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1 Special matrices and applications
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How to read this handout
1 the note is used with lecture in EE205 (you cannot master this topic just by

reading this note) – class activities include
graphical concepts, math derivation of details/steps in between
computer codes to illustrate examples

2 always read ’textbooks’ after lecture
3 pay attention to the symbol .; you should be able to prove such . result
4 each chapter has a list of references; find more formal details/proofs from in-text

citations
5 almost all results in this note can be Googled; readers are encouraged to

‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first

6 typos and mistakes can be reported to jitkomut@gmail.com
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Special matrices

orthogonal matrix
projection matrix
permutation matrix
symmetric matrix
positive definite matrix
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Orthogonal matrix

a real matrix U ∈ Rn×n is called orthogonal if

UUT = UTU = I

properties: .

an orthogonal matrix is special case of unitary for real matrices
an orthogonal matrix is always invertible and U−1 = UT

columns vectors of U are mutually orthogonal
norm is preserved under an orthogonal transformation: ∥Ux∥22 = ∥x∥22

example:
1√
2

[
1 −1
1 1

]
,

[
cos θ − sin θ
sin θ cos θ

]
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Applications

1 rotation: in R3, rotate a vector x by the angle θ around the z-axis

w =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

xy
z

 ≜ U

xy
z


where U is orthogonal

2 eigenvectors of symmetric matrices are orthogonal (more detail later)
3 Q in QR decomposition is orthogonal
4 orthogonal matrices are used to whiten the data (transform correlated random

vector to uncorrelated random vector)
5 discrete Fourier transform (DFT): y = Wx where W is unitary (equivalence of

orthogonal matrix in complex)

Linear algebra and applications Jitkomut Songsiri 7 / 28



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Unitary matrix

a complex matrix U ∈ Cn×n is called unitary if

U∗U = UU∗ = I, (U∗ ≜ ŪT )

example: let z = e−i2π/3

U =
1√
3

1 1 1
1 z z2

1 z2 z4

 =
1√
3

1 1 1

1 e−i2π/3 e−i4π/3

1 e−i4π/3 e−i8π/3


facts: .

a unitary matrix is always invertible and U−1 = U∗

columns vectors of U are mutually orthogonal
2-norm is preserved under a unitary transformation: ∥Ux∥22 = (Ux)∗(Ux) = ∥x∥22
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Example: Discrete Fourier transform (DFT)
DFT of the length-N time-domain sequence x[n] is defined by

X[k] =
1√
N

N−1∑
n=0

x[n]e−i2πkn/N , 0 ≤ k ≤ N − 1

define z = e−i2π/N , we can write the DFT in a matrix form as
X[0]
X[1]
X[2]

...
X[N − 1]

 =
1√
N


1 1 1 · · · 1
1 z1 z2 · · · zN−1

1 z2 z4 · · · z2(N−1)

... ... ... . . . ...
1 zN−1 z2(N−1) · · · z(N−1)(N−1)




x[0]
x[1]
x[2]

...
x[N − 1]


or X = Dx where D is called the DFT matrix and is unitary (∴ x = D∗X)
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Unitary property of DFT

the columns of DFT matrix are of the form:

ϕk = (1/
√
N)

[
1 e−i2πk/N e−i2πk·2/N · · · e−i2πk(N−1)/N

]T
use ⟨ϕl, ϕk⟩ = ϕ∗

kϕl and apply the sum of geometric series:

⟨ϕl, ϕk⟩ =
1

N

N−1∑
n=0

ei2π(k−l)n/N =
1

N
· 1− ei2π(k−l)

1− ei2π(k−l)/N

the columns of DFT matrix are therefore orthogonal

⟨ϕl, ϕk⟩ =

{
1, for k = l + rN, r = 0, 1, 2, . . .

0, for k ̸= l

Linear algebra and applications Jitkomut Songsiri 10 / 28



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Projection matrix

P ∈ Rn×n is said to be a projection matrix if P 2 = P (aka idempotent)
P is a linear transformation from Rn to a subspace of Rn, denoted as S

columns of P are the projections of standard basis vectors and S is the range of P
if P is applied twice on a vector in S, it gives the same vector

examples: identity and[
1 0
0 0

]
,

[
1/2 1/2
1/2 1/2

]
,

[
3 −6
1 −2

]
, I −X(XTX)−1XT (in regression)

properties: .

eigenvalues of P are all equal to 0 or 1
I − P is also idempotent
if P ̸= I, then P is singular
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Orthogonal projection matrix
a matrix P ∈ Rn×n is called an orthogonal projection matrix if

P 2 = P = P T

properties:
P is bounded, i.e., ∥Px∥ ≤ ∥x∥

∥Px∥22 = xTP TPx = xTP 2x = xTPx ≤ ∥Px∥∥x∥

if P is an orthogonal projection onto a line spanned by a unit vector u,

P = uuT

(we see that rank(P ) = 1 as the dimension of a line is 1)
another example: P = X(XTX)−1XT for any matrix X – (in regression)
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Permutation
a permutation matrix P is a square matrix that has exactly one entry of 1 in each row
and each column and has zero elsewhere0 1 0

1 0 0
0 0 1

 ,

0 1 0
0 0 1
1 0 0


facts: .

P is obtained by interchanging any two rows (or columns) of an identity matrix
PA results in permuting rows in A, and AP gives permuting columns in A

P TP = I, so P−1 = P T (simple)
the modulus of all eigenvalues of P is one, i.e., |λi(P )| = 1

a multiplication of P with vectors or matrix has no flop count (just swap
rows/columns)
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Linear function

given w ∈ Rn and let x ∈ Rn be a vector variable

a linear function f : Rn → R is given by

f(x) = wTx = w1x1 + w2x2 + · · ·+ wnxn

(. review its linear properties, i.e., superposition)

an affine function is a linear function plus a constant: f(x) = wTx+ b

∂f
∂xi

= wi gives the rate of change of f in xi direction
the set {x | wTx+ b = constant } is a hyperplane in Rn with the normal vector w
linear functions are used in linear regression model and linear classifier

Linear algebra and applications Jitkomut Songsiri 14 / 28



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Energy form
given a (real) square matrix A, an energy form is a quadratic function of vector x:

f : Rn → R, f(x) = xTAx =
∑
i

∑
j

aijxixj

xTAx is the same as the energy form using (A+AT )/2 as the coefficient because

xTAx = (xTAx)T =
xT (A+AT )x

2

using A = A+AT

2 + A−AT

2 , we can later on assume that an energy form requires
only the symmetric part of A
reverse question: given an energy form, can you determine what A is ?

x21 + 2x22 + 3x23 − x1x2 + 2x2x3 ≜ xTAx
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Energy form and completing the square

recall how to complete the square:

x21 + 3x22 + 14x1x2 = (x1 + 7x2)
2 − 46x22

given these matrices, expand the energy form and complete the square

A =

[
4 6
6 13

]
, B =

[
4 6
6 9

]
, C =

[
4 6
6 −4

]

xTAx =

xTBx =

xTCx =

Linear algebra and applications Jitkomut Songsiri 16 / 28



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Quadratic function

given P ∈ Rn×n, q ∈ Rn, r ∈ R, a quadratic function f : Rn → R is of the form

f(x) = (1/2)xTPx+ qTx+ r

xTPx is aka an energy form (due to the quadratic form that appears in the
energy/power of some physical variables)

electrical power = i2R, kinetic energy = 1

2
mv2, energy stored in spring = 1

2
kx2

the contour shape of f depends on the property of P (positive definite, indefinite,
magnitude of eigenvalues, direction of eigenvectors) – as we will learn shortly
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Symmetric matrix

definition: a (real) square matrix A is said to be symmetric if A = AT

notation: A ∈ Sn

examples:[
X Y
Y T Z

]
with symmetric X,Z, A = E[XXT ] (correlation matrix)

. basic facts:
for any (rectangular) matrix A, AAT and ATA are always symmetric
if A is symmetric and invertible, then A−1 is symmetric
if A is invertible, then AAT and ATA are also invertible
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Properties of symmetric matrix

spectral theorem: if A is a real symmetric matrix then the following statements hold
1 all eigenvalues of A are real
2 all eigenvectors of A are orthogonal
3 A admits a decomposition

A = UDUT

where UTU = UUT = I (U is unitary) and a diagonal D contains λ(A)

4 for any x, we have

λmin(A)∥x∥22 ≤ xTAx ≤ λmax(A)∥x∥22

the first (and second) inequalities are tight when x is the eigenvector corresponding to λmin

(and λmax respectively)
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Proofs

1 assume Ax = λx and λ, x could be complex, denote x∗ = x̄T

(x∗Ax)∗ = x∗A∗x = x∗Ax = x∗λx = λx∗x

= (x∗λx)∗ = λ̄x∗x

since x∗x ̸= 0, we must have λ = λ̄

2 assume Ax1 = λ1x1 and Ax2 = λ2x2 (now all (λi, xi) are real)

xT2 Ax1 = xT2 λ1x1 = λ1x
T
2 x1

= xT1 Ax2 = xT1 λ2x2 = λ2x
T
1 x2

equating two terms give (λ1 − λ2)x
T
2 x1 = 0

for simple case, we can assume that λi’s are distinct, so xT2 x1 = 0 (x2 ⊥ x1)
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Exercises

1 for x, y ∈ Rn, are xyT , xxT , yxT symmetric?
2 for a diagonal matrix D, is D + xxT symmetric?
3 if A,B are symmetric, so is A+B?
4 how many distinct entries in a symmetric matrix of size n?
5 if A is symmetric and B is rectangular, is BABT symmetric?
6 if A is symmetric and invertible, is A−1 symmetric?

7 find conditions on A,B,C,D so that the block matrix:
[
A B
C D

]
is symmetric
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Positive definite matrix
definition: a symmetric matrix A is positive semidefinite, written as A ⪰ 0 if

xTAx ≥ 0, ∀x ∈ Rn

and is said to be positive definite, written as A ≻ 0 if

xTAx > 0, for all nonzero x ∈ Rn

k the curly ⪰ symbol is used with matrices (to differentiate it from ≥ for scalars )

example: A1 =

[
1 −1
−1 1

]
⪰ 0 and A2 =

[
1 −1
−1 2

]
≻ 0 because

xTA1x =
[
x1 x2

] [ 1 −1
−1 1

] [
x1
x2

]
= x21 + x22 − 2x1x2 = (x1 − x2)

2 ≥ 0

xTA2x = (x1 − x2)
2 + x22 > 0, ∀x ̸= 0

exercise: . check positive semidefiniteness of matrices on page 16
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How to test if A ⪰ 0?

Theorem: A ⪰ 0 if and only if all eigenvalues of A are non-negative
(A ≻ 0 if and only if λ(A) > 0)
Sylvester’s criterion: if every principal minor of A (including detA) is non-negative
then A ⪰ 0 proof in Horn Theorem 7.2.5

example 1: A =

[
1 −1
−1 2

]
≻ 0 because

eigenvalues of A are 0.38 and 2.61 (real and positive)

the principle minors are 1 and
∣∣∣∣ 1 −1
−1 2

∣∣∣∣ = 1 (all positive)

example 2: A =

[
1 1
2 2

]
⪰ 0 because eigenvalues of A are 0 and 3
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Properties of positive definite matrix

1 if A ⪰ 0 then all the diagonal terms of A are nonnegative
2 if A ⪰ 0 then all the leading blocks of A are positive semidefinite
3 if A ⪰ 0 then BABT ⪰ 0 for any B - (exercise)
4 if A ⪰ 0 and B ⪰ 0, then so is A+B
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Gram matrix
for an m× n matrix A with columns a1, . . . , an, the product G = ATA is called the
Gram matrix Gram matrix is positive semidefinite

Jørgen Pedersen Gram

G = ATA =


aT1 a1 aT1 a2 · · · aT1 an
aT2 a1 aT2 a2 · · · aT2 an

... ... . . . ...
aTna1 aTna2 · · · aTnan


xTGx = xTATAx = ∥Ax∥2 ≥ 0, ∀x

if A has zero nullspace then Ax = 0 ↔ x = 0; this implies that ATA ≻ 0

let X be a data matrix, partitioned in N rows as xTk ’s; we typically encounter
G = XTX

N = 1
N

∑N
k=1 xkx

T
k as the sample covariance matrix
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Exercises
1 check if each of the following is positive definite

A1 =

[
2 4
4 1

]
, A2 =

[
−2 1
1 3

]
, A3 =

 4 −1 0
−1 2 2
0 2 3


2 is a diagonal matrix always positive semidefinite?
3 for x ∈ Rn and I is the identify

1 is I + xxT positive semidefinite?
2 is I − xxT positive semidefinite?
3 is xxT positive semidefinite?

4 find conditions on a, b, c so that 2 a b
a 1 −1
b −1 c


is positive definite
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Numerical exercises

generate each of these matrices randomly and check its properties

1 orthogonal: check determinant and eigenvalues
2 orthogonal projection: check eigenvalues
3 permutation: check the eigenvalues, its inverse and transpose
4 symmetric: check eigenvalues and eigenvectors
5 positive definite: check eigenvalues, eigenvalues of leading diagonal blocks,

relate what you numerically found to the properties of these matrices
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