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How to read this handout
1 the note is used with lecture in EE205 (you cannot master this topic just by

reading this note) – class activities include
graphical concepts, math derivation of details/steps in between
computer codes to illustrate examples

2 always read ’textbooks’ after lecture
3 pay attention to the symbol .; you should be able to prove such . result
4 each chapter has a list of references; find more formal details/proofs from in-text

citations
5 almost all results in this note can be Googled; readers are encouraged to

‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first

6 typos and mistakes can be reported to jitkomut@gmail.com
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Outline

definition
linear independence
basis and dimension
coordinate and change of basis
range space and null space
rank and nullity
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Elements of vector space

a vector space or linear space (over R) consists of
a set V
a vector sum + : V × V → V
a scalar multiplication : R × V → V
a distinguished element 0 ∈ V

which satisfy a list of properties
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properties under addition
x+ y ∈ V ∀x, y ∈ V (closed under addition)
x+ y = y + x, ∀x, y ∈ V (+ is commutative)
(x+ y) + z = x+ (y + z), ∀x, y, z ∈ V (+ is associative)
0 + x = x, ∀x ∈ V (0 is additive identity)
∀x ∈ V ∃(−x) ∈ V s.t. x+ (−x) = 0 (existence of additive inverse)

properties under scalar multiplication
αx ∈ V for any α ∈ R (closed under scalar multiplication)
(αβ)x = α(βx), ∀α, β ∈ R ∀x ∈ V (scalar multiplication is associative)
α(x+ y) = αx+ αy, ∀α ∈ R ∀x, y ∈ V (right distributive rule)
(α+ β)x = αx+ αy, ∀α, β ∈ R ∀x ∈ V (left distributive rule)
1x = x, ∀x ∈ V (1 is multiplicative identity)
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notation
(V,R) denotes a vector space V over R
an element in V is called a vector

Theorem: let u be a vector in V and k a scalar; then
0u = 0 (multiplication with zero gives the zero vector)
k0 = 0 (multiplication with the zero vector gives the zero vector)
(−1)u = −u (multiplication with −1 gives the additive inverse)
if ku = 0, then k = 0 or u = 0
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roughly speaking, a vector space must satisfy the following operations
1 vector addition

x, y ∈ V ⇒ x+ y ∈ V

2 scalar multiplication

for any α ∈ R, x ∈ V ⇒ αx ∈ V

the second condition implies that a vector space contains the zero vector

0 ∈ V

in other words, if V is a vector space then 0 ∈ V

(but the converse is not true)
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Examples
the following sets are vector spaces (over R)

Rn

{0}
Rm×n

Cm×n: set of m× n-complex matrices
Pn: set of polynomials of degree ≤ n

Pn = {p(t) | p(t) = a0 + a1t+ · · ·+ ant
n}

Sn: set of symmetric matrices of size n

C(−∞,∞): set of real-valued continuous functions on (−∞,∞)

Cn(−∞,∞): set of real-valued functions with continuous nth derivatives on
(−∞,∞)
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. check whether any of the following sets is a vector space (over R)
{0, 1, 2, 3, . . .}{[

1
2

]
,

[
−1
0

]
,

[
0
0

]}
{
x ∈ R2 | x =

[
x1
0

]
, x1 ∈ R

}
{
p(x) ∈ P2 | p(x) = a1x+ a2x

2 for some a1, a2 ∈ R
}
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Subspace

a subspace of a vector space is a subset of a vector space which is itself a vector
space
a subspace is closed under vector addition and scalar multiplication

examples:
{0} is a subspace of Rn

Rm×n is a subspace of Cm×n{
x ∈ R2 | x1 = 0

}
is a subspace of R2{

x ∈ R2 | x2 = 1
}

is not a subspace of R2{[
1 4
−3 2

]
,

[
0 0
0 0

]}
is not a subspace of R2×2

the solution set {x ∈ Rn | Ax = b} for b ̸= 0 is a not subspace of Rn
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Examples of subspace
two hyperplanes; one is a subspace but the other one is not

2x1 − 3x2 + x3 = 0 (yellow), 2x1 − 3x2 + x3 = 20 (grey)

black = red + blue

x = (−3,−2, 0) and y = (1,−1,−5) are on the yellow plane, and so is x+ y

x = (−3,−2, 20) and y = (1,−1, 15) are on the grey plane, but x+ y is not
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Linear Independence

Definition: a set of vectors {v1, v2, . . . , vn} is linearly independent if

α1v1 + α2v2 + · · ·+ αnvn = 0 =⇒ α1 = α2 = · · · = αn = 0

equivalent conditions:
coefficients of α1v1 + α2v2 + · · ·+ αnvn are uniquely determined, i.e.,

α1v1 + α2v2 + · · ·+ αnvn = β1v1 + β2v2 + · · ·+ βnvn

implies αk = βk for k = 1, 2, . . . , n

no vector vi can be expressed as a linear combination of the other vectors
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Examples
12
1

 ,

31
0

 are independent

12
1

 ,

31
0

 ,

−1
0
1

 are independent

12
1

 ,

31
0

 ,

−1
0
1

 ,

42
0

 are not independent

12
1

 ,

31
0

 ,

 2
−1
−1

 are not independent
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Linear span

Definition: the linear span of a set of vectors

{v1, v2, . . . , vn}

is the set of all linear combinations of v1, . . . , vn

span{v1, v2, . . . , vn} = {a1v1 + a2v2 + · · ·+ anvn | a1, . . . , an ∈ R}

example:

span
{[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
is the set of 2× 2 symmetric matrices

Fact: if v1, . . . , vn are vectors in V, span{v1, . . . , vn} is a subspace of V
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Basis and dimension

definition: set of vectors {v1, v2, · · · , vn} is a basis for a vector space V if
{v1, v2, . . . , vn} is linearly independent
V = span {v1, v2, . . . , vn}

equivalent condition: every v ∈ V can be uniquely expressed as

v = α1v1 + · · ·+ αnvn

definition: the dimension of V, denoted dim(V), is the number of vectors in a basis
for V

Theorem: the number of vectors in any basis for V is the same

(we assign dim{0} = 0 )
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Examples

{e1, e2, e3} is a standard basis for R3 (dimR3 = 3){[
−1
3

]
,

[
0
2

]}
is a basis for R2 (dimR2 = 2)

{1, t, t2} is a basis for P2 (dimP2 = 3){[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
is a basis for R2×2 (dimR2×2 = 4)

11
1

 cannot be a basis for R3 why ?

{[
1
1

]
,

[
1
0

]
,

[
−2
3

]}
cannot be a basis for R2 why ?
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Example

let V = {p ∈ P2 | p(2) = 0 } find a basis for V
. verify that V is a subspace for P2

characterize the space V

p(t) = a0 + a1t+ a2t
2, p(2) = a0 + 2a1 + 4a2 = 0

therefore, any p(t) ∈ V takes the form

p(t) = −2a1 − 4a2 + a1t+ a2t
2 = a1(t− 2) + a2(t

2 − 4), a1, a2 ∈ R

we have shown that p(t) ∈ span{t− 2, t2 − 4}
we can verify that {t− 2, t2 − 4} is LI
therefore {t− 2, t2 − 4} is a basis for V and dim({t− 2, t2 − 4}) = 2
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Standard basis for S3

any A ∈ S3 can be expressed as

A =

a11 a12 a13
a12 a22 a23
a13 a23 a33

 = a11

1 0 0
0 0 0
0 0 0

+ a12

0 1 0
1 0 0
0 0 0

+ a13

0 0 1
0 0 0
1 0 0


+ a23

0 0 0
0 0 1
0 1 0

+ a33

0 0 0
0 0 0
0 0 1


≜ a11E11 + a12E12 + a13E13 + a23E23 + a33E33

we have shown that A ∈ span{E11, E12, E13, E23, E33}
verify that {E11, E12, E13, E23, E33} is LI
hence, {E11, E12, E13, E23, E33} is a basis for S3 and dim(S3) = 5
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Review questions

. answer the questions and explain a reason
1 find the standard basis for Sn

2 can {E11, E12, E13, E21, E22, E23, E31, E32, E33} be a basis for S3?
3 can {E11, E12, E13, E23, E33} be a basis for R3×3?
4 let V = { x ∈ Rn |

∑
i xi = 0 }

can {e1, e2, . . . , en} (standard basis) be a basis for V?
is it possible to find two different bases for V?
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Coordinates

let S = {v1, v2, . . . , vn} be a basis for a vector space V

suppose a vector v ∈ V can be written as

v = a1v1 + a2v2 + · · ·+ anvn

definition: the coordinate vector of v relative to the basis S is

[v]S = (a1, a2, . . . , an)

linear independence of vectors in S ensures that ak’s are uniquely determined by
S and v

changing the basis yields a different coordinate vector
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Geometrical interpretation
new coordinate in a new reference axis

v =

[
1
3

]
= 1

[
1
0

]
+ 3

[
0
1

]
= 2

[
1
1

]
+ 1

[
−1
1

]
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Examples
S = {e1, e2, e3}, v = (−2, 4, 1)

v = −2e1 + 4e2 + 1e3, [v]S = (−2, 4, 1)

S = {(−1, 2, 0), (3, 0, 0), (−2, 1, 1)}, v = (−2, 4, 1)

v =

−2
4
1

 =
3

2

−1
2
0

+
1

2

30
0

+ 1

−2
1
1

 , [v]S = (3/2, 1/2, 1)

S = {1, t, t2}, v(t) = −3 + 2t+ 4t2

v(t) = −3 · 1 + 2 · t+ 4 · t2, [v]S = (−3, 2, 4)

S = {1, t− 1, t2 + t}, v(t) = −3 + 2t+ 4t2

v(t) = −5 · 1− 2 · (t− 1) + 4 · (t2 + t), [v]S = (−5,−2, 4)
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Change of basis
let U = {u1, . . . , un} and W = {w1, . . . , wn} be bases for a vector space V
a vector v ∈ V has the coordinates relative to these bases as

[v]U = (a1, a2, . . . , an), [v]W = (b1, b2, . . . , bn)

suppose the coordinate vectors of wk relative to U is

[wk]U = (c1k, c2k, . . . , cnk)

or in the matrix form as

[
w1 w2 · · · wn

]
=

[
u1 u2 · · · un

]

c11 c12 · · · c1n
c21 c22 · · · c2n
... ... . . . ...

cn1 cn2 · · · cnn
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the coordinate vectors of v relative to U and W are related by
a1
a2
...
an

 =


c11 c12 · · · c1n
c21 c22 · · · c2n
... ... . . . ...

cn1 cn2 · · · cnn



b1
b2
...
bn

 ≜ P


b1
b2
...
bn


we obtain [v]U by multiplying [v]W with P

P is called the transition matrix from W to U

the columns of P are the coordinate vectors of the basis vectors in W relative to U

Theorem ,

P is invertible and P−1 is the transition matrix from U to W
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Example
find [v]U , given

U =

{[
1
1

]
,

[
−1
1

]}
, W =

{[
2
1

]
,

[
1
0

]}
, [v]W =

[
−2
1

]
first, find the coordinate vectors of the basis vectors in W relative to U[

2 1
1 0

]
=

[
1 −1
1 1

] [
c11 c12
c21 c22

]
from which we obtain the transition matrix

P =

[
1 −1
1 1

]−1 [
2 1
1 0

]
=

1

2

[
3 1
−1 −1

]
and [v]U is given by

[v]U =
1

2

[
3 1
−1 −1

] [
−2
1

]
=

1

2

[
−5
1

]
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Nullspace

the nullspace of an m× n matrix is defined as

N (A) = {x ∈ Rn | Ax = 0}

the set of all vectors that are mapped to zero by f(x) = Ax

the set of all vectors that are orthogonal to the rows of A
if Ax = b then A(x+ z) = b for all z ∈ N (A)

also known as kernel of A
N (A) is a subspace of Rn .
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Example

A =

 2 −1
−4 2
−6 3

 , b =

−3
6
9



N (A) = {x | 2x1 − x2 = 0}
the solution set of Ax = b is {x | 2x1 − x2 = −3}
the solution set of Ax = b is the translation of N (A)
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Zero nullspace matrix

A has a zero nullspace if N (A) = {0}
if A has a zero nullspace and Ax = b is solvable, the solution is unique
columns of A are independent

, equivalent conditions: A ∈ Rn×n

A has a zero nullspace
A is invertible or nonsingular
columns of A are a basis for Rn
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Range space

the range of an m× n matrix A is defined as

R(A) = {y ∈ Rm | y = Ax for some x ∈ Rn }

the set of all m-vectors that can be expressed as Ax

the set of all linear combinations of the columns of A =
[
a1 · · · an

]
R(A) = {y | y = x1a1 + x2a2 + · · ·+ xnan, x ∈ Rn}

the set of all vectors b for which Ax = b is solvable
also known as the column space of A
R(A) is a subspace of Rm .
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Full range matrices

A has a full range if R(A) = Rm

, equivalent conditions:
A has a full range
columns of A span Rm

Ax = b is solvable for every b

N (AT ) = {0}
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Bases for R(A) and N (A)

A and B are row equivalent matrices, i.e.,

B = Ek · · ·E2E1A

Facts ,

elementary row operations do not alter N (A)

N (B) = N (A)

columns of B are independent if and only if columns of A are
a given set of column vectors of A forms a basis for R(A) if and only if the
corresponding column vectors of B form a basis for R(B)
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Examples
given a matrix A and its row echelon form B:

A =

−1 2 4 1
0 1 2 1
2 3 6 5

 , B =

1 0 0 1
0 1 2 1
0 0 0 0


basis for N (A): from {x | Ax = 0} = {x | Bx = 0}, we read

x1 + x4 = 0, x2 + 2x3 + x4 = 0

define x3 and x4 as free variables, any x ∈ N (A) can be written as

x =


x1
x2
x3
x4

 =


−x4

−2x3 − x4
x3
x4

 = x3


0
−2
1
0

+ x4


−1
−1
0
1


(a linear combination of (0,−2, 1, 0) and (−1,−1, 0, 1)
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hence, a basis for N (A) is




0
−2
1
0

 ,


−1
−1
0
1


 and dimN (A) = 2

basis for R(A): pick a set of the independent column vectors in B (here pick the 1st
and the 2nd columns)

the corresponding columns in A form a basis for R(A):
−1

0
2

 ,

21
3


dimR(A) = 2

Linear algebra and applications Jitkomut Songsiri 35 / 41



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

, conclusion: if R is the row reduced echelon form of A
the pivot column vectors of R form a basis for the range space of R
the column vectors of A corresponding to the pivot columns of R form a basis for
the range space of A
dimR(A) is the number of leading 1’s in R

dimN (A) is the number of free variables in solving Rx = 0
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Rank and Nullity
rank of a matrix A ∈ Rm×n is defined as

rank(A) = dimR(A)

nullity of a matrix A ∈ Rm×n is

nullity(A) = dimN (A)

Facts ,

rank(A) is maximum number of independent columns (or rows) of A

rank(A) ≤ min(m,n)

rank(A) = rank(AT )
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Full rank matrices

for A ∈ Rm×n we always have rank(A) ≤ min(m,n)

we say A is full rank if rank(A) = min(m,n)

for square matrices, full rank means nonsingular (invertible)
for skinny matrices (m ≥ n), full rank means columns are independent
for fat matrices (m ≤ n), full rank means rows are independent
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Rank-Nullity Theorem

for any A ∈ Rm×n,
rank(A) + dimN (A) = n

Proof:
a homogeneous linear system Ax = 0 has n variables
these variables fall into two categories

leading variables
free variables

# of leading variables = # of leading 1’s in reduced echelon form of A
= rank(A)

# of free variables = nullity of A
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Softwares

MATLAB
rank(A) provides an estimate of the rank of A
null(A) gives normalized vectors in an orthonormal basis for N (A)

Python
numpy.linalg.matrix_rank(A) provides an estimate of the rank of A
scipy.linalg.null_space(A) finds orthonormal basis for the nullspace of A
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