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1 Applications of linear equations
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How to read this handout
1 the note is used with lecture in EE205 (you cannot master this topic just by

reading this note) – class activities include
graphical concepts, math derivation of details/steps in between
computer codes to illustrate examples

2 always read ’textbooks’ after lecture
3 pay attention to the symbol .; you should be able to prove such . result
4 each chapter has a list of references; find more formal details/proofs from in-text

citations
5 almost all results in this note can be Googled; readers are encouraged to

‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first

6 typos and mistakes can be reported to jitkomut@gmail.com
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least-squares problem
least-norm problem
numerical methods in solving linear equations
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Least-squares problem

setting: find a linear relationship between yi and xi,k

y = β1x1 + β2x2 + · · ·+ βpxp ≜ xTβ

given data as yi and xi1, xi2, . . . , xip for i = 1, 2, . . . , N

the data equation in a matrix form:
y1
y2
...
yN

 =


x11 x12 · · · x1n
x21 x22 · · · x2n
... ... ...

xm1 xm2 · · · xmn



β1
β2
...
βn

 ≜ y = Xβ

problem: given X ∈ Rm×n, y ∈ Rm, solve the linear system for β ∈ Rn
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Least-squares: problem statement
overdetermined linear equations:

Xβ = y, X is m× n with m > n

for most y, we cannot solve for β . recall the existence of a solution?

linear least-squares formulation:

minimize
β

∥y −Xβ∥22 =
m∑
i=1

(

n∑
j=1

Xijβj − yi)
2

r = y −Xβ is called the residual error
β with smallest residual norm ∥r∥ is called the least-squares solution
it generalizes solving an overdetermined linear system that cannot be solved
exactly by allowing the system to have the smallest residual
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.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Least-squares: solution
the zero gradient condition of LS objective is

d

dβ
∥y −Xβ∥22 = −XT (y −Xβ) = 0

which is equivalent to the normal equation

XTXβ = XT y

if X is full rank, it can be shown that XTX is invertible:
least-squares solution can be found by solving the normal equations
n equations in n variables with a positive definite coefficient matrix
the closed-form solution is β = (XTX)−1XT y

(XTX)−1XT is the left inverse of X
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Least-squares: data fitting
given data points {(ti, yi)}Ni=1, we aim to approximate y using a function g(t)

y = g(t) := β1g1(t) + β2g2(t) + · · ·+ βngn(t)

gk(t) : R → R is a basis function
polynomial functions: 1, t, t2, . . . , tn

sinusoidal functions: cos(ωkt), sin(ωkt) for k = 1, 2, . . . , n

the linear regression model can be formulated as
y1
y2
...
ym

 =


g1(t1) g2(t1) · · · gn(t1)
g1(t2) g2(t2) · · · gn(t2)

... ...
g1(tm) g2(tm) · · · gn(tm)



β1
β2
...
βn

 ≜ y = Xβ

often have m ≫ n, i.e., explaining y using a few parameters in the model
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Example
fitting a 6th-order polynomial to data points generated from f(t) = 1/(1 + t2)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.2

0

0.2

0.4

0.6

0.8

1

data

6th-order polynomial fit

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

b
a
s
is

 f
u
n
c
ti
o
n
s

(right) the weighted sum of basis functions (xk) is the fitted polynomial
the ground-truth function f is nonlinear, but can be decomposed as a sum of
polynomials
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Least-squares: Finite Impulse Response model
given input/output data: {(y(t), u(t))}mt=0, we aim to estimate FIR model parameters

y(t) =

n−1∑
k=0

h(k)u(t− k)

determine h(0), h(1), . . . , h(n− 1) that gives FIR model output closest to y
y(n− 1)
y(n)

...
y(m)

 =


u(n− 1) u(n− 2) . . . u(0)
u(n) u(n− 1) . . . u(1)

... ... ... ...
u(m) u(m− 1) . . . u(m− n+ 1)




h(0)
h(1)

...
h(n− 1)


y(t) is a response to u(t), u(t− 1), . . . , u(t− (n− 1))

we did not use initial outputs y(0), y(1), . . . , y(n− 2) since there are no historical
input data for those outputs
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FIR: example

setting: y(t+ 1) = ay(t) + bu(t) , y(0) = 0

relationship between y and u: write the equation recursively

y(t) = aty(0) + at−1bu(0) + at−2bu(1) + · · ·+ bu(t− 1)

= aty(0) +
t−1∑
τ=0

at−1−τ bu(τ)

relate it with the convolution equation: y(t) =
∑∞

k=0 h(k)u(t− k)

h(0) = 0, h(1) = b, h(2) = ab, h(3) = a2b, . . . , h(k) = ak−1b

the actual h(k) decays as k increases but we estimate the first n sequences, i.e.,
ĥ(0), ĥ(1), . . . , ĥ(n− 1)
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FIR: example

setting: a = −0.5, b = 0.2,m = 50, n = 5, randomize u(t) ∈ {−1, 1}

0 10 20 30 40 50 60

Time

-0.4

-0.2

0

0.2

0.4
Output

actual

predicted by FIR

-0.1

0

0.1

0.2
Impulse response

0 2 4 6 8 10 12

Time

actual h(k) decays to zero, the first n
sequences of ĥ(k) are close to actual
values
the predicted output by FIR model is
close to the actual output
ĥ(k) is estimated by A\y in MATLAB,
which returns the least-squares
solution
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Least-norm problem

setting: given A ∈ Rm×n, b ∈ Rm where m < n and A is full row rank
(. by assumption, the system Ax = b has many solutions)

the least-norm problem is

minimize
x

∥x∥2 subject to Ax = b

find a point on hyperplane Ax = b that has the minimum 2-norm
it extends from solving an underdetermined system that has many solutions but
we specifically aim to find the solution with smallest norm
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Least-norm solution
the least-norm solution is

x⋆ = AT (AAT )−1y

since A is full rank, it can be shown that AAT is invertible
x⋆ is linear in y and the coefficient is the right inverse of A

Proof. let x be any solution to Ax = b

x− x⋆ is always orthogonal to x; by using A(x− x⋆) = 0

(x− x⋆)Tx⋆ = (x− x⋆)TAT (AAT )−1y = (A(x− x⋆))T (AAT )−1y = 0

∥x∥ is always greater than ∥x⋆∥, hence x⋆ is optimal

∥x∥2 = ∥x⋆ + x− x⋆∥2 = ∥x⋆∥2 + (x− x⋆)Tx⋆︸ ︷︷ ︸
0

+∥x− x⋆∥2 ≥ ∥x⋆∥2
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Least-norm application: control system
a first-order dynamical system

x(t+ 1) = ax(t) + bu(t), x is state, u is input

problem: given a, b ∈ R with |a| < 1 and x(0), find

u = (u(0), u(1), . . . , u(T − 1))

such that the values of x(T ), x(T − 1) are as desired and u has the minimum 2-norm

background: write x(t) recursively, we found that x(t) is linear in u

x(t) = atx(0) + at−1bu(0) + at−2bu(1) + · · ·+ bu(t− 1) = atx(0) +

t−1∑
τ=0

at−1−τ bu(τ)
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Least-norm application: control system

formulate the problem of design u to drive the state x(t) as desired . verify

[
x(T )− aTx(0)

x(T − 1)− aT−1x(0)

]
=

[
aT−1b aT−2b · · · ab b
aT−2b aT−3b · · · b 0

]


u(0)
u(1)

...
u(T − 2)
u(T − 1)

 ≜ y = Au

regulating the state is a problem of solving an underdetermined system
A is full row rank, so a solution of y = Au exists and there are many
we can try two choices of u:

1 least-norm solution
2 any other solution to y = Au
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Least-norm application: control system

setting: a = −0.8, b = 0.7, x(0) = 0, x(T − 1) = 2, x(T ) = 3

-2

0

2

4
State

0 2 4 6 8 10 12

state 1

state 2

-2

0

2

4

6

8
Input

0 2 4 6 8 10

Input 1: norm = 6.8

Input 2: norm = 7.17

different sequences of input drive the
state to different paths, but the values
of x(T ), x(T − 1) are as desired
the least-norm input has the minimum
norm – solved by pinv(A)*y
the second choice of input is obtained
from A\y in MATLAB, which sets
many zeros to u (not the least-norm
solution)

Linear algebra and applications Jitkomut Songsiri 18 / 30



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Numerical methods in solving linear systems

solving linear systems by factorization approach
solving linear systems using softwares

square system
underdetermined system
overdetermined system
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Permutation system

a permutation matrix P is a square matrix that has exactly one entry of 1 in each row
and each column and has zero elsewhere0 1 0

1 0 0
0 0 1

 ,

0 1 0
0 0 1
1 0 0


facts: .

P is obtained by interchanging any two rows (or columns) of an identity matrix
PA results in permuting rows in A, and AP gives permuting columns in A

P TP = I, so P−1 = P T (simple)
solving a permuatation system has no cost: Px = b =⇒ x = P T b
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Diagonal system
solve Ax = b when A is diagonal with no zero elements

a11 0 · · · 0
0 a22 · · · 0
... ... . . . ...
0 0 · · · ann




x1
x2
...
xn

 =


b1
b2
...
bn


algorithm:

x1 := b1/a11

x2 := b2/a22

x3 := b3/a33
...

xn := bn/ann

cost: n flops
Linear algebra and applications Jitkomut Songsiri 21 / 30
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Forward substitution
solve Ax = b when A is lower triangular with nonzero diagonal elements

a11 0 · · · 0
a21 a22 · · · 0
... ... . . . ...

an1 an2 · · · ann




x1
x2
...
xn

 =


b1
b2
...
bn


algorithm:

x1 := b1/a11

x2 := (b2 − a21x1)/a22

x3 := (b3 − a31x1 − a32x2)/a33
...

xn := (bn − an1x1 − an2x2 − · · · − an,n−1xn−1)/ann

cost: 1 + 3 + 5 + · · ·+ (2n− 1) = n2 flops
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Back substitution
solve Ax = b when A is upper triangular with nonzero diagonal elements

a11 · · · a1,n−1 a1n
... . . . ... ...
0 · · · an−1,n−1 an−1,n

0 · · · 0 ann




x1
...

xn−1

xn

 =


b1
...

bn−1

bn


algorithm:

xn := bn/ann

xn−1 := (bn−1 − an−1,nxn)/an−1,n−1

xn−2 := (bn−2 − an−2,n−1xn−1 − an−2,nxn)/an−2,n−2

...
x1 := (b1 − a12x2 − a13x3 − · · · − a1nxn)/a11

cost: n2 flops
Linear algebra and applications Jitkomut Songsiri 23 / 30
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Factor-solve approach

to solve Ax = b, first write A as a product of ‘simple’ matrices

A = A1A2 · · ·Ak

then solve (A1A2 · · ·Ak)x = b by solving k equations

A1z1 = b, A2z2 = z1, . . . , Ak−1zk−1 = zk−2, Akx = zk−1

complexity of factor-solve method: flops = f + s

f is cost of factoring A as A = A1A2 · · ·Ak (factorization step)
s is cost of solving the k equations for z1, z2, …zk−1, x (solve step)
usually f ≫ s
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LU decomposition

for a nonsingular A, it can be factorized as (with row pivoting)

A = PLU

factorization:
P permutation matrix, L unit lower triangular, U upper triangular
factorization cost: (2/3)n3 if A has order n
not unique; there may be several possible choices for P , L, U
interpretation: permute the rows of A and factor P TA as P TA = LU

also known as Gaussian elimination with partial pivoting (GEPP)
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Not every matrix has an LU factor

without row pivoting, LU factor may not exist even when A is invertible

A =

[
0 1
1 0

]
⇒ LU =

[
l11 0
l21 l22

] [
u11 u12
0 u22

]
from this example,

if A could be factored as LU, it would require that l11u11 = a11 = 0

one of L or U would be singular, contradicting to the fact that A = LU is
nonsingular
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Solving a linear system with LU factor

solving linear system: (PLU)x = b in three steps
permutation: z1 = P T b (0 flops)
forward substitution: solve Lz2 = z1 (n2 flops)
back substitution: solve Ux = z2 (n2 flops)

total cost: (2/3)n3 + 2n2 flops, or roughly (2/3)n3
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Softwares (MATLAB)

1 A\b
square system: it gives the solution: x = A−1b
overdetermined system: it gives the solution in the least-square sense
underdetermined system: it gives the solution to Ax = b where there are K nonzero
elements in x when K is the rank of A

2 rref(A): find the reduced row echelon of A
3 null(A): find independent vectors in the nullspace of A
4 [L,U,P] = lu(A): find LU factorization of A
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Softwares (Python)

1 numpy.linalg.solve: solves a square system (same for scipy)
2 numpy.linalg.lstsq: solves a linear system in least-square sense (same for

scipy)
3 sympy.Matrix: sympy library for symbolic mathematics
4 scipy.linalg.null_space: find independent vectors in the nullspace of A
5 scipy.linalg.lu: find LU factorization of A
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