

Outline

1 Special matrices and applications

Linear algebra and applications Jitkomut Songsiri 2 / 28

101181121121 2 990

How to read this handout

- 1 the note is used with lecture in EE205 (you cannot master this topic just by reading this note) – class activities include
	- **graphical concepts, math derivation of details/steps in between**
	- computer codes to illustrate examples
- 2 always read 'textbooks' after lecture
- 3 pay attention to the symbol S; you should be able to prove such S result
- 4 each chapter has a list of references; find more formal details/proofs from in-text citations
- 5 almost all results in this note can be Googled; readers are encouraged to 'stimulate neurons' in your brain by proving results without seeking help from the Internet first
- 6 typos and mistakes can be reported to jitkomut@gmail.com

 $\Box \rightarrow \neg \left(\frac{\partial}{\partial \theta} \right) \rightarrow \neg \left(\frac{\partial}{\partial \theta} \right)$ $\frac{1}{2}$ \rightarrow $\frac{1}{4}$ $2Q$

Special matrices and applications

Linear algebra and applications **Jitkomut Songsiri Special matrices and applications**

ADR YORKER LE DAG

Special matrices

- orthogonal matrix
- projection matrix
- permutation matrix
- symmetric matrix
- positive definite matrix

Orthogonal matrix

a *real* matrix $U \in \mathbf{R}^{n \times n}$ is called orthogonal if

$$
UU^T = U^T U = I
$$

properties: ✎

- an orthogonal matrix is special case of unitary for real matrices
- an orthogonal matrix is always invertible and $U^{-1}=U^T$
- columns vectors of *U* are mutually orthogonal
- norm is preserved under an orthogonal transformation: $\|Ux\|_2^2 = \|x\|_2^2$

example:

$$
\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \quad \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}
$$

$$
4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi
$$

Applications

 1 rotation: in \mathbf{R}^3 , rotate a vector x by the angle θ around the z -axis

$$
w = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \triangleq U \begin{bmatrix} x \\ y \\ z \end{bmatrix}
$$

where *U* is orthogonal

- 2 eigenvectors of symmetric matrices are orthogonal (more detail later)
- 3 *Q* in QR decomposition is orthogonal
- 4 orthogonal matrices are used to whiten the data (transform correlated random vector to uncorrelated random vector)
- 5 discrete Fourier transform (DFT): $y = Wx$ where W is unitary (equivalence of orthogonal matrix in complex)

Unitary matrix

a *complex* matrix $U \in \mathbf{C}^{n \times n}$ is called **unitary** if

$$
U^*U = UU^* = I, \qquad (U^* \triangleq \bar{U}^T)
$$

 ϵ example: let $z=e^{-i2\pi/3}$

$$
U = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & z & z^2 \\ 1 & z^2 & z^4 \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & e^{-i2\pi/3} & e^{-i4\pi/3} \\ 1 & e^{-i4\pi/3} & e^{-i8\pi/3} \end{bmatrix}
$$

facts: ✎

- a unitary matrix is always invertible and $U^{-1}=U^*$
- columns vectors of U are mutually orthogonal
- 2-norm is preserved under a unitary transformation: $\|Ux\|_2^2 = (Ux)^*(Ux) = \|x\|_2^2$

Example: Discrete Fourier transform (DFT)

DFT of the length-*N* time-domain sequence *x*[*n*] is defined by

$$
X[k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] e^{-i2\pi kn/N}, \quad 0 \le k \le N-1
$$

define $z=e^{-\mathrm{i}2\pi/N}$, we can write the DFT in a matrix form as

$$
\begin{bmatrix}\nX[0] \\
X[1] \\
X[2] \\
\vdots \\
X[N-1]\n\end{bmatrix} = \frac{1}{\sqrt{N}} \begin{bmatrix}\n1 & 1 & 1 & \cdots & 1 \\
1 & z^1 & z^2 & \cdots & z^{N-1} \\
1 & z^2 & z^4 & \cdots & z^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & z^{N-1} & z^{2(N-1)} & \cdots & z^{(N-1)(N-1)}\n\end{bmatrix} \begin{bmatrix}\nx[0] \\
x[1] \\
x[2] \\
\vdots \\
x[N-1]\n\end{bmatrix}
$$

or $X = Dx$ where D is called the DFT matrix and is unitary $(. : x = D^*X)$

Unitary property of DFT

the columns of DFT matrix are of the form:

$$
\phi_k = (1/\sqrt{N}) \begin{bmatrix} 1 & e^{-i2\pi k/N} & e^{-i2\pi k \cdot 2/N} & \cdots & e^{-i2\pi k(N-1)/N} \end{bmatrix}^T
$$

use $\langle \phi_l, \phi_k \rangle = \phi_k^* \phi_l$ and apply the sum of geometric series:

$$
\langle \phi_l, \phi_k \rangle = \frac{1}{N} \sum_{n=0}^{N-1} e^{i2\pi (k-l)n/N} = \frac{1}{N} \cdot \frac{1 - e^{i2\pi (k-l)}}{1 - e^{i2\pi (k-l)/N}}
$$

the columns of DFT matrix are therefore *orthogonal*

$$
\langle \phi_l, \phi_k \rangle = \begin{cases} 1, & \text{for } k = l + rN, \\ 0, & \text{for } k \neq l \end{cases} \quad r = 0, 1, 2, \dots
$$

Projection matrix

- $P \in \mathbf{R}^{n \times n}$ is said to be a projection matrix if $P^2 = P$ (aka idempotent)
	- P is a linear transformation from \mathbf{R}^n to a subspace of \mathbf{R}^n , denoted as S
	- columns of *P* are the projections of standard basis vectors and *S* is the range of *P*
	- \blacksquare if *P* is applied twice on a vector in *S*, it gives the same vector

examples: identity and

$$
\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}, \quad \begin{bmatrix} 3 & -6 \\ 1 & -2 \end{bmatrix}, \quad I - X(X^TX)^{-1}X^T \quad \text{(in regression)}
$$

properties: ✎

- eigenvalues of P are all equal to 0 or 1
- *I* − *P* is also idempotent
- if $P \neq I$, then *P* is singular

Orthogonal projection matrix

a matrix $P \in \mathbf{R}^{n \times n}$ is called an orthogonal projection matrix if

$$
P^2 = P = P^T
$$

properties:

■ <i>P is bounded, *i.e.*, $||Px|| \le ||x||$

$$
||Px||_2^2 = x^T P^T P x = x^T P^2 x = x^T P x \le ||Px|| ||x||
$$

■ if *P* is an orthogonal projection onto a line spanned by a unit vector *u*,

$$
P = uu^T
$$

(we see that $\text{rank}(P) = 1$ as the dimension of a line is 1)

another example: $P = X(X^T X)^{-1} X^T$ for any matrix X – (in regression)

Permutation

a **permutation** matrix *P* is a square matrix that has exactly one entry of 1 in each row and each column and has zero elsewhere

facts: ✎

- *P* is obtained by interchanging any two rows (or columns) of an identity matrix
- PA results in permuting rows in *A*, and *AP* gives permuting columns in *A*
- $P^{T}P = I$, so $P^{-1} = P^{T}$ (simple)
- the modulus of all eigenvalues of *P* is one, *i.e.*, $|\lambda_i(P)| = 1$
- **a** a multiplication of P with vectors or matrix has no flop count (just swap rows/columns)

Linear function

given $w \in \mathbf{R}^n$ and let $x \in \mathbf{R}^n$ be a vector variable

a linear function $f: \mathbb{R}^n \to \mathbb{R}$ is given by

$$
f(x) = w^T x = w_1 x_1 + w_2 x_2 + \dots + w_n x_n
$$

(✎ review its linear properties, *i.e.*, superposition)

an **affine function** is a linear function plus a constant: $f(x) = w^T x + b$

- *∂f* $\frac{\partial f}{\partial x_i} = w_i$ gives the rate of change of f in x_i direction
- the set $\{x \mid w^T x + b = \text{ constant }\}$ is a hyperplane in \mathbf{R}^n with the normal vector w
- **n** linear functions are used in linear regression model and linear classifier

Energy form

given a (real) square matrix *A*, an energy form is a quadratic function of vector *x*:

$$
f: \mathbf{R}^n \to \mathbf{R}, \quad f(x) = x^T A x = \sum_i \sum_j a_{ij} x_i x_j
$$

 $x^T A x$ is the same as the energy form using $(A + A^T)/2$ as the coefficient because

$$
x^T A x = (x^T A x)^T = \frac{x^T (A + A^T) x}{2}
$$

- using $A = \frac{A + A^{T}}{2} + \frac{A A^{T}}{2}$, we can later on assume that an energy form requires only the symmetric part of *A*
- reverse question: given an energy form, can you determine what A is ?

$$
x_1^2 + 2x_2^2 + 3x_3^2 - x_1x_2 + 2x_2x_3 \triangleq x^T A x
$$

Energy form and completing the square

recall how to complete the square:

$$
x_1^2 + 3x_2^2 + 14x_1x_2 = (x_1 + 7x_2)^2 - 46x_2^2
$$

given these matrices, expand the energy form and complete the square

$$
A = \begin{bmatrix} 4 & 6 \\ 6 & 13 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 6 \\ 6 & 9 \end{bmatrix}, \quad C = \begin{bmatrix} 4 & 6 \\ 6 & -4 \end{bmatrix}
$$

- $x^T A x =$
- $x^T B x =$
- $x^T C x =$

Quadratic function

given $P \in \mathbf{R}^{n \times n}, q \in \mathbf{R}^n, r \in \mathbf{R}$, a quadratic function $f: \mathbf{R}^n \to \mathbf{R}$ is of the form

$$
f(x) = (1/2)x^T P x + q^T x + r
$$

 $\,x^TPx$ is aka an energy form (due to the quadratic form that appears in the energy/power of some physical variables)

electrical power $= i^2 R$, kinetic energy $= \ \frac{1}{2} m v^2$, energy stored in spring $= \ \frac{1}{2} k x^2$

 \blacksquare the contour shape of f depends on the property of P (positive definite, indefinite, magnitude of eigenvalues, direction of eigenvectors) – as we will learn shortly

Symmetric matrix

definition: a (real) square matrix *A* is said to be **symmetric** if $A = A^T$ $A \in S^n$

examples:

$$
\begin{bmatrix} X & Y \\ Y^T & Z \end{bmatrix}
$$
 with symmetric $X, Z, A = \mathbf{E}[XX^T]$ (correlation matrix)

✎ **basic facts:**

- for any (rectangular) matrix A , AA^T and A^TA are always symmetric
- if *A* is symmetric and invertible, then *A−*¹ is symmetric
- if A is invertible, then AA^T and A^TA are also invertible

Properties of symmetric matrix

spectral theorem: if *A* is a real symmetric matrix then the following statements hold

- 1 all eigenvalues of *A* are real
- 2 all eigenvectors of *A* are orthogonal
- 3 *A* admits a decomposition

$$
A = UDU^T
$$

where $U^TU=UU^T=I$ $(U$ is unitary) and a diagonal D contains $\lambda(A)$

4 for any *x*, we have

 $\lambda_{\min}(A) \|x\|_2^2 \leq x^T A x \leq \lambda_{\max}(A) \|x\|_2^2$

the first (and second) inequalities are tight when x is the eigenvector corresponding to λ_{\min} (and *λ*max respectively)

Proofs

 1 assume $Ax = \lambda x$ and λ, x could be complex, denote $x^* = \bar{x}^T$

$$
(x^*Ax)^* = x^*A^*x = x^*Ax = x^*\lambda x = \lambda x^*x
$$

$$
= (x^*\lambda x)^* = \overline{\lambda}x^*x
$$

since $x^*x \neq 0$, we must have $\lambda = \bar{\lambda}$

 2 assume $Ax_1 = \lambda_1x_1$ and $Ax_2 = \lambda_2x_2$ (now all (λ_i, x_i) are real)

$$
x_2^T A x_1 = x_2^T \lambda_1 x_1 = \lambda_1 x_2^T x_1
$$

= $x_1^T A x_2 = x_1^T \lambda_2 x_2 = \lambda_2 x_1^T x_2$

equating two terms give $(\lambda_1 - \lambda_2) x_2^T x_1 = 0$

for simple case, we can assume that λ_i 's are distinct, so $x_2^Tx_1 = 0$ $(x_2 \perp x_1)$

$$
4 \Box + 4 \Box + 4 \Xi + 4 \Xi + \Xi
$$
 20/28

Exercises

- \mathbf{I} for $x, y \in \mathbf{R}^n$, are xy^T, xx^T, yx^T symmetric?
- $\overline{\mathbf{2}}$ for a diagonal matrix D , is $D + xx^T$ symmetric?
- 3 if A, B are symmetric, so is $A + B$?
- 4 how many distinct entries in a symmetric matrix of size *n*?
- $\overline{\bf 5}$ if A is symmetric and B is rectangular, is BAB^T symmetric?
- ⁶ if *A* is symmetric and invertible, is *A−*¹ symmetric?

 $\frac{1}{\sqrt{2}}$ find conditions on A,B,C,D so that the block matrix: $\begin{bmatrix} A & B \ C & D \end{bmatrix}$ is symmetric

Positive definite matrix

definition: a symmetric matrix A is **positive semidefinite**, written as $A \succeq 0$ if

$$
x^T A x \ge 0, \quad \forall x \in \mathbf{R}^n
$$

and is said to be **positive definite**, written as $A \succ 0$ if

$$
x^T A x > 0, \quad \text{for all nonzero } x \in \mathbb{R}^n
$$

❋ the curly *⪰* symbol is used with matrices (to differentiate it from *≥* for scalars) example: $A_1 =$ $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \succeq 0$ and $A_2 =$ $\begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$ ≻ 0 because $x^T A_1 x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ 1 $=x_1^2 + x_2^2 - 2x_1x_2 = (x_1 - x_2)^2 \ge 0$ $x^T A_2 x = (x_1 - x_2)^2 + x_2^2 > 0, \quad \forall x \neq 0$

exercise: ���� check positive semidefiniteness of matrices on page 16

Linear algebra and applications Jitkomut Songsiri 22 / 28

How to test if $A \succeq 0$?

Theorem: $A \succeq 0$ if and only if all eigenvalues of A are non-negative

$$
(A \succ 0
$$
 if and only if $\lambda(A) > 0$)

Sylvester's criterion: if every principal minor of *A* (including det *A*) is non-negative **then** $A \succeq 0$ proof in Horn Theorem 7.2.5

example 1: $A =$ $\begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$ ≻ 0 because

eigenvalues of *A* are 0*.*38 and 2*.*61 (real and positive)

the principle minors are 1 and 1 *−*1 *−*1 2 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $= 1$ (all positive)

example 2: $A =$ $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \succeq 0$ because eigenvalues of A are 0 and 3

Properties of positive definite matrix

- **1** if $A \succeq 0$ then all the diagonal terms of A are nonnegative
- 2 if $A \succeq 0$ then all the leading blocks of A are positive semidefinite
- **3** if $A \succeq 0$ then $BAB^T \succeq 0$ for any *B* $\qquad \qquad \& \qquad$ (exercise)
- 4 if $A \succeq 0$ and $B \succeq 0$, then so is $A + B$

Gram matrix

for an $m \times n$ matrix A with columns a_1, \ldots, a_n , the product $G = A^T A$ is called the **Gram matrix** Gram matrix **Gram matrix** is positive semidefinite

Jørgen Pedersen Gram

$$
G = AT A = \begin{bmatrix} a_1^T a_1 & a_1^T a_2 & \cdots & a_1^T a_n \\ a_2^T a_1 & a_2^T a_2 & \cdots & a_2^T a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_n^T a_1 & a_n^T a_2 & \cdots & a_n^T a_n \end{bmatrix}
$$

$$
xT G x = xT AT A x = ||Ax||2 \ge 0, \forall x
$$

- if *A* has zero nullspace then $Ax = 0 \leftrightarrow x = 0$; this implies that $A^T A \succ 0$
- let X be a data matrix, partitioned in N rows as x_k^T 's; we typically encounter $G = \frac{X^T X}{N} = \frac{1}{N}$ $\frac{1}{N}\sum_{k=1}^{N}x_{k}x_{k}^{T}$ as the sample covariance matrix

. Linear algebra and applications Jitkomut Songsiri 25 / 28

Exercises

1 check if each of the following is positive definite

$$
A_1 = \begin{bmatrix} 2 & 4 \\ 4 & 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} -2 & 1 \\ 1 & 3 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 2 & 2 \\ 0 & 2 & 3 \end{bmatrix}
$$

2 is a diagonal matrix always positive semidefinite?

3 for $x \in \mathbf{R}^n$ and *I* is the identify

 1 is $I + xx^T$ positive semidefinite?

- ² is *I − xx^T* positive semidefinite?
- 3 is xx^T positive semidefinite?
- 4 find conditions on *a, b, c* so that

is positive definite

Numerical exercises

generate each of these matrices *randomly* and check its properties

- 1 orthogonal: check determinant and eigenvalues
- 2 orthogonal projection: check eigenvalues
- ³ permutation: check the eigenvalues, its inverse and transpose
- 4 symmetric: check eigenvalues and eigenvectors
- 5 positive definite: check eigenvalues, eigenvalues of leading diagonal blocks,

relate what you numerically found to the properties of these matrices

References

- 1 W.K. Nicholson, *Linear Algebra with Applications*, McGraw-Hill, 2006
- 2 G. Strang, *Linear Algebra and Learning from Data*, Wellesley-Cambridge Press, 2019