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How to read this handout
the note is used with lecture in EE205 (you cannot master this topic just by
reading this note) — class activities include
m graphical concepts, math derivation of details/steps in between
m computer codes to illustrate examples
always read 'textbooks’ after lecture
pay attention to the symbol &; you should be able to prove such & result
each chapter has a list of references; find more formal details/proofs from in-text
citations
almost all results in this note can be Googled; readers are encouraged to
‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first
[@ typos and mistakes can be reported to jitkomut@gmail.com
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m |east-squares problem
m least-norm problem

m numerical methods in solving linear equations
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| east-squares problem

setting: find a linear relationship between y; and z; ;,

y:ﬁ1$1+/82w2+"'+6pxpéxT6

given data as y; and x;1, T2, ..., @ fori =1,2,... . N

the data equation in a matrix form:

Y1 Tl T2 o Tin | [ A1

Y2 | | w2 w22 oo T2p B2 a _x
= = y=Xp

YN ITml Tm2 *°° Tmn /Bn

problem: given X € R™*" y € R™, solve the linear system for 3 € R"
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| east-squares: problem statement

overdetermined linear equations:
XB=y, Xismxnwithm>n

for most y, we cannot solve for ? recall the existence of a solution?

linear least-squares formulation:

m n
C 2 2
mlnlﬁmlze ly — XBl5 = Z(Z XiiBi — vi)
i=1 j=1
m r =y — X[ is called the residual error
m [ with smallest residual norm ||r|| is called the least-squares solution

m it generalizes solving an overdetermined linear system that cannot be solved
exactly by allowing the system to have the smallest residual
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L east-squares: solution

the zero gradient condition of LS objective is
d 2 T
—=lly = XBlls =—-X"(y - XB) =0
dp
which is equivalent to the normal equation
XTxp=x"Ty

if X is full rank, it can be shown that X7 X is invertible:
m least-squares solution can be found by solving the normal equations
m n equations in n variables with a positive definite coefficient matrix
m the closed-form solution is f = (X7 X)"1XTy

(XTX)~1XT is the left inverse of X

Linear algebra and applications Jitkomut Songsiri 8 /30



Least-squares: data fitting

given data points {(¢;, ;) }Y;, we aim to approximate y using a function g(t)

y = g(t) = Brgi(t) + P2g2(t) + -+ - + Bugn(t)
m gx(t) : R = R is a basis function

m polynomial functions: 1,¢,¢2,...,t"
m sinusoidal functions: cos(wgt),sin(wit) for k=1,2,...,n
m the linear regression model can be formulated as
n g1(t1)  g2(t1) - gn(t)| [P
ya | |oult) g2(t2) - gnl(t2) | [B2| .
Ym gl(tm)

y=Xp
92(tm)

m often have m > n, i.e., explaining y using a few parameters in the model
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Example
fitting a 6th-order polynomial to data points generated from f(t) = 1/(1 + t?)

— o
25 — Gzt
ﬁz-’ﬂz
s By
—;3,114
T Bsz®
— B’

basis functions

m (right) the weighted sum of basis functions (z¥) is the fitted polynomial
m the ground-truth function f is nonlinear, but can be decomposed as a sum of
polynomials
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Least-squares: Finite Impulse Response model
given input/output data: {(y(t),u(t))};~,, we aim to estimate FIR model parameters

n—1

y(t) = Y h(k)u(t — k)

k=0

determine h(0), h(1),...,h(n — 1) that gives FIR model output closest to y

y(n—1) un—1) u(n—-2) ... u(0) h(0)
y(n) _ u(n) un—1) ... u(1) h(1)
y(m) wm)  wm—-1) .. wm-n+1)| [hn-1)

m y(t) is a response to u(t),u(t —1),...,u(t — (n — 1))
m we did not use initial outputs y(0),y(1),...,y(n — 2) since there are no historical
input data for those outputs
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FIR: example

setting: y(t + 1) = ay(t) + bu(t) , y(0) =0

m relationship between y and u: write the equation recursively
y(t) = a'y(0) + a' " 1bu(0) + " 2bu(l) + - - - + bu(t — 1)
t—1
= a'y(0) + Z a" " hu(r)
7=0
m relate it with the convolution equation: y(t) = >"p2, h(k)u(t — k)

h(0)=0, h(1)=b, h(2)=ab, h(3)=a?b,..., h(k)=d""1b

m the actual h(k) decays as k increases but we estimate the first n sequences, i.e.,

~

h(0),h(1),..., h(n—1)
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FIR: example

setting: a = —0.5,b = 0.2, m = 50,n = 5, randomize u(t) € {—1,1}

0.4

0.2 F

-0.2

-0.4

0.2

0.1
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m actual h(k) decays to zero, the first n
sequences of h(k) are close to actual
values

m the predicted output by FIR model is
close to the actual output

m h(k) is estimated by A\y in MATLAB,
which returns the least-squares
solution
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L east-norm problem

setting: given A € R™*" b € R™ where m < n and A is full row rank

(% by assumption, the system Az = b has many solutions)

a’z +b the least-norm problem is

Y
<>/ : minimize |[z|l2 subjectto Ax =15
X
x*

/

m find a point on hyperplane Ax = b that has the minimum 2-norm

m it extends from solving an underdetermined system that has many solutions but
we specifically aim to find the solution with smallest norm
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Least-norm solution

the least-norm solution is
a* = AT(AAT)ly

m since A is full rank, it can be shown that AAT is invertible

m z* is linear in y and the coefficient is the right inverse of A

Proof. let  be any solution to Az =b

m x — x* is always orthogonal to x; by using A(z —2*) =0
(2 a*)7a* = (& — ) AT(AAT) 'y = (Al — 2))7 (AAT) "y =0
m ||z| is always greater than ||z*||, hence z* is optimal

l2l? = lla* + 2 — 2*[* = |2*|* + (@ — 2*)"2* +]lz — 2*|* > [|l2*]*
—_——
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Least-norm application: control system
a first-order dynamical system
z(t+1) = azx(t) + bu(t), « is state, u is input
problem: given a,b € R with |a| < 1 and z(0), find
u = (u(0),u(l),...,u(T —1))
such that the values of x(7T"), z(T — 1) are as desired and u has the minimum 2-norm

background: write x(t) recursively, we found that z(t) is linear in u

z(t) = a'z(0) + a7 bu(0) + a'2bu(1) + - - - + bu(t — 1) = a'z(0) + Zat = hu(r
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Least-norm application: control system

formulate the problem of design u to drive the state x(t) as desired

 verify
Cu(0) ]
u(1)
z(T) — a’x(0) ™% @™ - ab b
(T —1)—a™2(0)|  |a™ 20 ™3 - b 0

[I>

m regulating the state is a problem of solving an underdetermined system
m A is full row rank, so a solution of y = Au exists and there are many
m we can try two choices of u:

least-norm solution

any other solution to y = Au
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Least-norm application: control system

setting: a = —0.8,b=0.7,2(0) =0,2(T' — 1) =2,2(T) =3

State

27 | m different sequences of input drive the
I X state to different paths, but the values
Pyl of z(T),x(T — 1) are as desired

2 ‘ ‘ ‘ ‘ ‘ m the least-norm input has the minimum
norm — solved by pinv(A)*y

m the second choice of input is obtained
from A\y in MATLAB, which sets

| many zeros to u (not the least-norm

: : t solution)

—= Input 1: norm = 6.8
F|—= Input 2: norm = 7.17

N o M oA O ®
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Numerical methods in solving linear systems

m solving linear systems by factorization approach
m solving linear systems using softwares

m square system
m underdetermined system
m overdetermined system
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Permutation system

a permutation matrix P is a square matrix that has exactly one entry of 1 in each row
and each column and has zero elsewhere

010 010
10 0], |0 01
0 01 1 00

facts: &

P is obtained by interchanging any two rows (or columns) of an identity matrix
PA results in permuting rows in A, and AP gives permuting columns in A
PTP =1, s0 Pt = PT (simple)

solving a permuatation system has no cost: Pr =b = x = PTb
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Diagonal system

solve Ax = b when A is diagonal with no zero elements

ail 0
0 a9
0 0
algorithm:
1
)
T3
Tn

cost: n flops
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0 I
0 T2

Gnn Tn

bi /a1

= ba/ag
= b3/a33

= bn/ann

Jitkomut Songsiri

21/ 30



Forward substitution

solve Ax = b when A is lower triangular with nonzero diagonal elements

aijl 0 ce 0 T bl
as1 ase - 0 T2 b2
anl Ap2 -'° Aapp T, bn
algorithm:
I = bl/all
Ty = (by —azi71)/an
r3 = (b3 —az1w1 — azera)/ass
Tn = (bn — Anpl1T1 — Ap2T2 — *** — an,n—lxn—l)/ann

cost: 1 +3+5+---+(2n— 1) = n? flops
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Back substitution

solve Az = b when A is

ai

algorithm:
T,
Tpn—1

Tp—2

x1

cost: n? flops

Linear algebra and applications

upper triangular with nonzero diagonal elements

a1,n—1 ain 1 b1
Gn—1n—1 Qan—1n Tp—1 bn—1
0 Qnpn Tn bn
bn/ann

(bn—l_'an—Lnxn)/an—Ln—l

(bn72_'anflnflxn71_'anflnxn)/an71n72

(b1 — a12x2 — a1323 — -+ — a1pTy) /a1
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Factor-solve approach

to solve Ax = b, first write A as a product of ‘simple’ matrices
A= A1Ay--- Ay
then solve (A1 Ay - -+ Ag)x = b by solving k equations
Aiz1 = b, Aszo = 21, ..., Ap_12k_1= Zk_9, Ay = 251

complexity of factor-solve method: flops = f + s
m f is cost of factoring A as A = Aj Ay - A, (factorization step)
m s is cost of solving the k equations for z1, 29, ..zx_1, = (solve step)

m usually f > s
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LU decomposition

for a nonsingular A, it can be factorized as (with row pivoting)
A=PLU

factorization:

m P permutation matrix, L unit lower triangular, U upper triangular

m factorization cost: (2/3)n? if A has order n

m not unique; there may be several possible choices for P, L, U
interpretation: permute the rows of A and factor PTA as PTA = LU

m also known as Gaussian elimination with partial pivoting (GEPP)
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Not every matrix has an LU factor

without row pivoting, LU factor may not exist even when A is invertible

01 ol O Junr w2
A= [1 0} = LU= [lm 122] [0 U22]

from this example,
m if A could be factored as LU, it would require that lyju1; = a1 =0

m one of L or U would be singular, contradicting to the fact that A = LU is
nonsingular
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Solving a linear system with LU factor

solving linear system: (PLU)xz = b in three steps
m permutation: z; = PTb (0 flops)
m forward substitution: solve Lzo = 21 (n? flops)
m back substitution: solve Uz = 23 (n? flops)
total cost: (2/3)n® + 2n? flops, or roughly (2/3)n?
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Softwares (MATLAB)

A\b
® square system: it gives the solution: z = A~ 1'b
m overdetermined system: it gives the solution in the least-square sense
m underdetermined system: it gives the solution to Ax = b where there are K nonzero
elements in « when K is the rank of A

rref (A): find the reduced row echelon of A
null(A): find independent vectors in the nullspace of A
[L,U,P] = 1u(A): find LU factorization of A
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Softwares (Python)

numpy . linalg.solve: solves a square system (same for scipy)

numpy . linalg.lstsq: solves a linear system in least-square sense (same for
scipy)
sympy .Matrix: sympy library for symbolic mathematics

scipy.linalg.null_space: find independent vectors in the nullspace of A

scipy.linalg.lu: find LU factorization of A
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