

Outline

How to read this handout

- 1 the note is used with lecture in EE205 (you cannot master this topic just by reading this note) – class activities include
	- **graphical concepts, math derivation of details/steps in between**
	- computer codes to illustrate examples
- 2 always read 'textbooks' after lecture
- 3 pay attention to the symbol S; you should be able to prove such S result
- 4 each chapter has a list of references; find more formal details/proofs from in-text citations
- 5 almost all results in this note can be Googled; readers are encouraged to 'stimulate neurons' in your brain by proving results without seeking help from the Internet first
- 6 typos and mistakes can be reported to jitkomut@gmail.com

 $\Box \rightarrow \neg \left(\frac{\partial}{\partial \theta} \right) \rightarrow \neg \left(\frac{\partial}{\partial \theta} \right)$. 2990

Matrix decomposition

Linear algebra and applications **Jitkomut Songsiri Matrix decomposition**

ADR YORKER LE DAG

Decompositions

- LU
- Cholesky
- SVD

Factor-solve approach

to solve $Ax = b$, first write A as a product of 'simple' matrices

$$
A = A_1 A_2 \cdots A_k
$$

then solve $(A_1A_2 \cdots A_k)x = b$ by solving *k* equations

$$
A_1z_1 = b
$$
, $A_2z_2 = z_1$, ..., $A_{k-1}z_{k-1} = z_{k-2}$, $A_kx = z_{k-1}$

complexity of factor-solve method: flops $= f + s$

- *f* is cost of factoring *A* as $A = A_1 A_2 \cdots A_k$ (factorization step)
- *s* is cost of solving the *k* equations for *z*1, *z*2, …*zk−*1, *x* (solve step)
- usually $f \gg s$

Forward substitution

solve $Ax = b$ when A is lower triangular with nonzero diagonal elements

$$
\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}
$$

algorithm:

$$
x_1 := b_1/a_{11}
$$

\n
$$
x_2 := (b_2 - a_{21}x_1)/a_{22}
$$

\n
$$
x_3 := (b_3 - a_{31}x_1 - a_{32}x_2)/a_{33}
$$

\n
$$
\vdots
$$

\n
$$
x_n := (b_n - a_{n1}x_1 - a_{n2}x_2 - \cdots - a_{n,n-1}x_{n-1})/a_{nn}
$$

\n
$$
x_5 + \cdots + (2n - 1) = n^2 \text{ flops}
$$

cost:
$$
1 + 3 + 5 + \cdots + (2n - 1) = n^2
$$
 flops
Linear algebra and applications
Jitkomut Songsiri

101181121121 2 990

LU decomposition (w/o row pivoting)

Theorem: if *A* can be lower reduced (w/o row interchanged) to a row-echelon matrix *U*, then $A = LU$ where *L* is lower triangular and invertible and *U* is upper triangular and row-echelon

- suppose *A* can be reduced to $A \rightarrow E_1 A \rightarrow E_2 E_1 A \rightarrow E_k E_{k-1} \cdots E_2 E_1 A = U$
- $A = LU$ where $L = E_1^{-1}E_2^{-1} \cdots E_k^{-1}$
	- E_j corresponds to scaling operation or $R_i + \alpha R_j \rightarrow R_i$ for $i > j$
	- E_j is lower triangular (and invertible)
	- $\tilde{E_j^{-1}}$ is also lower triangular, hence, L is lower triangular

Example

find LU for
$$
A = \begin{bmatrix} 2 & 4 & 2 \ 1 & 1 & 2 \ -1 & 0 & 2 \end{bmatrix}
$$

\n $R_1/2$, $E_1 = \begin{bmatrix} 1/2 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$, $E_1^{-1} = \begin{bmatrix} 2 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$, $\Rightarrow \begin{bmatrix} 1 & 2 & 1 \ 1 & 1 & 2 \ -1 & 1 & 0 \ 0 & 1 & 0 \ -1 & 0 & 2 \end{bmatrix}$
\n $R_2 - R_1 \rightarrow R_2$, $E_2 = \begin{bmatrix} 1 & 0 & 0 \ 1 & 0 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix}$, $E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \ 1 & 0 & 0 \ 1 & 0 & 0 \ 1 & 0 & 1 \end{bmatrix}$, $\Rightarrow \begin{bmatrix} 1 & 2 & 1 \ 0 & 1 & 2 \ 0 & 1 & 0 \ -1 & 0 & 2 \end{bmatrix}$
\n $R_3 + R_1 \rightarrow R_3$, $E_3 = \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 1 & 0 & 1 \end{bmatrix}$, $E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \ 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 1 & 0 \end{bmatrix}$, $\Rightarrow \begin{bmatrix} 1 & 2 & 1 \ 0 & -1 & 1 \ 0 & -1 & 0 \ 0 & -2 & 3 \end{bmatrix}$
\n $R_2/ - 1 \rightarrow R_2$, $E_4 = \begin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 0 & 1 \end{bmatrix}$, $E_4^{-1} = \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$, $\Rightarrow \begin{bmatrix} 1 & 2 & 1 \ 0 & 1 & 2 \ 0 & 1 & 2 \ 0 & 2 & 3 \end{bmatrix}$
\n $R_3 - 2R_2 \$

101181121121 2 990 Linear algebra and applications Jitkomut Songsiri 9 / 49

LU algorithm

let $A ∈ \mathbf{R}^{m \times n}$ of rank r and suppose A can be lower reduced to U (without row interchanged) then $A = LU$ where the lower triangular, invertible L is constructed as follows

- **1** if $A = 0$ then $L = I_m$ and $U = 0$
- 2 if $A \neq 0$, write $A_1 = A$ and let c_1 be the leading column of A_1
- 3 use c_1 to create the first leading 1 and create zero below it; denote A_2 the matrix consisting of rows 2 to *m*
- 4 if $A_2 \neq 0$ let c_2 be the leading column of A_2 and repeat step 2-3 to create A_3
- 5 continue until *U* is found where all rows below the last leading 1 consist of zeros; this happen after *r* steps
- 6 create *L* by placing c_1, c_2, \ldots, c_r at the bottom of the first *r* columns of I_m

Example

find LU for
$$
A = \begin{bmatrix} 2 & 6 & -2 & 0 & 2 \\ 3 & 9 & -3 & 3 & 1 \\ -1 & 3 & 1 & -3 & 1 \end{bmatrix}
$$

\n $R_1/2 \begin{bmatrix} 1 & 3 & -1 & 0 & 1 \\ 3 & 9 & -3 & 3 & 1 \\ -1 & 3 & 1 & -3 & 1 \end{bmatrix}$, $R_2 - 3R_1 \rightarrow R_2, R_3 + R_1 \rightarrow R_3 \begin{bmatrix} 1 & 3 & -1 & 0 & 1 \\ 0 & 0 & 0 & 3 & -2 \\ 0 & 0 & 0 & -3 & 2 \end{bmatrix}$
\n $R_2/3 \begin{bmatrix} 1 & 3 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2/3 \\ 0 & 0 & 0 & -3 & 2 \end{bmatrix}$, $R_3 + 3R_2 \rightarrow R_3 \begin{bmatrix} 1 & 3 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2/3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = U$
\nwe obtain
\n
$$
A = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 3 & 0 \\ -1 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2/3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

Linear algebra and applications Jitkomut Songsiri 11 / 49

101181121121 2 990

Is LU decomposition unique?

from the previous page

$$
A = \begin{bmatrix} 2 & 6 & -2 & 0 & 2 \\ 3 & 9 & -3 & 3 & 1 \\ -1 & 3 & 1 & -3 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 3 & 0 \\ -1 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2/3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = L_1 U_1
$$

we can make *L* the unit lower triangular (all diagonals are 1) (standard choice)

$$
A = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 3 & 0 \\ -1 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2/3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

$$
= \begin{bmatrix} 1 & 0 & 0 \\ 3/2 & 1 & 0 \\ -1/2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 9 & -3 & 0 & 3 \\ 0 & 0 & 0 & 3 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = L_2U_2
$$

Not every matrix has an LU factor

without row pivoting, LU factor may not exist even when *A* is invertible

$$
A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow LU = \begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix}
$$

from this example,

- if *A* could be factored as LU, it would require that $l_{11}u_{11} = a_{11} = 0$
- \blacksquare one of *L* or *U* would be singular, contradicting to the fact that $A = LU$ is nonsingular

Existence and uniqueness

existence

Theorem: suppose *A* is invertible; then *A* has LU factorization $A = LU$ if and only if all leading principle minors are nonzero

 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is non-singular but has no LU factorization

uniqueness

Theorem: if an invertible *A* has an LU factorization then *L* and *U* are uniquely determined (if we require the diagonals of *L* (or *U*) are all 1)

(Horn, Corollary 3.5.6)

LU decomposition with row pivoting

find LU of
$$
A = \begin{bmatrix} 0 & 0 & -1 \\ -1 & -1 & 1 \\ 2 & 1 & -2 \end{bmatrix}
$$

the first row has a leading zero, so row operations require a row interchange, here

choose $R_1 \Leftrightarrow R_3$ corresponding to $P =$ Ť \mathbf{I} 0 0 1 0 1 0 1 0 0 1 \mathbf{I}

note that $P^2 = I$ (permutation property), we can write

$$
A = P^2 A = P P A = P \begin{bmatrix} 2 & 1 & -2 \\ -1 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}
$$

perform LU decomposition on the resulting PA

LU decomposition with row pivoting

■ perform $R_1/2$, $R_2 + 2R_1 \rightarrow R_1$

$$
A = P \begin{bmatrix} 2 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1/2 & -3/2 \\ 0 & -1/2 & -1/2 \\ 0 & 0 & -1 \end{bmatrix}
$$

■ perform $R_2 \times -2 \rightarrow R_2$

$$
A = P \begin{bmatrix} 2 & 0 & 0 \\ -1 & -1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1/2 & -3/2 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}
$$

perform *R*³ *× −*1 *→ R*³

 $A =$ \mathbf{I} $\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}$ ٦ \mathbf{I} Е \mathbf{I} ²

−1 −¹/₂

0 0 −1 ı \mathbf{I} Г \mathbf{I} $\begin{array}{ccc} 1 & \frac{1}{2} & -\frac{3}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}$ $\Big] = \Big[$ \mathbf{I} $\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}$ ٦ \mathbf{I} Е \mathbf{I} $\begin{array}{ccc} 1 & 1 \\ -\frac{1}{2} & 1 \\ 0 & 0 & 1 \end{array}$ ٦ \mathbf{I} Е \mathbf{I} 2 1 −3

0 −¹/₂ −¹/₂

0 0 −1 [≜] *P LU*

LU decomposition with row pivoting

same A on page 15 but swap
$$
R_1 \Leftrightarrow R_2
$$
 using $P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

perform LU decomposition and we get different factors

$$
A = \begin{bmatrix} 0 & 0 & -1 \\ -1 & -1 & 1 \\ 2 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ 0 & 1 & 1/2 \\ 0 & 0 & 9/2 \end{bmatrix}
$$

Common pivoting strategy

permute rows so that the largest entry of the first column is on the top left

$$
A = \begin{bmatrix} 2 & 4 & 2 \\ 1 & 1 & 2 \\ -1 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 1 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} R_1/2 \rightarrow R_1 \\ R_2 - R_1 \rightarrow R_2 \\ R_3 + R_1 \rightarrow R_3 \end{bmatrix}
$$

\n
$$
= P_1 P_1 \begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} P_1 P_1 \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 1 \\ 0 & 2 & 3 \end{bmatrix} \quad \text{(swap row 2 and 3)}, P_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \therefore P_1^2 = I
$$

\n
$$
= P_1 \begin{bmatrix} P_1 \begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} P_1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} = P_1 \begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix}
$$

\n
$$
= P_1 \begin{bmatrix} 2 & 0 & 0 \\ -1 & 2 & 0 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 5/2 \end{bmatrix} \begin{bmatrix} R_2/2 \rightarrow R_2 \\ R_3 + R_2 \rightarrow R_3 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ 1/2 & -1/2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 3 \\ 0
$$

Linear algebra and applications Jitkomut Songsiri 18 / 49

Conclusion

any square matrix *A* can be factorized as (with row pivoting)

$$
A = PLU
$$

factorization:

- *P* permutation matrix, *L* unit lower triangular, *U* upper triangular
- **factorization cost**: $(2/3)n^3$ if A has order n
- not unique; there may be several possible choices for *P*, *L*, *U*
- interpretation: permute the rows of A and factor P^TA as $P^TA = LU$
- also known as *Gaussian elimination with partial pivoting* (GEPP)

Example

a singular *A* (no row pivoting)

$$
A = \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1/2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix}
$$

■ nonsingular *A* (that requires row pivoting)

$$
A = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}
$$

■ nonsingular *A* (showing two choices of (P, L, U))

$$
A = \begin{bmatrix} 2 & 4 & 2 \\ 1 & 1 & 2 \\ -1 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ -1/2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 5 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ 1/2 & -1/2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & 5/2 \end{bmatrix}
$$

Solving a linear system with LU factor

solving linear system: $(PLU)x = b$ in three steps

- permutation: $z_1 = P^Tb$ (0 flops)
- forward substitution: solve $Lz_2=z_1 \; (n^2$ flops)
- back substitution: solve $Ux = z_2 \; (n^2 \; \text{flops})$

 ${\bf total\ cost}\colon (2/3)n^3+2n^2$ flops, or roughly $(2/3)n^3$

Softwares

MATLAB

 $[L, U, P] = \text{lu}(A)$ find LU decomposition: $A = P^T L U$ where L is unit lower triangular and *U* is upper triangular

Python

 \blacksquare P, L, U = scipy.linalg.lu(A) find LU decomposition: $A = PLU$ where *L* is unit lower triangular and *U* is upper triangular

Exercises

1 find LU factorization (explain if row pivoting is required) and compare the results with coding

$$
A_1 = \begin{bmatrix} 2 & 4 & 2 \\ 1 & -1 & 3 \\ -1 & 7 & -7 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & -1 & 2 \\ 0 & 0 & 3 \\ -1 & 2 & 2 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 3 & 3 & 0 \\ -2 & 0 & 2 \\ 3 & 2 & -1 \end{bmatrix}
$$

 2 suppose we aim to solve $Ax = b^{(k)}$ for $k = 1, \ldots, 1000$ where $A \in \mathbf{R}^{2000 \times 2000}$ and $\mathit{b}^{(k)}$'s can be randomized as examples, write computer code to solve the linear system using factor approach and measure the computation time in each process

Cholesky factorization

every positive definite matrix *A* can be factored as

$$
A = LL^T
$$

where *L* is lower triangular with positive diagonal elements

- **cost**: $(1/3)n^3$ flops if A is of order n
- *L* is called the *Cholesky factor* of *A*
- can be interpreted as 'square root' of a positive define matrix
- *L* is invertible (its diagonal elements are nonzero)
- *A* is invertible and

$$
\boldsymbol{A}^{-1}=\boldsymbol{L}^{-T}\boldsymbol{L}^{-1}
$$

Cholesky factorization algorithm

partition matrices in $A = LL^T$ as

$$
\begin{bmatrix} a_{11} & A_{21}^T \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} l_{11} & L_{21}^T \\ 0 & L_{22}^T \end{bmatrix} = \begin{bmatrix} l_{11}^2 & l_{11}L_{21}^T \\ l_{11}L_{21} & L_{21}L_{21}^T + L_{22}L_{22}^T \end{bmatrix}
$$

algorithm:

1 determine l_{11} and L_{21} :

$$
l_{11} = \sqrt{a_{11}},
$$
 $L_{21} = \frac{1}{l_{11}} A_{21}$

2 compute L_{22} from

$$
A_{22} - L_{21}L_{21}^T = L_{22}L_{22}^T
$$

this is a Cholesky factorization of order *n −* 1

101181121121 2 990 Linear algebra and applications Jitkomut Songsiri 25 / 49

Proof of Cholesky algorithm

proof that the algorithm works for positive definite *A* of order *n*

- **step 1:** if *A* is positive definite then $a_{11} > 0$
- \blacksquare step 2: if A is positive definite, then

$$
A_{22} - L_{21}L_{21}^T = A_{22} - \frac{1}{a_{11}}A_{21}A_{21}^T
$$

is positive definite (by Schur complement)

- **n** hence the algorithm works for $n = m$ if it works for $n = m 1$
- it obviously works for $n = 1$; therefore it works for all n

Example of Cholesky algorithm

Solving equations with positive definite *A*

 $Ax = b$ (*A* positive definite of order *n*)

algorithm

- **F** factor *A* as $A = LL^T$
- **solve** $LL^T x = b$
	- **forward substitution** $Lz = b$
	- back substitution $L^T x = z$

cost: $(1/3)n^3$ flops

- factorization: (1*/*3)*n* 3
- forward and backward substitution: $2n^2$

Softwares

MATLAB

 U = chol(A) returns Cholesky decomposition $A = U^TU$ where U is upper triangular

Python

- $\tt L$ = $\,$ scipy.linalg.cholesky(A) returns $\,$ Cholesky decomposition $A = LL^T$ or
	- $A = U^T U$ where L is lower (lower=True) and U is upper triangular

Exercises

1 find Cholesky factorization and compare the results with coding

$$
A_1 = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 12 & 4 & 3 \\ 4 & 2 & -1 \\ 3 & -1 & 7 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 20 & 4 & 5 \\ 4 & 2 & 3 \\ 5 & 3 & 5 \end{bmatrix}
$$

2 suggest a method to randomize *A* and guarantee that $A \succ 0$

 3 suppose we aim to solve $Ax = b^{(k)}$ for $k = 1, \ldots, 1000$ where $A \in \mathbf{S}_{++}^{2000 \times 2000}$ (pdf) and $b^{(k)}$'s can be randomized as examples, write computer code to solve the linear system using factor approach and measure the computation time in each process

SVD decomposition

- **n** recall that $A^T A \succeq 0$ and eigenvalues are non-negative
- singular values
- left and right singular vectors
- papplications: pseudo inverse

Singular values and vectors

let $A \in \mathbf{R}^{m \times n}$, we form eigenvalue problem of A^TA

$$
A^T A v_i = \sigma_i^2 v_i, \quad i = 1, 2, \dots, n
$$

- $\sigma_i = \sqrt{\lambda_i (A^T A)} > 0$ is called **singular value** of A
- *vⁱ* (orthogonal and has unit-norm) is called **right singular vector**
- \blacksquare fact: if rank of *A* is *r* then $\sigma_1 \ge \sigma_2 \ge \cdots \sigma_r > 0$ and $\sigma_i = 0$ for $i > r$

rank of *A* is the number of non-zero singular values of *A*

n there exist left singular vector u_1, u_2, \ldots, u_m that are orthogonal such that

 $Av_1 = \sigma_1 u_1, \quad Av_2 = \sigma_2 u_2, \dots, Av_r = \sigma_r u_r, \quad Av_{r+1} = \dots = Av_n = 0$

Matrix form

 $Av_1 = \sigma_1 u_1, \quad Av_2 = \sigma_2 u_2, \ldots, \quad Av_r = \sigma_r u_r, \quad Av_{r+1} = \cdots = Av_n = 0$ or in matrix form: $AV = U\Sigma$ (where *U* and *V* are orthogonal matrices)

 $A [v_1 \cdots v_r | v_{r+1} \cdots v_n] = [u_1 \cdots u_r | u_{r+1} \cdots u_m]$ $\sqrt{ }$ σ_1 0 . . . 0 $\sigma_r \parallel 0$ 0 0 0 **0** 1 $\overline{}$

it can be shown that

- \bullet $v_1, \ldots, v_r, v_{r+1}, \ldots, v_n$ are orthogonal (eigenvectors of $A^T A$, which is symmetric)
- u_{r+1}, \ldots, u_m can be chosen such that $\{u_1, \ldots, u_m\}$ are orgothogonal
- hence, V, U are orthogonal matrices, $V^V = I, U^TU = I$

unlike eigenvalue decomposition: $AX = X\Lambda$, SVD needs two sets of singular vectors

SVD decomposition

101181121121 2 990 Linear algebra and applications Jitkomut Songsiri 34 / 49

Square *A*

$$
\begin{bmatrix} 2 & 1 \ -1 & -2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \ 0 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \ -1 & -1 \end{bmatrix}^T, \text{rank}(A) = 2
$$

$$
\begin{bmatrix} 2 & 4 & -2 \ -2 & 0 & -2 \ 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -0.94 & -0.27 & -0.20 \ 0.11 & -0.80 & 0.59 \ -0.31 & 0.53 & 0.78 \end{bmatrix} \begin{bmatrix} 5.10 & 0 & 0 \ 0 & 3.46 & 0 \ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -0.53 & 0.62 & 0.58 \ -0.80 & -0.15 & -0.58 \ 0.27 & 0.77 & -0.58 \end{bmatrix}^T, \text{rank}(A) = 2
$$

$$
\begin{bmatrix} -2 & 1 & 3 \ 4 & -2 & -6 \ 2 & -1 & -3 \end{bmatrix} = \begin{bmatrix} -0.41 & -0.91 & 0 \ 0.82 & -0.37 & -0.45 \ 0.41 & -0.18 & 0.89 \end{bmatrix} \begin{bmatrix} 9.17 & 0 & 9 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.53 & -0.85 & 0 \ -0.27 & -0.17 & 0.95 \ -0.80 & -0.51 & -0.32 \end{bmatrix}^T, \text{rank}(A) = 1
$$

- \blacksquare check the singular values and eigenvalues of A^TA
- confirm the rank and the number of nonzero singular values
- if *A* is invertible, so is Σ

Fat *A*

$$
A_1 = \begin{bmatrix} 2 & 0 & 2 \\ 0 & -2 & 1 \end{bmatrix} = \begin{bmatrix} -0.89 & -0.45 \\ -0.45 & 0.89 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} -0.60 & -0.45 & -0.67 \\ 0.30 & -0.89 & 0.33 \\ -0.75 & 0 & 0.67 \end{bmatrix}^T, \text{rank}(A) = 2
$$

$$
A_2 = \begin{bmatrix} 2 & -1 & 1 & 0 \\ 2 & 0 & 1 & -2 \\ -2 & 0 & -1 & 2 \end{bmatrix}
$$

$$
= \begin{bmatrix} 0.42 & 0.91 & 0 \\ 0.64 & -0.30 & 0.71 \\ -0.64 & 0.30 & 0.71 \end{bmatrix} \begin{bmatrix} 4.6100 & 0 & 0 \\ 0 & 1.65 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.74 & 0.38 & 0.40 & -0.38 \\ -0.09 & -0.55 & 0.82 & 0.14 \\ 0.37 & 0.19 & 0.01 & 0.91 \\ -0.56 & 0.72 & 0.41 & 0.07 \end{bmatrix}^T, \text{rank}(A) = 1
$$

4₂ is low rank, the SVD form can be reduced to $A_2 = U\Sigma V^T = U_n\Sigma_n V^T$ where

101181121121 2 990 A_2 is low rank, the SVD form can be reduced to $A_2 = U \Sigma V^T = U_r \Sigma_r V_r^T$ where U_r,V_r have the first r columns of U and V respectively and Σ_r is the leading *r*-diagonal block of Σ (*r* = $\mathbf{rank}(A)$)

Tall *A*

$$
\begin{bmatrix} 0 & 0 & 0 \ 0 & -1 & 1 \ -2 & -2 & 0 \ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -1.00 \ 0.33 & -0.63 & -0.71 & 0 \ 0.89 & 0.46 & 0 & 0 \ -0.33 & 0.63 & -0.71 & 0 \end{bmatrix} \begin{bmatrix} 3.080 & 0 & 0 \ 0 & 1.59 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -0.58 & -0.58 & 0.58 \ -0.79 & 0.21 & -0.58 \ 0.21 & -0.79 & -0.58 \end{bmatrix}^T
$$

- **rank** $(A) = 2$ and there are two nonzero singular values
- *A* can be reduced to

$$
A = U\Sigma V^T = U_r \Sigma_r V_r^T, \quad r = \mathbf{rank}(A) = 2
$$

Softwares

MATLAB

 $[U, S, V] = \text{svd}(A)$ returns SVD decomposition: $A = USV^T$

Python

- \blacksquare U, S, Vt = scipy.linalg.svd(A)
- \blacksquare U,S, Vt = numpy.linalg.svd(A)

returns SVD decomposition: $A = USV^T$ where S is returned as a vector of singular values and Vt as V^T

Pseudo-inverse (Penrose Theorem)

one can have a notion of 'inverse' for a non-square matrix

Penrose's Theorem: given $A \in \mathbb{R}^{m \times n}$, there is exactly one $n \times m$ matrix B such that 1 $ABA = A$ and $BAB = B$

2 both *AB* and *BA* are symmetric

definition: the **pseudo inverse** of $A \in \mathbf{R}^{m \times n}$ is the unique $n \times m$ matrix A^\dagger such that

- 1 $AA^{\dagger}A = A$ and $A^{\dagger}AA^{\dagger} = A^{\dagger}$
- 2 both AA^\dagger and $A^\dagger A$ are symmetric

Pseudo-inverse

<code>consider</code> a full rank matrix $A \in \mathbf{R}^{m \times n}$ in three cases

tall matrix: *A* is full rank *⇔* columns of *A* are LI *⇔ A^T A* is invertible

$$
((A^T A)^{-1} A^T) A = (A^T A)^{-1} (A^T A) = I
$$

the **pseudo-inverse** of *A* (or left-inverse) is *A†* = (*A^T A*) *[−]*1*A^T*

 $\textbf{wide matrix:} \; A \; \textbf{is full rank} \Leftrightarrow \textbf{row of} \; A \; \textbf{are} \; \textbf{Ll} \Leftrightarrow AA^T \; \textbf{is invertible}$

$$
A(A^T(AA^T)^{-1}) = (AA^T)(AA^T)^{-1} = I
$$

the $\bm{\mathsf{pseudo}\text{-}\bm{\mathsf{inverse}}}$ of A (or right-inverse) is $A^\dagger = A^T(A A^T)^{-1}$

- **square matrix:** *A* is full rank *⇔ A* is invertible and both formula of pseudo-inverses reduce to the ordinary inverse *A−*¹
- ✎ the pseudo inverses of the three cases have the same dimension ?

Example

$$
A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 1 & -2 \end{bmatrix}, \quad A^{\dagger} = A^{T} (AA^{T})^{-1} = \begin{bmatrix} 0 & -2/9 \\ 2/5 & 1/9 \\ 1/5 & -2/9 \end{bmatrix}
$$

$$
A = \begin{bmatrix} -2 & -1 \\ 2 & -1 \\ -1 & 0 \end{bmatrix}, \quad A^{\dagger} = (A^{T}A)^{-1}A^{T} = \begin{bmatrix} -2/9 & 2/9 & 1/9 \\ -1/2 & -1/2 & 0 \end{bmatrix}
$$

however, when rentangular *A* has low rank, we can use SVD to find the pseudo inverse

$$
4 \Box + 4 \Box + 4 \Xi + 4 \Xi + \Xi
$$

Pseudo-inverse via SVD

the pseudo-inverse A^\dagger can be computed from any SVD for $A \in \mathbf{R}^{n \times m}$

from $A = U_{n \times n} \Sigma_{n \times m} V_{m \times m}^T$ if A has rank r then

$$
\Sigma = \left[\begin{array}{cc} \Sigma_r & 0 \\ 0 & 0 \end{array} \right]_{m \times n}, \quad \text{and that } \Sigma_r \text{ is invertible}
$$

define Σ *†* = $\begin{bmatrix} \Sigma_r^{-1} & 0 \\ 0 & 0 \end{bmatrix}_{n \times m}$ and we can verify that

$$
\Sigma \Sigma^{\dagger} \Sigma = \Sigma, \ \ \Sigma^{\dagger} \Sigma \Sigma^{\dagger} = \Sigma^{\dagger}, \ \ \Sigma \Sigma^{\dagger} = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}_{m \times m}, \ \ \Sigma^{\dagger} \Sigma = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}_{n \times n}
$$

proving that Σ^{\dagger} is the pseudoinverse of Σ

Pseudo-inverse via SVD

given $A = U \Sigma V^T$, then the pseudo-inverse of A is

$$
A^\dagger = V \Sigma^\dagger U^T
$$

by verifying Penrose's Theorem from page 39 that

$$
A A^{\dagger} A = (U \Sigma V^{T})(V \Sigma^{\dagger} U^{T})(U \Sigma V^{T}) = U \Sigma \Sigma^{\dagger} \Sigma V^{T} = U \Sigma V^{T} = A
$$

- $A^{\dagger}AA^{\dagger} = (V\Sigma^{\dagger}U^{T})(U\Sigma V^{T})(V\Sigma^{\dagger}U^{T}) = V\Sigma^{\dagger}\Sigma\Sigma^{\dagger}U^{T} = V\Sigma^{\dagger}U^{T} = A^{\dagger}$
- $AA^\dagger = U \Sigma \Sigma^\dagger U^T$ which is symmetric
- $A^\dagger A = V \Sigma^\dagger \Sigma V^T$ which is symmetric

Example

a tall full rank *A*

$$
A = \begin{bmatrix} -2 & -1 \\ 2 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -0.6667 & -0.7071 & -0.2357 \\ 0.6667 & -0.7071 & 0.2357 \\ -0.3333 & -0.0000 & 0.9428 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1.4142 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^T
$$

$$
A^{\dagger} = V\Sigma^{\dagger}U^{T} = V \begin{bmatrix} 0.3333 & 0 & 0 \\ 0 & 0.7071 & 0 \end{bmatrix} U^{T}
$$

$$
= \begin{bmatrix} -0.22 & 0.22 & -0.1100 \\ -0.50 & -0.50 & 0 \end{bmatrix}
$$

Example

a fat low rank *A*

 $A =$ \mathbf{I} *−*2 *−*1 *−*3 0 0 *−*3 *−*3 *−*2 2 *−*2 0 *−*2 $\Big] = \Big[$ \mathbf{I} 0*.*47 0*.*67 *−*0*.*58 0*.*81 *−*0*.*08 0*.*58 0*.*34 *−*0*.*74 *−*0*.*58 1 \mathbf{I} Г \mathbf{I} 5*.*76 0 0 0 0 3*.*85 0 0 0 0 0 0 ٦ \mathbf{I} Е $\overline{}$ $\begin{array}{cccc} -0.05 & -0.73 & 0.51 & -0.45 \\ -0.62 & 0.27 & -0.27 & -0.68 \\ -0.67 & -0.46 & -0.25 & 0.53 \\ -0.40 & 0.43 & 0.78 & 0.23 \end{array}$ 1 \parallel *T* $A^{\dagger} = V \Sigma^{\dagger} U^T = V$ Е $\overline{}$ 0 0 0.2596

0 0 0 0

0 0 0 0 1 U^T = Т $\overline{}$ *−*0*.*13 0*.*01 0*.*14 0 *−*0*.*09 *−*0*.*09 *−*0*.*13 *−*0*.*09 0*.*05 0*.*04 *−*0*.*07 *−*0*.*11 1 $\overline{}$

- **rank** $(A) = 2 < n$ and there are two non-zero singular values
- $\Sigma \in \mathbf{R}^{3 \times 4}$ and $\Sigma^{\dagger} \in \mathbf{R}^{4 \times 3}$ with 2×2 invertible block

Applications of pseudo-inverse

- **least-square problem:** find a straight line that fit best in 2-norm sense to data points
- **least-norm problem:** find a point *x* on the given hyperplane that has the smallest norm

Least-square problem

given $X \in \mathbf{R}^{N \times p}, y \in \mathbf{R}^N$ where typically $N > p$, a least-square problem is

 \liminf_{β} **i**ze $||y - X\beta||_2^2$

- **i** it generalizes solving an overdetermined linear system that cannot be solved exactly by allowing the system to have the smallest residual
- if X is full rank, and from zero-gradient condition, the optimal solution is

$$
\beta = (X^T X)^{-1} X^T y
$$

 \blacksquare the solution is linear in *y* where the coefficient is the **left inverse** of *X*

Least-norm problem

given $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m$ where $m < n$ and A is full rank, the least-norm problem is

 \min_x *n* $||x||_2$ subject to $Ax = y$

- **find a point on hyperplane** $Ax = b$ while keeping the 2-norm of x smallest
- it extends from solving an under-determined system that has many solutions and we aim to find the solution with smallest norm
- \blacksquare it can be shown that the optimal solution is

 $x^\star = A^T(AA^T)^{-1}y,$ provided that A is full row rank

■ the solution is linear in *y* where the coefficient is the right inverse of *A*

References

- 1 W.K. Nicholson, *Linear Algebra with Applications*, McGraw-Hill, 2006
- 2 S. Boyd and L. Vandenberghe, *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least squares*, Cambridge, 2018
- 3 Lecture notes of EE133A, L. Vandenberhge, UCLA https://www.seas.ucla.edu/~vandenbe/133A