is a basis for ${\sf S}^3$ and $\dim({\sf S}^3)=5$

Review questions

- ✎ answer the questions and explain a reason
	- \blacksquare find the standard basis for $\boldsymbol{\mathsf{S}}^n$
	- $\overline{P_2}$ can $\{E_{11}, E_{12}, E_{13}, E_{21}, E_{22}, E_{23}, E_{31}, E_{32}, E_{33}\}$ be a basis for $\textbf{S}^3?$
- 3 can $\{E_{11}, E_{12}, E_{13}, E_{23}, E_{33}\}$ be a basis for ${\bf R}^{3\times 3}$?
- $\mathbf{4}$ let $\mathcal{V} = \{ \ x \in \mathbf{R}^n \ | \ \sum_i x_i = 0 \ \}$
	- **c** can $\{e_1, e_2, \ldots, e_n\}$ (standard basis) be a basis for V ?
	- is it possible to find two different bases for V ?

Coordinates

let $S = \{v_1, v_2, \ldots, v_n\}$ be a basis for a vector space $\mathcal V$

suppose a vector *v ∈ V* can be written as

$$
v = a_1v_1 + a_2v_2 + \cdots + a_nv_n
$$

definition: the coordinate vector of *v* relative to the basis *S* is

$$
[v]_S = (a_1, a_2, \ldots, a_n)
$$

- **n** linear independence of vectors in S ensures that a_k 's are *uniquely* determined by *S* and *v*
- changing the basis yields a different coordinate vector

Geometrical interpretation

new coordinate in a new reference axis

Examples

 $v(t) = -5 \cdot 1 - 2 \cdot (t-1) + 4 \cdot (t^2+t), \quad [v]_S = (-5, -2, 4)$ ■ $S = \{e_1, e_2, e_3\}, v = (-2, 4, 1)$ $v = -2e_1 + 4e_2 + 1e_3$, $[v]_S = (-2, 4, 1)$ *S* = *{*(*−*1*,* 2*,* 0)*,*(3*,* 0*,* 0)*,*(*−*2*,* 1*,* 1)*}*, *v* = (*−*2*,* 4*,* 1) $v =$ $\sqrt{ }$ \mathbf{I} *−*2 4 1 1 $\Big| = \frac{3}{2}$ 2 $\sqrt{ }$ \mathbf{I} *−*1 2 0 1 $+\frac{1}{2}$ 2 $\sqrt{ }$ \mathbf{I} 3 0 0 1 $+1$ $\sqrt{ }$ \mathbf{I} *−*2 1 1 1 $|, [v]_S = (3/2, 1/2, 1)$ $S = \{1, t, t^2\}, v(t) = -3 + 2t + 4t^2\}$ $v(t) = -3 \cdot 1 + 2 \cdot t + 4 \cdot t^2$, $[v]_S = (-3, 2, 4)$ $S = \{1, t - 1, t^2 + t\}, v(t) = -3 + 2t + 4t^2\}$

Change of basis

let $U = \{u_1, \ldots, u_n\}$ and $W = \{w_1, \ldots, w_n\}$ be bases for a vector space V a vector *v ∈ V* has the coordinates relative to these bases as

$$
[v]_U = (a_1, a_2, \dots, a_n), \quad [v]_W = (b_1, b_2, \dots, b_n)
$$

suppose the coordinate vectors of w_k relative to U is

$$
[w_k]_U = (c_{1k}, c_{2k}, \dots, c_{nk})
$$

or in the matrix form as

$$
\begin{bmatrix} w_1 & w_2 & \cdots & w_n \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix}
$$

Linear algebra and applications Jitkomut Songsiri 25 / 41

$$
25 / 41
$$

the coordinate vectors of *v* relative to *U* and *W* are related by

$$
\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \quad \triangleq P \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}
$$

- we obtain $[v]_U$ by multiplying $[v]_W$ with P
- *P* is called the **transition** matrix from *W* to *U*
- \blacksquare the columns of P are the coordinate vectors of the basis vectors in W relative to U

Theorem ✌

P is invertible and *P −*1 is the transition matrix from *U* to *W*

Example

find $[v]_U$, given

$$
U = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}, \quad W = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}, \quad [v]_W = \begin{bmatrix} -2 \\ 1 \end{bmatrix}
$$

first, find the coordinate vectors of the basis vectors in *W* relative to *U*

$$
\begin{bmatrix} 2 & 1 \ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 \ 1 & 1 \end{bmatrix} \begin{bmatrix} c_{11} & c_{12} \ c_{21} & c_{22} \end{bmatrix}
$$

from which we obtain the transition matrix

$$
P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3 & 1 \\ -1 & -1 \end{bmatrix}
$$

and [*v*]*^U* is given by

$$
[v]_U = \frac{1}{2} \begin{bmatrix} 3 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -5 \\ 1 \end{bmatrix}
$$

Nullspace

the **nullspace** of an $m \times n$ matrix is defined as

$$
\mathcal{N}(A) = \{ x \in \mathbf{R}^n \mid Ax = 0 \}
$$

- **the set of all vectors that are mapped to zero by** $f(x) = Ax$
- the set of all vectors that are orthogonal to the rows of *A*
- if $Ax = b$ then $A(x + z) = b$ for all $z \in \mathcal{N}(A)$
- also known as **kernel** of *A*
- \blacksquare *N*(*A*) is a subspace of **R**^{*n*}

Linear algebra and applications Jitkomut Songsiri 29 / 41

Zero nullspace matrix

- *A* has a zero nullspace if $\mathcal{N}(A) = \{0\}$
- if *A* has a zero nullspace and $Ax = b$ is solvable, the solution is unique
- columns of *A* are independent

\mathcal{E} equivalent conditions: $A \in \mathbf{R}^{n \times n}$

- *A* has a zero nullspace
- *A* is invertible or nonsingular
- columns of A are a basis for \mathbf{R}^n

Range space

the **range** of an $m \times n$ matrix A is defined as

$$
\mathcal{R}(A) = \{ y \in \mathbf{R}^m \mid y = Ax \text{ for some } x \in \mathbf{R}^n \}
$$

- the set of all *m*-vectors that can be expressed as Ax
- the set of all linear combinations of the columns of $A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$

$$
\mathcal{R}(A) = \{ y \mid y = x_1 a_1 + x_2 a_2 + \dots + x_n a_n, \quad x \in \mathbb{R}^n \}
$$

- the set of all vectors *b* for which $Ax = b$ is solvable
- also known as the **column space** of *A*
- \blacksquare $\mathcal{R}(A)$ is a subspace of \mathbf{R}^m

Full range matrices

 A has a full range if $\mathcal{R}(A) = \mathbf{R}^m$

✌ **equivalent conditions:**

- *A* has a full range
- columns of *A* span **R** *m*
- *Ax* = *b* is solvable for *every b*
- $\mathcal{N}(A^T) = \{0\}$

Bases for $\mathcal{R}(A)$ and $\mathcal{N}(A)$

A and *B* are row equivalent matrices, *i.e.*,

$$
B=E_k\cdots E_2E_1A
$$

Facts ✌

elementary row operations *do not alter* $\mathcal{N}(A)$

 $\mathcal{N}(B) = \mathcal{N}(A)$

- columns of *B* are independent if and only if columns of *A* are
- **a** a given set of column vectors of A forms a basis for $\mathcal{R}(A)$ if and only if the corresponding column vectors of *B* form a basis for *R*(*B*)

Examples

given a matrix *A* and its row echelon form *B*:

$$
A = \begin{bmatrix} -1 & 2 & 4 & 1 \\ 0 & 1 & 2 & 1 \\ 2 & 3 & 6 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

basis for $\mathcal{N}(A)$: from $\{x \mid Ax = 0\} = \{x \mid Bx = 0\}$, we read

$$
x_1 + x_4 = 0, \quad x_2 + 2x_3 + x_4 = 0
$$

define x_3 and x_4 as free variables, any $x \in \mathcal{N}(A)$ can be written as

$$
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -x_4 \\ -2x_3 - x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}
$$

(a linear combination of (0*, −*2*,* 1*,* 0) and (*−*1*, −*1*,* 0*,* 1)

Linear algebra and applications Jitkomut Songsiri 34 / 41

. .

hence, a basis for
$$
\mathcal{N}(A)
$$
 is $\left\{ \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix} \right\}$ and $\dim \mathcal{N}(A) = 2$

basis for *R*(*A*): pick a set of the independent column vectors in *B* (here pick the 1st and the 2nd columns)

the corresponding columns in A form a basis for $\mathcal{R}(A)$:

dim $\mathcal{R}(A) = 2$

✌ **conclusion:** if *R* is the row reduced echelon form of *A*

- the pivot column vectors of *R* form a basis for the range space of *R*
- the column vectors of *A corresponding* to the pivot columns of *R* form a basis for the range space of *A*
- \blacksquare dim $\mathcal{R}(A)$ is the number of leading 1's in R
- \blacksquare dim $\mathcal{N}(A)$ is the number of free variables in solving $Rx = 0$

Rank and Nullity

rank of a matrix $A \in \mathbf{R}^{m \times n}$ is defined as

$$
rank(A) = \dim \mathcal{R}(A)
$$

nullity of a matrix $A \in \mathbb{R}^{m \times n}$ is

$$
\text{nullity}(A) = \dim \mathcal{N}(A)
$$

Facts ✌

■ rank(*A*) is maximum number of independent columns (or rows) of *A*

$$
\mathbf{rank}(A) \le \min(m, n)
$$

 $\mathbf{rank}(A) = \mathbf{rank}(A^T)$

Full rank matrices

for $A \in \mathbf{R}^{m \times n}$ we always have $\text{rank}(A) \le \min(m, n)$

we say *A* is **full rank** if $\text{rank}(A) = \min(m, n)$

- **for square** matrices, full rank means nonsingular (invertible)
- **For skinny** matrices $(m \ge n)$, full rank means columns are independent
- for fat matrices $(m \leq n)$, full rank means rows are independent

Rank-Nullity Theorem

for any $A \in \mathbf{R}^{m \times n}$,

$$
rank(A) + \dim \mathcal{N}(A) = n
$$

Proof:

- **a** a homogeneous linear system $Ax = 0$ has n variables
- **n** these variables fall into two categories
	- **n** leading variables
	- **free variables**
- \blacksquare # of leading variables = # of leading 1's in reduced echelon form of A

$$
= \mathbf{rank}(A)
$$

 \blacksquare # of free variables = nullity of A

Softwares

MATLAB

- rank(A) provides an estimate of the rank of *A*
- null(A) gives normalized vectors in an orthonormal basis for $\mathcal{N}(A)$

Python

- numpy.linalg.matrix_rank(A) provides an estimate of the rank of *A*
- scipy.linalg.null_space(A) finds orthonormal basis for the nullspace of *A*

References

1 W.K. Nicholson, *Linear Algebra with Applications*, McGraw-Hill, 2006 2 H.Anton and C. Rorres, *Elementary Linear Algebra*, John Wiley, 2011