


Outline

Vector space

Linear algebra and applications Jitkomut Songsiri 2/41



How to read this handout
the note is used with lecture in EE205 (you cannot master this topic just by
reading this note) — class activities include
m graphical concepts, math derivation of details/steps in between
m computer codes to illustrate examples
always read 'textbooks’ after lecture
pay attention to the symbol &; you should be able to prove such & result
each chapter has a list of references; find more formal details/proofs from in-text
citations
almost all results in this note can be Googled; readers are encouraged to
‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first
[@ typos and mistakes can be reported to jitkomut@gmail.com

oEN
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Outline

m definition

m linear independence

m basis and dimension

m coordinate and change of basis
m range space and null space

m rank and nullity
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Elements of vector space

a vector space or linear space (over R) consists of
maset)
m avector sum + : VxV —=V
m a scalar multiplication : RxV — VY
m a distinguished element 0 € V

which satisfy a list of properties
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properties under addition
mrxt+yelV VryeV
mrt+ty=y+zx Vr,yeV
m(z+y)t+z=x+WYy+2) Vr,y,2€V
m0+z=2z VeV
mVzeVI—x)eVst.a+(—z)=0
properties under scalar multiplication
mar <V forany a € R
m (af)r = a(fzx), Vo, € RV €V
malz+y)=ar+ay Yo e RVz,y eV
B (a+B)zr=ar+ay, Yo, ER Vx eV
mlr=x VeV
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(closed under addition
(+ is commutative

)
)
(+ is associative)
(0 is additive identity)

)

(existence of additive inverse

(closed under scalar multiplication)
(scalar multiplication is associative)
(right distributive rule)

(left distributive rule)

(1 is multiplicative identity)
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notation
= (V,R) denotes a vector space V over R

m an element in V is called a vector

Theorem: let © be a vector in V and k a scalar; then

mOu=0 (multiplication with zero gives the zero vector)
mk0=0 (multiplication with the zero vector gives the zero vector)
B (—lu=-u (multiplication with —1 gives the additive inverse)

mifku=0,thenk=0o0oru=20
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roughly speaking, a vector space must satisfy the following operations

vector addition
z,yeY = zx4+yeV

scalar multiplication
forany a€R, z€V = oaxeV
the second condition implies that a vector space contains the zero vector
0eVy

in other words, if V is a vector space then 0 € V

(but the converse is not true)
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Examples

the following sets are vector spaces (over R)
= R"
= {0}

u RmXTL

C™*™: set of m x n-complex matrices

m P, set of polynomials of degree <n
Pn={p(t) | p(t) =ao+art+ - +ant"}

m S": set of symmetric matrices of size n

C(—00,00): set of real-valued continuous functions on (—o0, o0)

C"(—00,00): set of real-valued functions with continuous nth derivatives on
(—OO, OO)
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& check whether any of the following sets is a vector space (over R)
= {0,1,2,3,...}

JERERY)
P

m {p(z) € Py | p(z) = a1z + aza® for some ay,as € R}
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Subspace

m a subspace of a vector space is a subset of a vector space which is itself a vector
space
m a subspace is closed under vector addition and scalar multiplication
examples:
m {0} is a subspace of R"
m R"*" is a subspace of C"*"
{z € R* | z; =0} is a subspace of R
{z € R? | z3 = 1} is not a subspace of R?

1 4 |0 0] . 2%2
{ [_3 2] , [0 0] } is not a subspace of R

the solution set {x € R"™ | Az = b} for b # 0 is a not subspace of R"
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Examples of subspace

two hyperplanes; one is a subspace but the other one is not

2z1 —3z2+x3 =0 (yellow), 227 —3x2+23=20 (grey)

1

%
A

(—3,—2,0) and y = (1,—1, —5) are on the yellow plane, and so is = +y

black = red + blue

X

x = (-3,-2,20) and y = (1, —1,15) are on the grey plane, but = + y is not
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Linear Independence

Definition: a set of vectors {v1,ve,...,v,} is linearly independent if
oy toagve+ - t+apv,=0— a1 =as=---=a, =0

equivalent conditions:

m coefficients of ajv1 + v + - - - + @y, are uniquely determined, i.e.,
101 + QU + - -+ Uy = Pror + Povg + - -+ By

implies a, = B, for k =1,2,...,n

m no vector v; can be expressed as a linear combination of the other vectors
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Examples

1 3
m (2|, |1]| areindependent
_1_ _0_
1] [3] [-1]
m (2] ,]1],] O | areindependent
1] (0] | 1]
17 [3] [-1] [4
m (2],]1],] 0 ],|2]| are not independent
1] [0 L1] [O
1] [3] [2]
m [2]|,[1],]|—1]| are not independent
1] (0] |—1]
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Linear span

Definition: the linear span of a set of vectors

{vi,v2,...,0n}
is the set of all linear combinations of vy,..., v,
span{vi,ve, ..., v} = {ajv1 + agva + - -+ + apv, | a1,...,a, € R}
example:
span { [1 O] , [O 1} , [O O] } is the set of 2 X 2 symmetric matrices
0 0|’|1 0]"|0 1
Fact: if vy,...,v, are vectors in V, span{vy,...,v,} is a subspace of V
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Basis and dimension

definition: set of vectors {vy,va,-- ,v,} is a basis for a vector space V if
m {v1,v2,...,v,} is linearly independent
m V =span {v,va,...,0,}

equivalent condition: every v € V can be uniquely expressed as
V= QU1 + -+ apy

definition: the dimension of V), denoted dim(V), is the number of vectors in a basis
for V

Theorem: the number of vectors in any basis for V is the same

(we assign dim{0} =0 )
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Examples

m {e

’

1,

3
|
|

1,€2,e3} is a standard basis for R3

-1 |0 9
_3],[2}} is a basis for R

t,t*} is a basis for Py
10l fo 11 To o] o o] . | »
0 0] [O 0} [1 0} ) [0 1]} is a basis for R

1
1 cannot be a basis for R®*  why ?
1

[ﬂ , [ ] [ ]} cannot be a basis for R? why ?
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(dimR? = 3)
(dim R? = 2)
(dim Py = 3)

(dim R?*2 = 4)
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Example

let V={pePy|p(2) =01} find a basis for V
m D verify that V is a subspace for Py

m characterize the space V
p(t) = ap + a1t + ast?, p(2) = ag + 2a; +4azy =0
therefore, any p(t) € V takes the form
p(t) = —2a; — 4ag + a1t + ast® = a1 (t — 2) + ax(t? —4), a1,a2 €R

m we have shown that p(t) € span{t — 2,t> — 4}
m we can verify that {t — 2,12 — 4} is LI
m therefore {t — 2,1?> — 4} is a basis for V and dim({t — 2,t> — 4}) = 2
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Standard basis for S°

any A € S? can be expressed as

ai] aiz ais 1 00 01 0 0 0 1
A= a12 Qa2 a3 = A1l 0 0 0 + a2 1 0 0 + a13 000
a1z az3 as3z 0 0 0 0 0 0 1 0 0

0 0O 0 0O

+a3 |0 0 1| +a33|(0 0 O

010 0 01

£ a11E11 + a12F12 + a13E13 + ags Bas + assEss

m we have shown that A € Span{EH,Elg, FE3, Ebs, E33}

[ | verify that {EH, FE19, 13, Eos, E33} is LI

m hence, {E11, E12, E13, Fo3, E33} is a basis for S* and dim(S?®) = 5

2/ 41
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Review questions

& answer the questions and explain a reason
find the standard basis for S"

can {E11, Fra, Ers, Eg1, FEag, Eas, E31, 32, Ess} be a basis for §°7
can {EH,E12,E13,E23,E33} be a basis for R3*3?
let V={2zeR"| > ,2;,=0}

m can {ej,ea,...,e,} (standard basis) be a basis for V?
m is it possible to find two different bases for V7
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Coordinates
let S = {v1,v2,...,v,} be a basis for a vector space V
suppose a vector v € V can be written as
v =aiv1 + asve + - - + apvn,
definition: the coordinate vector of v relative to the basis S is
[v]ls = (a1,a9,...,ay)

m linear independence of vectors in S ensures that a;'s are uniquely determined by
S and v

m changing the basis yields a different coordinate vector
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Geometrical interpretation
new coordinate in a new reference axis
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Examples
mS= {61,62,63}, v = (—2,4, 1)
v = —2e1 + 4ey + leg, [?}]S = (—2,4, 1)
m S=1{(-1,2,0),(3,0,0),(=2,1,1)}, v =(—2,4,1)

3 -2
1
v=|4al=202+2|0+1|1]|, [s=(3/21/21)
2 2 |, .

m S ={1,t,t?}, v(t) = —3 + 2t + 4¢>
o(t) = =3-1+2-t+4-t% [v]g =(-3,2,4)
m S ={1,t—1,t2+t}, v(t) = -3+ 2t + 42
v(t)=—-5-1-2-(t—1)+4-(t*+1), [v]s=(-5,—-2,4)
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Change of basis
let U ={u1,...,up} and W = {wy,..

a vector v € V has the coordinates relative to these bases as

['I}]W = (bl, bg, ..

[U]U = (al,ag, e ,an),

suppose the coordinate vectors of wy, relative to U is

[wrlu = (C1k, C2ks - - - 5 Cnk)
or in the matrix form as
C11
C21
[wl w9 wn} = [ul u9 'U,n]
Cnl
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., Wnp } be bases for a vector space V

-, bn)

C12 Cln
C22 Con
Cn2 Cnn
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the coordinate vectors of v relative to U and W are related by

ai ci1 ci2 - cip| b b1

az Co1 22 ccr Cop| | b2 A | b2
g = P

75 Cnl Cp2 - Cpn bn bn

m we obtain [v]y by multiplying [v]y with P
m P is called the transition matrix from W to U
m the columns of P are the coordinate vectors of the basis vectors in W relative to U

Theorem &

P is invertible and P~ is the transition matrix from U to W
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Example
find [v]y, given

{000 v {R ) e[

first, find the coordinate vectors of the basis vectors in W relative to U

2 1 |1 —1] [e11 12
1 0] [1 1] [ca c22
from which we obtain the transition matrix
st -T2 18 1
I A ] R S
and [v]y is given by
0] P31 [=2|_11-5
=50 Sl |1 T2

Linear algebra and applications
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Nullspace

the nullspace of an m x n matrix is defined as

N(A) ={z eR"| Az =0}

m the set of all vectors that are mapped to zero by f(z) = Ax
m the set of all vectors that are orthogonal to the rows of A

if Az ="bthen A(z+ 2) =bforall z € N(A)

also known as kernel of A

N (A) is a subspace of R"
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Example
{m | Ax I b} {z | Az:: 0}

2 -1 -3
A=|-4 2|, b=16
-6 3 9

m N(A) ={z| 221 — 22 =0}
m the solution set of Az =bis {x | 221 — 29 = —3}
m the solution set of Az = b is the translation of N/(A)
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Zero nullspace matrix

m A has a zero nullspace if N'(A) = {0}
m if A has a zero nullspace and Az = b is solvable, the solution is unique

m columns of A are independent

¥ equivalent conditions: A € R™*"
m A has a zero nullspace
m A is invertible or nonsingular

m columns of A are a basis for R”
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Range space

the range of an m X n matrix A is defined as

R(A)={y € R" | y = Az for some z € R" }

the set of all m-vectors that can be expressed as Ax

m the set of all linear combinations of the columns of A = [al e an]
R(A)={y |y =ma1 + 2200+ -+ +2pa,, z€R"}

the set of all vectors b for which Az = b is solvable

also known as the column space of A
R(A) is a subspace of R™
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Full range matrices

A has a full range if R(A) = R™

¥ equivalent conditions:
m A has a full range
m columns of A span R™

m Ax = b is solvable for every b

s NV(AT) = {0}
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Bases for R(A) and N (A)

A and B are row equivalent matrices, i.e.,
B=FE,---FEyF A

Facts &

m elementary row operations do not alter N'(A)

m columns of B are independent if and only if columns of A are

m a given set of column vectors of A forms a basis for R(A) if and only if the
corresponding column vectors of B form a basis for R(B)
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Examples
given a matrix A and its row echelon form B:
-1 2 1 1 0 01
A=1]0 1 1], B=1]0 1 2 1
2 3 ) 0 00O
basis for N'(A): from {z | Az =0} = {z | Bx = 0}, we read

r1+24=0, x9+2234+714=0

define x3 and x4 as free variables, any z € N/(A) can be written as

1 —x4 0 -1
2| | —2m3— 74| —2 -1
T = 2yl = - =3 1 + 4 0
T4 T4 0 1

(a linear combination of (0,—2,1,0) and (—1,—-1,0,1)
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hence, a basis for N'(A) is

basis for R(A): pick a set of the independent column vectors in B (here pick the 1st
and the 2nd columns)

the corresponding columns in A form a basis for R(A):

-1 2
01,1
2 3

dimR(A) =2
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& conclusion: if R is the row reduced echelon form of A
m the pivot column vectors of R form a basis for the range space of R

m the column vectors of A corresponding to the pivot columns of R form a basis for
the range space of A

m dimR(A) is the number of leading 1's in R
m dim A (A) is the number of free variables in solving Rx =0
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Rank and Nullity

Rm><n

rank of a matrix A € is defined as

rank(A) = dimR(A)
Rmxn

nullity of a matrix A € is

nullity(A) = dim N (A)
Facts &
m rank(A) is maximum number of independent columns (or rows) of A
rank(A4) < min(m,n)

m rank(A) = rank(A7)
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Full rank matrices

for A € R™ "™ we always have rank(A) < min(m,n)

we say A is full rank if rank(A) = min(m,n)

m for square matrices, full rank means nonsingular (invertible)
m for skinny matrices (m > n), full rank means columns are independent

m for fat matrices (m < n), full rank means rows are independent
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Rank-Nullity Theorem

for any A € R™*",
rank(A) + dimN(A) =n

Proof:

m a homogeneous linear system Ax = 0 has n variables
m these variables fall into two categories

m leading variables
m free variables

m # of leading variables = # of leading 1's in reduced echelon form of A
= rank(A)
m # of free variables = nullity of A
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Softwares

MATLAB

m rank(A) provides an estimate of the rank of A

m null(A) gives normalized vectors in an orthonormal basis for N'(A)
Python

® numpy.linalg.matrix_rank(A) provides an estimate of the rank of A

m scipy.linalg.null_space(A) finds orthonormal basis for the nullspace of A
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