Linear algebra and applications

Department of Electrical Engineering Faculty of Engineering Chulalongkorn University

CUEE

Linear algebra and applications

Jitkomut Songsiri

1

nac

Outline

1 System of linear equations

Linear algebra and applications

Jitkomut Songsiri

2 / 35

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

How to read this handout

- 1 the note is used with lecture in EE205 (you cannot master this topic just by reading this note) class activities include
 - graphical concepts, math derivation of details/steps in between
 - computer codes to illustrate examples
- 2 always read 'textbooks' after lecture
- 3 pay attention to the symbol <a>s; you should be able to prove such <a>s result
- each chapter has a list of references; find more formal details/proofs from in-text citations
- almost all results in this note can be Googled; readers are encouraged to 'stimulate neurons' in your brain by proving results without seeking help from the Internet first
- 6 typos and mistakes can be reported to jitkomut@gmail.com

System of linear equations

Linear algebra and applications

Jitkomut Songsiri System of linear equations

4 / 35

System of linear equations

a linear system of \boldsymbol{m} equations in \boldsymbol{n} variables

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots = \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

in matrix form: Ax = b

problem statement: given A, b, find a solution x (if exists)

Linear algebra and applications

Jitkomut Songsiri

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Example: solving ordinary differential equations

given
$$y(0) = 1, \dot{y}(0) = -1, \ddot{y}(0) = 0$$
, solve

 $\ddot{y} + 6\ddot{y} + 11\dot{y} + 6y = 0$

the closed-form solution is

$$y(t) = C_1 e^{-t} + C_2 e^{-2t} + C_3 e^{-3t}$$

 C_1, C_2 and C_3 can be found by solving a set of linear equations

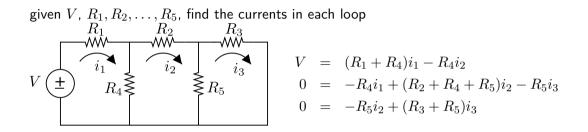
$$1 = y(0) = C_1 + C_2 + C_3$$

-1 = $\dot{y}(0) = -C_1 - 2C_2 - 3C_3$
0 = $\ddot{y}(0) = C_1 + 4C_2 + 9C_3$

Linear algebra and applications

Jitkomut Songsiri

Example: linear static circuit



by KVL, we obtain a set of linear equations

Jitkomut Songsiri

Example: polynomial interpolation

fit a polynomial

$$p(t) = x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1}$$

through n points $(t_1, y_1), \ldots, (t_n, y_n)$



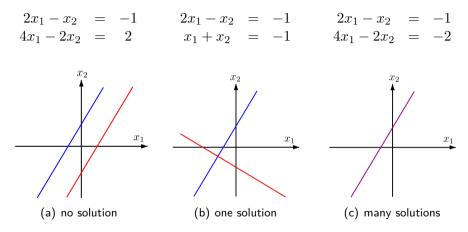
Linear algebra and applications

Jitkomut Songsiri

8 / 35

Special case: two variables

Examples:

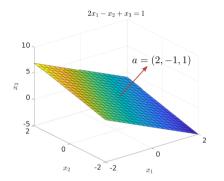


no solution if two lines are parallel but different interceptions on x₂-axis
 many solutions if the two lines are identical

Linear algebra and applications

Jitkomut Songsiri

Geometrical interpretation



the set of solutions to a linear equation

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

can be interpreted as a hyperplane on \mathbf{R}^n

a solution to m linear equations is an **intersection** of m hyperplanes

Linear algebra and applications

Jitkomut Songsiri

Three types of linear equations • square if m = n $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$

• underdetermined if m < n

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

• overdetermined if m > n

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Linear algebra and applications

Jitkomut Songsiri

(A is skinny)

(A is fat)

(A is square)

Existence and uniqueness of solutions

given a system of linear equations existence:

- no solution (the linear system is **inconsistent**)
- a solution exists (the linear system is **consistent**)

uniqueness:

- the solution is unique
- there are infinitely many solutions

every system of linear equations has zero, one, or infinitely many solutions

there are no other possibilities

no solution

unique solution

$$\begin{array}{rcrcrcrc} x_1 + x_2 &=& 1\\ 2x_1 - x_2 &=& 0 \end{array} \Rightarrow x = (1/3, 2/3) \qquad \begin{array}{rcrcrc} x_1 + x_2 &=& 0\\ 2x_1 + x_2 &=& -1\\ x_1 - x_2 &=& -2 \end{array}$$

infinitely many solutions

Linear algebra and applications

Jitkomut Songsiri

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Elementary row operations

define the augmented matrix of the linear equations on page 5 as

a_{11}	a_{12}	• • •	a_{1n}	b_1
a_{21}	a_{22}	• • •	a_{2n}	b_2
÷		÷		÷
a_{m1}	a_{m2}	• • •	a_{mn}	b_m

the following operations on the row of the augmented matrix:

- multiply a row through by a nonzero constant
- 2 interchange two rows
- 3 add a constant times one row to another

do not alter the solution set and yield a simpler system

these are called elementary row operations on a matrix

Linear algebra and applications

SPARK E SAG

Example

add the first row to the second $(R_1 + R_2 \rightarrow R_2)$

add -2 times the first row to the third $(-2R_1 + R_3 \rightarrow R_3)$

Linear algebra and applications

Jitkomut Songsiri

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

multiply the second row by 1/4 ($R_2/4 \rightarrow R_2$)

$$\begin{array}{rcrcrcrc} x_1 + 3x_2 + 2x_3 &=& 2\\ x_2 + \frac{3}{4}x_3 &=& \frac{1}{4}\\ -7x_2 - 6x_3 &=& -1 \end{array} \qquad \Longrightarrow \qquad \begin{bmatrix} 1 & 3 & 2 & 2\\ 0 & 1 & 3/4 & 1/4\\ 0 & -7 & -6 & -1 \end{bmatrix}$$

add 7 times the second row to the third $(7R_2 + R_3 \rightarrow R_3)$

$$\begin{array}{rcrcrcrc} x_1 + 3x_2 + 2x_3 &=& 2\\ x_2 + \frac{3}{4}x_3 &=& \frac{1}{4}\\ -\frac{3}{4}x_3 &=& \frac{3}{4} \end{array} \implies \begin{bmatrix} 1 & 3 & 2 & 2\\ 0 & 1 & 3/4 & 1/4\\ 0 & 0 & -3/4 & 3/4 \end{bmatrix}$$

multiply the third row by $-4/3~(-4R_3/3 \rightarrow R_3)$

$$\begin{array}{rcrcrcrc} x_1 + 3x_2 + 2x_3 &=& 2\\ x_2 + \frac{3}{4}x_3 &=& \frac{1}{4}\\ x_3 &=& -1 \end{array} \qquad \Longrightarrow \qquad \begin{bmatrix} 1 & 3 & 2 & 2\\ 0 & 1 & 3/4 & 1/4\\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Linear algebra and applications

Jitkomut Songsiri

add -3/4 times the third row to the second $(R_2 - (3/4)R_3 \rightarrow R_2)$

add -3 times the second row to the first $(R_1 - 3R_2 \rightarrow R_1)$

add -2 times the third row to the first $(R_1 - 2R_2 \rightarrow R_1)$

Linear algebra and applications

Jitkomut Songsiri

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Gaussian elimination

- a systematic procedure for solving systems of linear equations
- based on performing row operations of the augmented matrix
- simplifies the system of equations into an easy form where a solution can be obtained by inspection

Row echelon form

definition: a matrix is in row echelon form if

- **1** a row does not consist entirely of zeros, then the first nonzero number in the row is a 1 (called a **leading 1**)
- 2 all nonzero rows are above any rows of all zeros
- 3 in any two successive rows that do not consist entirely of zeros, the leading 1 in the lower row occurs farther to the right than the leading 1 in the higher row

examples:

$$\begin{bmatrix} 1 & 4 & -3 & 5 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 2 & 5 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Reduced row echelon form

definition: a matrix is in reduced row echelon form if

• it is in a row echelon form and

every leading 1 is the only nonzero entry in its column examples:

Jitkomut Songsiri

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Facts about echelon forms

1 every matrix has a *unique* reduced row echelon form

2 row echelon forms are not unique

example:
$$\begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- 3 all row echelon forms of a matrix have the same number of zero rows
- 4 the leading 1's always occur in the same positions in the row echelon forms of a matrix ${\cal A}$
- 5 the columns that contain the leading 1's are called **pivot columns** of A
- **6** rank of A is defined as

the number of nonzero rows of (reduced) echelon form of A

Linear algebra and applications

Jitkomut Songsiri

Inspecting a solution

- simplify the augmented matrix to the *reduced echelon form*
- read the solution from the reduced echelon form

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \implies 0 \cdot x_3 = 1 \quad (\text{no solution})$$

$$\begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 5 \end{bmatrix} \implies x_1 = -2, \ x_2 = -1, \ x_3 = 5 \quad (\text{unique solution})$$

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \implies x_1 = 2, \ x_2 = 1 \quad (\text{unique solution})$$

Linear algebra and applications

Jitkomut Songsiri

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Leading and free variables

$$\begin{bmatrix} 1 & 0 & 3 & -2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies \begin{array}{c} x_1 + 3x_2 &= -2 \\ x_2 - x_3 &= 1 \end{array}$$

definition:

- the corresponding variables to the leading 1's are called leading variables
- the remaining variables are called free variables

here x_1, x_2 are leading variables and x_3 is a free variable

let $x_3 = t$ and we obtain

$$x_1 = -3t - 2, \quad x_2 = t + 1, \quad x_3 = t$$

(many solutions)

Linear algebra and applications

Jitkomut Songsiri

23 / 35

General solution

$$\begin{bmatrix} 1 & -5 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies x_1 - 5x_2 + x_3 = 4$$

 x_1 is the leading variable, x_2 and x_3 are free variables let $x_2 = s$ and $x_3 = t$ we obtain

$$\begin{array}{rcl} x_1 &=& 5s-t+4\\ x_2 &=& s\\ x_3 &=& t \end{array} \qquad (\text{many solutions}) \\ \end{array}$$

by assigning values to s and t, a set of parametric equations:

$$\begin{array}{rcl} x_1 & = & 5s - t + 4 \\ x_2 & = & s \\ x_3 & = & t \end{array}$$

is called a general solution of the system

Linear algebra and applications

Jitkomut Songsiri

Solution to a linear system

solving b = Ax with $A \in \mathbf{R}^{m \times n}$ has only three possibilities **1** no solution: if $\operatorname{rank}([A|b]) \neq \operatorname{rank}(A)$

$$\begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

2 unique solution: if rank([A|b]) = rank(A) = n

$$\begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$

3 infinitely many solution: if rank([A|b]) = rank(A) < n

$\begin{bmatrix} 1 \end{bmatrix}$	1	3	0
0	1	2	-1

Linear algebra and applications

Jitkomut Songsiri

Gaussian-Jordan elimination

- simplify an augmented matrix to the reduced row echelon form
- inspect the solution from the reduced row echelon form
- the algorithm consists of two parts:
 - forward phase: zeros are introduced below the leading 1's
 - **backward phase:** zeros are introduced above the leading 1's

Example

use row operations

we have added zero below the leading 1's (forward phase)

Linear algebra and applications

Jitkomut Songsiri

continue performing row operations

$$\begin{aligned} 5R_3 + R_2 &\to R_2 &-R_2 + R_1 \to R_1 &-2R_3 + R_1 \to R_1 \\ \begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} & \begin{bmatrix} 1 & 0 & 2 & 7 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} & \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \\ & \text{(reduced echelon form)} \end{aligned}$$

we have added zero above the leading 1's (backward phase)

from the reduced echelon form, $\mathbf{rank}([A|b]) = \mathbf{rank}(A) = n$

the system has a unique solution

$$x_1 = 3, \quad x_2 = 1, \quad x_3 = 2$$

Linear algebra and applications

Jitkomut Songsiri

Homogeneous linear systems

definition:

a system of linear equations is said to be **homogeneous** if b_j 's are all zero

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots = \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

• $x_1 = x_2 = \cdots = x_n = 0$ is the **trivial** solution to Ax = 0

• if (x_1, x_2, \ldots, x_n) is a solution, so is $(\alpha x_1, \alpha x_2, \ldots, \alpha x_n)$ for any $\alpha \in \mathbf{R}$

- hence, if a solution exists, then the system has infinitely many solutions (by choosing α arbitrarily)
- if z and w are solutions to Ax=0, so is $z+\alpha w$ for any $\alpha\in\mathbf{R}$

Linear algebra and applications

Jitkomut Songsiri

example

the reduced echelon form is

define $x_3 = s, x_4 = t$, the parametric equation is

$$x_1 = t, \quad x_2 = 2s, \quad x_3 = s, \quad x_4 = t$$

there are two nonzero rows, so we have two (n-2=2) free variables

Linear algebra and applications

Jitkomut Songsiri

30 / 35

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Properties of homogeneous linear system

more properties:

- the last column of the augmented matrix is entirely zero (and hence, can be neglected in the augmented matrix)
- $\hfill \ensuremath{\,\,}$ if the reduced row echelon form has r nonzero rows, then the system has n-r free variables
- a homogeneous linear system with more unknowns than equations has infinitely many solutions

Range space of A

range space of $A \in \mathbf{R}^{m \times n}$ is

$$\mathcal{R}(A) = \{ y \in \mathbf{R}^m \mid y = Ax, \text{ for } x \in \mathbf{R}^n \}$$

$$\mathbf{rank}(A) \triangleq \text{ number of leading 1's in row echelon form of } A$$

• $y \in \mathcal{R}(A)$ if and only if y is a linear combination of columns in A:

$$y = x_1a_1 + x_2a_2 + \dots + x_na_n$$

• a linear system y = Ax has a solution if and only if $y \in \mathcal{R}(A)$ (existence)

• equivalently, y = Ax has a solution if and only if rank(A) = rank([A | y])

Linear algebra and applications

Jitkomut Songsiri

Nullspace of A

nullspace of A is

$$\mathcal{N}(A) = \{ x \in \mathbf{R}^n \mid Ax = 0 \}$$

example:

$$A = \begin{bmatrix} 2 & -5 & 3 & 0 \\ -2 & -1 & 3 & -1 \\ 5 & -1 & -3 & 2 \end{bmatrix}, \implies R = \begin{bmatrix} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/4 \\ 0 & 0 & 1 & 1/12 \end{bmatrix}, \quad x = x_4 \begin{bmatrix} -1/2 \\ -1/4 \\ -1/12 \\ 1 \end{bmatrix}, x_4 \in \mathbf{R}$$

uniqueness of solution:

- if the linear system has a solution, the solution is unique if and only if $\mathcal{N}(A) = \{0\}$
- if x_p is a solution to Ax = b, and $\mathcal{N}(A) \neq \{0\}$ then a general solution to Ax = b can be expressed as $x = x_p + z$ where $z \in \mathcal{N}(A)$ (infinitely many solutions)

Linear algebra and applications

Summary of solving linear systems

for $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m \times n}$, the linear system Ax = b has a solution if and only if

$$b \in \mathcal{R}(A) \iff \operatorname{rank}([A|b]) = \operatorname{rank}(A)$$

if Ax = b has a solution, the uniqueness of the solution in three cases:

- **square** A: the solution is unique $\Leftrightarrow \mathcal{N}(A) \neq \{0\} \Leftrightarrow$ no zero rows in reduced echelon form of A
- **tall** A: the solution is unique $\Leftrightarrow \mathcal{N}(A) \neq \{0\}$
- fat A: since $\mathcal{N}(A) \neq \{0\}$ (always), the solutions are never unique

Linear algebra and applications

- 1 W.K. Nicholson, Linear Algebra with Applications, McGraw-Hill, 2006
- 2 H.Anton and C. Rorres, *Elementary Linear Algebra*, John Wiley, 2011
- **3** S. Boyd and L. Vandenberghe, *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least squares*, Cambridge, 2018