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How to read this handout
the note is used with lecture in EE205 (you cannot master this topic just by
reading this note) — class activities include
m graphical concepts, math derivation of details/steps in between
m computer codes to illustrate examples
always read 'textbooks’ after lecture
pay attention to the symbol &; you should be able to prove such & result
each chapter has a list of references; find more formal details/proofs from in-text
citations
almost all results in this note can be Googled; readers are encouraged to
‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first
[@ typos and mistakes can be reported to jitkomut@gmail.com
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Decompositions

m LU
m Cholesky
= SVD
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Factor-solve approach

to solve Ax = b, first write A as a product of ‘simple’ matrices
A= A1Ay--- Ay
then solve (A1 Ay - -+ Ag)x = b by solving k equations
Aiz1 = b, Aszo = 21, ..., Ap_12k_1= Zk_9, Ay = 251

complexity of factor-solve method: flops = f + s
m f is cost of factoring A as A = Aj Ay - A, (factorization step)
m s is cost of solving the k equations for z1, 29, ..zx_1, = (solve step)

m usually f > s
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Forward substitution

solve Ax = b when A is lower triangular with nonzero diagonal elements

aijl 0 ce 0 T bl
as1 ase - 0 T2 b2
anl Ap2 -'° Aapp T, bn
algorithm:
I = bl/all
Ty = (by —azi71)/an
r3 = (b3 —az1w1 — azera)/ass
Tn = (bn — Anpl1T1 — Ap2T2 — *** — an,n—lxn—l)/ann

cost: 1 +3+5+---+(2n— 1) = n? flops
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LU decomposition (w/o row pivoting)

Theorem: if A can be lower reduced (w/o row interchanged) to a row-echelon matrix
U, then A = LU where L is lower triangular and invertible and U is upper triangular

and row-echelon

m suppose A can be reduced to A -+ E1A — EsF1A — EyEy_1---EsE1A=U
m A=LU where L=E'E;'-- B!

m F; corresponds to scaling operation or R; + aR; — R; for i > j

m E; is lower triangular (and invertible)
n E;l is also lower triangular, hence, L is lower triangular
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Example

2 4 2
find LUforA=|1 1 2
-1 0 2
[1/2 0 0] [2 0 o0 [ 2 1]
R1/2, Ei=10 1 o|, Ef'=|0 1 of, =1 1 2
o o0 1 0 0 1 -1 0 2]
1 0 0] 1 0 O 1 2 1
Ro— Ry = Ra, BEa=|-1 1 of, Ej'=|[1 1 of, =|0 -1 1
0o o 1] 0 0 1 -1 0 2
1 0 0 1 0 0 1 2 1]
R3+Ry - Rs, Es3=|0 1 o0, By'=]0 1 of, =]0o -1 1
1 0 1 -1 0 1 0o 2 3
1 0 0] 1 0 0 n 2 1]
Ra/ —1 = Rg, Es={0 -1 of, E;j'=]0o -1 of, =10 1 -1
0 o 1] 0o o 1 o 2 3]
1 0 0 1 0 0 12 1
R3—2Ry - Rs, Ez=|0 1 of, Ej'=|o 1 of, =]l0o 1 -—1|=U
0 -2 1] 0 2 1 o 0o 5]
2 0 o] |1 2 1
we have A= E{'E; "B, 'EJ ' B U= 1 -1 0 |0 1 —1

-1 2 1[]0 0 5

each column in L can be read from the leading column in A while performing Gaussian elimination
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LU algorithm

let A € R™ " of rank r and suppose A can be lower reduced to U (without row
interchanged) then A = LU where the lower triangular, invertible L is constructed as
follows
if A=0then L=1,,and U =0
if A=#0, write A = A and let ¢; be the leading column of A
use c; to create the first leading 1 and create zero below it; denote Ay the matrix
consisting of rows 2 to m
if Ao = 0 let co be the leading column of Ay and repeat step 2-3 to create As
continue until U is found where all rows below the last leading 1 consist of zeros;
this happen after r steps
@ create L by placing ci1,co, ..., ¢, at the bottom of the first » columns of I,
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Example

2 6 -2 0 2
find LUforA=1]3 9 -3 3 1
-1 3 1 -3 1

1 3 -1 0 1 1 3 -1 0
R1/2 3 9 -3 3 1f, Rs —3R1 — Re,R3 + R1 — Rs 0 O 0 3
-1 3 1 -3 1 0 0 0 -3
1 3 -1 0 1 1 3 -1 0 1
R2/3 0 0 O 1 *2/3 , Rs+3R:—R3|0 0 O 1 *2/3 =U
0 0 O -3 2 0 0 0 O 0
we obtain
2 0 0 1 3 -1 0 1
A= 1|3 3 0 0 0 O 1 —2/3
-1 -3 1 0 0 0 O 0
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Is LU decomposition unique?

from the previous page

2 6 -2 0 2 2 0 0]t 3 -1 0 1
A=|3 9 -3 3 1|=|3 3 o|lo 0o o 1 -2/3| =L,
13 1 -3 1 ~1 -3 1/ 00 0 0 o0
we can make L the unit lower triangular (all diagonals are 1) (standard choice)
2 0 0] f1/2 0 0][2 0 O]t 3 -1 0 1
A=13 3 0 0 1/3 0f (0 3 Of[|0 O O 1 —-2/3
-1 -3 1 0 0 1] 10 0 1f (0 O O O 0
! 0 013 9 -3 0 3
=(3/2 1 0][|0 0 0 3 —2|=LUs
—1/2 -1 1/ 00 0 0 ©
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Not every matrix has an LU factor

without row pivoting, LU factor may not exist even when A is invertible

01 ol O Junr w2
A= [1 0} = LU= [lm 122] [0 U22]

from this example,
m if A could be factored as LU, it would require that lyju1; = a1 =0

m one of L or U would be singular, contradicting to the fact that A = LU is
nonsingular
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Existence and uniqueness

m existence

Theorem: suppose A is invertible; then A has LU factorization A = LU if and
only if all leading principle minors are nonzero

[(1) (1]] is non-singular but has no LU factorization

E uniqueness
Theorem: if an invertible A has an LU factorization then L and U are uniquely

determined (if we require the diagonals of L (or U) are all 1)

(Horn, Corollary 3.5.6)
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LU decomposition with row pivoting

0 0 -1
findLUof A=|-1 -1 1
2 1 =2
m the first row has a leading zero, so row operations require a row interchange, here
0 01
choose R; < Rj3 correspondingto P= |0 1 0
1 00

m note that P2 = I (permutation property), we can write
2 1 -2
A=P?A=PPA=P|-1 -1 1
0 0 -1

m perform LU decomposition on the resulting PA
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LU decomposition with row pivoting

m perform Ri1/2, Ry + 2Ry — R
2 1 1/2 -3/2
A=P|-1 1 0 -1/2 -1/2
1 0 0 -1

m perform Re X —2 — Ro

2 1 1/2 -3)2
-1 -1/2 ] [0 1 1 ]
1

m perform R3 X —1 — R3

o o 1][2 1 3 -3 0o 0 1 1 2
1 1
A=1]10 1 0 —1 -3 0 1 1 ={0 1 0 3 1 0
1 0 O 0 0 —1 0 0 1 1 0 O 0 0o 1 0
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LU decomposition with row pivoting

010
same A on page 15 but swap R; < Rousing P= |1 0 0
0 01
perform LU decomposition and we get different factors
0 0 -1 010 1 0 0|2 0 3
A=|-1 -1 1|(=1|1 0 0| |1/2 1 0|0 1 1/2
2 1 -2 0 0 1 0 -1 1|/ |0 0 9/2
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Common pivoting strategy

permute rows so that the largest entry of the first column is on the top left

1 2 1 R1/2 - Ry
0o -1 1 Ry — R1 — R
0

2 3 R3 + R1 — R3

[
>
>

0 L s 1 0
ol P |0 -1 (swaprow2and3),P; = [0 O
1 . 1

0

1

0

2 0 0 12 o o]t 2 1
=P1P1110P1023_P17110023
-1 0 1 0 -1 1 1 0 1|0 -1 1

2 1

1 3/2 R3/2 — Rg
0

0

Il

)

X
[ a—|
=l

-
lvo
A
~oco
| I
—
cor

R3 + R2 — R3
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Conclusion

any square matrix A can be factorized as (with row pivoting)
A=PLU

factorization:

m P permutation matrix, L unit lower triangular, U upper triangular

m factorization cost: (2/3)n? if A has order n

m not unique; there may be several possible choices for P, L, U
interpretation: permute the rows of A and factor PTA as PTA = LU

m also known as Gaussian elimination with partial pivoting (GEPP)
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Example

m a singular A (no row pivoting)

A= =L ol

m nonsingular A (that requires row pivoting)

A=l 3 =F b 6

m nonsingular A (showing two choices of (P, L,U))

2 4 2 1 0o o
A=|1 1 2| =1|1/2 10
-1 0 2 -1/2 -2 1
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Solving a linear system with LU factor

solving linear system: (PLU)xz = b in three steps
m permutation: z; = PTb (0 flops)
m forward substitution: solve Lzo = 21 (n? flops)
m back substitution: solve Uz = 23 (n? flops)
total cost: (2/3)n® + 2n? flops, or roughly (2/3)n?
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Softwares

MATLAB

m [L,U,P] = 1u(A) find LU decomposition: A = PTLU where L is unit lower
triangular and U is upper triangular

Python

m P,L,U = scipy.linalg.lu(A) find LU decomposition: A = PLU where L is
unit lower triangular and U is upper triangular
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Exercises

find LU factorization (explain if row pivoting is required) and compare the results

with coding
4 2 0O -1 2 3 3 0
Ar=|1 -1 3|, A4,=|0 0 3|, A3=1]-2 0 2
-1 7 -7 -1 2 2 3 2 -1
suppose we aim to solve Az = b¥) for k = 1,...,1000 where A € R2000%2000 554

b )'s can be randomized as examples, write computer code to solve the linear
system using factor approach and measure the computation time in each process
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Cholesky factorization

every positive definite matrix A can be factored as
A=rLL"
where L is lower triangular with positive diagonal elements
m cost: (1/3)n3 flops if A is of order n

m L is called the Cholesky factor of A

can be interpreted as ‘square root’ of a positive define matrix

L is invertible (its diagonal elements are nonzero)

m A is invertible and
A—l — L—TL—l
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Cholesky factorization algorithm

partition matrices in A = LL" as

[ ail A2T1 ] _ |: l11 0 :| |: l11 L2T1 ] _ |: l%l llngl
Ao Ago Lo1 Lo 0 LI liLoy LogLL + LooLd,

algorithm:

determine l11 and Loy:

1
li1 = +/an, Loy = EAm

compute Los from
Agy — Loy LY = Ly LY,

this is a Cholesky factorization of order n — 1
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Proof of Cholesky algorithm

proof that the algorithm works for positive definite A of order n
m step 1: if A is positive definite then a;; > 0
m step 2: if A is positive definite, then

1
Agg — Lo LY, = Agg — G—HA21A§1

is positive definite (by Schur complement)
m hence the algorithm works for n = m if it works for n =m — 1

m it obviously works for n = 1; therefore it works for all n
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Example of Cholesky algorithm

25 15 -5 i1 O 0 l11 la1 a1
15 18 0 | =] la1 Iz © 0 lap s
-5 0 11

m first column of L

m second column of L
18 0 _ 3 [ 3 1 ] _ lag 0 lag 32
0 11 —1 - lza  l33 0 l33
9 3 _ 3 0 3 1
3 10 | T | 1 33 0 33

m third column of L: 10 — 1 = l§3, ie,lszg =3

25 15 =5 5
15 18 0 = 3
-5 0 11 —1

conclusion:

Linear algebra and applications Jitkomut Songsiri 27 / 49



Solving equations with positive definite A

Az =0 (A positive definite of order n)

algorithm

m factor A as A = LL7T
m solve LLTz =b

m forward substitution Lz = b
m back substitution LTz = z

cost: (1/3)n3 flops
m factorization: (1/3)n?

m forward and backward substitution: 2n?2
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Softwares

MATLAB

m U = chol(A) returns Cholesky decomposition A = UTU where U is upper
triangular

Python

m L = scipy.linalg.cholesky(A) returns Cholesky decomposition A = LL” or
A =U"TU where L is lower (lower=True) and U is upper triangular
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Exercises

find Cholesky factorization and compare the results with coding

9 1 12 4 3 20 4 5
Al:L 3}, Ay= 14 2 —1|, A;=14 2 3
3 -1 7 5 3 5
suggest a method to randomize A and guarantee that A >~ 0
suppose we aim to solve Az = b%) for k =1,...,1000 where A € SiOJ?OXQOOO

(pdf) and b%)’s can be randomized as examples, write computer code to solve the
linear system using factor approach and measure the computation time in each
process
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SVD decomposition

recall that AT A = 0 and eigenvalues are non-negative

singular values

left and right singular vectors

applications: pseudo inverse
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Singular values and vectors
let A € R™ ™ we form eigenvalue problem of A7 A

T _ 2 L
A" Av; = ojv;,, i=1,2,...,n

oi = VAi(AT A) > 0 is called singular value of A

|
m v; (orthogonal and has unit-norm) is called right singular vector
m fact: ifrank of Aisr thenoy > 09> -0, >0and o; =0 fori > r
rank of A is the number of non-zero singular values of A
m there exist left singular vector uy,us, ..., u,, that are orthogonal such that
Avy = oquq, Ave = ooua, ..., Av, = opty, Avpypr == Av, =0
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Matrix form

Avy = oquy, Ave = osus, ..., Av. =opu,, Avep1=---=Av, =0

or in matrix form: AV = UX (where U and V' are orthogonal matrices)

g1 0
Alve oo v o o e ] =w o w [ o um | - 0
or | 0
0 0 0]o0
it can be shown that
m Vl,...,Vr,Urt1,. ..,V are orthogonal (eigenvectors of AT A, which is symmetric)
W Uri1,...,Uy, can be chosen such that {ui,...,u,} are orgothogonal

m hence, V,U are orthogonal matrices, VV = I,UTU =1

unlike eigenvalue decomposition: AX = XA, SVD needs two sets of singular vectors
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SVD decomposition

let A € R™*™ be a rectangular matrix; there exists the SVD form of A

A=UxvT

mxn mxm mxXmn nxn

tall fat square
A= U » vT

m U eR"™™ V e R"™™" are orthogonal matrices
m X eR™"with¥; =0; >0and X;; =0 fori #j
m for a rectangular A, ¥ has a diagonal submatrix ¥; with dimension of min(m,n)

A= oo | [V = UV, A =U[ 510 ][] = usivf
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Square A

T
2 1 1 -1 113 o] 1 [-1 1
5B A
053 062 0587"
—0.80 —0.15 —0.58| ,rank(A)=2

2 4 -2 —0.94 —0.27 —0.20] [5.10 0 0

-2 0 -2 0.11 —0.80 0.59 0 346 0

2 1 1 —0.31 053  0.78 0 0 0]|o027 077 —058
-2 1 3 —0.41 -091 0 917 0 9] [053 —o085 o0 17
4 -2 —6|=1]08 -037 —045| | 0 0 0| |-027 —0.17 095 | ,rank(4)=1
2 -1 -3 041 —0.18 0.89 0 0 0| |-080 —051 —0.32

m check the singular values and eigenvalues of AT A
m confirm the rank and the number of nonzero singular values

m if A is invertible, so is X
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N
-
|
—
\V]
[en}
\]
[
I

0.42 0.91 0 46100 0 0 O —0.09
=064 -030 0.71 0 1.65 0 O :
0 0 0

—-0.64 030 0.71

—0.89
—0.45

0

—0.45] {3 0 o} —Ooé((a)o
0.89 [ [0 2 0] | .

0.74

0.37
—0.56

—0.45
—0.89
0

0.38
—0.55
0.19
0.72

—0.671"
033 |
0.67

0.40 —0.38
0.82 0.14
0.01  0.91
0.41 0.07

rank(A) = 2

T

,rank(A) =1

m Ay is low rank, the SVD form can be reduced to Ay = UXV7T = U, %, VI where
U,,V; have the first  columns of U and V respectively and 3., is the leading

r-diagonal block of X
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Tall A

0 0 0 0 0 0 —1.001 [3.080 0 0 T
0 -1 1 0.33 —0.63 —0.71 0 0 159 of |70-58 —0.58 0.58

= —0.79 021 —0.58
-2 -2 0 0.89  0.46 0 0 0 0 0| | 091 _o70 —058
0 1 -1 -0.33 0.63 —0.71 0 0 0 0 : ' ‘

m rank(A) = 2 and there are two nonzero singular values

m A can be reduced to

A=UxvT =0, VI, r=rank(A) =2
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Softwares

MATLAB

m [U,S,V] = svd(A) returns SVD decomposition: A = USV7T
Python

m U,S,Vt = scipy.linalg.svd(A)

m U,S,Vt = numpy.linalg.svd(A)

returns SVD decomposition: A = USV7T where S is returned as a vector of
singular values and Vt as V7
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Pseudo-inverse (Penrose Theorem)
one can have a notion of 'inverse’ for a non-square matrix

Penrose’s Theorem: given A € R™*", there is exactly one n x m matrix B such that

ABA = A and BAB =B
both AB and BA are symmetric

Rm><n

definition: the pseudo inverse of A € is the unique n x m matrix A" such that

AATA = A and ATAAT = At
both AAT and ATA are symmetric
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Pseudo-inverse

consider a full rank matrix A € R™*™ in three cases
m tall matrix: A is full rank < columns of A are LI & AT A is invertible

(ATA)TATYA = (ATA) 1 (ATA) =1
the pseudo-inverse of A (or left-inverse) is AT = (AT A)~tAT
m wide matrix: A is full rank < row of A are LI & AAT is invertible
A(AT(AAT)™Y) = (AATY(AATY L =1

the pseudo-inverse of A (or right-inverse) is AT = AT(AAT)™!

= A is full rank & A is invertible and both formula of
pseudo-inverses reduce to the ordinary inverse A~!

& the pseudo inverses of the three cases have the same dimension 7
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Example

0 9 1 0 -2/9
A:[—z 1 —2}’ A= AT(AAT) ™ = 12/5 1/9
1/5 —2/9
2 1 2/9 2/9 1/9
_ _ T T AN—1 AT _ |—
A= _21 01 , Al =ATA) AT = 12 12 0

however, when rentangular A has low rank, we can use SVD to find the pseudo inverse
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Pseudo-inverse via SVD
the pseudo-inverse Af can be computed from any SVD for A € R™*™
B from A = UpsnSnsxm VL, if A has rank r then

mXxXm

Y= [ Z(J)r 8 ] ., and that X, is invertible
mXn

-1
m define X1 = [ x 0

0 0 } and we can verify that
nxm

iy =3, oipyt = f, EET:H;" 8} ,ETE:[I’” 0}
mxXm nxn

proving that X' is the pseudoinverse of ¥
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Pseudo-inverse via SVD

given A = UXV7T then the pseudo-inverse of A is
At =vsiu?
by verifying Penrose’'s Theorem from page 39 that
m AATA = (UXVT)(VvETUT(UZVT) = UssisvT =usvT = A
n ATAAT = (VETUT)(UzvT)(VEIUT) = veissiu? = veiuT = At

m AAT = USSTUT which is symmetric
m ATA = VEISVT which is symmetric
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Example

a tall full rank A

-2 -1 —0.6667 —0.7071 —0.2357| |3 0 1 o017
A=1|2 -1| =] 0.6667 —0.7071 0.2357 0 1.4142 [O J
-1 0 —0.3333 —0.0000 0.9428 0 0

0 0.7071 0

—-0.22 0.22 —0.1100
—-0.50 —-0.50 0

A= UstyT — v [0.3333 0 0] T

Linear algebra and applications Jitkomut Songsiri
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Example

a fat low rank A

-2 -1 -3 0 0.47 0.67
A=1|0 -3 -3 —2| = [0.81 —0.08
2 -2 0 -2 0.34 —0.74
0.1736 0 0
T tr T _ 0 0.2596 0 T
Al =vx'U" =V 0 0 0 U
0 0 0
—0.13 0.01 0.14
0 —0.09 —0.09
—0.13  —0.09 0.05
0.04 —0.07 —0.11

m rank(A) = 2 < n and there are two non-zero singular values
= ¥ € R¥* and & € R*? with 2 x 2 invertible block
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Applications of pseudo-inverse

m least-square problem: find a straight line that fit best in 2-norm sense to data
points

m least-norm problem: find a point x on the given hyperplane that has the
smallest norm
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| east-square problem

given X € RNXp,y e RV where typically N > p, a least-square problem is

miniﬂmize ly — X813

m it generalizes solving an overdetermined linear system that cannot be solved
exactly by allowing the system to have the smallest residual

m if X is full rank, and from zero-gradient condition, the optimal solution is
B=X"X)"XTy

m the solution is linear in y where the coefficient is the left inverse of X
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L east-norm problem

given A € R™ " b € R™ where m < n and A is full rank, the least-norm problem is

minimize ||z||2 subjectto Az =y
xT

find a point on hyperplane Ax = b while keeping the 2-norm of x smallest

m it extends from solving an under-determined system that has many solutions and
we aim to find the solution with smallest norm

m it can be shown that the optimal solution is
¥ = AT(AAT)™ 1y, provided that A is full row rank

m the solution is linear in y where the coefficient is the right inverse of A
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