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Outline

1 System of linear equations
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How to read this handout
1 the note is used with lecture in EE205 (you cannot master this topic just by

reading this note) – class activities include
graphical concepts, math derivation of details/steps in between
computer codes to illustrate examples

2 always read ’textbooks’ after lecture
3 pay attention to the symbol .; you should be able to prove such . result
4 each chapter has a list of references; find more formal details/proofs from in-text

citations
5 almost all results in this note can be Googled; readers are encouraged to

‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first

6 typos and mistakes can be reported to jitkomut@gmail.com
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System of linear equations
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System of linear equations

a linear system of m equations in n variables

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
... =

...
am1x1 + am2x2 + · · ·+ amnxn = bm

in matrix form: Ax = b

problem statement: given A, b, find a solution x (if exists)
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Example: solving ordinary differential equations

given y(0) = 1, ẏ(0) = −1, ÿ(0) = 0, solve
...
y + 6ÿ + 11ẏ + 6y = 0

the closed-form solution is

y(t) = C1e
−t + C2e

−2t + C3e
−3t

C1, C2 and C3 can be found by solving a set of linear equations

1 = y(0) = C1 + C2 + C3

−1 = ẏ(0) = −C1 − 2C2 − 3C3

0 = ÿ(0) = C1 + 4C2 + 9C3
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Example: linear static circuit

given V , R1, R2, . . . , R5, find the currents in each loop

V = (R1 +R4)i1 −R4i2

0 = −R4i1 + (R2 +R4 +R5)i2 −R5i3

0 = −R5i2 + (R3 +R5)i3

by KVL, we obtain a set of linear equations
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Example: polynomial interpolation
fit a polynomial

p(t) = x1 + x2t+ x3t
2 + · · ·+ xnt

n−1

through n points (t1, y1), . . . , (tn, yn)

write out the conditions on x:

p(t1) = x1 + x2t1 + x3t
2
1 + · · ·+ xnt

n−1
1

p(t2) = x1 + x2t2 + x3t
2
2 + · · ·+ xnt

n−1
2

......
p(tn) = x1 + x2tn + x3t

2
n + · · ·+ xnt

n−1
n

problem data (parameters): (t1, y1), (t2, y2), . . . , (tn, yn)

problem variables: find x1, . . . , xn such that p(ti) = yi for all i
Linear algebra and applications Jitkomut Songsiri 8 / 35
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Special case: two variables
Examples:

2x1 − x2 = −1
4x1 − 2x2 = 2

2x1 − x2 = −1
x1 + x2 = −1

2x1 − x2 = −1
4x1 − 2x2 = −2

(a) no solution (b) one solution (c) many solutions

no solution if two lines are parallel but different interceptions on x2-axis
many solutions if the two lines are identical
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Geometrical interpretation

the set of solutions to a linear equation

a1x1 + a2x2 + · · ·+ anxn = b

can be interpreted as a hyperplane on Rn

a solution to m linear equations is an intersection of m hyperplanes
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Three types of linear equations
square if m = n (A is square)[

a11 a12
a21 a22

] [
x1
x2

]
=

[
b1
b2

]
underdetermined if m < n (A is fat)

[
a11 a12 a13
a21 a22 a23

]x1x2
x3

 =

[
b1
b2

]

overdetermined if m > n (A is skinny)a11 a12
a21 a22
a31 a32

[
x1
x2

]
=

b1b2
b3


Linear algebra and applications Jitkomut Songsiri 11 / 35
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Existence and uniqueness of solutions

given a system of linear equations existence:
no solution (the linear system is inconsistent)
a solution exists (the linear system is consistent)
uniqueness:

the solution is unique
there are infinitely many solutions

every system of linear equations has zero, one, or infinitely many solutions

there are no other possibilities
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no solution
x1 + x2 = 1
2x1 + 2x2 = 0

x1 + x2 = 1
2x1 + x2 = −1
x1 − x2 = 2

unique solution

x1 + x2 = 1
2x1 − x2 = 0

⇒ x = (1/3, 2/3)
x1 + x2 = 0
2x1 + x2 = −1
x1 − x2 = −2

⇒ x = (−1, 1)

infinitely many solutions

x1 + x2 = 1
2x1 + 2x2 = 2

x1 − x2 + 2x3 = 1
−x1 + x3 = −1

3x1 − 2x2 + 3x3 = 3

x = (1− t, t), x = (1− t, 3t, t), t ∈ R
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Elementary row operations
define the augmented matrix of the linear equations on page 5 as

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
... ... ...

am1 am2 · · · amn bm


the following operations on the row of the augmented matrix:

1 multiply a row through by a nonzero constant
2 interchange two rows
3 add a constant times one row to another

do not alter the solution set and yield a simpler system

these are called elementary row operations on a matrix
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Example

x1 + 3x2 + 2x3 = 2
−x1 + x2 + x3 = −1
2x1 − x2 − 2x3 = 3

augmented matrix
=⇒

 1 3 2 2
−1 1 1 −1
2 −1 −2 3


add the first row to the second (R1 +R2 → R2)

x1 + 3x2 + 2x3 = 2
4x2 + 3x3 = 1

2x1 − x2 − 2x3 = 3
=⇒

1 3 2 2
0 4 3 1
2 −1 −2 3


add −2 times the first row to the third (−2R1 +R3 → R3)

x1 + 3x2 + 2x3 = 2
4x2 + 3x3 = 1
−7x2 − 6x3 = −1

=⇒

1 3 2 2
0 4 3 1
0 −7 −6 −1


Linear algebra and applications Jitkomut Songsiri 15 / 35
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multiply the second row by 1/4 (R2/4 → R2)

x1 + 3x2 + 2x3 = 2
x2 +

3
4x3 = 1

4
−7x2 − 6x3 = −1

=⇒

1 3 2 2
0 1 3/4 1/4
0 −7 −6 −1


add 7 times the second row to the third (7R2 +R3 → R3)

x1 + 3x2 + 2x3 = 2
x2 +

3
4x3 = 1

4
−3

4x3 = 3
4

=⇒

1 3 2 2
0 1 3/4 1/4
0 0 −3/4 3/4


multiply the third row by −4/3 (−4R3/3 → R3)

x1 + 3x2 + 2x3 = 2
x2 +

3
4x3 = 1

4
x3 = −1

=⇒

1 3 2 2
0 1 3/4 1/4
0 0 1 −1


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add −3/4 times the third row to the second (R2 − (3/4)R3 → R2)

x1 + 3x2 + 2x3 = 2
x2 = 1
x3 = −1

=⇒

1 3 2 2
0 1 0 1
0 0 1 −1


add −3 times the second row to the first (R1 − 3R2 → R1)

x1 + 2x3 = −1
x2 = 1
x3 = −1

=⇒

1 0 2 −1
0 1 0 1
0 0 1 −1


add −2 times the third row to the first (R1 − 2R2 → R1)

x1 = 1
x2 = 1
x3 = −1

=⇒

1 0 0 1
0 1 0 1
0 0 1 −1


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Gaussian elimination

a systematic procedure for solving systems of linear equations
based on performing row operations of the augmented matrix
simplifies the system of equations into an easy form where a solution can be
obtained by inspection
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Row echelon form

definition: a matrix is in row echelon form if
1 a row does not consist entirely of zeros, then the first nonzero number in the row

is a 1 (called a leading 1)
2 all nonzero rows are above any rows of all zeros
3 in any two successive rows that do not consist entirely of zeros, the leading 1 in

the lower row occurs farther to the right than the leading 1 in the higher row
examples: 1 4 −3 5

0 1 3 0
0 0 1 2

 ,

1 1 0
0 1 0
0 0 0

 ,

0 1 2 5 0
0 0 1 −1 0
0 0 0 0 1


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Reduced row echelon form

definition: a matrix is in reduced row echelon form if
it is in a row echelon form and
every leading 1 is the only nonzero entry in its column

examples: [
0 0
0 0

]
,

1 0 0 3
0 1 0 7
0 0 1 −1

 ,


0 1 −2 0 1
0 0 0 1 3
0 0 0 0 0
0 0 0 0 0


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Facts about echelon forms
1 every matrix has a unique reduced row echelon form
2 row echelon forms are not unique

example:

 1 1 3 0
0 1 2 −1
0 0 0 0

 ∼

 1 0 1 1
0 1 2 −1
0 0 0 0


3 all row echelon forms of a matrix have the same number of zero rows
4 the leading 1’s always occur in the same positions in the row echelon forms of a

matrix A

5 the columns that contain the leading 1’s are called pivot columns of A
6 rank of A is defined as

the number of nonzero rows of (reduced) echelon form of A
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Inspecting a solution

simplify the augmented matrix to the reduced echelon form
read the solution from the reduced echelon form1 0 0 0

0 1 3 0
0 0 0 1

 =⇒ 0 · x3 = 1 (no solution)

1 0 0 −2
0 1 0 −1
0 0 1 5

 =⇒ x1 = −2, x2 = −1, x3 = 5 (unique solution)

1 0 2
0 1 1
0 0 0

 =⇒ x1 = 2, x2 = 1 (unique solution)
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Leading and free variables

1 0 3 −2
0 1 −1 1
0 0 0 0

 =⇒ x1 + 3x2 = −2
x2 − x3 = 1

definition:
the corresponding variables to the leading 1’s are called leading variables
the remaining variables are called free variables

here x1, x2 are leading variables and x3 is a free variable
let x3 = t and we obtain

x1 = −3t− 2, x2 = t+ 1, x3 = t

(many solutions)
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General solution 1 −5 1 4
0 0 0 0
0 0 0 0

 =⇒ x1 − 5x2 + x3 = 4

x1 is the leading variable, x2 and x3 are free variables
let x2 = s and x3 = t we obtain

x1 = 5s− t+ 4
x2 = s
x3 = t

(many solutions)

by assigning values to s and t, a set of parametric equations:

x1 = 5s− t+ 4
x2 = s
x3 = t

is called a general solution of the system
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Solution to a linear system
solving b = Ax with A ∈ Rm×n has only three possibilities

1 no solution: if rank([A|b]) ̸= rank(A) 1 1 3 0
0 1 2 −1
0 0 0 2

 ,

 1 0 2
0 1 1
0 0 −1


2 unique solution: if rank([A|b]) = rank(A) = n 1 1 3 0

0 1 2 −1
0 0 1 2

 ,

[
1 0 2
0 2 3

]

3 infinitely many solution: if rank([A|b]) = rank(A) < n[
1 1 3 0
0 1 2 −1

]
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Gaussian-Jordan elimination

simplify an augmented matrix to the reduced row echelon form
inspect the solution from the reduced row echelon form
the algorithm consists of two parts:

forward phase: zeros are introduced below the leading 1’s
backward phase: zeros are introduced above the leading 1’s

Linear algebra and applications Jitkomut Songsiri 26 / 35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example
x1 + x2 + 2x3 = 8
−x1 − 2x2 + 3x3 = 1
3x1 − 7x2 + 4x3 = 10

=⇒

 1 1 2 8
−1 −2 3 1
3 −7 4 10


use row operations

R1 +R2 → R2 −3R1 +R3 → R3 (−1) ·R2 → R21 1 2 8
0 −1 5 9
3 −7 4 10

 1 1 2 8
0 −1 5 9
0 −10 −2 −14

 1 1 2 8
0 1 −5 −9
0 −10 −2 −14


10R2 +R3 → R3 R3/(−52) → R31 1 2 8

0 1 −5 −9
0 0 −52 −104

 1 1 2 8
0 1 −5 −9
0 0 1 2


(a row echelon form)

we have added zero below the leading 1’s (forward phase)
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continue performing row operations

5R3 +R2 → R2 −R2 +R1 → R1 −2R3 +R1 → R11 1 2 8
0 1 0 1
0 0 1 2

 1 0 2 7
0 1 0 1
0 0 1 2

 1 0 0 3
0 1 0 1
0 0 1 2


(reduced echelon form)

we have added zero above the leading 1’s (backward phase)

from the reduced echelon form, rank([A|b]) = rank(A) = n

the system has a unique solution

x1 = 3, x2 = 1, x3 = 2
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Homogeneous linear systems
definition:
a system of linear equations is said to be homogeneous if bj ’s are all zero

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0
... =

...
am1x1 + am2x2 + · · ·+ amnxn = 0

x1 = x2 = · · · = xn = 0 is the trivial solution to Ax = 0

if (x1, x2, . . . , xn) is a solution, so is (αx1, αx2, . . . , αxn) for any α ∈ R
hence, if a solution exists, then the system has infinitely many solutions (by
choosing α arbitrarily)
if z and w are solutions to Ax = 0, so is z + αw for any α ∈ R
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example
x1 − x2 + 2x3 − x4 = 0
2x1 + x2 − 2x3 − 2x4 = 0
−x1 + 2x2 − 4x3 + x4 = 0
3x1 − 3x4 = 0

=⇒


1 −1 2 −1 0
2 1 −2 −2 0
−1 2 −4 1 0
3 0 0 −3 0


the reduced echelon form is

1 0 0 −1 0
0 1 −2 0 0
0 0 0 0 0
0 0 0 0 0

 =⇒ x1 − x4 = 0
x2 − 2x3 = 0

define x3 = s, x4 = t, the parametric equation is

x1 = t, x2 = 2s, x3 = s, x4 = t

there are two nonzero rows, so we have two (n− 2 = 2) free variables
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Properties of homogeneous linear system

more properties:
the last column of the augmented matrix is entirely zero (and hence, can be
neglected in the augmented matrix)
if the reduced row echelon form has r nonzero rows, then the system has n− r
free variables
a homogeneous linear system with more unknowns than equations has infinitely
many solutions
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Range space of A

range space of A ∈ Rm×n is

R(A) = { y ∈ Rm | y = Ax, for x ∈ Rn }
rank(A) ≜ number of leading 1’s in row echelon form of A

y ∈ R(A) if and only if y is a linear combination of columns in A:

y = x1a1 + x2a2 + · · ·+ xnan

a linear system y = Ax has a solution if and only if y ∈ R(A) (existence)
equivalently, y = Ax has a solution if and only if rank(A) = rank([A | y])
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Nullspace of A

nullspace of A is
N (A) = { x ∈ Rn | Ax = 0 }

example:

A =

 2 −5 3 0
−2 −1 3 −1
5 −1 −3 2

 , =⇒ R =

1 0 0 1/2
0 1 0 1/4
0 0 1 1/12

 , x = x4


−1/2
−1/4
−1/12

1

 , x4 ∈ R

uniqueness of solution:
if the linear system has a solution, the solution is unique if and only if N (A) = {0}
if xp is a solution to Ax = b, and N (A) ̸= {0} then a general solution to Ax = b
can be expressed as x = xp + z where z ∈ N (A) (infinitely many solutions)
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Summary of solving linear systems

for A ∈ Rm×n, b ∈ Rm×n, the linear system Ax = b has a solution if and only if

b ∈ R(A) ⇐⇒ rank([A|b]) = rank(A)

if Ax = b has a solution, the uniqueness of the solution in three cases:

square A: the solution is unique ⇔ N (A) ̸= {0} ⇔ no zero rows in reduced
echelon form of A
tall A: the solution is unique ⇔ N (A) ̸= {0}
fat A: since N (A) ̸= {0} (always), the solutions are never unique
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