Linear algebra and applications

Department of Electrical Engineering Faculty of Engineering Chulalongkorn University

CUEE

Ja 5

Outline

1 Matrix decomposition

How to read this handout

- 1 the note is used with lecture in EE205 (you cannot master this topic just by reading this note) class activities include
 - graphical concepts, math derivation of details/steps in between
 - computer codes to illustrate examples
- 2 always read 'textbooks' after lecture
- 🔞 pay attention to the symbol 🦠; you should be able to prove such 🦠 result
- 4 each chapter has a list of references; find more formal details/proofs from in-text citations
- almost all results in this note can be Googled; readers are encouraged to 'stimulate neurons' in your brain by proving results without seeking help from the Internet first
- 6 typos and mistakes can be reported to jitkomut@gmail.com

Matrix decomposition

Decompositions

- LU
- Cholesky
- SVD

Factor-solve approach

to solve Ax = b, first write A as a product of 'simple' matrices

$$A = A_1 A_2 \cdots A_k$$

then solve $(A_1A_2\cdots A_k)x=b$ by solving k equations

$$A_1 z_1 = b,$$
 $A_2 z_2 = z_1,$..., $A_{k-1} z_{k-1} = z_{k-2},$ $A_k x = z_{k-1}$

complexity of factor-solve method: flops = f + s

- f is cost of factoring A as $A = A_1 A_2 \cdots A_k$ (factorization step)
- s is cost of solving the k equations for z_1 , z_2 , ... z_{k-1} , x (solve step)
- lacktriangleq usually $f\gg s$

Forward substitution

solve Ax = b when A is lower triangular with nonzero diagonal elements

$$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

algorithm:

$$x_1 := b_1/a_{11}$$

$$x_2 := (b_2 - a_{21}x_1)/a_{22}$$

$$x_3 := (b_3 - a_{31}x_1 - a_{32}x_2)/a_{33}$$

$$\vdots$$

$$x_n := (b_n - a_{n1}x_1 - a_{n2}x_2 - \dots - a_{n,n-1}x_{n-1})/a_{nn}$$

cost: $1 + 3 + 5 + \cdots + (2n - 1) = n^2$ flops

LU decomposition (w/o row pivoting)

Theorem: if A can be lower reduced (w/o row interchanged) to a row-echelon matrix U, then A = LU where L is lower triangular and invertible and U is upper triangular and row-echelon

- suppose A can be reduced to $A \to E_1A \to E_2E_1A \to E_kE_{k-1} \cdots E_2E_1A = U$
- lacksquare A = LU where $L = E_1^{-1}E_2^{-1}\cdots E_k^{-1}$
 - E_j corresponds to scaling operation or $R_i + \alpha R_j \rightarrow R_i$ for i > j
 - \blacksquare E_j is lower triangular (and invertible)
 - ullet E_j^{-1} is also lower triangular, hence, \hat{L} is lower triangular

Example

find LU for
$$A = \begin{bmatrix} 2 & 4 & 2 \\ 1 & 1 & 2 \\ -1 & 0 & 2 \end{bmatrix}$$

$$R_{1}/2, \qquad E_{1} = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_{1}^{-1} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \Rightarrow \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ -1 & 0 & 2 \end{bmatrix}$$

$$R_{2}-R_{1} \rightarrow R_{2}, \quad E_{2} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_{2}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \Rightarrow \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ -1 & 0 & 2 \end{bmatrix}$$

$$R_{3}+R_{1} \rightarrow R_{3}, \quad E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad E_{3}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \quad \Rightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 1 \\ -1 & 0 & 0 \\ 0 & 2 & 3 \end{bmatrix}$$

$$R_{2}/-1 \rightarrow R_{2}, \quad E_{4} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_{4}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \quad \Rightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 1 \\ 0 & 2 & 3 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{3}-2R_{2} \rightarrow R_{3}, \quad E_{5} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}, \quad E_{5}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}, \quad \Rightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 5 \end{bmatrix} = U$$

we have
$$A=E_1^{-1}E_2^{-1}E_3^{-1}E_4^{-1}E_5^{-1}U=\begin{bmatrix}2&0&0\\1&-1&0\\-1&2&1\end{bmatrix}\begin{bmatrix}1&2&1\\0&1&-1\\0&0&5\end{bmatrix}$$

each column in L can be read from the leading column in A while performing Gaussian elimination

9 / 49

LU algorithm

let $A \in \mathbf{R}^{m \times n}$ of rank r and suppose A can be lower reduced to U (without row interchanged) then A = LU where the lower triangular, invertible L is constructed as follows

- 1 if A=0 then $L=I_m$ and U=0
- 2 if $A \neq 0$, write $A_1 = A$ and let c_1 be the leading column of A_1
- 3 use c_1 to create the first leading 1 and create zero below it; denote A_2 the matrix consisting of rows 2 to m
- 4 if $A_2 \neq 0$ let c_2 be the leading column of A_2 and repeat step 2-3 to create A_3
- 5 continue until U is found where all rows below the last leading 1 consist of zeros; this happen after r steps
- **6** create L by placing c_1, c_2, \ldots, c_r at the bottom of the first r columns of I_m

Example

$$\text{find LU for } A = \begin{bmatrix} 2 & 6 & -2 & 0 & 2 \\ 3 & 9 & -3 & 3 & 1 \\ -1 & 3 & 1 & -3 & 1 \end{bmatrix}$$

$$R_{1}/2 \begin{bmatrix} 1 & 3 & -1 & 0 & 1 \\ 3 & 9 & -3 & 3 & 1 \\ -1 & 3 & 1 & -3 & 1 \end{bmatrix}, R_{2} - 3R_{1} \to R_{2}, R_{3} + R_{1} \to R_{3} \begin{bmatrix} 1 & 3 & -1 & 0 & 1 \\ 0 & 0 & 0 & 3 & -2 \\ 0 & 0 & 0 & -3 & 2 \end{bmatrix}$$
$$R_{2}/3 \begin{bmatrix} 1 & 3 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2/3 \\ 0 & 0 & 0 & -3 & 2 \end{bmatrix}, R_{3} + 3R_{2} \to R_{3} \begin{bmatrix} 1 & 3 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2/3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = U$$

we obtain

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 3 & 0 \\ -1 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2/3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Is LU decomposition unique?

from the previous page

$$A = \begin{bmatrix} 2 & 6 & -2 & 0 & 2 \\ 3 & 9 & -3 & 3 & 1 \\ -1 & 3 & 1 & -3 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 3 & 0 \\ -1 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2/3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = L_1 U_1$$

we can make L the unit lower triangular (all diagonals are 1) (standard choice)

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 3 & 0 \\ -1 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2/3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 3/2 & 1 & 0 \\ -1/2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 9 & -3 & 0 & 3 \\ 0 & 0 & 0 & 3 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = L_2 U_2$$

12 / 49

Not every matrix has an LU factor

without row pivoting, LU factor may not exist even when A is invertible

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \Rightarrow \quad LU = \begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix}$$

from this example,

- if A could be factored as LU, it would require that $l_{11}u_{11}=a_{11}=0$
- \blacksquare one of L or U would be singular, contradicting to the fact that A=LU is nonsingular

Existence and uniqueness

existence

Theorem: suppose A is invertible; then A has LU factorization A=LU if and only if all leading principle minors are nonzero

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ is non-singular but has no LU factorization}$$

uniqueness

Theorem: if an invertible A has an LU factorization then L and U are uniquely determined (if we require the diagonals of L (or U) are all 1)

(Horn, Corollary 3.5.6)

LU decomposition with row pivoting

find LU of
$$A = \begin{bmatrix} 0 & 0 & -1 \\ -1 & -1 & 1 \\ 2 & 1 & -2 \end{bmatrix}$$

• the first row has a leading zero, so row operations require a row interchange, here

choose
$$R_1 \Leftrightarrow R_3$$
 corresponding to $P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

• note that $P^2 = I$ (permutation property), we can write

$$A = P^{2}A = PPA = P\begin{bmatrix} 2 & 1 & -2 \\ -1 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

perform LU decomposition on the resulting PA

15 / 49

LU decomposition with row pivoting

• perform $R_1/2$, $R_2 + 2R_1 \to R_1$

$$A = P \begin{bmatrix} 2 & & & \\ -1 & 1 & & \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1/2 & -3/2 \\ 0 & -1/2 & -1/2 \\ 0 & 0 & -1 \end{bmatrix}$$

■ perform $R_2 \times -2 \rightarrow R_2$

$$A = P \begin{bmatrix} 2 \\ -1 & -1/2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1/2 & -3/2 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

■ perform $R_3 \times -1 \rightarrow R_3$

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ -1 & -\frac{1}{2} \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} & -\frac{3}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -3 \\ 0 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & -1 \end{bmatrix} \triangleq PLU$$

LU decomposition with row pivoting

same
$$A$$
 on page 15 but swap $R_1 \Leftrightarrow R_2$ using $P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

perform LU decomposition and we get different factors

$$A = \begin{bmatrix} 0 & 0 & -1 \\ -1 & -1 & 1 \\ 2 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ 0 & 1 & 1/2 \\ 0 & 0 & 9/2 \end{bmatrix}$$

Common pivoting strategy

permute rows so that the largest entry of the first column is on the top left

$$\begin{split} A &= \begin{bmatrix} 2 & 4 & 2 \\ 1 & 1 & 2 \\ -1 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 1 \\ 0 & 2 & 3 \end{bmatrix} & \begin{matrix} R_1/2 \to R_1 \\ R_2 - R_1 \to R_2 \\ R_3 + R_1 \to R_3 \end{matrix} \\ &= P_1 P_1 \begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} P_1 P_1 \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 1 \\ 0 & 2 & 3 \end{bmatrix} & \text{(swap row 2 and 3)}, P_1 &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \because P_1^2 &= I \end{split} \\ &= P_1 \left(P_1 \begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} P_1 \right) \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} &= P_1 \begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \\ &= P_1 \begin{bmatrix} 2 & 0 & 0 \\ -1 & 2 & 0 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3/2 \\ 0 & 0 & 5/2 \end{bmatrix} & \begin{matrix} R_2/2 \to R_2 \\ R_3 + R_2 \to R_3 \end{matrix} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & 5/2 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & -1/2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & 5/2 \end{bmatrix} \end{split}$$

Conclusion

any square matrix A can be factorized as (with row pivoting)

$$A = PLU$$

factorization:

- $lue{P}$ permutation matrix, L unit lower triangular, U upper triangular
- factorization cost: $(2/3)n^3$ if A has order n
- not unique; there may be several possible choices for P, L, U
- interpretation: permute the rows of A and factor P^TA as $P^TA = LU$
- also known as Gaussian elimination with partial pivoting (GEPP)

Example

 \blacksquare a singular A (no row pivoting)

$$A = \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1/2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix}$$

 \blacksquare nonsingular A (that requires row pivoting)

$$A = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

• nonsingular A (showing two choices of (P, L, U))

$$A = \begin{bmatrix} 2 & 4 & 2 \\ 1 & 1 & 2 \\ -1 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ -1/2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 5 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ 1/2 & -1/2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & 5/2 \end{bmatrix}$$

Solving a linear system with LU factor

solving linear system: (PLU)x = b in three steps

- permutation: $z_1 = P^T b$ (0 flops)
- forward substitution: solve $Lz_2 = z_1$ (n^2 flops)
- back substitution: solve $Ux = z_2$ (n^2 flops)

total cost: $(2/3)n^3 + 2n^2$ flops, or roughly $(2/3)n^3$

Softwares

MATLAB

[L,U,P] = lu(A) find LU decomposition: $A = P^T L U$ where L is unit lower triangular and U is upper triangular

Python

■ P,L,U = scipy.linalg.lu(A) find LU decomposition: A = PLU where L is unit lower triangular and U is upper triangular

Exercises

find LU factorization (explain if row pivoting is required) and compare the results with coding

$$A_1 = \begin{bmatrix} 2 & 4 & 2 \\ 1 & -1 & 3 \\ -1 & 7 & -7 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & -1 & 2 \\ 0 & 0 & 3 \\ -1 & 2 & 2 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 3 & 3 & 0 \\ -2 & 0 & 2 \\ 3 & 2 & -1 \end{bmatrix}$$

2 suppose we aim to solve $Ax=b^{(k)}$ for $k=1,\dots,1000$ where $A\in\mathbf{R}^{2000\times2000}$ and $b^{(k)}$'s can be randomized as examples, write computer code to solve the linear system using factor approach and measure the computation time in each process

23 / 49

Cholesky factorization

every positive definite matrix A can be factored as

$$A = LL^T$$

where L is lower triangular with positive diagonal elements

- **cost**: $(1/3)n^3$ flops if A is of order n
- $lue{L}$ is called the *Cholesky factor* of A
- can be interpreted as 'square root' of a positive define matrix
- $lue{L}$ is invertible (its diagonal elements are nonzero)
- A is invertible and

$$A^{-1} = L^{-T}L^{-1}$$

Cholesky factorization algorithm

partition matrices in $A=LL^T$ as

$$\left[\begin{array}{cc} a_{11} & A_{21}^T \\ A_{21} & A_{22} \end{array} \right] = \left[\begin{array}{cc} l_{11} & 0 \\ L_{21} & L_{22} \end{array} \right] \left[\begin{array}{cc} l_{11} & L_{21}^T \\ 0 & L_{22}^T \end{array} \right] = \left[\begin{array}{cc} l_{11}^2 & l_{11}L_{21}^T \\ l_{11}L_{21} & L_{21}L_{21}^T + L_{22}L_{22}^T \end{array} \right]$$

algorithm:

1 determine l_{11} and L_{21} :

$$l_{11} = \sqrt{a_{11}}, \qquad L_{21} = \frac{1}{l_{11}} A_{21}$$

2 compute L_{22} from

$$A_{22} - L_{21}L_{21}^T = L_{22}L_{22}^T$$

this is a Cholesky factorization of order n-1

Proof of Cholesky algorithm

 ${f proof}$ that the algorithm works for positive definite A of order n

- step 1: if A is positive definite then $a_{11} > 0$
- step 2: if *A* is positive definite, then

$$A_{22} - L_{21}L_{21}^T = A_{22} - \frac{1}{a_{11}}A_{21}A_{21}^T$$

is positive definite (by Schur complement)

- hence the algorithm works for n=m if it works for n=m-1
- lacktriangle it obviously works for n=1; therefore it works for all n

Example of Cholesky algorithm

$$\left[\begin{array}{ccc} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{array} \right] = \left[\begin{array}{ccc} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{array} \right] \left[\begin{array}{ccc} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{array} \right]$$

lacksquare first column of L

$$\begin{bmatrix} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 3 & l_{22} & 0 \\ -1 & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} 5 & 3 & -1 \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$

lacksquare second column of L

$$\begin{bmatrix} 18 & 0 \\ 0 & 11 \end{bmatrix} - \begin{bmatrix} 3 \\ -1 \end{bmatrix} \begin{bmatrix} 3 & -1 \end{bmatrix} = \begin{bmatrix} l_{22} & 0 \\ l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{22} & l_{32} \\ 0 & l_{33} \end{bmatrix}$$
$$\begin{bmatrix} 9 & 3 \\ 3 & 10 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 1 & l_{33} \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & l_{33} \end{bmatrix}$$

• third column of L: $10 - 1 = l_{33}^2$, i.e., $l_{33} = 3$

conclusion:

$$\begin{bmatrix} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 3 & 3 & 0 \\ -1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 5 & 3 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

Solving equations with positive definite A

$$Ax = b$$
 (A positive definite of order n)

algorithm

- factor A as $A = LL^T$
- \blacksquare solve $LL^Tx=b$
 - forward substitution Lz = b
 - back substitution $L^T x = z$

\mathbf{cost} : $(1/3)n^3$ flops

- factorization: $(1/3)n^3$
- forward and backward substitution: $2n^2$

Softwares

MATLAB

 ${\bf U}={\bf chol}({\bf A})$ returns Cholesky decomposition $A=U^TU$ where U is upper triangular

Python

L = scipy.linalg.cholesky(A) returns Cholesky decomposition $A = LL^T$ or $A = U^TU$ where L is lower (lower=True) and U is upper triangular

Exercises

I find Cholesky factorization and compare the results with coding

$$A_1 = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 12 & 4 & 3 \\ 4 & 2 & -1 \\ 3 & -1 & 7 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 20 & 4 & 5 \\ 4 & 2 & 3 \\ 5 & 3 & 5 \end{bmatrix}$$

- 2 suggest a method to randomize A and guarantee that $A \succ 0$
- 3 suppose we aim to solve $Ax=b^{(k)}$ for $k=1,\ldots,1000$ where $A\in \mathbf{S}^{2000\times 2000}_{++}$ (pdf) and $b^{(k)}$'s can be randomized as examples, write computer code to solve the linear system using factor approach and measure the computation time in each process

SVD decomposition

- lacksquare recall that $A^TA\succeq 0$ and eigenvalues are non-negative
- singular values
- left and right singular vectors
- applications: pseudo inverse

Singular values and vectors

let $A \in \mathbf{R}^{m \times n}$, we form eigenvalue problem of $A^T A$

$$A^T A v_i = \sigma_i^2 v_i, \quad i = 1, 2, \dots, n$$

- $\sigma_i = \sqrt{\lambda_i(A^TA)} > 0$ is called singular value of A
- \mathbf{v}_i (orthogonal and has unit-norm) is called **right singular vector**
- fact: if rank of A is r then $\sigma_1 \geq \sigma_2 \geq \cdots \sigma_r > 0$ and $\sigma_i = 0$ for i > r

rank of A is the number of non-zero singular values of A

lacktriangledown there exist left singular vector u_1,u_2,\ldots,u_m that are orthogonal such that

$$Av_1 = \sigma_1 u_1, \quad Av_2 = \sigma_2 u_2, \dots, Av_r = \sigma_r u_r, \quad Av_{r+1} = \dots = Av_n = 0$$

Matrix form

$$Av_1 = \sigma_1 u_1, \ Av_2 = \sigma_2 u_2, \dots, \ Av_r = \sigma_r u_r, \ Av_{r+1} = \dots = Av_n = 0$$

or in matrix form: $AV = U\Sigma$ (where U and V are orthogonal matrices)

$$A \begin{bmatrix} v_1 & \cdots & v_r \mid v_{r+1} & \cdots & v_n \end{bmatrix} = \begin{bmatrix} u_1 & \cdots & u_r \mid u_{r+1} & \cdots & u_m \end{bmatrix} \begin{bmatrix} \sigma_1 & & & 0 \\ & \ddots & & 0 \\ & & \sigma_r & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix}$$

it can be shown that

- $v_1, \ldots, v_r, v_{r+1}, \ldots, v_n$ are orthogonal (eigenvectors of $A^T A$, which is symmetric)
- lacksquare u_{r+1},\ldots,u_m can be chosen such that $\{u_1,\ldots,u_m\}$ are orgothogonal
- hence, V,U are orthogonal matrices, $V^V=I,U^TU=I$

unlike eigenvalue decomposition: $AX = X\Lambda$, SVD needs two sets of singular vectors

SVD decomposition

let $A \in \mathbf{R}^{m \times n}$ be a rectangular matrix; there exists the SVD form of A

$$A = U\Sigma V^T$$

- $U \in \mathbf{R}^{m \times m}, V \in \mathbf{R}^{n \times n}$ are orthogonal matrices
- $f \Sigma \in {\bf R}^{m imes n}$ with $\Sigma_{ii} = \sigma_i \geq 0$ and $\Sigma_{ij} = 0$ for $i \neq j$
- lacksquare for a rectangular A, Σ has a diagonal submatrix Σ_1 with dimension of $\min(m,n)$

$$A_{\mathrm{tall}} = \left[\begin{array}{cc} U_1 + U_2 \end{array} \right] \left[\begin{array}{c} \Sigma_1 \\ \hline \end{array} \right] V^T = U_1 \Sigma_1 V^T, \quad A_{\mathrm{fat}} = U \left[\begin{array}{cc} \Sigma_1 + \mathbf{0} \end{array} \right] \left[\begin{array}{c} V_1^T \\ \hline V_2^T \end{array} \right] = U \Sigma_1 V_1^T$$

Square A

$$\begin{bmatrix} 2 & 1 \\ -1 & -2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}^T, \mathbf{rank}(A) = 2$$

$$\begin{bmatrix} 2 & 4 & -2 \\ -2 & 0 & -2 \\ 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -0.94 & -0.27 & -0.20 \\ 0.11 & -0.80 & 0.59 \\ -0.31 & 0.53 & 0.78 \end{bmatrix} \begin{bmatrix} 5.10 & 0 & 0 \\ 0 & 3.46 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -0.53 & 0.62 & 0.58 \\ -0.80 & -0.15 & -0.58 \\ 0.27 & 0.77 & -0.58 \end{bmatrix}^T, \mathbf{rank}(A) = 2$$

$$\begin{bmatrix} -2 & 1 & 3 \\ 4 & -2 & -6 \\ 2 & -1 & -3 \end{bmatrix} = \begin{bmatrix} -0.41 & -0.91 & 0 \\ 0.82 & -0.37 & -0.45 \\ 0.41 & -0.18 & 0.89 \end{bmatrix} \begin{bmatrix} 9.17 & 0 & 9 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.53 & -0.85 & 0 \\ -0.27 & -0.17 & 0.95 \\ -0.80 & -0.51 & -0.32 \end{bmatrix}^T, \mathbf{rank}(A) = 1$$

- \blacksquare check the singular values and eigenvalues of A^TA
- confirm the rank and the number of nonzero singular values
- \blacksquare if A is invertible, so is Σ

Fat A

$$A_1 = \begin{bmatrix} 2 & 0 & 2 \\ 0 & -2 & 1 \end{bmatrix} = \begin{bmatrix} -0.89 & -0.45 \\ -0.45 & 0.89 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} -0.60 & -0.45 & -0.67 \\ 0.30 & -0.89 & 0.33 \\ -0.75 & 0 & 0.67 \end{bmatrix}^T, \mathbf{rank}(A) = 2$$

$$A_2 = \begin{bmatrix} 2 & -1 & 1 & 0 \\ 2 & 0 & 1 & -2 \\ -2 & 0 & -1 & 2 \end{bmatrix}$$

$$=\begin{bmatrix} 0.42 & 0.91 & 0 \\ 0.64 & -0.30 & 0.71 \\ -0.64 & 0.30 & 0.71 \end{bmatrix} \begin{bmatrix} 4.6100 & 0 & 0 & 0 \\ 0 & 1.65 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.74 & 0.38 & 0.40 & -0.38 \\ -0.09 & -0.55 & 0.82 & 0.14 \\ 0.37 & 0.19 & 0.01 & 0.91 \\ -0.56 & 0.72 & 0.41 & 0.07 \end{bmatrix}^T, \mathbf{rank}(A) = 1$$

■ A_2 is low rank, the SVD form can be reduced to $A_2 = U\Sigma V^T = U_r\Sigma_rV_r^T$ where U_r, V_r have the first r columns of U and V respectively and Σ_r is the leading r-diagonal block of Σ $(r = \mathbf{rank}(A))$

36 / 49

Tall A

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ -2 & -2 & 0 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -1.00 \\ 0.33 & -0.63 & -0.71 & 0 \\ 0.89 & 0.46 & 0 & 0 \\ -0.33 & 0.63 & -0.71 & 0 \end{bmatrix} \begin{bmatrix} 3.080 & 0 & 0 \\ 0 & 1.59 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -0.58 & -0.58 & 0.58 \\ -0.79 & 0.21 & -0.58 \\ 0.21 & -0.79 & -0.58 \end{bmatrix}^T$$

- $\operatorname{rank}(A) = 2$ and there are two nonzero singular values
- A can be reduced to

$$A = U\Sigma V^T = U_r \Sigma_r V_r^T, \quad r = \mathbf{rank}(A) = 2$$

Softwares

MATLAB

• [U,S,V] = svd(A) returns SVD decomposition: $A = USV^T$

Python

- U,S,Vt = scipy.linalg.svd(A)
- U,S,Vt = numpy.linalg.svd(A)

returns SVD decomposition: $A=USV^T$ where ${\tt S}$ is returned as a vector of singular values and ${\tt Vt}$ as V^T

Pseudo-inverse (Penrose Theorem)

one can have a notion of 'inverse' for a non-square matrix

Penrose's Theorem: given $A \in \mathbf{R}^{m \times n}$, there is exactly one $n \times m$ matrix B such that

- f 2 both AB and BA are symmetric

definition: the **pseudo inverse** of $A \in \mathbf{R}^{m \times n}$ is the unique $n \times m$ matrix A^{\dagger} such that

- 2 both AA^{\dagger} and $A^{\dagger}A$ are symmetric

Pseudo-inverse

consider a full rank matrix $A \in \mathbf{R}^{m \times n}$ in three cases

■ tall matrix: A is full rank \Leftrightarrow columns of A are LI $\Leftrightarrow A^TA$ is invertible

$$((A^T A)^{-1} A^T) A = (A^T A)^{-1} (A^T A) = I$$

the pseudo-inverse of A (or left-inverse) is $A^\dagger = (A^TA)^{-1}A^T$

• wide matrix: A is full rank \Leftrightarrow row of A are LI $\Leftrightarrow AA^T$ is invertible

$$A(A^{T}(AA^{T})^{-1}) = (AA^{T})(AA^{T})^{-1} = I$$

the **pseudo-inverse** of A (or right-inverse) is $A^{\dagger}=A^T(AA^T)^{-1}$

- **square matrix:** A is full rank $\Leftrightarrow A$ is invertible and both formula of pseudo-inverses reduce to the ordinary inverse A^{-1}
- the pseudo inverses of the three cases have the same dimension ?

Example

$$A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 1 & -2 \end{bmatrix}, \quad A^{\dagger} = A^{T} (AA^{T})^{-1} = \begin{bmatrix} 0 & -2/9 \\ 2/5 & 1/9 \\ 1/5 & -2/9 \end{bmatrix}$$

$$A = \begin{bmatrix} -2 & -1 \\ 2 & -1 \\ -1 & 0 \end{bmatrix}, \quad A^{\dagger} = (A^{T}A)^{-1}A^{T} = \begin{bmatrix} -2/9 & 2/9 & 1/9 \\ -1/2 & -1/2 & 0 \end{bmatrix}$$

however, when rentangular A has low rank, we can use SVD to find the pseudo inverse

41 / 49

Pseudo-inverse via SVD

the pseudo-inverse A^{\dagger} can be computed from any SVD for $A \in \mathbf{R}^{n \times m}$

• from $A = U_{n \times n} \Sigma_{n \times m} V_{m \times m}^T$ if A has rank r then

$$\Sigma = \left[egin{array}{cc} \Sigma_r & 0 \\ 0 & 0 \end{array}
ight]_{m imes n}, \quad ext{and that } \Sigma_r ext{ is invertible}$$

lacktriangle define $\Sigma^\dagger=\left[egin{array}{cc} \Sigma_r^{-1} & 0 \ 0 & 0 \end{array}
ight]_{n imes m}$ and we can verify that

$$\Sigma \Sigma^{\dagger} \Sigma = \Sigma, \quad \Sigma^{\dagger} \Sigma \Sigma^{\dagger} = \Sigma^{\dagger}, \quad \Sigma \Sigma^{\dagger} = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}_{m \times m}, \quad \Sigma^{\dagger} \Sigma = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}_{n \times n}$$

proving that Σ^{\dagger} is the pseudoinverse of Σ

42 / 49

Pseudo-inverse via SVD

given $A = U\Sigma V^T$, then the pseudo-inverse of A is

$$A^{\dagger} = V \Sigma^{\dagger} U^T$$

by verifying Penrose's Theorem from page 39 that

- $AA^{\dagger}A = (U\Sigma V^T)(V\Sigma^{\dagger}U^T)(U\Sigma V^T) = U\Sigma \Sigma^{\dagger}\Sigma V^T = U\Sigma V^T = A$
- $\bullet \ A^\dagger A A^\dagger = (V \Sigma^\dagger U^T) (U \Sigma V^T) (V \Sigma^\dagger U^T) = V \Sigma^\dagger \Sigma \Sigma^\dagger U^T = V \Sigma^\dagger U^T = A^\dagger U^T = A$
- ${\color{blue} \bullet} \ AA^{\dagger} = U\Sigma\Sigma^{\dagger}U^T$ which is symmetric
- $lacksquare A^\dagger A = V \Sigma^\dagger \Sigma V^T$ which is symmetric

Example

a tall full rank A

$$\begin{split} A &= \begin{bmatrix} -2 & -1 \\ 2 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -0.6667 & -0.7071 & -0.2357 \\ 0.6667 & -0.7071 & 0.2357 \\ -0.3333 & -0.0000 & 0.9428 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1.4142 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^T \\ A^\dagger &= V \Sigma^\dagger U^T = V \begin{bmatrix} 0.3333 & 0 & 0 \\ 0 & 0.7071 & 0 \end{bmatrix} U^T \\ &= \begin{bmatrix} -0.22 & 0.22 & -0.1100 \\ -0.50 & -0.50 & 0 \end{bmatrix} \end{split}$$

Example

a fat low rank A

$$A = \begin{bmatrix} -2 & -1 & -3 & 0 \\ 0 & -3 & -3 & -2 \\ 2 & -2 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 0.47 & 0.67 & -0.58 \\ 0.81 & -0.08 & 0.58 \\ 0.34 & -0.74 & -0.58 \end{bmatrix} \begin{bmatrix} 5.76 & 0 & 0 & 0 \\ 0 & 3.85 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -0.05 & -0.73 & 0.51 & -0.45 \\ -0.62 & 0.27 & -0.27 & -0.68 \\ -0.67 & -0.46 & -0.25 & 0.53 \\ -0.40 & 0.43 & 0.78 & 0.23 \end{bmatrix}^T$$

$$A^{\dagger} = V \Sigma^{\dagger} U^T = V \begin{bmatrix} 0.1736 & 0 & 0 \\ 0 & 0.2596 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} U^T$$

$$= \begin{bmatrix} -0.13 & 0.01 & 0.14 \\ 0 & -0.09 & -0.09 \\ -0.13 & -0.09 & 0.05 \\ 0.04 & -0.07 & -0.11 \end{bmatrix}$$

- $\mathbf{rank}(A) = 2 < n$ and there are two non-zero singular values
- $\Sigma \in \mathbf{R}^{3\times 4}$ and $\Sigma^{\dagger} \in \mathbf{R}^{4\times 3}$ with 2×2 invertible block

Applications of pseudo-inverse

- least-square problem: find a straight line that fit best in 2-norm sense to data points
- **least-norm problem:** find a point x on the given hyperplane that has the smallest norm

Least-square problem

given $X \in \mathbf{R}^{N \times p}, y \in \mathbf{R}^N$ where typically N > p, a least-square problem is

$$\mathop{\mathrm{minimize}}_{\beta} \ \|y - X\beta\|_2^2$$

- it generalizes solving an overdetermined linear system that cannot be solved exactly by allowing the system to have the smallest residual
- if X is full rank, and from zero-gradient condition, the optimal solution is

$$\beta = (X^T X)^{-1} X^T y$$

• the solution is linear in y where the coefficient is the **left inverse** of X

Least-norm problem

given $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m$ where m < n and A is full rank, the least-norm problem is $\min_x \|x\|_2 \quad \text{subject to} \quad Ax = y$

- find a point on hyperplane Ax = b while keeping the 2-norm of x smallest
- it extends from solving an under-determined system that has many solutions and we aim to find the solution with smallest norm
- it can be shown that the optimal solution is

$$x^* = A^T (AA^T)^{-1} y$$
, provided that A is full row rank

 \blacksquare the solution is linear in y where the coefficient is the **right inverse** of A

References

- W.K. Nicholson, Linear Algebra with Applications, McGraw-Hill, 2006
- 2 S. Boyd and L. Vandenberghe, *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least squares*, Cambridge, 2018
- Lecture notes of EE133A, L. Vandenberhge, UCLA https://www.seas.ucla.edu/~vandenbe/133A