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1 Linear transformation

Linear algebra and applications Jitkomut Songsiri 2 / 52



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

How to read this handout
1 the note is used with lecture in EE205 (you cannot master this topic just by

reading this note) – class activities include
graphical concepts, math derivation of details/steps in between
computer codes to illustrate examples

2 always read ’textbooks’ after lecture
3 pay attention to the symbol .; you should be able to prove such . result
4 each chapter has a list of references; find more formal details/proofs from in-text

citations
5 almost all results in this note can be Googled; readers are encouraged to

‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first

6 typos and mistakes can be reported to jitkomut@gmail.com
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Linear transformation
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Outline

linear transformation
matrix transformation
kernel and range
isomorphism
composition
inverse transformation
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Transformation
let X and Y be vector spaces

a transformation T from X to Y , denoted by

T : X → Y

is an assignment taking x ∈ X to y = T (x) ∈ Y ,

T : X → Y, y = T (x)

domain of T , denoted D(T ) is the collection of all x ∈ X for which T is defined
vector T (x) is called the image of x under T
collection of all y = T (x) ∈ Y is called the range of T , denoted by R(T )
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Example
example 1 define T : R3 → R2 as

y1 = −x1 + 2x2 + 4x3

y2 = −x2 + 9x3

example 2 define T : R3 → R as

y = sin(x1) + x2x3 − x23

example 3 general transformation T : Rn → Rm

y1 = f1(x1, x2, . . . , xn)
y2 = f2(x1, x2, . . . , xn)
... ...
ym = fm(x1, x2, . . . , xn)

where f1, f2, . . . , fm are real-valued functions of n variables
Linear algebra and applications Jitkomut Songsiri 7 / 52
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Linear transformation

let X and Y be vector spaces over R

Definition: a transformation T : X → Y is linear if
T (x+ z) = T (x) + T (z), ∀x, y ∈ X (additivity)
T (αx) = αT (x), ∀x ∈ X, ∀α ∈ R (homogeneity)
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Examples

. which of the following is a linear transformation ?
matrix transformation T : Rn → Rm

T (x) = Ax, A ∈ Rm×n

affine transformation T : Rn → Rm

T (x) = Ax+ b, A ∈ Rm×n, b ∈ Rm

T : Pn → Pn+1

T (p(t)) = tp(t)

T : Pn → Pn

T (p(t)) = p(t+ 1)

Linear algebra and applications Jitkomut Songsiri 9 / 52



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

T : Rm×n → Rn×m, T (X) = XT

T : Rn×n → R, T (X) = det(X)

T : Rn×n → R, T (X) = tr(X)

T : Rn → R, T (x) = ∥x∥ ≜
√

x21 + x22 + · · ·+ x2n

T : Rn → Rn, T (x) = 0

denote F (−∞,∞) the set of all real-valued functions on (−∞,∞)

T : C1(−∞,∞) → F (−∞,∞)

T (f) = f ′

T : C(−∞,∞) → C1(−∞,∞)

T (f) =

∫ t

0
f(s)ds
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Examples of matrix transformation
T : Rn → Rm

T (x) = Ax, A ∈ Rm×n

zero transformation: T : Rn → Rm

T (x) = 0 · x = 0

T maps every vector into the zero vector

identity operator: T : Rn → Rn

T (x) = In · x = x

T maps a vector into itself

Linear algebra and applications Jitkomut Songsiri 11 / 52
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Reflection operator

T : Rn → Rn

T maps each point into its symmetric image about an axis or a line

T (x) =

[
−1 0
0 1

]
x T (x) =

[
0 1
1 0

]
x
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Projection operator
T : Rn → Rn

T maps each point into its orthogonal projection on a line or a plane

T (x) =

[
1 0
0 0

]
x T (x) =

1 0 0
0 1 0
0 0 0

x
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Rotation operator
T : Rn → Rn

T maps points along circular arcs

T rotates x through an angle θ

w = T (x) =

[
cos θ − sin θ
sin θ cos θ

]
x
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Selector transformations
these transformations can be represented as y = T (x) = Ax

partial selection shuffle reverser down-sampling

partial selection: select some entries of x
shuffle: randomize entries in x

reverser: reverse the order of x
down-sampling: sub-sample entries in x, e.g., x(1:2:end)
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Shift transformations
shifting sequences as a matrix transformation T (x) = Ax

forward shift backward shift

T1(x) =



x2
x3
x4
...
xn
x1


, T2(x) =



xn
x1
x2
...

xn−2

xn−1



what is the associated matrix A for each transformation ?
do you notice some structure of A ?
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Signal processing
differencing and cumulative sum as matrix transformations T (x) = Ax

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-0.5

0

0.5

Difference

0 2 4 6 8 10 12 14 16 18 20

-6

-4

-2

0

2

4

Cumulative sum

0 2 4 6 8 10 12 14 16 18 20

T1(x) =


x2 − x1
x3 − x2

...
xn − xn−1



T2(x) =


x1

x1 + x2
x1 + x2 + x3

...
x1 + x2 + · · ·+ xn


diff and cumsum commands in MATLAB
what is the associated matrix A for each transformation ?
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Image transformation
cropping a 1200× 850-pixel image to 490× 430-pixel image

transformation of a matrix of M ×N to the size of m× n

T : RM×N → Rm×n, T (X) = AXB

where A selects the rows of X and B selects the columns of X
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Image of linear transformation
let V and W be vector spaces and a basis for V is

S = {v1, v2, . . . , vn}

let T : V → W be a linear transformation

the image of any vector v ∈ V under T can be expressed by

T (v) = a1T (v1) + a2T (v2) + · · ·+ anT (vn)

where a1, a2, . . . , an are coefficients used to express v, i.e.,

v = a1v1 + a2v2 + · · ·+ anvn

(follow from the linear property of T )
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Definition

let T : X → Y be a linear transformation from X to Y

Definitions:

kernel of T is the set of vectors in X that T maps into 0

ker(T ) = {x ∈ X | T (x) = 0}

range of T is the set of all vectors in Y that are images under T

R(T ) = {y ∈ Y | y = T (x), x ∈ X}

Theorem .

ker(T ) is a subspace of X
R(T ) is a subspace of Y
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Example

matrix transformation: T : Rn → Rm, T (x) = Ax

ker(T ) = N (A): kernel of T is the nullspace of A
R(T ) = R(A): range of T is the range (column) space of A

zero transformation: T : Rn → Rm, T (x) = 0

ker(T ) = Rn, R(T ) = {0}

identity operator: T : V → V , T (x) = x

ker(T ) = {0}, R(T ) = V

differentiation: T : C1(−∞,∞) → F (−∞,∞), T (f) = f ′

ker(T ) is the set of constant functions on (−∞,∞)
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Rank and Nullity

rank of a linear transformation T : X → Y is defined as

rank(T ) = dimR(T )

nullity of a linear transformation T : X → Y is defined as

nullity(T ) = dimker(T )

(provided that R(T ) and ker(T ) are finite-dimensional)

redrank-Nullity theorem: suppose X is a finite-dimensional vector space

rank(T ) + nullity(T ) = dim(X)
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Proof of rank-nullity theorem

assume dim(X) = n

assume a nontrivial case: dimker(T ) = r where 1 < r < n

let {v1, v2, . . . , vr} be a basis for ker(T )
let W = {v1, v2, . . . , vr} ∪ {vr+1, vr+2, . . . , vn} be a basis for X
we can show that

S = {T (vr+1), . . . , T (vn)}

forms a basis for R(T ) (∴ complete the proof since dim S = n− r)
span S = R(T )

for any z ∈ R(T ), there exists v ∈ X such that z = T (v)

since W is a basis for X, we can represent v = α1v1 + · · ·+ αnvn

we have z = αr+1T (vr+1) + · · ·+ αnT (vn) (∵ v1, . . . , vr ∈ ker(T ))
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S is linearly independent, i.e., we must show that

αr+1T (vr+1) + · · ·+ αnT (vn) = 0 =⇒ αr+1 = · · · = αn = 0

since T is linear

αr+1T (vr+1) + · · ·+ αnT (vn) = T (αr+1vr+1 + · · ·+ αnvn) = 0

this implies αr+1vr+1 + · · ·+ αnvn ∈ ker(T )

αr+1vr+1 + · · ·+ αnvn = α1v1 + α2v2 + · · ·αrvr

since {v1, . . . , vr, vr+1, . . . , vn} is linear independent, we must have

α1 = · · · = αr = αr+1 = · · · = αn = 0
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One-to-one transformation
a linear transformation T : X → Y is said to be one-to-one if

∀x, z ∈ X T (x) = T (z) =⇒ x = z

T never maps distinct vectors in X to the same vector in Y

also known as injective transformation
, Theorem: T is one-to-one if and only if ker(T ) = {0}, i.e.,

T (x) = 0 =⇒ x = 0

for T (x) = Ax where A ∈ Rn×n,

T is one-to-one ⇐⇒ A is invertible
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Onto transformation
a linear transformation T : X → Y is said to be onto if

for every vector y ∈ Y , there exists a vector x ∈ X such that

y = T (x)

every vector in Y is the image of at least one vector in X

also known as surjective transformation
, Theorem: T is onto if and only if R(T ) = Y

, Theorem: for a linear operator T : X → X,

T is one-to-one if and only if T is onto
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Examples

. which of the following is a one-to-one transformation ?
T : Pn → Rn+1

T (p(t)) = T (a0 + a1t+ · · ·+ ant
n) = (a0, a1, . . . , an)

T : Pn → Pn+1

T (p(t)) = tp(t)

T : Rm×n → Rn×m, T (X) = XT

T : Rn×n → R, T (X) = tr(X)

T : C1(−∞,∞) → F (−∞,∞), T (f) = f ′
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Matrix transformation

consider a linear transformation T : Rn → Rm,

T (x) = Ax, A ∈ Rm×n

, Theorem: the following statements are equivalent
T is one-to-one
the homogeneous equation Ax = 0 has only the trivial solution (x = 0)
rank(A) = n

, Theorem: the following statements are equivalent
T is onto
for every b ∈ Rm, the linear system Ax = b always has a solution
rank(A) = m

Linear algebra and applications Jitkomut Songsiri 28 / 52



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Isomorphism

a linear transformation T : X → Y is said to be an isomorphism if

T is both one-to-one and onto

if there exists an isomorphism between X and Y , the two vector spaces are said to be
isomorphic

, Theorem:
for any n-dimensional vector space X, there always exists a linear transformation
T : X → Rn that is one-to-one and onto (for example, a coordinate map)
every real n-dimensional vector space is isomorphic to Rn
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Examples
T : Pn → Rn+1

T (p(t)) = T (a0 + a1t+ · · ·+ ant
n) = (a0, a1, . . . , an)

Pn is isomorphic to Rn+1

T : R2×2 → R4

T

([
a1 a2
a3 a4

])
= (a1, a2, a3, a4)

R2×2 is isomorphic to R4

in these examples, we observe that
T maps a vector into its coordinate vector relative to a standard basis
for any two finite-dimensional vector spaces that are isomorphic, they have the
same dimension
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Composition of linear transformation
let T1 : U → V and T2 : V → W be linear transformations

the composition of T2 with T1 is the function defined by

(T2 ◦ T1)(u) = T2(T1(u))

where u is a vector in U

Theorem . if T1, T2 are linear, so is T2 ◦ T1
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Examples
example 1: T1 : P1 → P2, T2 : P2 → P2

T1(p(t)) = tp(t), T2(p(t)) = p(2t+ 4)

then the composition of T2 with T1 is given by

(T2 ◦ T1)(p(t)) = T2(T1(p(t))) = T2(tp(t)) = (2t+ 4)p(2t+ 4)

example 2: T : V → V is a linear operator, I : V → V is identity operator

(T ◦ I)(v) = T (I(v)) = T (v), (I ◦ T )(v) = I(T (v)) = T (v)

hence, T ◦ I = T and I ◦ T = T
example 3: T1 : Rn → Rm, T2 : Rm → Rn with

T1(x) = Ax, T2(w) = Bw, A ∈ Rm×n, B ∈ Rn×m

then T1 ◦ T2 = AB and T2 ◦ T1 = BA
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Order of operations matters
let T1, T2 : R2 → R2 be the following matrix transformations

T1(x) is the projection of x on the x1-axis
T2(x) is the rotation of x by θ (clockwise direction)

project and rotate rotate and project

the composite of T2 with T1 VS the composite of T1 with T2

which is which ?
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Nonlinear composite transformations

composite transformations can be defined for nonlinear mappings

many examples in applications:
T1 : Rn → R and T2 : R → R norm-squared

T1(x) = ∥x∥2, T2(x) = x2 ⇒ (T2 ◦ T1)(x) = ∥x∥22 = xTx

T1 : Rn → Rn and T2 : Rm → R norm of affine

T1(x) = Ax+ b, T2(x) = ∥x∥22 ⇒ (T2 ◦ T1)(x) = ∥Ax+ b∥22

T1 : Rn → Rm and T2 : Rm → Rm transform in neural network

T1(x) = Wx+ b, T2(x) = max(0, x) ⇒ (T2 ◦ T1)(x) = max(0,Wx+ b)
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Two operators cancel each other
scaling operators: T1, T2 : Rn → Rn

T1(x1, x2, . . . , xn) = (a1x1, a2x2, . . . , anxn)

T2(x1, x2, . . . , xn) = (x1/a1, x2/a2, . . . , xn/an), ∀ak ̸= 0

(T2 ◦ T1)(x) = (T1 ◦ T2)(x) = x

shift operators: T1, T2 : Rn → Rn

T1(x1, x2, . . . , xn) = (x2, x3, x4, . . . , xn, x1)

T2(x1, x2, . . . , xn) = (xn, x1, x2, . . . , xn−2, xn−1)

(T2 ◦ T1)(x) = T2(x2, x3, . . . , xn, x1) = x

(T1 ◦ T2)(x) = T1(xn, x1, . . . , xn−2, xn−1) = x

in these examples, T2 brings the image under T1 back to the original x !
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Inverse of linear transformation

a linear transformation T : V → W is invertible if there is a transformation
S : W → V satisfying

S ◦ T = IV and T ◦ S = IW

we call S the inverse of T and denote S = T−1

T−1(T (u)) = u ∀u ∈ U
T (T−1(w)) = w ∀w ∈ R(T )

Facts:
the inverse transformation T−1 : R(T ) → V exists if and only if T is one-to-one
T−1 : R(T ) → V is also linear .
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Inverse of matrix transformation
consider T : Rn → Rn where T (x) = Ax

T is one-to-one if and only if A is invertible
T−1 exists if and only if A is invertible

the inverse transformation must satisfy

T−1(T (x)) = T−1(Ax) = x, ∀x ∈ Rn

to find the description of T−1

let y = Ax and since A−1 exists, we can write x = A−1y

T−1(Ax) = T−1(y) = A−1y

this holds for all y ∈ Rn (since y ∈ R(A) = Rn)
conclusion: the inverse transformation is simply the matrix transformation given by
A−1
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Inverse of difference operator

T : Rn → Rn, T (x) =


x1

x2 − x1
x3 − x2

...
xn − xn−1

 =


1
−1 1

−1 1
. . . . . .

−1 1

x ≜ Ax

does T have an inverse ? if yes, what would it be ?
please check . that A is invertible and therefore T−1 exists
T−1(x) is given

T−1(x) = A−1x =


1
1 1
... ... . . .
1 1 1 1

x =


x1

x1 + x2
...

x1 + x2 + · · ·+ xn


T−1 is the cumulative sum operator ! (difference cancels with sum)
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Inverse of transformation on Pn

T : P1 → P1, T (p(x)) = p(x+ c) where c ∈ R is given
it can be verified . that T is linear and one-to-one
let p(x) = a0 + a1x be any polynomial in P1, T−1 must satisfy

T−1(T (p(x)) = T−1(a0 + a1(x+ c)) = p(x) = a0 + a1x, ∀a0, a1 ∈ R

to find description of T−1, let q(x) = b0 + b1x ≜ a0 + a1(x+ c) and we should
write a0, a1 in terms of b0, b1

b0 + b1x = a0 + a1c+ a1x ⇒ a0 = b0 − b1c, a1 = b1

we can write T−1(b0 + b1x) = b0 − b1c+ b1x = b0 + b1(x− c)

it shows that T−1(q(x)) = q(x− c) (forward translation x+ c cancels with backward
translation x− c)
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Domain of T−1 may not be the whole co-domain of T
T : R2 → R2×2 and given a, c ̸= 0

T

([
x1
x2

])
=

[
ax1 0
0 cx2

]
we can verify that .

T is linear and one-to-one (hence, T−1 exists)

R(T ) = span
{[

1 0
0 0

]
,

[
0 0
0 1

]}
(not the whole R2×2)

T−1 : R(T ) → R2 is defined from R(T ) and must satisfy

T−1

([
ax1 0
0 cx2

])
=

[
x1
x2

]
it follows that T−1(Y ) = (y11/a, y22/c) where Y ∈ R(T )
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Composition of one-to-one linear transformation

if T1 : U → V and T2 : V → W are one-to-one linear transformation, then
T2 ◦ T1 is one-to-one
(T2 ◦ T1)

−1 = T−1
1 ◦ T−1

2

example: T1 : Rn → Rn, T2 : Rn → Rn

T1(x1, x2, . . . , xn) = (a1x1, a2x2, . . . , anxn), ak ̸= 0, k = 1, . . . , n

T2(x1, x2, . . . , xn) = (x2, x3, . . . , xn, x1)

both T1 and T2 are invertible and the inverses are

T−1
1 (w1, w2, . . . , wn) = ((1/a1)w1, (1/a2)w2, . . . , (1/an)wn)

T−1
2 (w1, w2, . . . , wn) = (wn, w1, . . . , wn−1)
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from a direct calculation, the composition of T−1
1 with T−1

2 is

(T−1
1 ◦ T−1

2 )(w) = T−1
1 (wn, w1, . . . , wn−1)

= ((1/a1)wn, (1/a2)w1, . . . , (1/anwn−1))

now consider the composition of T2 with T1

(T2 ◦ T1)(x) = (a2x2, . . . , anxn, a1x1)

it is clear to see that
(T2 ◦ T1) ◦ (T−1

1 ◦ T−1
2 ) = I
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Matrix representation for linear transformation
let T : V → W be a linear transformation

V is a basis for V
dimV = n

W is a basis for W
dimW = m

how to represent an image of T in terms of its coordinate vector ?

problem: find a matrix A ∈ Rm×n that maps [v]V into [T (v)]W
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Key idea
the matrix A must satisfy

A[v]V = [T (v)]W , for all v ∈ V

hence, it suffices to hold for all vector in a basis for V
suppose a basis for V is V = {v1, v2, . . . , vn}

A[v1] = [T (v1)], A[v2] = [T (v2)], . . . , A[vn] = [T (vn)]

(we have dropped the subscripts that refer to the choice of bases V,W
A is a matrix of size m× n, so we can write A as

A =
[
a1 a2 . . . an

]
where ak’s are the columns of A
the coordinate vectors of vk’s are simply the standard unit vectors

[v1] = e1, [v2] = e2, . . . , [vn] = en

Linear algebra and applications Jitkomut Songsiri 44 / 52



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

hence, we have

A[v1] = a1 = [T (v1)], A[v2] = a2 = [T (v2)], · · · , A[vn] = an = [T (vn)]

stack these vectors back in A

A =
[
[T (v1)] [T (v2)] · · · [T (vn)]

]
the columns of A are the coordinate maps of the images of the basis vectors in V
we call A the matrix representation for T relative to the bases V and W and
denote it by

[T ]W,V

a matrix representation depends on the choice of bases for V and W
special case: T : Rn → Rm, T (x) = Bx we have [T ] = B relative to the standard
bases for Rm and Rn
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Example 1
T : V → W where

V = P1 with a basis V = {1, t}
W = P1 with a basis W = {t− 1, t}

define T (p(t)) = p(t+ 1), find [T ] relative to V and W
solution.
find the mappings of vectors in V and their coordinates relative to W

T (v1) = T (1) = 1 = −1 · (t− 1) + 1 · t
T (v2) = T (t) = t+ 1 = −1 · (t− 1) + 2 · t

hence [T (v1)]W = (−1, 1) and [T (v2)]W = (−1, 2)

[T ]WV =
[
[T (v1)]W [T (v2)]W

]
=

[
−1 −1
1 2

]
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Example 2
given a matrix representation for T : P2 → R2

[T ] =

[
5 2 −1
3 0 4

]
relative to the bases V = {2− t, t+ 1, t2 − 1} and W = {(1, 0), (1, 1)}

find the image of 6t2 under T

solution. find the coordinate of 6t2 relative to V by writing

6t2 = α1 · (2− t) + α2 · (t+ 1) + α3 · (t2 − 1)

solving for α1, α2, α3 gives

[6t2]V =

22
6
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from the definition of [T ]:

[T (6t2)]W = [T ]WV [6t
2]V =

[
5 2 −1
3 0 4

]22
6

 =

[
8
30

]

then we read from [T (6t2)]W that

T (6t2) = 8 · (1, 0) + 30 · (1, 1) = (38, 30)
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Matrix representation for linear operators

we say T is a linear operator if T is a linear transformation from V to V

typically we use the same basis for V, says V = {v1, v2, . . . , vn}
a matrix representation for T relative to V is denoted by [T ]V where

[T ]V =
[
[T (v1)] [T (v2)] . . . [T (vn)]

]
Theorem ,

T is one-to-one if and only if [T ]V is invertible
[T−1]V = ([T ]V )

−1

what is the matrix (relative to a basis) for the identity operator ?
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Matrix representation for composite transformation
if T1 : U → V and T2 : V → W are linear transformations
and U, V,W are bases for U ,V,W respectively
then

[T2 ◦ T1]W,U = [T2]W,V · [T1]V,U

example: T1 : U → V , T2 : V → W

U = P1, V = P2, W = P3

U = {1, t}, V = {1, t, t2}, W = {1, t, t2, t3}

T1(p(t)) = T1(a0 + a1t) = 2a0 − 3a1t

T2(p(t)) = 3tp(t)

find [T2 ◦ T1]
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solution. first find [T1] and [T2]

T1(1) = 2 = 2 · 1 + 0 · t+ 0 · t2
T1(t) = −3t = 0 · 1− 3 · t+ 0 · t2 =⇒ [T1] =

2 0
0 −3
0 0


T2(1) = 3t = 0 · 1 + 3 · 1 + 0 · t2 + 0 · t3
T2(t) = 3t2 = 0 · 1 + 0 · 1 + 3 · t2 + 0 · t3
T2(t

2) = 3t3 = 0 · 1 + 0 · 1 + 0 · t2 + 3 · t3
=⇒ [T2] =


0 0 0
3 0 0
0 3 0
0 0 3


next find [T2 ◦ T1]

(T2 ◦ T1)(1) = T2(2) = 6t
(T2 ◦ T1)(t) = T2(−3t) = −9t2

=⇒ [T2 ◦ T1] =


0 0
6 0
0 −9
0 0


easy to verify that [T2 ◦ T1] = [T2] · [T1]
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