Linear algebra and applications

Department of Electrical Engineering Faculty of Engineering Chulalongkorn University

CUEE

Ja 5

Outline

1 Matrices

How to read this handout

- 1 the note is used with lecture in EE205 (you cannot master this topic just by reading this note) class activities include
 - graphical concepts, math derivation of details/steps in between
 - computer codes to illustrate examples
- 2 always read 'textbooks' after lecture
- 3 pay attention to the symbol ♥>; you should be able to prove such ♥> result
- 4 each chapter has a list of references; find more formal details/proofs from in-text citations
- almost all results in this note can be Googled; readers are encouraged to 'stimulate neurons' in your brain by proving results without seeking help from the Internet first
- 6 typos and mistakes can be reported to jitkomut@gmail.com

Matrices

Vector notation

n-vector x:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- \blacksquare also written as $x = (x_1, x_2, \dots, x_n)$
- set of n-vectors is denoted \mathbf{R}^n (Euclidean space)
- x_i : ith element or component or entry of x
- lacktriangle it is common to denote x as a column vector
- $\mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ is then a row vector

Special vectors

standard unit vector in \mathbf{R}^n is a vector with all zero element except one element which is equal to one

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

ones vector is the n-vector with all its elements equal to one, denoted as 1

stacked vectors: if b, c, d are vectors (can be different sizes)

$$a = \begin{bmatrix} b \\ c \\ d \end{bmatrix}, \quad \text{or } a = (b, c, d)$$

is the stacked (or concatenated) vector of b, c, d

Linear combination of vectors

if a_1, a_2, \ldots, a_m are n-vectors, and $\alpha_1, \ldots, \alpha_m$ are scalars, the n-vector

$$\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_m a_m$$

is called a **linear combination** of the vectors a_1, \ldots, a_m

special linear combinations

- \blacksquare any n-vector a can be expressed as $a=a_1e_1+a_2e_2+\cdots+a_ne_n$
- the linear combination with $\beta_1 = \cdots = \beta_m = 1$ given by $a_1 + \cdots + a_m$ is the sum of the vectors
- the linear combination with $\beta_1 = \cdots = \beta_m = 1/m$ given by $(a_1 + \cdots + a_m)/m$ is the average of the vectors
- when the coefficients are non-negative and sum to one, i.e., $\beta_1 + \cdots + \beta_m = 1$, the linear combination is called a **convex combination** or **weighted average**

Inner products

definition: the inner product of two n-vectors x, y is

$$x_1y_1 + x_2y_2 + \dots + x_ny_n$$

also known as the dot product of vectors x,y

notation: x^Ty

properties 🦠

- $(\alpha x)^T y = \alpha (x^T y) \text{ for scalar } \alpha$
- $(x+y)^T z = x^T z + y^T z$
- $\mathbf{x}^T y = y^T x$

Examples

- unit vector: $e_i^T a = a_i$ the inner product of a vector with e_i gives the ith element of a
- \blacksquare sum: $\mathbf{1}^T a = a_1 + a_2 + \dots + a_n$
- average: $(1/n)^T a = (a_1 + \cdots + a_n)/n$
- sum of squares: $a^Ta=a_1^2+a_2^2+\cdots+a_n^2$
- selective sum: let b be a vector all of whose entries are either 0 or 1; then $b^T a$ is the sum of elements in a for which $b_i = 1$

$$b = (0, 1, 0, 0, 1), \quad b^T a = a_2 + a_5$$

lacktriangleright polynomial evaluation: let c be the n-vector represents the coefficients of polynomial p with degree n-1

$$p(x) = c_1 + c_2 x + \dots + c_{n-1} x^{n-2} + c_n x^{n-1}$$

let t be a number and $z=(1,t,t^2,\dots,t^{n-1})$ then $c^Tz=p(t)$

Euclidean norm

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}$$

properties

- lacksquare also written $\|x\|_2$ to distinguish from other norms
- $\|\alpha x\| = |\alpha| \|x\|$ for scalar α
- $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- $\blacksquare \ \|x\| \geq 0 \ \text{and} \ \|x\| = 0 \ \text{only if} \ x = 0$

interpretation

- $\blacksquare \|x\|$ measures the *magnitude* or length of x
- $\blacksquare \|x-y\|$ measures the *distance* between x and y

Cluster centroid

given three clusters of data points

it can be shown that the representative is in fact, the **centroid** of the group

$$z_j = \operatorname{argmin}_z \ \|x_1 - z\|^2 + \dots + \|x_N - z\|^2$$

$$z_j = \operatorname{centroid} = \frac{1}{N} \sum_{i \in \operatorname{Group}_j} x_i$$

(the average of all points in group G_j)

the black marker is the representative of a cluster, defined by the point that has the smallest sum of distance to all points in a cluster

11 / 57

Inner product and norm of stacked vectors

inner product of stacked vectors

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}^T \begin{bmatrix} a \\ b \\ c \end{bmatrix} = x^T a + y^T b + z^T c$$

norm of a stacked vector

norm of a distance

$$||x - y||^2 = (x - y)^T (x - y) = ||x||^2 + ||y||^2 - 2x^T y$$

Cauchy-Schwarz inequality

for $a, b \in \mathbf{R}^n$

$$|a^T b| \le ||a||_2 ||b||_2$$

example: for $a_1, \ldots, a_n \in \mathbf{R}$ with $a_1 + \cdots + a_n = 1$ show that

$$a_1^2 + a_2^2 + \dots + a_n^2 \ge \frac{1}{n}$$

CS-inequality can be used to verify the triangle inequality

$$||a+b||^2 = ||a||^2 + 2a^Tb + ||b||^2 \le ||a||^2 + 2||a|| ||b|| + ||b||^2 = (||a+b||)^2$$

angle between vectors: gives a similarity degree of two vectors

$$\cos \theta = \frac{a^T b}{\|a\| \|b\|}$$

Matrix notation

an $m \times n$ matrix A is defined as

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \text{ or } A = [a_{ij}]_{m \times n}$$

- lacksquare are the **elements**, or **coefficients**, or **entries** of A
- \blacksquare set of $m \times n$ -matrices is denoted $\mathbf{R}^{m \times n}$
- \blacksquare A has m rows and n columns (m, n are the dimensions)
- lacksquare the (i,j) entry of A is also commonly denoted by A_{ij}
- lacksquare A is called a **square** matrix if m=n

Special matrices

zero matrix: A=0

$$A = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

$$a_{ij} = 0$$
, for $i = 1, \ldots, m, j = 1, \ldots, n$

identity matrix: A = I

$$A = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

a square matrix with $a_{ii} = 1, a_{ij} = 0$ for $i \neq j$

15 / 57

diagonal matrix: a square matrix with $a_{ij} = 0$ for $i \neq j$

$$A = \begin{bmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & a_n \end{bmatrix}$$

triangular matrix: a square matrix with zero entries in a triangular part

upper triangular

lower triangular

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \quad A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Multiplication

product of $m \times r$ -matrix A with $r \times n$ -matrix B:

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ir}b_{rj} = \sum_{k=1}^{r} a_{ik} b_{kj}$$

dimensions must be compatible: # of columns in A=# of rows in B

- ullet $(AB)_{ij}$ is the dot product of the $i^{ ext{th}}$ row of A and the $j^{ ext{th}}$ column of B
- lacksquare AB
 eq BA in general ! (even if the dimensions make sense)
- there are exceptions, e.g., AI = IA for all square A
- A(B+C) = AB + AC

Matrix transpose

the transpose of an $m \times n$ -matrix A is

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

properties 🦠

- $lacksquare A^T$ is $n \times m$
- $(A^T)^T = A$
- $(\alpha A + B)^T = \alpha A^T + B^T, \quad \alpha \in \mathbf{R}$
- $(AB)^T = B^T A^T$
- lacksquare a square matrix A is called **symmetric** if $A=A^T$, i.e., $a_{ij}=a_{ji}$

Block matrix notation

example: 2×2 -block matrix A

$$A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$$

for example, if B, C, D, E are defined as

$$B = \begin{bmatrix} 2 & 1 \\ 3 & 8 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 & 7 \\ 1 & 9 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} -4 & 1 & -1 \end{bmatrix}$$

then A is the matrix

$$A = \begin{bmatrix} 2 & 1 & 0 & 1 & 7 \\ 3 & 8 & 1 & 9 & 1 \\ 0 & 1 & -4 & 1 & -1 \end{bmatrix}$$

note: dimensions of the blocks must be compatible

Column and Row partitions

write an $m \times n$ -matrix A in terms of its columns or its rows

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} b_1^T \\ b_2^T \\ \vdots \\ b_m^T \end{bmatrix}$$

- \bullet a_j for $j=1,2,\ldots,n$ are the columns of A
- $lackbox{\bullet} b_i^T$ for $i=1,2,\ldots,m$ are the rows of A

example:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 9 & 0 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 2 \\ 9 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad b_1^T = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}, \quad b_2^T = \begin{bmatrix} 4 & 9 & 0 \end{bmatrix}$$

Matrix-vector product

product of $m \times n$ -matrix A with n-vector x

$$Ax = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix}$$

• dimensions must be compatible: # columns in A=# elements in x

if
$$A$$
 is partitioned as $A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$, then

$$Ax = a_1x_1 + a_2x_2 + \dots + a_nx_n$$

- \blacksquare Ax is a linear combination of the column vectors of A
- \blacksquare the coefficients are the entries of x

Product with standard unit vectors

post-multiply with a column vector

$$Ae_k = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} a_{1k} \\ a_{2k} \\ \vdots \\ a_{mk} \end{bmatrix} = \text{ the kth column of A}$$

pre-multiply with a row vector

$$e_k^T A = \begin{bmatrix} 0 & 0 & \cdots & 1 & \cdots & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

= $\begin{bmatrix} a_{k1} & a_{k2} & \cdots & a_{kn} \end{bmatrix}$ = the k th row of A

Trace

definition: trace of a square matrix A is the sum of the diagonal entries in A

$$\mathbf{tr}(A) = a_{11} + a_{22} + \dots + a_{nn}$$

example:

$$A = \begin{bmatrix} 2 & 1 & 4 \\ 0 & -1 & 5 \\ 3 & 4 & 6 \end{bmatrix}$$

trace of *A* is 2 - 1 + 6 = 7

properties 🦠

- $\mathbf{tr}(A^T) = \mathbf{tr}(A)$
- $\mathbf{tr}(\alpha A + B) = \alpha \mathbf{tr}(A) + \mathbf{tr}(B)$
- $\mathbf{tr}(AB) = \mathbf{tr}(BA)$

Inverse of matrices

definition: a square matrix A is called **invertible** or **nonsingular** if there exists B s.t.

$$AB = BA = I$$

- \blacksquare B is called an **inverse** of A
- lacksquare it is also true that B is invertible and A is an inverse of B
- lacksquare if no such B can be found A is said to be **singular**

assume A is invertible

- lacksquare an inverse of A is unique
- the inverse of A is denoted by A^{-1}

Facts about invertible matrices

assume A, B are invertible

facts 🐿

- \bullet $(\alpha A)^{-1} = \alpha^{-1}A^{-1}$ for nonzero α
- $lacksquare A^T$ is also invertible and $(A^T)^{-1}=(A^{-1})^T$
- AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$
- $(A+B)^{-1} \neq A^{-1} + B^{-1}$
- & **Theorem:** for a square matrix A, the following statements are equivalent
 - $oldsymbol{1}$ A is invertible
 - 2 Ax = 0 has only the trivial solution (x = 0)
 - \blacksquare the reduced echelon form of A is I
 - 4 A is invertible if and only if $det(A) \neq 0$

Inverse of 2×2 matrices

the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is invertible if and only if

$$ad - bc \neq 0$$

and its inverse is given by

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

example:

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}, \quad A^{-1} = \frac{1}{7} \begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix}$$

26 / 57

Elementary matrices

Definition: a matrix obtained by performing a *single* row operation on the identity matrix I_n is called an **elementary** matrix

examples:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix} \qquad \text{add } k \text{ times the first row to the third row of } I_3$$

$$\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} \qquad \text{multiply a nonzero } k \text{ with the second row of } I_2$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \text{interchange the second and the third rows of } I_3$$

an elementary matrix is often denoted by E

Inverse operations

row operations on E that produces I and vice versa

$I \to E$	E o I
add k times row i to row j	add $-k$ times row i to row j
multiply row i by $k \neq 0$	multiply row i by $1/k$
interchange row i and j	interchange row i and j

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix} \implies \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -k & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E = \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} \qquad \Longrightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1/k \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \implies \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- every elementary matrix is invertible
- the inverse is also an elementary matrix

from the examples in page 28

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix} \implies E^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -k & 0 & 1 \end{bmatrix}$$

$$E = \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} \implies E^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1/k \end{bmatrix}$$

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \implies E^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Row operations by matrix multiplication

assume A is $m \times n$ and E is obtained by performing a row operation on I_m

EA = the matrix obtained by performing this same row operation on A

example:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{bmatrix}$$

 \blacksquare add -2 times the third row to the second row of A

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \quad EA = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -1 & -1 \\ 1 & 1 & 0 \end{bmatrix}$$

 \blacksquare multiply 2 with the first row of A

$$E = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad EA = \begin{bmatrix} 2 & 4 & 6 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{bmatrix}$$

■ interchange the first and the third rows of A

$$E = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad EA = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & 2 & 3 \end{bmatrix}$$

Inverse via row operations

assume A is invertible

lacksquare A is reduced to I by a finite sequence of row operations

$$E_1, E_2, \ldots, E_k$$

such that

$$E_k \cdots E_2 E_1 A = I$$

- the reduced echelon form of A is I
- lacksquare the inverse of A is therefore given by the product of elementary matrices

$$A^{-1} = E_k \cdots E_2 E_1$$

Example

write the augmented matrix $\begin{bmatrix} A \mid I \end{bmatrix}$

and apply row operations until the left side is reduced to I

the inverse of A is

$$\begin{array}{cccc} 4 & 8 & 1 \\ & -\frac{5}{2} & -\frac{1}{2} \\ & -2 & 0 \end{array}$$

34 / 57

Inverse of diagonal matrix

$$A = \begin{bmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & a_n \end{bmatrix}$$

a diagonal matrix is invertible iff the diagonal entries are all nonzero

$$a_{ii} \neq 0, \quad i = 1, 2, \dots, n$$

the inverse of A is given by

$$A^{-1} = \begin{bmatrix} 1/a_1 & 0 & \cdots & 0 \\ 0 & 1/a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 1/a_n \end{bmatrix}$$

the diagonal entries in A^{-1} are the inverse of the diagonal entries in A^{-1} are the inverse of the diagonal entries in A^{-1}

Linear algebra and applications

Inverse of triangular matrix

upper triangular

lower triangular

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \quad A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$a_{ij} = 0$$
 for $i \ge j$

$$a_{ij} = 0 \text{ for } i \ge j$$
 $a_{ij} = 0 \text{ for } i \le j$

a triangular matrix is invertible iff the diagonal entries are all nonzero

$$a_{ii} \neq 0, \quad \forall i = 1, 2, \dots, n$$

- product of lower (upper) triangular matrices is lower (upper) triangular
- the inverse of a lower (upper) triangular matrix is lower (upper) triangular

Inverse of symmetric matrix

symmetric matrix: $A = A^T$

- for any square matrix A, AA^T and A^TA are always symmetric
- lacksquare if A is symmetric and invertible, then A^{-1} is symmetric
- lacksquare if A is invertible, then AA^T and A^TA are also invertible

for a general A, the inverse of A^T is $(A^{-1})^T$

please verify 🦠

Determinants

the determinant is a scalar value associated with a square matrix A commonly denoted by $\det(A)$ or |A| determinants of 2×2 matrices:

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

determinants of 3×3 matrices: let $A = \{a_{ij}\}$

$$\det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - (a_{31}a_{22}a_{13} + a_{32}a_{23}a_{11} + a_{33}a_{21}a_{12})$$

How to find determinants

for a square matrix of any order, it can be computed by

- cofactor expansion
- performing elementray row operations

Minor and Cofactor

Minor of entry a_{ij} : denoted by M_{ij}

 \blacksquare the determinant of the resulting submatrix after deleting the $i{\rm th}$ row and $j{\rm th}$ column of A

Cofactor of entry a_{ij} : denoted by C_{ij}

$$C_{ij} = (-1)^{(i+j)} M_{ij}$$

example:

$$A = \begin{bmatrix} 3 & 1 & -2 \\ 5 & 0 & 2 \\ 1 & -1 & 2 \end{bmatrix}, \quad M_{23} = \begin{vmatrix} 3 & 1 \\ 1 & -1 \end{vmatrix} = -4, \quad C_{23} = (-1)^{(2+3)} M_{23} = 4$$

Determinants by Cofactor Expansion

Theorem: the determinant of an $n \times n$ -matrix A is given by

$$\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$$

$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$

regardless of which row or column of A is chosen

example: pick the first row to compute det(A)

$$A = \begin{bmatrix} 3 & 1 & -2 \\ 5 & 0 & 2 \\ 1 & -1 & 2 \end{bmatrix}, \quad \det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$

$$\det(A) = 3(-1)^2 \begin{vmatrix} 0 & 2 \\ -1 & 2 \end{vmatrix} + 1(-1)^3 \begin{vmatrix} 5 & 2 \\ 1 & 2 \end{vmatrix} - 2(-1)^4 \begin{vmatrix} 5 & 0 \\ 1 & -1 \end{vmatrix}$$
$$= 3(1)(2) + (-1)(8) - 2(1)(-5) = 8$$

Basic properties of determinants

- $\ensuremath{\mathcal{S}}$ let A,B be any square matrices

 - 2 if A has a row of zeros or a column of zeros, then det(A) = 0

 - 4 If A has two rows (columns) that are equal, then det(A) = 0

 - $\mathbf{6} \det(AB) = \det(A)\det(B)$
 - $\det(A^{-1}) = 1/\det(A)$
 - 8 A is invertible if and only if $\det(A) \neq 0$

Basic properties of determinants

suppose the following is true

- $lue{A}$ and B are equal except for the entries in their kth row (column)
- $lue{C}$ is defined as that matrix identical to A and B except that its kth row (column) is the sum of the kth rows (columns) of A and B

then we have

$$\det(C) = \det(A) + \det(B)$$

example:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 3 & 0 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$
$$\det(A) = 0, \quad \det(B) = -1, \quad \det(C) = -1$$

43 / 57

Determinants of special matrices

- the determinant of a diagonal or triangular matrix is given by the product of the diagonal entries
- $\bullet \det(I) = 1$

(these properties can be proved from the def. of cofactor expansion)

Determinants under row operations

 \blacksquare multiply k to a row or a column

$$\begin{vmatrix} ka_{11} & ka_{12} & ka_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

■ interchange between two rows or two columns

$$\begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

a add k times the ith row (column) to the jth row (column)

$$\begin{vmatrix} a_{11} + ka_{21} & a_{12} + ka_{22} & a_{13} + ka_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Example

B is obtained by performing the following operations on A

$$R_{2} + 3R_{1} \to R_{2}, \quad R_{3} \leftrightarrow R_{1}, \quad -4R_{1} \to R_{1}$$

$$A = \begin{bmatrix} 2 & 3 & -2 \\ 3 & 1 & 0 \\ -3 & -3 & 3 \end{bmatrix} \implies \det(B) = (-4) \cdot (-1) \cdot 1 \cdot \det(A)$$

the changes of det. under elementary operations lead to obvious facts 🔊

- $\det(\alpha A) = \alpha^n \det(A), \quad \alpha \neq 0$
- If A has two rows (columns) that are equal, then det(A) = 0

Determinants of elementary matrices

let B be obtained by performing a row operation on A then

$$B = EA$$
 and $\det(B) = \det(EA)$

$$E = \begin{bmatrix} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \det(B) = k \det(A) \quad (\det(E) = k)$$

$$E = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \det(B) = -\det(A) \quad (\det(E) = -1)$$

$$E = \begin{bmatrix} 1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \det(B) = \det(A) \qquad (\det(E) = 1)$$

conclusion: det(EA) = det(E) det(A)

Determinants of product and inverse

- & let A, B be $n \times n$ matrices
 - A is invertible if and only if $det(A) \neq 0$
 - if A is invertible, then $\det(A^{-1}) = 1/\det(A)$
 - $\bullet \det(AB) = \det(A)\det(B)$

Adjugate formula

the adjugate of \boldsymbol{A} is the transpose of the matrix of cofactors from \boldsymbol{A}

$$\operatorname{adj}(A) = \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$$

if A is invertible then

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$$

Proof.

the cofactor expansion using the cofactors from different row is zero

$$a_{i1}C_{k1} + a_{i2}C_{k2} + \ldots + a_{in}C_{kn} = 0$$
, for $i \neq k$

 $\blacksquare A \operatorname{adj}(A) = \det(A) \cdot I$

49 / 57

Cramer's rule

consider a linear system Ax = b when A is **square**

if A is invertible then the solution is unique and given by

$$x = A^{-1}b$$

each component of \boldsymbol{x} can be calculated by using the Cramer's rule

Cramer's rule

$$x_1 = \frac{|A_1|}{|A|}, \quad x_2 = \frac{|A_2|}{|A|}, \quad \dots \quad , \quad x_n = \frac{|A_n|}{|A|}$$

where A_j is the matrix obtained by replacing b in the jth column of A

(its proof is left as an exercise)

Example

$$A = \begin{bmatrix} 3 & 1 & -2 \\ 5 & 0 & 2 \\ 1 & -1 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$

since det(A) = 8, A is invertible and the solution is

$$x = A^{-1}b = \frac{1}{8} \begin{bmatrix} 2 & 0 & 2 \\ -8 & 8 & -16 \\ -5 & 4 & -5 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \\ -2 \end{bmatrix}$$

using Cramer's rule gives

$$x_1 = \frac{1}{8} \begin{vmatrix} 2 & 1 & -2 \\ 1 & 0 & 2 \\ 2 & -1 & 2 \end{vmatrix}, \quad x_2 = \frac{1}{8} \begin{vmatrix} 3 & 2 & -2 \\ 5 & 1 & 2 \\ 1 & 2 & 2 \end{vmatrix}, \quad x_3 = \frac{1}{8} \begin{vmatrix} 3 & 1 & 2 \\ 5 & 0 & 1 \\ 1 & -1 & 2 \end{vmatrix}$$

which yields

$$x_1 = 1$$
, $x_2 = -5$, $x_3 = -2$

Pseudo-inverse (Penrose Theorem)

one can have a notion of 'inverse' for a non-square matrix

Penrose's Theorem: given $A \in \mathbf{R}^{m \times n}$, there is exactly one $n \times m$ matrix B such that

- \blacksquare both AB and BA are symmetric

definition: the **pseudo inverse** of $A \in \mathbf{R}^{m \times n}$ is the unique $n \times m$ matrix A^{\dagger} such that

- 2 both AA^{\dagger} and $A^{\dagger}A$ are symmetric

Pseudo-inverse

consider a full rank matrix $A \in \mathbf{R}^{m \times n}$ in three cases

■ tall matrix: A is full rank \Leftrightarrow columns of A are LI $\Leftrightarrow A^TA$ is invertible

$$((A^T A)^{-1} A^T) A = (A^T A)^{-1} (A^T A) = I$$

the pseudo-inverse of A (or left-inverse) is $A^\dagger = (A^TA)^{-1}A^T$

• wide matrix: A is full rank \Leftrightarrow row of A are LI $\Leftrightarrow AA^T$ is invertible

$$A(A^{T}(AA^{T})^{-1}) = (AA^{T})(AA^{T})^{-1} = I$$

the **pseudo-inverse** of A (or right-inverse) is $A^{\dagger}=A^T(AA^T)^{-1}$

- square matrix: A is full rank $\Leftrightarrow A$ is invertible and both formula of pseudo-inverses reduce to the ordinary inverse A^{-1}
- the pseudo inverses of the three cases have the same dimension ?

4□ > 4□ > 4 = > 4 = > = 900

53 / 57

Example

$$A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 1 & -2 \end{bmatrix}, \quad A^{\dagger} = A^{T} (AA^{T})^{-1} = \begin{bmatrix} 0 & -2/9 \\ 2/5 & 1/9 \\ 1/5 & -2/9 \end{bmatrix}$$

$$A = \begin{bmatrix} -2 & -1 \\ 2 & -1 \\ -1 & 0 \end{bmatrix}, \quad A^{\dagger} = (A^{T}A)^{-1}A^{T} = \begin{bmatrix} -2/9 & 2/9 & 1/9 \\ -1/2 & -1/2 & 0 \end{bmatrix}$$

however, when rentangular A has low rank, we can use SVD to find the pseudo inverse

54 / 57

Softwares (MATLAB)

- 1 eye(n) creates an identity matrix of size n
- 2 inv(A) finds the inverse of A (not used for large dimension)
- 3 A\eye(n) finds the inverse of a square matrix A
- 4 pinv(A) gives a pseudoinverse of A, denoted by A^{\dagger}
 - lacksquare if A is square, a pseudoinverse is the inverse of A
 - if A is tall, $A^{\dagger} = (A^T A)^{-1} A^T$ is a left inverse of A
 - ${\color{blue} \bullet}$ if A is fat, $A^{\dagger}=A^T(AA^T)^{-1}$ is a right inverse of A
- **5** x = pinv(A)*b solves the linear system Ax = b
 - if A is square, $x = A^{-1}b$
 - lacksquare if A is tall, x is the solution to the least-square problem: minimize $\|Ax-b\|_2$
 - lacktriangle if A is fat, x is the least-norm solution that satisfies Ax=b
- $\underline{\mathsf{det}}(\mathsf{A})$ finds the determinant of A

Softwares (Python)

- 1 numpy.eye creates an identity matrix
- ${f 2}$ numpy.linalg.inv finds the inverse of a square matrix A
- ${f 3}$ numpy.linalg.pinv gives a pseudoinverse of A
- f 4 numpy.linalg.det find the determinants of A

References

- W.K. Nicholson, Linear Algebra with Applications, McGraw-Hill, 2006
- 2 S. Boyd and L. Vandenberghe, *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least squares*, Cambridge, 2018
- 3 H.Anton and C. Rorres, *Elementary Linear Algebra*, John Wiley, 2011