Linear algebra and applications

Department of Electrical Engineering Faculty of Engineering Chulalongkorn University

CUEE

Linear algebra and applications

Jitkomut Songsiri

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

nac

Outline

1 Applications of linear equations

Linear algebra and applications

Jitkomut Songsiri

How to read this handout

- 1 the note is used with lecture in EE205 (you cannot master this topic just by reading this note) class activities include
 - graphical concepts, math derivation of details/steps in between
 - computer codes to illustrate examples
- 2 always read 'textbooks' after lecture
- 3 pay attention to the symbol <a>s; you should be able to prove such <a>s result
- each chapter has a list of references; find more formal details/proofs from in-text citations
- almost all results in this note can be Googled; readers are encouraged to 'stimulate neurons' in your brain by proving results without seeking help from the Internet first
- 6 typos and mistakes can be reported to jitkomut@gmail.com

Linear algebra and applications

Jitkomut Songsiri

Applications of linear equations

Linear algebra and applications

Jitkomut Songsiri Applications of linear equations

4 / 30

Outline

- least-squares problem
- least-norm problem
- numerical methods in solving linear equations

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Least-squares problem

setting: find a linear relationship between y_i and $x_{i,k}$

$$y = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p \triangleq x^T \beta$$

given data as y_i and $x_{i1}, x_{i2}, \ldots, x_{ip}$ for $i = 1, 2, \ldots, N$

the data equation in a matrix form:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix} \quad \triangleq \quad y = X\beta$$

problem: given $X \in \mathbf{R}^{m \times n}, y \in \mathbf{R}^m$, solve the linear system for $\beta \in \mathbf{R}^n$

Linear algebra and applications

Jitkomut Songsiri

6 / 30

Least-squares: problem statement

overdetermined linear equations:

 $X\beta = y, \quad X \text{ is } m \times n \text{ with } m > n$

for most y, we cannot solve for β

S recall the existence of a solution?

linear least-squares formulation:

minimize
$$||y - X\beta||_2^2 = \sum_{i=1}^m (\sum_{j=1}^n X_{ij}\beta_j - y_i)^2$$

• $r = y - X\beta$ is called the residual error

- \blacksquare β with smallest residual norm $\|r\|$ is called the least-squares solution
- it generalizes solving an overdetermined linear system that cannot be solved exactly by allowing the system to have the smallest residual

Linear algebra and applications

Jitkomut Songsiri

Least-squares: solution

the zero gradient condition of LS objective is

$$\frac{d}{d\beta} \|y - X\beta\|_2^2 = -X^T (y - X\beta) = 0$$

which is equivalent to the normal equation

$$X^T X \beta = X^T y$$

if X is **full rank**, it can be shown that $X^T X$ is invertible:

- least-squares solution can be found by solving the normal equations
- \blacksquare n equations in n variables with a positive definite coefficient matrix
- \blacksquare the closed-form solution is $\beta = (X^TX)^{-1}X^Ty$
- $(X^TX)^{-1}X^T$ is the left inverse of X

A B A A B A B A A A

Least-squares: data fitting

given data points $\{(t_i, y_i)\}_{i=1}^N$, we aim to approximate y using a function g(t)

$$y = g(t) := \beta_1 g_1(t) + \beta_2 g_2(t) + \dots + \beta_n g_n(t)$$

• $g_k(t): \mathbf{R} \to \mathbf{R}$ is a basis function

- polynomial functions: $1, t, t^2, \ldots, t^n$
- sinusoidal functions: $\cos(\omega_k t)$, $\sin(\omega_k t)$ for k = 1, 2, ..., n

• the linear regression model can be formulated as

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} g_1(t_1) & g_2(t_1) & \cdots & g_n(t_1) \\ g_1(t_2) & g_2(t_2) & \cdots & g_n(t_2) \\ \vdots & & & \vdots \\ g_1(t_m) & g_2(t_m) & \cdots & g_n(t_m) \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix} \quad \triangleq \quad y = X\beta$$

 \blacksquare often have $m \gg n,$ i.e., explaining y using a few parameters in the model

Linear algebra and applications

Jitkomut Songsiri

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Example

fitting a 6th-order polynomial to data points generated from $f(t) = 1/(1 + t^2)$

- (right) the weighted sum of basis functions (x^k) is the fitted polynomial
- the ground-truth function f is nonlinear, but can be decomposed as a sum of polynomials

Linear algebra and applications

Jitkomut Songsiri

Least-squares: Finite Impulse Response model

given input/output data: $\{(y(t), u(t))\}_{t=0}^m$, we aim to estimate FIR model parameters

$$y(t) = \sum_{k=0}^{n-1} h(k)u(t-k)$$

determine $h(0), h(1), \ldots, h(n-1)$ that gives FIR model output closest to y

$$\begin{bmatrix} y(n-1) \\ y(n) \\ \vdots \\ y(m) \end{bmatrix} = \begin{bmatrix} u(n-1) & u(n-2) & \dots & u(0) \\ u(n) & u(n-1) & \dots & u(1) \\ \vdots & \vdots & \vdots & \vdots \\ u(m) & u(m-1) & \dots & u(m-n+1) \end{bmatrix} \begin{bmatrix} h(0) \\ h(1) \\ \vdots \\ h(n-1) \end{bmatrix}$$

 $\hfill y(t)$ is a response to $u(t), u(t-1), \ldots, u(t-(n-1))$

• we did not use initial outputs $y(0), y(1), \ldots, y(n-2)$ since there are no historical input data for those outputs

Linear algebra and applications

Jitkomut Songsiri

11 / 30

FIR: example

setting: y(t+1) = ay(t) + bu(t) , y(0) = 0

• relationship between y and u: write the equation recursively

$$y(t) = a^{t}y(0) + a^{t-1}bu(0) + a^{t-2}bu(1) + \dots + bu(t-1)$$
$$= a^{t}y(0) + \sum_{\tau=0}^{t-1} a^{t-1-\tau}bu(\tau)$$

• relate it with the convolution equation: $y(t) = \sum_{k=0}^{\infty} h(k)u(t-k)$

$$h(0) = 0, \quad h(1) = b, \quad h(2) = ab, \quad h(3) = a^2b, \dots, \quad h(k) = a^{k-1}b$$

• the actual h(k) decays as k increases but we estimate the first n sequences, *i.e.*, $\hat{h}(0), \hat{h}(1), \dots, \hat{h}(n-1)$

Linear algebra and applications

Jitkomut Songsiri

FIR: example

setting: a = -0.5, b = 0.2, m = 50, n = 5, randomize $u(t) \in \{-1, 1\}$

- actual h(k) decays to zero, the first n sequences of $\hat{h}(k)$ are close to actual values
- the predicted output by FIR model is close to the actual output
- ĥ(k) is estimated by A\y in MATLAB, which returns the least-squares solution

▶ < ⊒ ▶

Least-norm problem

setting: given $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$ where m < n and A is full row rank ($\$ by assumption, the system Ax = b has many solutions)

- find a point on hyperplane Ax = b that has the minimum 2-norm
- it extends from solving an underdetermined system that has many solutions but we specifically aim to find the solution with smallest norm

Linear algebra and applications

Jitkomut Songsiri

Least-norm solution

the least-norm solution is

$$x^{\star} = A^T (AA^T)^{-1} y$$

since A is full rank, it can be shown that AA^T is invertible
x* is linear in y and the coefficient is the **right inverse** of A

Proof. let x be any solution to Ax = b

• $x - x^{\star}$ is always orthogonal to x; by using $A(x - x^{\star}) = 0$

$$(x - x^{\star})^{T} x^{\star} = (x - x^{\star})^{T} A^{T} (AA^{T})^{-1} y = (A(x - x^{\star}))^{T} (AA^{T})^{-1} y = 0$$

• ||x|| is always greater than $||x^{\star}||$, hence x^{\star} is optimal

$$||x||^{2} = ||x^{\star} + x - x^{\star}||^{2} = ||x^{\star}||^{2} + \underbrace{(x - x^{\star})^{T} x^{\star}}_{0} + ||x - x^{\star}||^{2} \ge ||x^{\star}||^{2}$$

Linear algebra and applications

Jitkomut Songsiri

Least-norm application: control system

a first-order dynamical system

x(t+1) = ax(t) + bu(t), x is state, u is input

problem: given $a, b \in \mathbf{R}$ with |a| < 1 and x(0), find

$$\mathbf{u} = (u(0), u(1), \dots, u(T-1))$$

such that the values of x(T), x(T-1) are as desired and ${f u}$ has the minimum 2-norm

background: write x(t) recursively, we found that x(t) is linear in **u**

$$x(t) = a^{t}x(0) + a^{t-1}bu(0) + a^{t-2}bu(1) + \dots + bu(t-1) = a^{t}x(0) + \sum_{\tau=0}^{t-1} a^{t-1-\tau}bu(\tau)$$

Linear algebra and applications

Jitkomut Songsiri

16 / 30

Least-norm application: control system

formulate the problem of design \mathbf{u} to drive the state x(t) as desired \bigotimes verify

$$\begin{bmatrix} x(T) - a^T x(0) \\ x(T-1) - a^{T-1} x(0) \end{bmatrix} = \begin{bmatrix} a^{T-1}b & a^{T-2}b & \cdots & ab & b \\ a^{T-2}b & a^{T-3}b & \cdots & b & 0 \end{bmatrix} \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(T-2) \\ u(T-1) \end{bmatrix} \triangleq y = A\mathbf{u}$$

- regulating the state is a problem of solving an underdetermined system
- A is full row rank, so a solution of $y = A\mathbf{u}$ exists and there are many
- we can try two choices of **u**:
 - 1 least-norm solution
 - **2** any other solution to $y = A\mathbf{u}$

Least-norm application: control system

setting:
$$a = -0.8, b = 0.7, x(0) = 0, x(T - 1) = 2, x(T) = 3$$

- different sequences of input drive the state to different paths, but the values of x(T), x(T 1) are as desired
- the least-norm input has the minimum norm - solved by pinv(A)*y
- the second choice of input is obtained from A\y in MATLAB, which sets many zeros to u (not the least-norm solution)

(E)

Numerical methods in solving linear systems

- solving linear systems by factorization approach
- solving linear systems using softwares
 - square system
 - underdetermined system
 - overdetermined system

Permutation system

a **permutation** matrix P is a square matrix that has exactly one entry of 1 in each row and each column and has zero elsewhere

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

facts: 🗞

- \blacksquare P is obtained by interchanging any two rows (or columns) of an identity matrix
- $\blacksquare PA$ results in permuting rows in A, and AP gives permuting columns in A

•
$$P^T P = I$$
, so $P^{-1} = P^T$ (simple)

• solving a permuatation system has no cost: $Px = b \Longrightarrow x = P^T b$

Linear algebra and applications

Jitkomut Songsiri

Diagonal system

solve Ax = b when A is diagonal with no zero elements

$$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

algorithm:

$$\begin{array}{rcrcrcr} x_1 & := & b_1/a_{11} \\ x_2 & := & b_2/a_{22} \\ x_3 & := & b_3/a_{33} \\ & & \vdots \\ x_n & := & b_n/a_{nn} \end{array}$$

cost: *n* flops

Linear algebra and applications

Jitkomut Songsiri

Forward substitution

solve Ax = b when A is lower triangular with nonzero diagonal elements

$$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

algorithm:

$$\begin{array}{rcl} x_1 & := & b_1/a_{11} \\ x_2 & := & (b_2 - a_{21}x_1)/a_{22} \\ x_3 & := & (b_3 - a_{31}x_1 - a_{32}x_2)/a_{33} \\ & \vdots \\ x_n & := & (b_n - a_{n1}x_1 - a_{n2}x_2 - \dots - a_{n,n-1}x_{n-1})/a_{nn} \end{array}$$

cost: $1 + 3 + 5 + \dots + (2n - 1) = n^2$ flops

Linear algebra and applications

Jitkomut Songsiri

<ロト < 部 > < 注 > < 注 > 注) Q (~ 22 / 30

Back substitution

solve Ax = b when A is upper triangular with nonzero diagonal elements

$$\begin{bmatrix} a_{11} & \cdots & a_{1,n-1} & a_{1n} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & a_{n-1,n-1} & a_{n-1,n} \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix}$$

algorithm:

$$\begin{array}{rcl} x_n & := & b_n/a_{nn} \\ x_{n-1} & := & (b_{n-1} - a_{n-1,n}x_n)/a_{n-1,n-1} \\ x_{n-2} & := & (b_{n-2} - a_{n-2,n-1}x_{n-1} - a_{n-2,n}x_n)/a_{n-2,n-2} \\ & \vdots \\ x_1 & := & (b_1 - a_{12}x_2 - a_{13}x_3 - \dots - a_{1n}x_n)/a_{11} \end{array}$$

cost: n^2 flops

Linear algebra and applications

Jitkomut Songsiri

・ロト・日本・山田・ 山田・ 日 うらの

Factor-solve approach

to solve Ax = b, first write A as a product of 'simple' matrices

 $A = A_1 A_2 \cdots A_k$

then solve $(A_1A_2\cdots A_k)x = b$ by solving k equations

$$A_1 z_1 = b,$$
 $A_2 z_2 = z_1,$..., $A_{k-1} z_{k-1} = z_{k-2},$ $A_k x = z_{k-1}$

complexity of factor-solve method: flops = f + s

- f is cost of factoring A as $A = A_1 A_2 \cdots A_k$ (factorization step)
- s is cost of solving the k equations for z_1 , z_2 , $\dots z_{k-1}$, x (solve step) • usually $f \gg s$

▲□▶▲□▶▲□▶▲□▶ □ ● ●

LU decomposition

for a nonsingular A, it can be factorized as (with row pivoting)

A = PLU

factorization:

- \blacksquare P permutation matrix, L unit lower triangular, U upper triangular
- factorization cost: $(2/3)n^3$ if A has order n
- \blacksquare not unique; there may be several possible choices for P , L , U
- interpretation: permute the rows of A and factor $P^T A$ as $P^T A = L U$
- also known as Gaussian elimination with partial pivoting (GEPP)

Linear algebra and applications

Jitkomut Songsiri

Not every matrix has an LU factor

without row pivoting, LU factor may not exist even when A is invertible

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \Rightarrow \quad LU = \begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix}$$

from this example,

- if A could be factored as LU, it would require that $l_{11}u_{11} = a_{11} = 0$
- $\hfill \mbox{ one of } L \mbox{ or } U \mbox{ would be singular, contradicting to the fact that } A = LU \mbox{ is nonsingular}$

Solving a linear system with LU factor

solving linear system: (PLU)x = b in three steps

- permutation: $z_1 = P^T b$ (0 flops)
- forward substitution: solve $Lz_2 = z_1$ (n^2 flops)
- back substitution: solve $Ux = z_2$ (n^2 flops)

total cost: $(2/3)n^3 + 2n^2$ flops, or roughly $(2/3)n^3$

Softwares (MATLAB)

1 A\b

- square system: it gives the solution: $x = A^{-1}b$
- overdetermined system: it gives the solution in the least-square sense
- underdetermined system: it gives the solution to Ax = b where there are K nonzero elements in x when K is the rank of A
- **2** rref(A): find the reduced row echelon of A
- **3** null(A): find independent vectors in the nullspace of A
- 4 [L,U,P] = lu(A): find LU factorization of A

Softwares (Python)

- 1 numpy.linalg.solve: solves a square system (same for scipy)
- 2 numpy.linalg.lstsq: solves a linear system in least-square sense (same for scipy)
- 3 sympy.Matrix: sympy library for symbolic mathematics
- 4 scipy.linalg.null_space: find independent vectors in the nullspace of A
- **5** scipy.linalg.lu: find LU factorization of A

References

- **1** W.K. Nicholson, *Linear Algebra with Applications*, McGraw-Hill, 2006
- 2 H.Anton and C. Rorres, *Elementary Linear Algebra*, John Wiley, 2011
- **3** S. Boyd and L. Vandenberghe, *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least squares*, Cambridge, 2018
- 4 Lecture notes of EE236, S. Boyd, Stanford https://see.stanford.edu/materials/lsoeldsee263/08-min-norm.pdf

A B A B A B A A A