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How to read this handout
the note is used with lecture in EE205 (you cannot master this topic just by
reading this note) — class activities include
m graphical concepts, math derivation of details/steps in between
m computer codes to illustrate examples
always read 'textbooks’ after lecture
pay attention to the symbol &; you should be able to prove such & result
each chapter has a list of references; find more formal details/proofs from in-text
citations
almost all results in this note can be Googled; readers are encouraged to
‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first
[@ typos and mistakes can be reported to jitkomut@gmail.com
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Linear algebra and applications Jitkomut Songsiri 3/28


jitkomut@gmail.com

Special matrices and applications

Linear algebra and applications Jitkomut Songsiri Special matrices and applications 4 /28



Special matrices

orthogonal matrix

projection matrix

permutation matrix

symmetric matrix

positive definite matrix
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Orthogonal matrix

Ran

a real matrix U € is called orthogonal if

vt =vTu =1

properties:
m an orthogonal matrix is special case of unitary for real matrices
m an orthogonal matrix is always invertible and U~ = U7
m columns vectors of U are mutually orthogonal

m norm is preserved under an orthogonal transformation: ||Uz||3 = |||/

L 1 -1 cosf —sind
V21 1)’ sinf cosf

example:
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Applications

rotation: in R3, rotate a vector z by the angle 6 around the z-axis

cos@ —sinf 0Of |z
w= [sinf cosf 0| |y
0 0 1{ |z

[1>

U

NI SO

where U is orthogonal
eigenvectors of symmetric matrices are orthogonal (more detail later)
Q@ in QR decomposition is orthogonal

orthogonal matrices are used to whiten the data (transform correlated random
vector to uncorrelated random vector)

discrete Fourier transform (DFT): y = Wx where W is unitary (equivalence of
orthogonal matrix in complex)
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Unitary matrix

a complex matrix U € C™*" is called unitary if

U'U=U0U"=1,
example: let z = e~

AR
i27/3
_ 1 Pl 12 _ 1 ! —i;r/S —izlm/:g
U_ﬁ 1 ;2 24 _% 1 Zfi47r/3 Zfi8ﬂ/3
facts: &

® a unitary matrix is always invertible and U~ = U*

m columns vectors of U are mutually orthogonal
m 2-norm is preserved under a unitary transformation: |Uz|3 = (Ux)*(Uz) = ||z||3
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Example: Discrete Fourier transform (DFT)

DFT of the length-N time-domain sequence x[n] is defined by
| N
X[kl =— Y zple /N og<k<N-1
= 5 2l <k<

—i2n /N

define z = ¢ , we can write the DFT in a matrix form as

X[0] 11 TR 1 2[0]
X[1] 1 2t 22 . ZN-1 z[1]
X2 | = \; T 2[2]
. N
X[V - 1], 1 N1 20D L WD | v — 1))

or X = Dx where D is called the DFT matrix and is unitary (.. x = D*X)
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Unitary property of DFT

the columns of DFT matrix are of the form:
o = (1/\/ﬁ) [1 e—i2mk/N  —i2mk2/N e—ika(N—l)/N]T

use (¢, o) = ¢;.¢ and apply the sum of geometric series:

N—-1 _i2n(k=1)
_ 1 S eiznlktn/N _ 1 1=
<¢l7 ¢k> N o € N 1 — ei2n(k—=l)/N

the columns of DFT matrix are therefore orthogonal

1, fork=1+rN, r=0,1,2,...

(01, o) = {0, for k # 1
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Projection matrix

P € R™ " is said to be a projection matrix if P2 = P (aka idempotent)

m P is a linear transformation from R" to a subspace of R", denoted as S
m columns of P are the projections of standard basis vectors and S is the range of P
m if P is applied twice on a vector in S, it gives the same vector

examples: identity and
L0 /2 172 13 =6 I—X(XTX)7'XT (in regression)
0 0| |1/2 1/2]" |1 =2|°
properties: &
m eigenvalues of P are all equal to 0 or 1

m [ — P is also idempotent
m if P # 1, then P is singular
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Orthogonal projection matrix

a matrix P € R™*" is called an orthogonal projection matrix if
pP?=p=pT

properties:
m P is bounded, i.e, ||Pz| < |z

|Pz||3 = 2T PT Pz = 2T P*z = 27 Px < ||Px|||z||
m if P is an orthogonal projection onto a line spanned by a unit vector u,
P =uu®
(we see that rank(P) = 1 as the dimension of a line is 1)

m another example: P = X (X7 X)™'XT for any matrix X — (in regression)
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Permutation

a permutation matrix P is a square matrix that has exactly one entry of 1 in each row
and each column and has zero elsewhere

010 010
10 0], |0 01
0 01 1 00

facts: &

P is obtained by interchanging any two rows (or columns) of an identity matrix
PA results in permuting rows in A, and AP gives permuting columns in A
PTP =1, s0 Pt = PT (simple)

the modulus of all eigenvalues of P is one, i.e.,

Ai(P)| =1
a multiplication of P with vectors or matrix has no flop count (just swap
rows/columns)
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Linear function

given w € R" and let x € R™ be a vector variable
a linear function f : R™ — R is given by
f(z) = wle = wixy + wexg + - -+ + Wny
(% review its linear properties, i.e., superposition)
an affine function is a linear function plus a constant: f(z) = w’z +b

| % = w; gives the rate of change of f in x; direction

m the set {z | w2z +b = constant } is a hyperplane in R" with the normal vector w

m linear functions are used in linear regression model and linear classifier
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Energy form

given a (real) square matrix A, an energy form is a quadratic function of vector x:

f:R" =R, f(x)=2TAz= Z Z aijTiT;
J

7

m 27 Az is the same as the energy form using (A + AT)/2 as the coefficient because

T 2T (A+ ATz

zl Az = (27 Az) 5

. T _AT X
m using A = % + 4 2‘4 , we can later on assume that an energy form requires

only the symmetric part of A

m reverse question: given an energy form, can you determine what A is ?

CL‘% + 21‘% + 31‘% — 2o+ 2w0x3 2 2T Az
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Energy form and completing the square

recall how to complete the square:

22 + 322 + 14z 120 = (21 + Tap)? — 4622

given these matrices, expand the energy form and complete the square

4 6 4 6 4 6
A‘[a 13]’ B_[G 9]’ C_[G —4}
m ol Ax =

m ' Br =

m2Cr =
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Quadratic function

given P € R"*" g € R",r € R, a quadratic function f : R™ — R is of the form

f(z)=1/2)2"Pr+q "z +r

m 27 Px is aka an energy form (due to the quadratic form that appears in the
energy/power of some physical variables)
. K . . 1 2 : : 1 2
electrical power = +“R, kinetic energy = §mv , energy stored in spring = ikx
m the contour shape of f depends on the property of P (positive definite, indefinite,
magnitude of eigenvalues, direction of eigenvectors) — as we will learn shortly
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Symmetric matrix

definition: a (real) square matrix A is said to be symmetric if A = AT
notation: A € S”

examples:

[;FT }Z/] with symmetric X, Z, A = E[XXT] (correlation matrix)

& basic facts:
m for any (rectangular) matrix A, AAT and AT A are always symmetric
m if A is symmetric and invertible, then A~! is symmetric
m if A is invertible, then AAT and AT A are also invertible
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Properties of symmetric matrix

spectral theorem: if A is a real symmetric matrix then the following statements hold
all eigenvalues of A are real

all eigenvectors of A are orthogonal
A admits a decomposition
A=UDU"

where UTU = UU”T = I (U is unitary) and a diagonal D contains A\(A)
for any z, we have

Auin(A)[|z)3 < 2TAz < Apax(A)|z])3

the first (and second) inequalities are tight when x is the eigenvector corresponding to Amin
(and Amax respectively)
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Proofs

assume Az = Az and ),z could be complex, denote z* = 71

(x"Azx)" = x"A'r =2"Azx =" v = A"z

= (2*\2)* = Az

since z*x # 0, we must have A = \

assume Ax; = Az and Axg = Aozo (now all (A, x;) are real)

ngazl = a:g)\lxlz)\lacgm

= l‘,{AZL‘Q = :L‘IT)\Q."EQ = )\gxlTxg

equating two terms give (A — \o)zd z1 = 0

for simple case, we can assume that \;'s are distinct, so x%xl =0 (z2 L x1)
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Exercises

for z,y € R", are zy”, xa™ yaT symmetric?

for a diagonal matrix D, is D + xzz” symmetric?

if A, B are symmetric, so is A + B?

how many distinct entries in a symmetric matrix of size n?

if A is symmetric and B is rectangular, is BABT symmetric?

@ if A is symmetric and invertible, is A1 symmetric?

find conditions on A, B, C, D so that the block matrix: [A

C D} IS symmetric
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Positive definite matrix
definition: a symmetric matrix A is positive semidefinite, written as A > 0 if

T Az >0, VzeR"
and is said to be positive definite, written as A > 0 if
zT Az >0, for all nonzero z € R"

% the curly = symbol is used with matrices (to differentiate it from > for scalars )

example: A7 = [_11 _11} = 0and Ay = [ 1

-1
1 9 ] > 0 because

1 1| |z
2T Ajx = [xl 332] [_1 1 } [x;] = x% + a:% —2x129 = (21 — 3:2)2 >0

2T Ay = (1 —x2)> + 23>0, Vr#0

exercise: & check positive semidefiniteness of matrices on page 16
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How to test if A = 07

Theorem: A = 0 if and only if all eigenvalues of A are non-negative
(A > 0if and only if A(4) > 0)

Sylvester’s criterion: if every principal minor of A (including det A) is non-negative
then A t 0 proof in Horn Theorem 7.2.5

1

example 1: A = [ 1 _21} > 0 because

m eigenvalues of A are 0.38 and 2.61 (real and positive)
—1

1 9 |7 1 (all positive)

m the principle minors are 1 and ‘

11

example 2: A = [2 9

] > 0 because eigenvalues of A are 0 and 3
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Properties of positive definite matrix

if A > 0 then all the diagonal terms of A are nonnegative

=

if A > 0 then all the leading blocks of A are positive semidefinite
if A =0 then BABT =0 for any B # (exercise)
if A= 0and B> 0, thensois A+ B

[~ ol )
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Gram matrix

for an m x n matrix A with columns a,...,a,, the product G = AT A is called the
Gram matriX Gram matrix is positive semidefinite

Jgrgen Pedersen Gram

T T T
G ATA a2 al a2 a9 st CL2 (0799
z ala; alay -+ ala,

2TGr = 2T AT Az = | Az|?> > 0, Vz

m if A has zero nullspace then Az = 0 <> = 0; this implies that AT A > 0

m let X be a data matrix, partitioned in IV rows as x; 's; we typically encounter

T - -
G=X%=1% ij:l zpzi as the sample covariance matrix
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Exercises

check if each of the following is positive definite

4 1 0
Alz[i ﬂ Ag:[_12 ;)] As= -1 2 2
0 2 3

is a diagonal matrix always positive semidefinite?
for x € R™ and [ is the identify

is I + xzz” positive semidefinite?

is I — zaT positive semidefinite?

is zz” positive semidefinite?
find conditions on a, b, ¢ so that

is positive definite
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Numerical exercises

generate each of these matrices randomly and check its properties

orthogonal: check determinant and eigenvalues

orthogonal projection: check eigenvalues

permutation: check the eigenvalues, its inverse and transpose
symmetric: check eigenvalues and eigenvectors

positive definite: check eigenvalues, eigenvalues of leading diagonal blocks,

relate what you numerically found to the properties of these matrices
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