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How to read this handout
the note is used with lecture in EE205 (you cannot master this topic just by
reading this note) — class activities include
m graphical concepts, math derivation of details/steps in between
m computer codes to illustrate examples
always read 'textbooks’ after lecture
pay attention to the symbol &; you should be able to prove such & result
each chapter has a list of references; find more formal details/proofs from in-text
citations
almost all results in this note can be Googled; readers are encouraged to
‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first
[@ typos and mistakes can be reported to jitkomut@gmail.com
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Vector notation

n-vector x:
T
x2
xTr =
Tn
m also written as x = (1, 22,...,Ty)

m set of n-vectors is denoted R™ (Euclidean space)
m z;: ith element or component or entry of x
m it is common to denote x as a column vector

w2l =]z x -+ m,] is then a row vector
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Special vectors

standard unit vector in R™ is a vector with all zero element except one element which
is equal to one

1 0 0
€1 = 0 s €9 = 1 N €3 = 0
1 0 1

ones vector is the n-vector with all its elements equal to one, denoted as 1

stacked vectors: if b, ¢, d are vectors (can be different sizes)

a= |c|, or a=(becAd)
d

is the stacked (or concatenated) vector of b, c,d
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Linear combination of vectors
if a1,a9,...,a,, are n-vectors, and aq, ..., a,, are scalars, the n-vector

prai + PBeaz + -+ + Bmam
is called a linear combination of the vectors a1, ..., am,

special linear combinations
m any n-vector a can be expressed as a = aje; + ages + - - - + apey,

m the linear combination with 8y =--- = 3,, = 1 given by a1 + - - - 4+ a,, is the sum
of the vectors

m the linear combination with $; = --- = 8, = 1/m given by (a1 + -+ + an,)/m is
the average of the vectors

m when the coefficients are non-negative and sum to one, ie, 1+ -+ B =1,
the linear combination is called a convex combination or weighted average
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Inner products

definition: the inner product of two n-vectors z,y is
T1y1r + T2y2 + -+ TpYn
also known as the dot product of vectors x,y

notation: 27y

properties &
m (ax)’y = a(zTy) for scalar a
m(z+y)Tz=a"24+9y"2

moly=yTx
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Examples

unit vector: e;fpa = a; the inner product of a vector with e; gives the ith element
of a

sum: 1Ta=a1+as+---+an

average: (1/n)Ta = (a1 +---+ay)/n

sum of squares: a’a =a? +ad+ - +a?

selective sum: let b be a vector all of whose entries are either 0 or 1; then b’ a is
the sum of elements in a for which b, =1

b=(0,1,0,0,1), bTa=as+as

polynomial evaluation: let ¢ be the n-vector represents the coefficients of
polynomial p with degree n — 1

plx) =ci+cx+---+ Cno12" 2 4 cpa™ !

let t be a number and z = (1,¢,2,...,t" 1) then ¢’z = p(t)
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Euclidean norm

loll = /a3 + a3+ +22 = VaTa
properties
m also written ||z||2 to distinguish from other norms
m |az| = |a|||z| for scalar «
m ||z +yl| < |z| + ||yl (triangle inequality)
m||z]| >0and ||z|| =0onlyifz =0
interpretation

m ||z|| measures the magnitude or length of z

m ||z — y|| measures the distance between z and y
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Cluster centroid

given three clusters of data points

6 Clustering
. . it can be shown that the representative is in fact,
ar ! “Wo, e *.%. "1 the centroid of the group
ot " 0:‘ . - -':I'_
2r ¢ ’o:‘{: ¢ el i _ : 2 2
. R zj = argmin, |jz1 —z||*+ -+ [|lany — 2||
. " 1
of ] z; = centroid = — E Z;
J N ?
1€Group j

2+ L]

(the average of all points in group G)
-4 . . . . .
-6 -4 -2 0 2 4 6

the black marker is the representative of a cluster, defined by the point that has the
smallest sum of distance to all points in a cluster
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Inner product and norm of stacked vectors

inner product of stacked vectors

T
T a
Y bl =zTa+yTb+21c
z c
norm of a stacked vector
2
T
vl = lzll®+ Iyl + |zl
z

norm of a distance

|z —ylI?> = (z — )Tz —y) = [lz]* + |ly|* — 22Ty
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Cauchy-Schwarz inequality

for a,b € R"
la”0] < [lall2[[b]l2

example: for ai,...,a, € R with a; + -+ + a,, = 1 show that
ai+a3+---+al>
CS-inequality can be used to verify the triangle inequality
lla+bl* = [|al|* + 2a"b + [[b]* < [lall® + 2[|a][|b]] + [[Bl* = (|a + b]})?
angle between vectors: gives a similarity degree of two vectors

a®db
l[allllo]l

cosf =
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Matrix notation

an m X n matrix A is defined as

all a1 AT
asl ao e aon

A= . . . . , or A= [aij]mxn
Aml Am2 ... Qmn

a;; are the elements, or coefficients, or entries of A

set of m X n-matrices is denoted R"*"

|
n
m A has m rows and n columns (m,n are the dimensions)
m the (4, ) entry of A is also commonly denoted by A;;

|

A is called a square matrix if m =n
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Special matrices

zero matrix: A =0

00 0
00 0
A=,
: 0
00 0
aij:O, forizl,...,m,jzl,...,n
identity matrix: A =1
10 0
01 0
A=
Do 0
00 1

a square matrix with a; = 1,a;; =0 for i # j
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diagonal matrix: a square matrix with a;; = 0 for i # j

aq 0 0

0 a9 0
A=

0 0 ay

triangular matrix: a square matrix with zero entries in a triangular part

upper triangular lower triangular
ai; a2 -+ Qip ap 0 - 0
0 ag - a2 az az -~ 0
A= . o A=
0 0 - am anl Gp2 - Qnp
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Multiplication

product of m X r-matrix A with r» X n-matrix B:
(AB)ij = anbij + aigboj + - - - + aiby; = Z ;g by
k=1

dimensions must be compatible: # of columns in A = # of rows in B
m (AB);; is the dot product of the i row of A and the 5" column of B
m AB # BA in general | (even if the dimensions make sense)
m there are exceptions, e.g., AI = I A for all square A
m A(B+C)=AB+ AC
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Matrix transpose

the transpose of an m X n-matrix A is

aijlr az21 . Gml
AT — a2 a2 - Gm2
Qln A2n - Amn
properties &
m AT isnxm
(AT =4
m (aA+B)T =aAT + BT, a€R
m (AB)T = BT AT
m a square matrix A is called symmetric if A = AT je, a;j = aj
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Block matrix notation

example: 2 x 2-block matrix A

for example, if B,C, D, E are defined as

B:E é] 0:[(1) El) ﬂ D=[0 1], E=[-4 1 —1]

then A is the matrix

21 0 1 7
A=13 8 1 9 1
01 41 -1

note: dimensions of the blocks must be compatible
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Column and Row partitions

write an m X n-matrix A in terms of its columns or its rows

bf
by
A:[al ag - an]: .
b
m aj for j =1,2,...,n are the columns of A
-binori:1,2,...,maretherowsofA

example: A = [1 2 1}

4 9 0

alzm, a2:[§], agzm, b= 2 1], b3 =1[4 9 0
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Matrix-vector product

product of m X n-matrix A with n-vector x
1121 + 1222 + ... + A1pTn
a2171 + a22T2 + ... + G2nTy
Ax =
Am1T1 + Am2T2 + - .. + AmnTn
m dimensions must be compatible: # columns in A = # elements in z

if A is partitioned as A = [al as - an], then

Az = a1y + agwo + - + apy

m Az is a linear combination of the column vectors of A
m the coefficients are the entries of x

Linear algebra and applications Jitkomut Songsiri 21 / 57



Product with standard unit vectors
post-multiply with a column vector

0
ann a2 ... ai]| |0 aik
a1 Q2 ... Q2 : a2k
Aey, = : : i : 1| = . = the kth column of A
Gml OGm2 --- Qmn Umk
_0—
pre-multiply with a row vector
a1l a2 ... Qin
a1 Q2 ... Q2p
Aml Am2 ... Qmn
= [akl aga - a;m] = the kth row of A
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Trace

definition: trace of a square matrix A is the sum of the diagonal entries in A

tr(A) =ai1 +ag + -+ ann

example:
2 1 4
A=10 -1 5
3 4 6

traceof Ais2—146=7
properties ©
m tr(AT) = tr(A)
m tr(eA + B) = atr(A) + tr(B)
m tr(AB) = tr(BA)
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Inverse of matrices

definition: a square matrix A is called invertible or nonsingular if there exists B s.t.

AB=BA=1

m B is called an inverse of A
m it is also true that B is invertible and A is an inverse of B
m if no such B can be found A is said to be singular

assume A is invertible

m an inverse of A is unique
m the inverse of A is denoted by A~!
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Facts about invertible matrices

assume A, B are invertible

facts &
m (aA)~t = a 1AL for nonzero a
m AT is also invertible and (A1)~ = (A~1)T
m AB is invertible and (AB)~! = B~1A~!
m (A+B)t#£ A+ B!

¥ Theorem: for a square matrix A, the following statements are equivalent
A is invertible
Az = 0 has only the trivial solution (z = 0)
the reduced echelon form of A is [
A is invertible if and only if det(A) # 0
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Inverse of 2 x 2 matrices

the matrix

is invertible if and only if

and its inverse is given by

example:

_12 1 -1 _
[ ]-

|~
| ——
= W
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Elementary matrices

Definition: a matrix obtained by performing a single row operation on the identity
matrix I, is called an elementary matrix

examples:

1 00
01 0 add k times the first row to the third row of I3
k0 1

10 . .

[O kz] multiply a nonzero k with the second row of I
1 00
0 01 interchange the second and the third rows of I3
010

an elementary matrix is often denoted by E
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Inverse operations
row operations on E that produces I and vice versa

I — F

E—1T

add k times row ¢ to row j
multiply row i by k # 0

add —k times row ¢ to row j

multiply row i by 1/k

interchange row ¢ and j

interchange row ¢ and j

E =

Linear algebra and applications

1
0
k

0
1
0

> O
[

= o O

0
0
1

—

1 00
0
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1 00

S O =

S = O

_= o O
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Facts &

m every elementary matrix is invertible

m the inverse is also an elementary matrix

from the examples in page 28

1
E =

o

Linear algebra and applications

—_

o

o

[an}

O =

— FE
— F
— FE

Jitkomut Songsiri

-1

-1

1 0 0
0 10
~k 0 1
0
0 1/k
100
00 1
010
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Row operations by matrix multiplication

assume A is m X n and E is obtained by performing a row operation on I,
E A = the matrix obtained by performing this same row operation on A

example:
1 2 3
A=10 1 -1
11 0

m add —2 times the third row to the second row of A

1 0 O 1 2 3
E=1]01 -2 FA=|-2 -1 -1
0 0 1 1 1 0
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m multiply 2 with the first row of A

2 00 2
E=1]|01 0 EA= |0
0 0 1 1
m interchange the first and the third rows of A
001 1
E=1]0 1 0 EFA= |0
1 00 1
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Inverse via row operations

assume A is invertible

m A is reduced to I by a finite sequence of row operations
E17E27"'7Ek

such that
Ep---BEyE1A=1

m the reduced echelon form of A is I

m the inverse of A is therefore given by the product of elementary matrices

AV =E---FyFy
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Example
write the augmented matrix [A | I]

2 4 3|1 00
1 2 1|10 10
1 0 4/0 0 1
and apply row operations until the left side is reduced to [
9Ry 4+ Ry — R, 0 0 1|1 -2 0
"Ry 4+ Re >R 1 2 10 1 O
S 0 -2 30 -1 1
1 2 10 1 0
Ry & Ry 0 0 1j1 =2 0
0 -2 3(0 -1 1
1 2 1 1 0
—3R2+ R3 — R3 0 0 11 =220
0 -2 0/-3 5 1
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1 2 110 1 0
R3/(—2)—>R3 0 0 1]1 -2 0
o1 0l3 -f -
1 2 110 1 0
Ry <+ R3 01 0[5 -3 —3
0 0 1|1 -2 0
1 0 1/-3 6 1
—2Ry + Ry — Ry o103 -3 -4
00 1|1 -2 0
1 0 0|—-4 8 1
~R3+ R — Ry o103 -3 -4
00 1|1 =2
the inverse of A4 is
-4 8 1
3 _5 _1
2 2 2
1 -2 0
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Inverse of diagonal matrix

al 0 0

0 a9 0
A=

0 0 an

a diagonal matrix is invertible iff the diagonal entries are all nonzero
aiﬁéO, i:1,2,...,n

the inverse of A is given by

1/a;, 0 -+ 0
= 0 1/ag -~ 0
0 - 0 1/an

the diagonal entries in A~! are the inverse of the diagonal entries in A

Linear algebra and applications Jitkomut Songsiri 35/ 57



Inverse of triangular matrix

upper triangular lower triangular
aip a2 -t Gy a; 0 - 0
A 0 CL'22 © Qgn e az; az -+ 0
0 0 .- Ann apl Ap2 -+ Gpp
aijZOfOFiZj aij:0fori§j

a triangular matrix is invertible iff the diagonal entries are all nonzero
aiﬁéo, V’i:1,2,...,n

m product of lower (upper) triangular matrices is lower (upper) triangular

m the inverse of a lower (upper) triangular matrix is lower (upper) triangular
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Inverse of symmetric matrix

symmetric matrix: A = AT

ESY
m for any square matrix A, AAT and AT A are always symmetric
m if A is symmetric and invertible, then A~! is symmetric
m if A is invertible, then AAT and AT A are also invertible

for a general A, the inverse of AT is (A~1)7 please verify &
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Determinants
the determinant is a scalar value associated with a square matrix A
commonly denoted by det(A) or |A]
determinants of 2 x 2 matrices:

a b

det [c d

]:ad—bc

determinants of 3 x 3 matrices: let A = {a;;}

a1l a2 ais
det (a1 a2 a23| = ar1a22a33 + ai2a23a31 + a13021032
azr asz2 as3

— (as1a22a13 + agzaz3a11 + aszazaiz)
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How to find determinants

for a square matrix of any order, it can be computed by
m cofactor expansion
m performing elementray row operations
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Minor and Cofactor

Minor of entry a;;: denoted by M;;

m the determinant of the resulting submatrix after deleting the ith row and jth
column of A

Cofactor of entry a;;: denoted by Cj;
m Cyj = (1)) M,

example:
3 1 -2 -
A=15 0 2|, My= =4, Co3=(-1)C)My3 =4
1 -1 2 -l
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Determinants by Cofactor Expansion

Theorem: the determinant of an n x n-matrix A is given by

det(A) = a1;C1j + ag;Coj + -+ + aniChpj
det(A) = a;1Cin + apCis + -+ ainCip

regardless of which row or column of A is chosen

example: pick the first row to compute det(A)

3 1 =2
A = |5 0 2], det(A)=a11C11+ a12Ci2 + a13C13
1 -1 2
| 02 520 . |5 0
det(4) = 3(-02| O 2 leaep| 0 2 et 0 O
8

= 3@+ (=1D®) =2(1)(=5) =
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Basic properties of determinants

¥ let A, B be any square matrices
det(A) = det(AT)
if A has a row of zeros or a column of zeros, then det(A) =0
det(aA) = " det(4), a#0
If A has two rows (columns) that are equal, then det(A) =0
det(A + B) # det(A) + det(B) !
@ det(AB) = det(A) det(B)
det(A™1) =1/ det(A)
B A is invertible if and only if det(A) # 0
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Basic properties of determinants

suppose the following is true
m A and B are equal except for the entries in their kth row (column)

m C is defined as that matrix identical to A and B except that its kth row (column)
is the sum of the kth rows (columns) of A and B

then we have
det(C') = det(A) + det(B)

example:
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Determinants of special matrices

m the determinant of a diagonal or triangular matrix is given by the product of the
diagonal entries

m det(I) =1

(these properties can be proved from the def. of cofactor expansion)
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Determinants under row operations

m multiply k£ to a row or a column

ka1 kaiz kais a1 a2 a13
a1 azx as |=k| ax ax as
azy azx  ass azy asz as3

m interchange between two rows or two columns

G21 Q22 A23 ai;p aiz a3
ailp G2 @13 | = —| a21 dagz2 dasg3
a31 az2 as3 aszy asz2 ag3

m add & times the ith row (column) to the jth row (column)

ain +kagr a1z + kaza  aiz + kags ain a2
a21 a22 a23 = | a21 0a22
asi a32 as3 a3z1  a32
Linear algebra and applications Jitkomut Songsiri
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Example

B is obtained by performing the following operations on A

Ry +3Ri — Ry, R3+< Ry, —4R1 — R,

2 3 -2
A=[3 1 0| = det(B)=(-4) (=1)-1-det(A)
-3 -3 3

the changes of det. under elementary operations lead to obvious facts ™
m det(ad) = a"det(4), a#0
m If A has two rows (columns) that are equal, then det(A) =0
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Determinants of elementary matrices
let B be obtained by performing a row operation on A then

B=FEA and det(B)=det(FA)

k 0
E = |0 1

E = (01
0 0

0

e}

. det(B) = kdet(4) (det(E) = k)

, det(B) = —det(A) (det(E)=—1)

, det(B) = det(4)  (det(E) =1)

conclusion: det(EA) = det(FE) det(A)
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Determinants of product and inverse

¥ let A, B be n x n matrices
m A is invertible if and only if det(A) # 0
m if Ais invertible, then det(A~!) = 1/det(A)
m det(AB) = det(A) det(B)
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Adjugate formula

the adjugate of A is the transpose of the matrix of cofactors from A

Cnu Cau -+ Cp
adj(A) — C'.12 C.22 0?12
Cin Con - Cun
if A is invertible then )
AT = G M)

Proof.

m the cofactor expansion using the cofactors from different row is zero
a;1Ck1 + ai2Cr2 + ... + a4inCrp = 0, fori#k

s Aadj(A) = det(A) - I
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Cramer's rule
consider a linear system Ax = b when A is square

if A is invertible then the solution is unique and given by
r=A"1b
each component of = can be calculated by using the Cramer’s rule

Cramer’s rule
_ A _ A9 |As|

Tl = , Ig = Yy e, XTp =
Al Al "4
where A; is the matrix obtained by replacing b in the jth column of A

(its proof is left as an exercise)
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Example

3 1 =2 2
A=15 0 2|, b=]1
1 -1 2 2
since det(A) = 8, A is invertible and the solution is
2 0 2 2] 1
;zc:A—lbzg -8 8 —16] 1| = |-5
-5 4 5] 2] -2
using Cramer's rule gives
2 1 =2 1 3 2 =2 1 3 1 2
] = g 1 0 2 s To = g 5 1 2 s Tr3 = g 5} 0 1
2 -1 2 1 2 2 1 -1 2
which yields
xr1 = 1, Tro = —5, T3 = —2
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Pseudo-inverse (Penrose Theorem)
one can have a notion of 'inverse’ for a non-square matrix

Penrose’s Theorem: given A € R™*", there is exactly one n x m matrix B such that

ABA = A and BAB =B
both AB and BA are symmetric

Rm><n

definition: the pseudo inverse of A € is the unique n x m matrix A" such that

AATA = A and ATAAT = At
both AAT and ATA are symmetric
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Pseudo-inverse

consider a full rank matrix A € R™*™ in three cases
m tall matrix: A is full rank < columns of A are LI & AT A is invertible

(ATA)TATYA = (ATA) 1 (ATA) =1
the pseudo-inverse of A (or left-inverse) is AT = (AT A)~tAT
m wide matrix: A is full rank < row of A are LI & AAT is invertible
A(AT(AAT)™Y) = (AATY(AATY L =1

the pseudo-inverse of A (or right-inverse) is AT = AT(AAT)™!

= A is full rank & A is invertible and both formula of
pseudo-inverses reduce to the ordinary inverse A~!

& the pseudo inverses of the three cases have the same dimension 7
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Example

0 9 1 0 -2/9
A:[—z 1 —2}’ A= AT(AAT) ™ = 12/5 1/9
1/5 —2/9
2 1 2/9 2/9 1/9
_ _ T T AN—1 AT _ |—
A= _21 01 , Al =ATA) AT = 12 12 0

however, when rentangular A has low rank, we can use SVD to find the pseudo inverse
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Softwares (MATLAB)

eye(n) creates an identity matrix of size n
inv(A) finds the inverse of A (not used for large dimension)
A\eye(n) finds the inverse of a square matrix A

pinv(A) gives a pseudoinverse of A, denoted by Af
m if A is square, a pseudoinverse is the inverse of A
m if Aistall, AT = (ATA)~1AT is a left inverse of A
m if Ais fat, AT = AT(AAT)~! is a right inverse of A
x = pinv(A)*b solves the linear system Ax =b
m if Aissquare, x = A~ b
m if A is tall, x is the solution to the least-square problem: minimize | Az — b||2
m if A is fat, z is the least-norm solution that satisfies Az = b

@ det(A) finds the determinant of A
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Softwares (Python)

numpy . eye creates an identity matrix
numpy.linalg.inv finds the inverse of a square matrix A
numpy.linalg.pinv gives a pseudoinverse of A
numpy.linalg.det find the determinants of A

Linear algebra and applications Jitkomut Songsiri 56 / 57



References

W.K. Nicholson, Linear Algebra with Applications, McGraw-Hill, 2006

S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra: Vectors,
Matrices, and Least squares, Cambridge, 2018

H.Anton and C. Rorres, Elementary Linear Algebra, John Wiley, 2011

Linear algebra and applications Jitkomut Songsiri 57 / 57



	Matrices
	Vector operations
	Matrix operations
	Matrix inverse
	Elementary matrices
	Determinants
	Pseudo-inverse
	Softwares


