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Outline

1 Matrix decomposition
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How to read this handout
1 the note is used with lecture in EE205 (you cannot master this topic just by

reading this note) – class activities include
graphical concepts, math derivation of details/steps in between
computer codes to illustrate examples

2 always read ’textbooks’ after lecture
3 pay attention to the symbol .; you should be able to prove such . result
4 each chapter has a list of references; find more formal details/proofs from in-text

citations
5 almost all results in this note can be Googled; readers are encouraged to

‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first

6 typos and mistakes can be reported to jitkomut@gmail.com
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Matrix decomposition
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Decompositions

LU
Cholesky
SVD
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Factor-solve approach

to solve Ax = b, first write A as a product of ‘simple’ matrices

A = A1A2 · · ·Ak

then solve (A1A2 · · ·Ak)x = b by solving k equations

A1z1 = b, A2z2 = z1, . . . , Ak−1zk−1 = zk−2, Akx = zk−1

complexity of factor-solve method: flops = f + s

f is cost of factoring A as A = A1A2 · · ·Ak (factorization step)
s is cost of solving the k equations for z1, z2, …zk−1, x (solve step)
usually f ≫ s
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Forward substitution
solve Ax = b when A is lower triangular with nonzero diagonal elements

a11 0 · · · 0
a21 a22 · · · 0
... ... . . . ...

an1 an2 · · · ann




x1
x2
...
xn

 =


b1
b2
...
bn


algorithm:

x1 := b1/a11

x2 := (b2 − a21x1)/a22

x3 := (b3 − a31x1 − a32x2)/a33
...

xn := (bn − an1x1 − an2x2 − · · · − an,n−1xn−1)/ann

cost: 1 + 3 + 5 + · · ·+ (2n− 1) = n2 flops
Linear algebra and applications Jitkomut Songsiri 7 / 49
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LU decomposition (w/o row pivoting)

Theorem: if A can be lower reduced (w/o row interchanged) to a row-echelon matrix
U , then A = LU where L is lower triangular and invertible and U is upper triangular
and row-echelon

suppose A can be reduced to A → E1A → E2E1A → EkEk−1 · · ·E2E1A = U

A = LU where L = E−1
1 E−1

2 · · ·E−1
k

Ej corresponds to scaling operation or Ri + αRj → Ri for i > j
Ej is lower triangular (and invertible)
E−1

j is also lower triangular, hence, L is lower triangular
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Example

find LU for A =

 2 4 2
1 1 2
−1 0 2


R1/2, E1 =

1/2 0 0
0 1 0
0 0 1

 , E−1
1 =

2 0 0
0 1 0
0 0 1

 , ⇒

 1 2 1
1 1 2
−1 0 2


R2 − R1 → R2, E2 =

 1 0 0
−1 1 0
0 0 1

 , E−1
2 =

1 0 0
1 1 0
0 0 1

 , ⇒

 1 2 1
0 −1 1
−1 0 2


R3 + R1 → R3, E3 =

1 0 0
0 1 0
1 0 1

 , E−1
3 =

 1 0 0
0 1 0
−1 0 1

 , ⇒

1 2 1
0 −1 1
0 2 3


R2/ − 1 → R2, E4 =

1 0 0
0 −1 0
0 0 1

 , E−1
4 =

1 0 0
0 −1 0
0 0 1

 , ⇒

1 2 1
0 1 −1
0 2 3


R3 − 2R2 → R3, E5 =

1 0 0
0 1 0
0 −2 1

 , E−1
5 =

1 0 0
0 1 0
0 2 1

 , ⇒

1 2 1
0 1 −1
0 0 5

 = U

we have A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 U =

 2 0 0
1 −1 0
−1 2 1

1 2 1
0 1 −1
0 0 5


each column in L can be read from the leading column in A while performing Gaussian elimination
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LU algorithm

let A ∈ Rm×n of rank r and suppose A can be lower reduced to U (without row
interchanged) then A = LU where the lower triangular, invertible L is constructed as
follows

1 if A = 0 then L = Im and U = 0

2 if A ̸= 0, write A1 = A and let c1 be the leading column of A1

3 use c1 to create the first leading 1 and create zero below it; denote A2 the matrix
consisting of rows 2 to m

4 if A2 ̸= 0 let c2 be the leading column of A2 and repeat step 2-3 to create A3

5 continue until U is found where all rows below the last leading 1 consist of zeros;
this happen after r steps

6 create L by placing c1, c2, . . . , cr at the bottom of the first r columns of Im
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Example

find LU for A =

 2 6 −2 0 2
3 9 −3 3 1
−1 3 1 −3 1



R1/2

 1 3 −1 0 1
3 9 −3 3 1
−1 3 1 −3 1

 , R2 − 3R1 → R2, R3 +R1 → R3

1 3 −1 0 1
0 0 0 3 −2
0 0 0 −3 2


R2/3

1 3 −1 0 1
0 0 0 1 −2/3
0 0 0 −3 2

 , R3 + 3R2 → R3

1 3 −1 0 1
0 0 0 1 −2/3
0 0 0 0 0

 = U

we obtain

A =

 2 0 0
3 3 0
−1 −3 1

1 3 −1 0 1
0 0 0 1 −2/3
0 0 0 0 0
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Is LU decomposition unique?
from the previous page

A =

 2 6 −2 0 2
3 9 −3 3 1
−1 3 1 −3 1

 =

 2 0 0
3 3 0
−1 −3 1

1 3 −1 0 1
0 0 0 1 −2/3
0 0 0 0 0

 = L1U1

we can make L the unit lower triangular (all diagonals are 1) (standard choice)

A =

 2 0 0
3 3 0
−1 −3 1

1/2 0 0
0 1/3 0
0 0 1

2 0 0
0 3 0
0 0 1

1 3 −1 0 1
0 0 0 1 −2/3
0 0 0 0 0


=

 1 0 0
3/2 1 0
−1/2 −1 1

3 9 −3 0 3
0 0 0 3 −2
0 0 0 0 0

 = L2U2
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Not every matrix has an LU factor

without row pivoting, LU factor may not exist even when A is invertible

A =

[
0 1
1 0

]
⇒ LU =

[
l11 0
l21 l22

] [
u11 u12
0 u22

]
from this example,

if A could be factored as LU, it would require that l11u11 = a11 = 0

one of L or U would be singular, contradicting to the fact that A = LU is
nonsingular
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Existence and uniqueness

existence
Theorem: suppose A is invertible; then A has LU factorization A = LU if and
only if all leading principle minors are nonzero[

0 1
1 0

]
is non-singular but has no LU factorization

uniqueness
Theorem: if an invertible A has an LU factorization then L and U are uniquely
determined (if we require the diagonals of L (or U) are all 1)

(Horn, Corollary 3.5.6)

Linear algebra and applications Jitkomut Songsiri 14 / 49



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

LU decomposition with row pivoting

find LU of A =

 0 0 −1
−1 −1 1
2 1 −2


the first row has a leading zero, so row operations require a row interchange, here

choose R1 ⇔ R3 corresponding to P =

0 0 1
0 1 0
1 0 0


note that P 2 = I (permutation property), we can write

A = P 2A = PPA = P

 2 1 −2
−1 −1 1
0 0 −1


perform LU decomposition on the resulting PA
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LU decomposition with row pivoting

perform R1/2, R2 + 2R1 → R1

A = P

 2
−1 1
0 0 1

1 1/2 −3/2
0 −1/2 −1/2
0 0 −1


perform R2 ×−2 → R2

A = P

 2
−1 −1/2
0 0 1

1 1/2 −3/2
0 1 1
0 0 −1


perform R3 ×−1 → R3

A =

0 0 1
0 1 0
1 0 0

 2

−1 − 1
2

0 0 −1

1 1
2

− 3
2

0 1 1
0 0 1

 =

0 0 1
0 1 0
1 0 0

 1

− 1
2

1
0 0 1

2 1 −3

0 − 1
2

− 1
2

0 0 −1

 ≜ PLU
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LU decomposition with row pivoting

same A on page 15 but swap R1 ⇔ R2 using P =

0 1 0
1 0 0
0 0 1



perform LU decomposition and we get different factors

A =

 0 0 −1
−1 −1 1
2 1 −2

 =

0 1 0
1 0 0
0 0 1

 1 0 0
1/2 1 0
0 −1 1

2 0 3
0 1 1/2
0 0 9/2
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Common pivoting strategy

permute rows so that the largest entry of the first column is on the top left

A =

 2 4 2
1 1 2
−1 0 2

 =

 2 0 0
1 1 0
−1 0 1

1 2 1
0 −1 1
0 2 3

 R1/2 → R1
R2 − R1 → R2
R3 + R1 → R3

= P1P1

 2 0 0
1 1 0
−1 0 1

P1P1

1 2 1
0 −1 1
0 2 3

 (swap row 2 and 3), P1 =

1 0 0
0 0 1
0 1 0

 ∵ P
2
1 = I

= P1

P1

 2 0 0
1 1 0
−1 0 1

P1

1 2 1
0 2 3
0 −1 1

 = P1

 2 0 0
−1 1 0
1 0 1

1 2 1
0 2 3
0 −1 1


= P1

 2 0 0
−1 2 0
1 −1 1

1 2 1
0 1 3/2
0 0 5/2

 R2/2 → R2
R3 + R2 → R3

=

1 0 0
0 0 1
0 1 0

 1 0 0
−1/2 1 0
1/2 −1/2 1

2 4 2
0 2 3
0 0 5/2
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Conclusion

any square matrix A can be factorized as (with row pivoting)

A = PLU

factorization:
P permutation matrix, L unit lower triangular, U upper triangular
factorization cost: (2/3)n3 if A has order n
not unique; there may be several possible choices for P , L, U
interpretation: permute the rows of A and factor P TA as P TA = LU

also known as Gaussian elimination with partial pivoting (GEPP)
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Example

a singular A (no row pivoting)

A =

[
4 2
2 1

]
=

[
1 0
1/2 1

] [
4 2
0 0

]
nonsingular A (that requires row pivoting)

A =

[
0 2
1 0

]
=

[
0 1
1 0

] [
1 0
0 1

] [
1 0
0 2

]
nonsingular A (showing two choices of (P,L, U))

A =

 2 4 2
1 1 2
−1 0 2

 =

 1 0 0
1/2 1 0
−1/2 −2 1

2 4 2
0 −1 1
0 0 5

 , A =

1 0 0
0 0 1
0 1 0

 1 0 0
−1/2 1 0
1/2 −1/2 1

2 4 2
0 2 3
0 0 5/2
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Solving a linear system with LU factor

solving linear system: (PLU)x = b in three steps
permutation: z1 = P T b (0 flops)
forward substitution: solve Lz2 = z1 (n2 flops)
back substitution: solve Ux = z2 (n2 flops)

total cost: (2/3)n3 + 2n2 flops, or roughly (2/3)n3
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Softwares

MATLAB
[L,U,P] = lu(A) find LU decomposition: A = P TLU where L is unit lower
triangular and U is upper triangular

Python
P,L,U = scipy.linalg.lu(A) find LU decomposition: A = PLU where L is
unit lower triangular and U is upper triangular
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Exercises

1 find LU factorization (explain if row pivoting is required) and compare the results
with coding

A1 =

 2 4 2
1 −1 3
−1 7 −7

 , A2 =

 0 −1 2
0 0 3
−1 2 2

 , A3 =

 3 3 0
−2 0 2
3 2 −1


2 suppose we aim to solve Ax = b(k) for k = 1, . . . , 1000 where A ∈ R2000×2000 and

b(k)’s can be randomized as examples, write computer code to solve the linear
system using factor approach and measure the computation time in each process
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Cholesky factorization

every positive definite matrix A can be factored as

A = LLT

where L is lower triangular with positive diagonal elements

cost: (1/3)n3 flops if A is of order n
L is called the Cholesky factor of A
can be interpreted as ‘square root’ of a positive define matrix
L is invertible (its diagonal elements are nonzero)
A is invertible and

A−1 = L−TL−1
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Cholesky factorization algorithm

partition matrices in A = LLT as[
a11 AT

21

A21 A22

]
=

[
l11 0
L21 L22

] [
l11 LT

21

0 LT
22

]
=

[
l211 l11L

T
21

l11L21 L21L
T
21 + L22L

T
22

]
algorithm:

1 determine l11 and L21:

l11 =
√
a11, L21 =

1

l11
A21

2 compute L22 from
A22 − L21L

T
21 = L22L

T
22

this is a Cholesky factorization of order n− 1
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Proof of Cholesky algorithm

proof that the algorithm works for positive definite A of order n
step 1: if A is positive definite then a11 > 0

step 2: if A is positive definite, then

A22 − L21L
T
21 = A22 −

1

a11
A21A

T
21

is positive definite (by Schur complement)
hence the algorithm works for n = m if it works for n = m− 1

it obviously works for n = 1; therefore it works for all n
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Example of Cholesky algorithm

 25 15 −5
15 18 0
−5 0 11

 =

 l11 0 0
l21 l22 0
l31 l32 l33

 l11 l21 l31
0 l22 l32
0 0 l33



first column of L  25 15 −5
15 18 0
−5 0 11

 =

 5 0 0
3 l22 0

−1 l32 l33

 5 3 −1
0 l22 l32
0 0 l33


second column of L [

18 0
0 11

]
−

[
3

−1

] [
3 −1

]
=

[
l22 0
l32 l33

] [
l22 l32
0 l33

]
[

9 3
3 10

]
=

[
3 0
1 l33

] [
3 1
0 l33

]
third column of L: 10 − 1 = l233, i.e., l33 = 3

conclusion:  25 15 −5
15 18 0
−5 0 11

 =

 5 0 0
3 3 0

−1 1 3

 5 3 −1
0 3 1
0 0 3
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Solving equations with positive definite A

Ax = b (A positive definite of order n)

algorithm
factor A as A = LLT

solve LLTx = b

forward substitution Lz = b
back substitution LTx = z

cost: (1/3)n3 flops
factorization: (1/3)n3

forward and backward substitution: 2n2
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Softwares

MATLAB
U = chol(A) returns Cholesky decomposition A = UTU where U is upper
triangular

Python
L = scipy.linalg.cholesky(A) returns Cholesky decomposition A = LLT or
A = UTU where L is lower (lower=True) and U is upper triangular
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Exercises

1 find Cholesky factorization and compare the results with coding

A1 =

[
2 1
1 3

]
, A2 =

12 4 3
4 2 −1
3 −1 7

 , A3 =

20 4 5
4 2 3
5 3 5


2 suggest a method to randomize A and guarantee that A ≻ 0

3 suppose we aim to solve Ax = b(k) for k = 1, . . . , 1000 where A ∈ S2000×2000
++

(pdf) and b(k)’s can be randomized as examples, write computer code to solve the
linear system using factor approach and measure the computation time in each
process
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SVD decomposition

recall that ATA ⪰ 0 and eigenvalues are non-negative
singular values
left and right singular vectors
applications: pseudo inverse

Linear algebra and applications Jitkomut Songsiri 31 / 49



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Singular values and vectors
let A ∈ Rm×n, we form eigenvalue problem of ATA

ATAvi = σ2
i vi, i = 1, 2, . . . , n

σi =
√
λi(ATA) > 0 is called singular value of A

vi (orthogonal and has unit-norm) is called right singular vector
fact: if rank of A is r then σ1 ≥ σ2 ≥ · · ·σr > 0 and σi = 0 for i > r

rank of A is the number of non-zero singular values of A

there exist left singular vector u1, u2, . . . , um that are orthogonal such that

Av1 = σ1u1, Av2 = σ2u2, . . . , Avr = σrur, Avr+1 = · · · = Avn = 0
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Matrix form

Av1 = σ1u1, Av2 = σ2u2, . . . , Avr = σrur, Avr+1 = · · · = Avn = 0

or in matrix form: AV = UΣ (where U and V are orthogonal matrices)

A [ v1 · · · vr vr+1 · · · vn ] = [ u1 · · · ur ur+1 · · · um ]


σ1 0

. . . 0
σr 0

0 0 0 0


it can be shown that

v1, . . . , vr, vr+1, . . . , vn are orthogonal (eigenvectors of ATA, which is symmetric)
ur+1, . . . , um can be chosen such that {u1, . . . , um} are orgothogonal
hence, V, U are orthogonal matrices, V V = I, UTU = I

unlike eigenvalue decomposition: AX = XΛ, SVD needs two sets of singular vectors
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SVD decomposition
let A ∈ Rm×n be a rectangular matrix; there exists the SVD form of A

squaretall fat

U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices
Σ ∈ Rm×n with Σii = σi ≥ 0 and Σij = 0 for i ̸= j

for a rectangular A, Σ has a diagonal submatrix Σ1 with dimension of min(m,n)

Atall = [ U1 U2 ]
[

Σ1
0

]
V T = U1Σ1V

T , Afat = U [ Σ1 0 ]
[

V T
1

V T
2

]
= UΣ1V

T
1
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Square A

[
2 1
−1 −2

]
=

1√
2

[
−1 1
1 1

] [
3 0
0 1

]
1√
2

[
−1 1
−1 −1

]T

, rank(A) = 2 2 4 −2
−2 0 −2
2 1 1

 =

−0.94 −0.27 −0.20
0.11 −0.80 0.59
−0.31 0.53 0.78

5.10 0 0
0 3.46 0
0 0 0

−0.53 0.62 0.58
−0.80 −0.15 −0.58
0.27 0.77 −0.58

T

, rank(A) = 2

−2 1 3
4 −2 −6
2 −1 −3

 =

−0.41 −0.91 0
0.82 −0.37 −0.45
0.41 −0.18 0.89

9.17 0 9
0 0 0
0 0 0

 0.53 −0.85 0
−0.27 −0.17 0.95
−0.80 −0.51 −0.32

T

, rank(A) = 1

check the singular values and eigenvalues of ATA

confirm the rank and the number of nonzero singular values
if A is invertible, so is Σ
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Fat A

A1 =

[
2 0 2
0 −2 1

]
=

[
−0.89 −0.45
−0.45 0.89

] [
3 0 0
0 2 0

]−0.60 −0.45 −0.67
0.30 −0.89 0.33
−0.75 0 0.67

T

, rank(A) = 2

A2 =

 2 −1 1 0
2 0 1 −2
−2 0 −1 2



=

 0.42 0.91 0
0.64 −0.30 0.71
−0.64 0.30 0.71

4.6100 0 0 0
0 1.65 0 0
0 0 0 0




0.74 0.38 0.40 −0.38
−0.09 −0.55 0.82 0.14
0.37 0.19 0.01 0.91
−0.56 0.72 0.41 0.07


T

, rank(A) = 1

A2 is low rank, the SVD form can be reduced to A2 = UΣV T = UrΣrV
T
r where

Ur, Vr have the first r columns of U and V respectively and Σr is the leading
r-diagonal block of Σ (r = rank(A))
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Tall A


0 0 0
0 −1 1
−2 −2 0
0 1 −1

 =


0 0 0 −1.00

0.33 −0.63 −0.71 0
0.89 0.46 0 0
−0.33 0.63 −0.71 0



3.080 0 0
0 1.59 0
0 0 0
0 0 0


−0.58 −0.58 0.58
−0.79 0.21 −0.58
0.21 −0.79 −0.58

T

rank(A) = 2 and there are two nonzero singular values
A can be reduced to

A = UΣV T = UrΣrV
T
r , r = rank(A) = 2
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Softwares

MATLAB
[U,S,V] = svd(A) returns SVD decomposition: A = USV T

Python
U,S,Vt = scipy.linalg.svd(A)
U,S,Vt = numpy.linalg.svd(A)

returns SVD decomposition: A = USV T where S is returned as a vector of
singular values and Vt as V T
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Pseudo-inverse (Penrose Theorem)

one can have a notion of ’inverse’ for a non-square matrix

Penrose’s Theorem: given A ∈ Rm×n, there is exactly one n×m matrix B such that
1 ABA = A and BAB = B

2 both AB and BA are symmetric

definition: the pseudo inverse of A ∈ Rm×n is the unique n×m matrix A† such that
1 AA†A = A and A†AA† = A†

2 both AA† and A†A are symmetric

Linear algebra and applications Jitkomut Songsiri 39 / 49



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pseudo-inverse
consider a full rank matrix A ∈ Rm×n in three cases

tall matrix: A is full rank ⇔ columns of A are LI ⇔ ATA is invertible

((ATA)−1AT )A = (ATA)−1(ATA) = I

the pseudo-inverse of A (or left-inverse) is A† = (ATA)−1AT

wide matrix: A is full rank ⇔ row of A are LI ⇔ AAT is invertible

A(AT (AAT )−1) = (AAT )(AAT )−1 = I

the pseudo-inverse of A (or right-inverse) is A† = AT (AAT )−1

square matrix: A is full rank ⇔ A is invertible and both formula of
pseudo-inverses reduce to the ordinary inverse A−1

. the pseudo inverses of the three cases have the same dimension ?
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Example

A =

[
0 2 1
−2 1 −2

]
, A† = AT (AAT )−1 =

 0 −2/9
2/5 1/9
1/5 −2/9


A =

−2 −1
2 −1
−1 0

 , A† = (ATA)−1AT =

[
−2/9 2/9 1/9
−1/2 −1/2 0

]

however, when rentangular A has low rank, we can use SVD to find the pseudo inverse
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Pseudo-inverse via SVD

the pseudo-inverse A† can be computed from any SVD for A ∈ Rn×m

from A = Un×nΣn×mV T
m×m if A has rank r then

Σ =

[
Σr 0
0 0

]
m×n

, and that Σr is invertible

define Σ† =

[
Σ−1
r 0
0 0

]
n×m

and we can verify that

ΣΣ†Σ = Σ, Σ†ΣΣ† = Σ†, ΣΣ† =

[
Ir 0
0 0

]
m×m

, Σ†Σ =

[
Ir 0
0 0

]
n×n

proving that Σ† is the pseudoinverse of Σ
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Pseudo-inverse via SVD

given A = UΣV T , then the pseudo-inverse of A is

A† = V Σ†UT

by verifying Penrose’s Theorem from page 39 that

AA†A = (UΣV T )(V Σ†UT )(UΣV T ) = UΣΣ†ΣV T = UΣV T = A

A†AA† = (V Σ†UT )(UΣV T )(V Σ†UT ) = V Σ†ΣΣ†UT = V Σ†UT = A†

AA† = UΣΣ†UT which is symmetric
A†A = V Σ†ΣV T which is symmetric
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Example

a tall full rank A

A =

−2 −1
2 −1
−1 0

 =

−0.6667 −0.7071 −0.2357
0.6667 −0.7071 0.2357
−0.3333 −0.0000 0.9428

3 0
0 1.4142
0 0

[
1 0
0 1

]T

A† = V Σ†UT = V

[
0.3333 0 0

0 0.7071 0

]
UT

=

[
−0.22 0.22 −0.1100
−0.50 −0.50 0

]
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Example

a fat low rank A

A =

−2 −1 −3 0
0 −3 −3 −2
2 −2 0 −2

 =

0.47 0.67 −0.58
0.81 −0.08 0.58
0.34 −0.74 −0.58

5.76 0 0 0
0 3.85 0 0
0 0 0 0



−0.05 −0.73 0.51 −0.45
−0.62 0.27 −0.27 −0.68
−0.67 −0.46 −0.25 0.53
−0.40 0.43 0.78 0.23


T

A
†
= V Σ

†
U

T
= V


0.1736 0 0

0 0.2596 0
0 0 0
0 0 0

U
T

=


−0.13 0.01 0.14

0 −0.09 −0.09
−0.13 −0.09 0.05
0.04 −0.07 −0.11



rank(A) = 2 < n and there are two non-zero singular values
Σ ∈ R3×4 and Σ† ∈ R4×3 with 2× 2 invertible block
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Applications of pseudo-inverse

least-square problem: find a straight line that fit best in 2-norm sense to data
points
least-norm problem: find a point x on the given hyperplane that has the
smallest norm
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Least-square problem

given X ∈ RN×p, y ∈ RN where typically N > p, a least-square problem is

minimize
β

∥y −Xβ∥22

it generalizes solving an overdetermined linear system that cannot be solved
exactly by allowing the system to have the smallest residual
if X is full rank, and from zero-gradient condition, the optimal solution is

β = (XTX)−1XT y

the solution is linear in y where the coefficient is the left inverse of X
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Least-norm problem

given A ∈ Rm×n, b ∈ Rm where m < n and A is full rank, the least-norm problem is

minimize
x

∥x∥2 subject to Ax = y

find a point on hyperplane Ax = b while keeping the 2-norm of x smallest
it extends from solving an under-determined system that has many solutions and
we aim to find the solution with smallest norm
it can be shown that the optimal solution is

x⋆ = AT (AAT )−1y, provided that A is full row rank

the solution is linear in y where the coefficient is the right inverse of A
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