

Outline

1 System of linear equations

How to read this handout

- 1 the note is used with lecture in EE205 (you cannot master this topic just by reading this note) – class activities include
	- **graphical concepts, math derivation of details/steps in between**
	- computer codes to illustrate examples
- 2 always read 'textbooks' after lecture
- 3 pay attention to the symbol S; you should be able to prove such S result
- 4 each chapter has a list of references; find more formal details/proofs from in-text citations
- 5 almost all results in this note can be Googled; readers are encouraged to 'stimulate neurons' in your brain by proving results without seeking help from the Internet first
- 6 typos and mistakes can be reported to jitkomut@gmail.com

 $\Box \rightarrow \neg \left(\frac{\partial}{\partial \theta} \right) \rightarrow \neg \left(\frac{\partial}{\partial \theta} \right)$ $\frac{1}{2}$ \rightarrow $\frac{1}{4}$ 2990

System of linear equations

Linear algebra and applications **Algebra** Jitkomut Songsiri System of linear equations

ADR YORKER LE DAG

System of linear equations

a linear system of *m* equations in *n* variables

$$
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2
$$

\n
$$
\vdots = \vdots
$$

\n
$$
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m
$$

in matrix form: $Ax = b$

problem statement: given *A, b*, find a solution *x* (if exists)

Example: solving ordinary differential equations

given $y(0) = 1$, $\dot{y}(0) = -1$, $\ddot{y}(0) = 0$, solve

$$
\dddot{y} + 6\ddot{y} + 11\dot{y} + 6y = 0
$$

the closed-form solution is

$$
y(t) = C_1 e^{-t} + C_2 e^{-2t} + C_3 e^{-3t}
$$

 C_1, C_2 and C_3 can be found by solving a set of linear equations

$$
1 = y(0) = C_1 + C_2 + C_3
$$

-1 = $\dot{y}(0) = -C_1 - 2C_2 - 3C_3$
0 = $\ddot{y}(0) = C_1 + 4C_2 + 9C_3$

Linear algebra and applications and \overline{a} 35 $\overline{a$

Example: linear static circuit

by KVL, we obtain a set of linear equations

Example: polynomial interpolation

fit a polynomial

$$
p(t) = x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1}
$$

through *n* points $(t_1, y_1), \ldots, (t_n, y_n)$

write out the conditions on *x*:

$$
p(t_1) = x_1 + x_2t_1 + x_3t_1^2 + \dots + x_nt_1^{n-1}
$$

\n
$$
p(t_2) = x_1 + x_2t_2 + x_3t_2^2 + \dots + x_nt_2^{n-1}
$$

\n
$$
\vdots
$$

\n
$$
p(t_n) = x_1 + x_2t_n + x_3t_n^2 + \dots + x_nt_n^{n-1}
$$

 \bar{t}_1 $\sqrt{t_2}$ $\sqrt{t_3}$ $\sqrt{t_4}$ $t_{\rm 5}$ problem data (parameters): $(t_1, y_1), (t_2, y_2), \ldots, (t_n, y_n)$ problem variables: find x_1, \ldots, x_n such that $p(t_i) = y_i$ for all *i*

Linear algebra and applications Jitkomut Songsiri 8 / 35

$$
4 \Box \rightarrow 4 \Box \rightarrow 4 \Xi \rightarrow 4 \Xi \rightarrow \Xi \rightarrow 9 \Box C
$$

8 / 35

Special case: two variables **Examples:**

- \blacksquare no solution if two lines are parallel but different interceptions on x_2 -axis
- **n** many solutions if the two lines are identical

Linear algebra and applications Jitkomut Songsiri 9 / 35

Geometrical interpretation

a solution to *m* linear equations is an **intersection** of *m* hyperplanes

Three types of linear equations

Example 11 square if
$$
m = n
$$

$$
\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \ b_2 \end{bmatrix}
$$

u underdetermined if
$$
m < n
$$

$$
\begin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \ b_2 \end{bmatrix}
$$

overdetermined if $m > n$ (*A* is skinny)

$$
\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}
$$

׀ $\overline{1}$

 $(A \text{ is square})$

underdetermined if *m < n* (*A* is fat)

101181121121 2 990 Linear algebra and applications and $\frac{11}{35}$ Jitkomut Songsiri 11 / 35

Existence and uniqueness of solutions

given a system of linear equations **existence:**

- no solution (the linear system is **inconsistent**)
- a solution exists (the linear system is **consistent**)

uniqueness:

- \blacksquare the solution is unique
- **n** there are infinitely many solutions

every system of linear equations has zero, one, or infinitely many solutions

there are no other possibilities

no solution

$$
\begin{array}{rcl}\nx_1 + x_2 &=& 1 \\
2x_1 + 2x_2 &=& 0\n\end{array}\n\qquad\n\begin{array}{rcl}\nx_1 + x_2 &=& 1 \\
2x_1 + x_2 &=& -1 \\
x_1 - x_2 &=& 2\n\end{array}
$$

unique solution

$$
\begin{array}{rcl}\nx_1 + x_2 & = & 1 \\
2x_1 - x_2 & = & 0\n\end{array}\n\Rightarrow x = (1/3, 2/3)\n\begin{array}{rcl}\nx_1 + x_2 & = & 0 \\
2x_1 + x_2 & = & -1 \\
x_1 - x_2 & = & -2\n\end{array}\n\Rightarrow x = (-1, 1)
$$

infinitely many solutions

101181121121 2 990 Linear algebra and applications Jitkomut Songsiri 13 / 35

Elementary row operations

define the **augmented matrix** of the linear equations on page 5 as

 $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ a_{11} a_{12} \cdots a_{1n} b_1 a_{21} a_{22} \cdots a_{2n} b_2 a_{m1} a_{m2} \cdots a_{mn} b_m 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$

the following operations on the row of the augmented matrix:

- 1 multiply a row through by a nonzero constant
- 2 interchange two rows
- 3 add a constant times one row to another

do not alter the solution set and yield a simpler system

these are called **elementary row operations** on a matrix

Example

$$
\begin{array}{rcl}\nx_1 + 3x_2 + 2x_3 &=& 2 \\
-x_1 + x_2 + x_3 &=& -1 \\
2x_1 - x_2 - 2x_3 &=& 3\n\end{array}\n\implies\n\begin{bmatrix}\n1 & 3 & 2 & 2 \\
-1 & 1 & 1 & -1 \\
2 & -1 & -2 & 3\n\end{bmatrix}
$$

add the first row to the second $(R_1 + R_2 \rightarrow R_2)$

$$
\begin{array}{rcl}\nx_1 + 3x_2 + 2x_3 &=& 2 \\
4x_2 + 3x_3 &=& 1 \\
2x_1 - x_2 - 2x_3 &=& 3\n\end{array} \implies \begin{bmatrix}\n1 & 3 & 2 & 2 \\
0 & 4 & 3 & 1 \\
2 & -1 & -2 & 3\n\end{bmatrix}
$$

add -2 times the first row to the third $(-2R_1 + R_3 \rightarrow R_3)$

$$
x_1 + 3x_2 + 2x_3 = 2 \n4x_2 + 3x_3 = 1 \Rightarrow \begin{bmatrix} 1 & 3 & 2 & 2 \\ 0 & 4 & 3 & 1 \\ 0 & -7 & -6 & -1 \end{bmatrix}
$$

101181121121 2 990 Linear algebra and applications Jitkomut Songsiri 15 / 35

multiply the second row by $1/4$ $(R_2/4 \rightarrow R_2)$

$$
\begin{array}{rcl}\nx_1 + 3x_2 + 2x_3 &=& 2 \\
x_2 + \frac{3}{4}x_3 &=& \frac{1}{4} \\
-7x_2 - 6x_3 &=& -1\n\end{array}\n\implies\n\begin{bmatrix}\n1 & 3 & 2 & 2 \\
0 & 1 & 3/4 & 1/4 \\
0 & -7 & -6 & -1\n\end{bmatrix}
$$

add 7 times the second row to the third $(7R_2 + R_3 \rightarrow R_3)$

$$
\begin{array}{rcl}\nx_1 + 3x_2 + 2x_3 &=& 2 \\
x_2 + \frac{3}{4}x_3 &=& \frac{1}{4} \\
-\frac{3}{4}x_3 &=& \frac{3}{4}\n\end{array}\n\implies\n\begin{bmatrix}\n1 & 3 & 2 & 2 \\
0 & 1 & 3/4 & 1/4 \\
0 & 0 & -3/4 & 3/4\n\end{bmatrix}
$$

multiply the third row by *−*4*/*3 (*−*4*R*3*/*3 *→ R*3)

$$
\begin{array}{rcl}\nx_1 + 3x_2 + 2x_3 &=& 2 \\
x_2 + \frac{3}{4}x_3 &=& \frac{1}{4} \\
x_3 &=& -1\n\end{array} \implies \begin{bmatrix}\n1 & 3 & 2 & 2 \\
0 & 1 & 3/4 & 1/4 \\
0 & 0 & 1 & -1\n\end{bmatrix}
$$

Linear algebra and applications Jitkomut Songsiri 16 / 35

101181121121 2 990

add $-3/4$ times the third row to the second $(R_2 - (3/4)R_3 \rightarrow R_2)$

$$
\begin{array}{rcl}\nx_1 + 3x_2 + 2x_3 &=& 2 \\
x_2 &=& 1 \\
x_3 &=& -1\n\end{array}\n\implies\n\begin{bmatrix}\n1 & 3 & 2 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1\n\end{bmatrix}
$$

add *−*3 times the second row to the first (*R*¹ *−* 3*R*² *→ R*1)

$$
\begin{array}{rcl}\nx_1 + 2x_3 &=& -1 \\
x_2 &=& 1 \\
x_3 &=& -1\n\end{array}\n\implies\n\begin{bmatrix}\n1 & 0 & 2 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1\n\end{bmatrix}
$$

add -2 times the third row to the first $(R_1 - 2R_2 \rightarrow R_1)$

101181121121 2 990 Linear algebra and applications Jitkomut Songsiri 17 / 35

Gaussian elimination

- a systematic procedure for solving systems of linear equations
- \blacksquare based on performing row operations of the augmented matrix
- simplifies the system of equations into an easy form where a solution can be obtained by inspection

Row echelon form

definition: a matrix is in **row echelon form** if

- 1 a row does not consist entirely of zeros, then the first nonzero number in the row is a 1 (called a **leading 1**)
- 2 all nonzero rows are above any rows of all zeros
- 3 in any two successive rows that do not consist entirely of zeros, the leading 1 in the lower row occurs farther to the right than the leading 1 in the higher row

examples:

Reduced row echelon form

definition: a matrix is in **reduced row echelon form** if

it is in a row echelon form and

every leading 1 is the only nonzero entry in its column **examples:**

Facts about echelon forms

- 1 every matrix has a *unique* reduced row echelon form
- 2 row echelon forms are not unique

- 3 all row echelon forms of a matrix have the same number of zero rows
- 4 the leading 1's always occur in the same positions in the row echelon forms of a matrix *A*
- 5 the columns that contain the leading 1's are called **pivot columns** of *A*
- 6 **rank** of *A* is defined as

the number of nonzero rows of (reduced) echelon form of *A*

Inspecting a solution

- simplify the augmented matrix to the *reduced echelon form*
- \blacksquare read the solution from the reduced echelon form

 $\sqrt{ }$ $\overline{1}$ 1 0 0 0 0 1 3 0 0 0 0 1 1 \Rightarrow 0 · $x_3 = 1$ (no solution) $\sqrt{ }$ \mathbf{I} 1 0 0 *−*2 0 1 0 *−*1 0 0 1 5 1 $\implies x_1 = -2, x_2 = -1, x_3 = 5$ (unique solution) $\sqrt{ }$ $\overline{1}$ 1 0 2 0 1 1 0 0 0 1 $\implies x_1 = 2, x_2 = 1$ (unique solution)

101181121121 2 990

Leading and free variables

$$
\begin{bmatrix} 1 & 0 & 3 & -2 \ 0 & 1 & -1 & 1 \ 0 & 0 & 0 & 0 \end{bmatrix} \implies \begin{array}{l} x_1 + 3x_2 &= -2 \ x_2 - x_3 &= 1 \end{array}
$$

definition:

- the corresponding variables to the leading 1's are called **leading variables**
- the remaining variables are called **free variables**

here x_1, x_2 are leading variables and x_3 is a free variable

let $x_3 = t$ and we obtain

 $x_1 = -3t - 2$, $x_2 = t + 1$, $x_3 = t$

(many solutions)

General solution

$$
\begin{bmatrix} 1 & -5 & 1 & 4 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix} \implies x_1 - 5x_2 + x_3 = 4
$$

 x_1 is the leading variable, x_2 and x_3 are free variables let $x_2 = s$ and $x_3 = t$ we obtain

$$
x_1 = 5s - t + 4
$$

\n
$$
x_2 = s
$$
 (many solutions)
\n
$$
x_3 = t
$$

by assigning values to *s* and *t*, a set of parametric equations:

$$
\begin{array}{rcl}\nx_1 & = & 5s - t + 4 \\
x_2 & = & s \\
x_3 & = & t\n\end{array}
$$

is called a **general solution** of the system

Linear algebra and applications Jitkomut Songsiri 24 / 35

101181121121 2 990

Solution to a linear system

solving $b = Ax$ with $A \in \mathbf{R}^{m \times n}$ has only three possibilities

1 no solution: if $\text{rank}([A|b]) \neq \text{rank}(A)$

$$
\left[\begin{array}{ccc|c} 1 & 1 & 3 & 0 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 2 \end{array}\right], \quad \left[\begin{array}{ccc|c} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{array}\right]
$$

2 **unique solution**: if $\text{rank}([A|b]) = \text{rank}(A) = n$

$$
\left[\begin{array}{ccc|c} 1 & 1 & 3 & 0 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 1 & 2 \end{array}\right], \quad \left[\begin{array}{cc} 1 & 0 & 2 \\ 0 & 2 & 3 \end{array}\right]
$$

3 infinitely many solution: if $\text{rank}([A|b]) = \text{rank}(A) < n$

$$
\left[\begin{array}{ccc|c} 1 & 1 & 3 & 0 \\ 0 & 1 & 2 & -1 \end{array}\right]
$$

101181121121 2 990

Gaussian-Jordan elimination

- simplify an augmented matrix to the reduced row echelon form
- **n** inspect the solution from the reduced row echelon form
- \blacksquare the algorithm consists of two parts:
	- **forward phase:** zeros are introduced below the leading 1's
	- **backward phase:** zeros are introduced above the leading 1's

Example

$$
\begin{array}{rcl}\nx_1 + x_2 + 2x_3 & = & 8 \\
-x_1 - 2x_2 + 3x_3 & = & 1 \\
3x_1 - 7x_2 + 4x_3 & = & 10\n\end{array}\n\Longrightarrow\n\begin{bmatrix}\n1 & 1 & 2 & 8 \\
-1 & -2 & 3 & 1 \\
3 & -7 & 4 & 10\n\end{bmatrix}
$$

use row operations

$$
R_1 + R_2 \rightarrow R_2 \qquad -3R_1 + R_3 \rightarrow R_3 \qquad (-1) \cdot R_2 \rightarrow R_2
$$

\n
$$
\begin{bmatrix}\n1 & 1 & 2 & 8 \\
0 & -1 & 5 & 9 \\
3 & -7 & 4 & 10\n\end{bmatrix}\n\begin{bmatrix}\n1 & 1 & 2 & 8 \\
0 & -1 & 5 & 9 \\
0 & -10 & -2 & -14\n\end{bmatrix}\n\begin{bmatrix}\n1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & -10 & -2 & -14\n\end{bmatrix}
$$

\n
$$
10R_2 + R_3 \rightarrow R_3 \qquad R_3/(-52) \rightarrow R_3
$$

\n
$$
\begin{bmatrix}\n1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & 0 & -52 & -104\n\end{bmatrix}\n\begin{bmatrix}\n1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & 0 & 1 & 2\n\end{bmatrix}
$$

\n(a row echelon form)

we have added zero below the leading 1's (forward phase)

Linear algebra and applications Jitkomut Songsiri 27 / 35

101181121121 2 990

continue performing row operations

$$
5R_3 + R_2 \rightarrow R_2 \quad -R_2 + R_1 \rightarrow R_1 \quad -2R_3 + R_1 \rightarrow R_1
$$

\n
$$
\begin{bmatrix}\n1 & 1 & 2 & 8 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2\n\end{bmatrix}\n\begin{bmatrix}\n1 & 0 & 2 & 7 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2\n\end{bmatrix}\n\begin{bmatrix}\n1 & 0 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2\n\end{bmatrix}
$$

\n(reduced echelon form)

we have added zero above the leading 1's (backward phase)

from the reduced echelon form, $\text{rank}([A|b]) = \text{rank}(A) = n$

the system has a unique solution

$$
x_1 = 3, \quad x_2 = 1, \quad x_3 = 2
$$

Homogeneous linear systems

definition:

a system of linear equations is said to be **homogeneous** if *b^j* 's are all zero

$$
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0
$$

\n
$$
\vdots = \vdots
$$

\n
$$
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0
$$

- $x_1 = x_2 = \cdots = x_n = 0$ is the **trivial** solution to $Ax = 0$
- \blacksquare if (x_1, x_2, \ldots, x_n) is a solution, so is $(\alpha x_1, \alpha x_2, \ldots, \alpha x_n)$ for any $\alpha \in \mathbb{R}$
- hence, if a solution exists, then the system has infinitely many solutions (by choosing *α* arbitrarily)
- \blacksquare if *z* and *w* are solutions to $Ax = 0$, so is $z + \alpha w$ for any $\alpha \in \mathbb{R}$

example

$$
x_1 - x_2 + 2x_3 - x_4 = 0
$$

\n
$$
2x_1 + x_2 - 2x_3 - 2x_4 = 0
$$

\n
$$
-x_1 + 2x_2 - 4x_3 + x_4 = 0
$$

\n
$$
3x_1 - 3x_4 = 0
$$

\n
$$
x_1 - x_2 + 2x_3 - 2x_4 = 0
$$

\n
$$
x_2 - x_3 - 2x_4 = 0
$$

\n
$$
x_3 - x_4 = 0
$$

\n
$$
x_4 = 0
$$

\n
$$
x_5 = 0
$$

\n
$$
x_6 = 0
$$

\n
$$
x_7 = 0
$$

\n
$$
x_8 = 0
$$

\n
$$
x_9 = 0
$$

\n
$$
x_1 - x_2 = 0
$$

\n
$$
x_2 - x_3 = 0
$$

\n
$$
x_3 - x_4 = 0
$$

\n
$$
x_4 = 0
$$

\n
$$
x_5 = 0
$$

\n
$$
x_6 = 0
$$

\n
$$
x_7 = 0
$$

\n
$$
x_8 = 0
$$

\n
$$
x_9 = 0
$$

\n
$$
x_9 = 0
$$

\n
$$
x_1 - x_2 = 0
$$

\n
$$
x_2 - x_3 = 0
$$

\n
$$
x_3 - x_4 = 0
$$

\n
$$
x_1 - x_2 = 0
$$

\n
$$
x_2 - x_3 = 0
$$

\n
$$
x_3 - x_4 = 0
$$

\n
$$
x_4 = 0
$$

\n
$$
x_5 = 0
$$

\n
$$
x_6 = 0
$$

\n
$$
x_7 = 0
$$

\n
$$
x_8 = 0
$$

\n
$$
x_9 = 0
$$

\n
$$
x_9 = 0
$$

the reduced echelon form is

$$
\begin{bmatrix} 1 & 0 & 0 & -1 & 0 \ 0 & 1 & -2 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \implies \begin{array}{rcl} x_1 - x_4 &= 0 \\ x_2 - 2x_3 &= 0 \end{array}
$$

define $x_3 = s, x_4 = t$, the parametric equation is

 $x_1 = t$, $x_2 = 2s$, $x_3 = s$, $x_4 = t$

there are two nonzero rows, so we have two $(n-2=2)$ free variables

. . .

Properties of homogeneous linear system

more properties:

- **n** the last column of the augmented matrix is entirely zero (and hence, can be neglected in the augmented matrix)
- if the reduced row echelon form has *r nonzero* rows, then the system has *n − r* free variables
- a homogeneous linear system with more unknowns than equations has infinitely many solutions

Range space of *A*

range **space of** $A \in \mathbf{R}^{m \times n}$ **is**

 $\mathcal{R}(A) = \{ y \in \mathbb{R}^m \mid y = Ax, \text{ for } x \in \mathbb{R}^n \}$ $\mathbf{rank}(A) \triangleq$ number of leading 1's in row echelon form of A

y ∈ R(*A*) if and only if *y* is a linear combination of columns in *A*:

$$
y = x_1a_1 + x_2a_2 + \dots + x_na_n
$$

- a linear system $y = Ax$ has a solution if and only if $y \in \mathcal{R}(A)$ (existence)
- equivalently, $y = Ax$ has a solution if and only if $\text{rank}(A) = \text{rank}([A \mid y])$

Nullspace of *A*

nullspace of *A* is

$$
\mathcal{N}(A) = \{ x \in \mathbf{R}^n \mid Ax = 0 \}
$$

example:

$$
A = \begin{bmatrix} 2 & -5 & 3 & 0 \\ -2 & -1 & 3 & -1 \\ 5 & -1 & -3 & 2 \end{bmatrix}, \implies R = \begin{bmatrix} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/4 \\ 0 & 0 & 1 & 1/12 \end{bmatrix}, x = x_4 \begin{bmatrix} -1/2 \\ -1/4 \\ -1/12 \\ 1 \end{bmatrix}, x_4 \in \mathbf{R}
$$

uniqueness of solution:

- \blacksquare if the linear system has a solution, the solution is unique if and only if $\mathcal{N}(A) = \{0\}$
- if x_p is a solution to $Ax = b$, and $\mathcal{N}(A) \neq \{0\}$ then a general solution to $Ax = b$ can be expressed as $x = x_p + z$ where $z \in \mathcal{N}(A)$ (infinitely many solutions)

Summary of solving linear systems

for $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m \times n}$, the linear system $Ax = b$ has a solution if and only if

$$
b \in \mathcal{R}(A) \quad \Longleftrightarrow \quad \mathbf{rank}([A|b]) = \mathbf{rank}(A)
$$

if $Ax = b$ has a solution, the uniqueness of the solution in three cases:

- **square** *A***:** the solution is unique *⇔ N* (*A*) *̸*= *{*0*} ⇔* no zero rows in reduced echelon form of *A*
- \blacksquare **tall** *A***:** the solution is unique $\Leftrightarrow N(A) \neq \{0\}$
- **fat** *A***:** since $\mathcal{N}(A) \neq \{0\}$ (always), the solutions are never unique

References

- 1 W.K. Nicholson, *Linear Algebra with Applications*, McGraw-Hill, 2006
- 2 H.Anton and C. Rorres, *Elementary Linear Algebra*, John Wiley, 2011
- 3 S. Boyd and L. Vandenberghe, *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least squares*, Cambridge, 2018